JP2005214863A - Method of measuring water and aqueous solution by ultraviolet ray - Google Patents

Method of measuring water and aqueous solution by ultraviolet ray Download PDF

Info

Publication number
JP2005214863A
JP2005214863A JP2004023877A JP2004023877A JP2005214863A JP 2005214863 A JP2005214863 A JP 2005214863A JP 2004023877 A JP2004023877 A JP 2004023877A JP 2004023877 A JP2004023877 A JP 2004023877A JP 2005214863 A JP2005214863 A JP 2005214863A
Authority
JP
Japan
Prior art keywords
water
aqueous solution
spectrum
ultraviolet
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004023877A
Other languages
Japanese (ja)
Other versions
JP4372567B2 (en
JP2005214863A5 (en
Inventor
Noboru Azuma
昇 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2004023877A priority Critical patent/JP4372567B2/en
Publication of JP2005214863A publication Critical patent/JP2005214863A/en
Publication of JP2005214863A5 publication Critical patent/JP2005214863A5/ja
Application granted granted Critical
Publication of JP4372567B2 publication Critical patent/JP4372567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To discriminate/determine quantitatively micro amounts of various dissolved components in an aqueous solution without using a near infrared spectroscopy. <P>SOLUTION: An analytical curve for indicating a correlation between an absorption intensity in one or more of wavelength in a long wavelength side containing no absorption peak of a dissolved substance itself, in an absorption peak in the vicinity of 160nm of water, and a concentration is preliminarily determined in the first measuring method. Then, an ultraviolet spectroscopic spectrum of the aqueous solution is measured by the one or more of wavelength. The concentration of the micro amount of component in the aqueous solution is determined quantitatively using the analytical curve on the basis of an obtained ultraviolet spectroscopic spectral data. An ultraviolet spectroscopic spectrum as to each of a plurality of standard aqueous solutions is measured preliminarily in a prescribed wavelength range in the absorption peak in the vicinity of 160nm of the water, in the second measuring method. Then, an ultraviolet spectroscopic spectrum of an aqueous sample solution containing the micro amount of component is measured in the prescribed wavelength range, to judge that the ultraviolet spectroscopic spectrum of the aqueous sample solution is consistent with the ultraviolet spectroscopic spectrum in any of the standard aqueous solutions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水または水溶成分の識別・定量分析に関するものである。   The present invention relates to identification and quantitative analysis of water or water-soluble components.

水または水溶成分の識別・定量分析において、分光分析は非常に有効な手段として多種多様に利用されている。その分光分析手法は、測定波長領域によって、紫外可視分光、近赤外分光、赤外分光に大別される。   In the discrimination / quantitative analysis of water or water-soluble components, spectroscopic analysis is widely used as a very effective means. The spectroscopic analysis methods are roughly classified into ultraviolet-visible spectroscopy, near-infrared spectroscopy, and infrared spectroscopy depending on the measurement wavelength region.

特に近赤外分光では、水特有の水素結合を反映する吸収スペクトルが800nm〜1400nmに顕著に観測され、たとえば特開平3−175341号公報には、このスペクトルを利用した水中の溶解成分測定方法が提案されている。水分子は液体状態では互いに水素結合しているが、水中に他の溶解成分が混入された場合には、この水素結合の状態がきわめて敏感に変化する。そして、その変化の様子を調べることで、混入成分の定量分析が可能となるのである。より具体的には、無機電解質が水溶液中でイオン電離する際に、イオン水和によって生じるイオン近傍の水分子とバルクの水分子との間の水素結合の切断や歪み、イオンの電場による水分子の分極の影響などによって、水分子自身の結合状態や、水素結合した水分子同士の結合状態が影響を受け、その近赤外吸収スペクトルは純水の場合と異なるものとなる。そこで、あらかじめその変化を検量することで、近赤外に吸収スペクトルを持たないイオン種の濃度を水の吸収スペクトルの変化から定量できる。
特開平3−175341号公報 特開平3−220452号公報
In particular, in near-infrared spectroscopy, an absorption spectrum reflecting water-specific hydrogen bonds is remarkably observed at 800 nm to 1400 nm. For example, JP-A-3-175341 discloses a method for measuring dissolved components in water using this spectrum. Proposed. Water molecules are hydrogen bonded to each other in the liquid state, but when other dissolved components are mixed in water, the hydrogen bond state changes very sensitively. Then, by examining the state of the change, it becomes possible to quantitatively analyze the mixed components. More specifically, when an inorganic electrolyte is ionized in an aqueous solution, hydrogen bonds are broken or distorted between water molecules in the vicinity of ions and bulk water molecules generated by ion hydration, and water molecules are generated by the electric field of ions. Due to the influence of the polarization of water, the bonding state of water molecules themselves and the bonding state of water-bonded water molecules are affected, and the near-infrared absorption spectrum differs from that of pure water. Therefore, by calibrating the change in advance, the concentration of ionic species having no absorption spectrum in the near infrared can be determined from the change in the absorption spectrum of water.
JP-A-3-175341 JP-A-3-220452

たとえば今日の半導体製造プロセスでは回路の微細化が進み、使用される薬液の無機電解質濃度はそれに伴って低濃度化する傾向がある。また廃液処理に関する環境問題の観点からも非常に低濃度の成分分析が要求されている。しかし近赤外に現れる水の吸収スペクトルは本来禁制遷移で吸収が弱く、極微量の溶解成分の濃度が測定できない。そこで、近赤外スペクトルでは有意差が得られない極微量の溶解成分の濃度の測定が必要になっている。   For example, in today's semiconductor manufacturing process, circuit miniaturization advances and the concentration of the inorganic electrolyte in the chemical solution used tends to decrease accordingly. In addition, from the viewpoint of environmental problems related to waste liquid treatment, component analysis at a very low concentration is required. However, the absorption spectrum of water appearing in the near infrared is inherently forbidden transition and weakly absorbed, and the concentration of trace components cannot be measured. Therefore, it is necessary to measure the concentration of a very small amount of dissolved component for which a significant difference cannot be obtained in the near-infrared spectrum.

なお、後で説明するように本発明は遠紫外分光を用いるが、特開平3-220452号公報には、紫外光の吸光度を用いたアンモニアまたは水酸化ナトリウムと共存の過酸化水素定量法が記載されている。ここで測定されているのは、0〜10重量%の過酸化水素濃度、0〜15重量%のアンモニア濃度、0〜8重量%の水酸化ナトリウム濃度であり、本発明の対象とするような微量成分の分析はしていない。   As will be described later, the present invention uses far-ultraviolet spectroscopy, but JP-A-3-220452 describes a method for determining hydrogen peroxide in coexistence with ammonia or sodium hydroxide using the absorbance of ultraviolet light. Has been. What is measured here is a hydrogen peroxide concentration of 0 to 10% by weight, an ammonia concentration of 0 to 15% by weight, and a sodium hydroxide concentration of 0 to 8% by weight. We do not analyze trace components.

この発明の目的は、遠紫外に現れる水の吸収スペクトルを用いて、種々の微量の溶解成分を含む水の識別・定量分析を可能にすることである。   An object of the present invention is to enable identification and quantitative analysis of water containing various trace amounts of dissolved components using the absorption spectrum of water appearing in the far ultraviolet.

160nm付近にピークを有する水のn→σ*遷移による吸収スペクトルが、水自身と水中に溶解する水和イオンとの間に形成する電場の影響で長波長側にシフトし、スペクトルの一部が常用分光装置(真空を要しない分光装置)で測定可能な領域に現れることを利用して、水溶液の識別・定量分析を行う。   The absorption spectrum due to the n → σ * transition of water having a peak near 160 nm shifts to the longer wavelength side due to the effect of the electric field formed between the water itself and the hydrated ion dissolved in the water, and part of the spectrum is Identification and quantitative analysis of aqueous solutions is performed by using the fact that it appears in a region that can be measured with a regular spectrometer (a spectrometer that does not require vacuum).

すなわち、本発明に係る第1の紫外光による水溶液測定方法では、水の160nm付近の吸収ピークの長波長側での、溶解物質自体の吸収ピークを含まない1以上の波長(たとえば180〜210nmの範囲内)での吸収強度と濃度との検量線をあらかじめ決定しておく。次に、水溶液の紫外分光スペクトルを、前記の1以上の波長で測定する。そして、得られた紫外分光スペクトルデータより検量線を用いて水溶液中の微量成分の濃度を定量する。   That is, in the first aqueous solution measurement method using ultraviolet light according to the present invention, one or more wavelengths (for example, 180 to 210 nm) not including the absorption peak of the dissolved substance itself on the long wavelength side of the absorption peak near 160 nm of water. A calibration curve between absorption intensity and concentration within the range is determined in advance. Next, the ultraviolet spectrum of the aqueous solution is measured at the one or more wavelengths. And the density | concentration of the trace component in aqueous solution is quantified using a calibration curve from the obtained ultraviolet spectroscopy spectrum data.

本発明に係る第2の紫外光による水溶液測定方法では、複数の標準水溶液について紫外分光スペクトルの波長依存性を水の160nm付近の吸収ピークの長波長側の所定の波長範囲(たとえば180〜210nmの範囲)であらかじめ測定しておく。次に、微量成分を含む水溶液試料の紫外分光スペクトルを所定の波長範囲で測定し、水溶液試料の紫外分光スペクトルが、どの標準水溶液の紫外分光スペクトルと一致するかを判断する。   In the second aqueous solution measurement method using ultraviolet light according to the present invention, the wavelength dependence of the ultraviolet spectrum of a plurality of standard aqueous solutions is set to a predetermined wavelength range (for example, 180 to 210 nm) on the long wavelength side of the absorption peak near 160 nm of water. Range) in advance. Next, the ultraviolet spectrum of the aqueous solution sample containing a trace component is measured in a predetermined wavelength range, and it is determined which standard aqueous solution the ultraviolet spectrum of the aqueous solution sample matches.

遠紫外分光により水溶液中の微量成分の識別および定量分析が可能になる。また、この測定の分析は単純な手法で行える。   Far ultraviolet spectroscopy enables the identification and quantitative analysis of trace components in aqueous solutions. Also, this measurement can be analyzed by a simple method.

以下、添付の図面を参照して本発明の実施の形態を説明する。
一般に、可視・紫外光線による分光分析では、その吸収スペクトルが測定物質分子の電子遷移のエネルギー準位に及ぶため、近赤外線の吸収スペクトルよりはるかに大きなエネルギー変化を伴う。このことを利用した分光分析の歴史は深く、各種発光基の定性・定量分析に応用されており、今日ではたいていの発色団のスペクトルが知られている。このように紫外可視分光は従来から広く使用されているが、200nm〜800nm領域に吸収バンドを有する溶液に対してのみ適用されていた。たとえば、降水中の硝酸イオン(NO 2−)や亜硝酸イオン(NO -)はそれぞれ201nm、210nmにピークをもつ吸収が知られており、それらの波長を用いた検出や測定が行われている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In general, in the spectroscopic analysis using visible / ultraviolet rays, the absorption spectrum extends to the energy level of the electronic transition of the substance to be measured, and therefore involves a much larger energy change than the absorption spectrum of near infrared rays. The history of spectroscopic analysis using this fact is deep, and it has been applied to qualitative and quantitative analysis of various luminescent groups. Today, the spectrum of most chromophores is known. As described above, UV-visible spectroscopy has been widely used, but has been applied only to solutions having an absorption band in the 200 nm to 800 nm region. For example, nitrate ions (NO 3 2− ) and nitrite ions (NO 2 ) in precipitation are known to have absorption peaks at 201 nm and 210 nm, respectively, and detection and measurement using these wavelengths are performed. ing.

ところで、水分子は分子中の酸素原子に不対電子を有しており、この不対電子が他の分子との間の共有結合に関与することができ、その際に形成される反結合性分子軌道σとの間で、n→σ遷移とよばれる紫外線領域のエネルギー変化を伴う。そして、この水の吸収スペクトルは気体状態では波長167.0nmにピークを持つことが知られており、液体ではおよそ160nm付近のピークを示す。しかし、これまで水中に溶解する物質をこの水自身の吸収スペクトルを用いて検出あるいは測定する試みはなされなかった。なぜなら、水中に溶解する成分が微量である場合は、明らかに主成分は水であり、微量成分の混入による水自体のスペクトルの吸収量変化は無視されるほど小さいことが自明であるからである。 By the way, the water molecule has an unpaired electron in the oxygen atom in the molecule, and this unpaired electron can participate in the covalent bond with other molecules, and the antibonding property formed at that time An energy change in the ultraviolet region called an n → σ * transition is accompanied with the molecular orbital σ * . The absorption spectrum of water is known to have a peak at a wavelength of 167.0 nm in a gas state, and shows a peak around 160 nm in a liquid. However, no attempt has been made so far to detect or measure substances dissolved in water using the absorption spectrum of the water itself. This is because when the amount of the component dissolved in the water is very small, it is obvious that the main component is water, and the change in the absorption amount of the spectrum of the water itself due to the mixing of the trace component is so small that it can be ignored. .

本発明者は、この水のn→σ遷移に要するエネルギーが、水中に溶解成分が水和している状態では、その水和イオンに固有の変化を示すことに着目し、各種の水和イオンに関する水のn→σ遷移スペクトルの変化の様子を系統的に調査した。その結果、水中に溶解成分が水和した状態では、水和イオンの電場が影響して、n→σ遷移に起因する160nm付近の吸収ピークの裾野の部分(180nm〜210nmの常用分光装置で測定可能な領域に現れる吸収バンド)の強度、位置、バンド幅が、水の水素結合や水和に非常に敏感に変化していることを突き止め、これを水溶液の識別や定量分析に利用して、水中に溶解する極微量の成分濃度や水質変化の測定が可能であることを実証するにいたった。すなわち、水のn→σ*遷移による吸収スペクトルは、図1に示すように、180nm〜210nmの波長領域で非常に急峻な傾斜を有しているが、この傾斜の位置が水の状態が変化することによってシフトすると、水中に溶解する物質の濃度が微量であって、そのことによる水の吸収ピークの大きさがほとんど変わらない場合でも、わずかなスペクトルのシフトはその変化の様子を103〜10倍に拡大して反映することになる。 The inventor of the present invention pays attention to the fact that the energy required for the n → σ * transition of water shows an inherent change in the hydrated ion in a state where the dissolved component is hydrated in water. The state of change of n → σ * transition spectrum of water related to ions was systematically investigated. As a result, in the state where the dissolved component is hydrated in water, the electric field of the hydrated ions affects the bottom of the absorption peak near 160 nm caused by the n → σ * transition (with a 180 to 210 nm common spectrometer). Ascertaining that the intensity, position, and band width of the absorption band appearing in the measurable region change very sensitively to hydrogen bonding and hydration of water, and use this for the identification and quantitative analysis of aqueous solutions. It was proved that it was possible to measure the concentration of trace components dissolved in water and the change in water quality. That is, the absorption spectrum due to the n → σ * transition of water has a very steep slope in the wavelength region of 180 nm to 210 nm as shown in FIG. 1, but the position of this slope changes the state of water. Even if the concentration of the substance dissolved in water is very small, and the magnitude of the absorption peak of water hardly changes, the slight shift of the spectrum shows the state of the change from 10 3 to It will be magnified 10 5 times and reflected.

例1:純水の紫外スペクトルの温度変化.
純水の紫外スペクトルは、温度変化に対して変化する。たとえば図2に示す紫外スペクトルは、純水の温度を20℃〜55℃の範囲内の5℃おきの8つの温度で変化させた場合の、160nm付近にピークを有する水の吸収の裾野の部分の吸収スペクトルである。純水の温度が上昇して、水自身の水素結合力が緩和されるに従って紫外スペクトルが長波長側へシフトしており、この領域の水のスペクトルが水分子同士の結合状態の変化を反映していることを示している。
Example 1: Temperature change in the ultraviolet spectrum of pure water.
The ultraviolet spectrum of pure water changes with temperature. For example, the ultraviolet spectrum shown in FIG. 2 shows the bottom of the absorption of water having a peak near 160 nm when the temperature of pure water is changed at eight temperatures every 5 ° C. within the range of 20 ° C. to 55 ° C. It is an absorption spectrum of. As the temperature of pure water rises and the hydrogen bond strength of water itself is relaxed, the ultraviolet spectrum shifts to the longer wavelength side, and the water spectrum in this region reflects changes in the bonding state between water molecules. It shows that.

例2:水の紫外スペクトルの極微量の溶解成分による変化.
また、水の紫外スペクトルは、水中に溶解する極微量の成分濃度に対して変化する。たとえば、図3は、亜硝酸イオン水溶液に見られる水の遠紫外スペクトル変化の測定例を示す。ここで、25℃の純水に亜硝酸ナトリウムを20μmol/l〜200μmol/lの範囲内で20μmol/lごとの濃度で溶解させている。亜硝酸ナトリウムの濃度上昇に伴って、亜硝酸イオン(NO -)の吸収ピーク(波長210nm)での吸収量が増加する一方で、190nm〜200nmの領域の吸収が亜硝酸イオンの増加に比例して増加していることがわかる。これは、本来の亜硝酸イオンの吸収スペクトル(図の点線で推測されるスペクトル)に亜硝酸ナトリウムの水和による水の吸収スペクトルの長波長シフトが重なったスペクトルと理解することができる。すなわち、190nm〜200nmのスペクトルの変化は、純水中に亜硝酸ナトリウムが水和することによって水分子同士の結合状態が緩和され、亜硝酸ナトリウムの濃度に相関して水の吸収スペクトルがシフトしている様子を反映しており、このシフトによる190nm〜200nmの領域の吸収量の変化から亜硝酸ナトリウムの濃度が定量可能であることを示すものである。例1、例2の測定では、図4の装置を用いた。
Example 2: Change in the ultraviolet spectrum of water due to a trace amount of dissolved components.
Moreover, the ultraviolet spectrum of water changes with respect to the concentration of a very small amount of components dissolved in water. For example, FIG. 3 shows a measurement example of the change in the far ultraviolet spectrum of water found in an aqueous nitrite ion solution. Here, sodium nitrite is dissolved in pure water at 25 ° C. within a range of 20 μmol / l to 200 μmol / l at a concentration of 20 μmol / l. As the concentration of sodium nitrite increases, the amount of absorption at the absorption peak (wavelength 210 nm) of nitrite ions (NO 2 ) increases, while the absorption in the region of 190 nm to 200 nm is proportional to the increase in nitrite ions. It can be seen that it has increased. This can be understood as a spectrum in which the long-wavelength shift of the absorption spectrum of water due to hydration of sodium nitrite overlaps the original absorption spectrum of nitrite ions (spectrum estimated by the dotted line in the figure). That is, the change in the spectrum from 190 nm to 200 nm is caused by the hydration of sodium nitrite in pure water, so that the binding state of water molecules is relaxed, and the water absorption spectrum is shifted in correlation with the concentration of sodium nitrite. This shows that the concentration of sodium nitrite can be quantified from the change in the amount of absorption in the region of 190 nm to 200 nm due to this shift. In the measurement of Examples 1 and 2, the apparatus shown in FIG. 4 was used.

なお、前に述べたように、紫外可視分光は従来から広く使用されているが、200nm〜800nm領域に吸収バンドを有する物質に対してのみ適用されていた。これに対し、本発明は、水に溶解する物質によって変化する水のスペクトルで分析を行うため、溶解物質自体のスペクトルが180nm以上の常用分光装置で観測可能な領域に現れない場合でも、極微量の水溶性物質の定量測定を可能にしたものである。   As described above, ultraviolet-visible spectroscopy has been widely used, but has been applied only to substances having an absorption band in the 200 nm to 800 nm region. On the other hand, since the present invention analyzes the spectrum of water that varies depending on the substance that dissolves in water, even if the spectrum of the dissolved substance itself does not appear in a region observable by a regular spectrometer of 180 nm or more, it is extremely small. It enables quantitative measurement of water-soluble substances.

図4は、水の紫外スペルトル測定に用いる紫外分光測定装置の構成を示す。光源10から発生される紫外線が、光学セル12の中の測定試料を透過する。光学セルを透過した測定光は、分光部14に入り、複数の波長に分光される。(分光方法にはグレーティングを用いても良いし、干渉フィルタを用いてもよい。)信号処理部16は、各測定波長での信号を演算して濃度を定量する。さらに、データ出力部18が、演算結果を表示または出力する。この装置構成は、従来と同様である。信号処理部16とデータ表示部18として、具体的には、190nm〜280nmの波長で測定できる常用の分光装置が使用でき、ここでは、島津製作所の紫外・可視分光分析計3100PCを用いた。   FIG. 4 shows the configuration of an ultraviolet spectroscopic measurement apparatus used for measuring ultraviolet spelling of water. Ultraviolet rays generated from the light source 10 pass through the measurement sample in the optical cell 12. The measurement light transmitted through the optical cell enters the spectroscopic unit 14 and is split into a plurality of wavelengths. (A grating may be used for the spectroscopic method, or an interference filter may be used.) The signal processing unit 16 calculates a concentration by calculating a signal at each measurement wavelength. Further, the data output unit 18 displays or outputs the calculation result. This device configuration is the same as the conventional one. Specifically, as the signal processing unit 16 and the data display unit 18, a conventional spectroscopic device capable of measuring at a wavelength of 190 nm to 280 nm can be used. Here, an ultraviolet / visible spectroscopic analyzer 3100PC manufactured by Shimadzu Corporation was used.

濃度計算式は、以下のとおり得られる。光源10が発する光量をI、基準液(純水)を入れたセルを通過後に分光部センサが受光する光量をI、サンプル液を通過後にセンサが受光する光量をIとするとき、それぞれの光量I、Iと濃度cの関係は、ランバートベールの法則より、式(1)、式(2)として表わせる。ここに、aは、測定成分の物質吸光度を表わし、bは試料の厚さ(セル長)を表わす。また、γは検出強度の変動であり、センサの感度変化や光量変化である。

Figure 2005214863
ただし、基準液では、c=0である。
Figure 2005214863
また、これらの式において、aは、系の測定成分以外の物質吸光度であり、たとえば、セル、フィルターやレンズの材質の吸光度やそれらに付着する汚れの吸光度などがあげられる。また、bは、それら吸収をもつ物質の厚みである。これらの式では、それらサンプル以外による光の吸収をまとめてexp(−a×b)と表わしている。 The concentration calculation formula is obtained as follows. When the amount of light emitted from the light source 10 I, the reference solution the amount of light beam splitting unit sensor after passing through the cell containing the (pure water) is received I b, the amount of light sensor receives light after passing through the sample liquid and I s, respectively the relationship between the light intensity I b, I s and concentration c, expressed from Lambert-Beer law, equation (1), as an expression (2). Here, a represents the substance absorbance of the measurement component, and b represents the thickness (cell length) of the sample. Further, γ is a change in detection intensity, which is a change in sensitivity of the sensor or a change in light quantity.
Figure 2005214863
However, c = 0 in the reference solution.
Figure 2005214863
Also, in these equations, a n is a substance absorbance other than the measurement component of the system, for example, cells, dirt absorbance adhering to the filter and the lens material absorbance and thereof. B n is the thickness of the substance having such absorption. In these equations, the absorption of light by other than those samples is collectively expressed as exp (−a n × b n ).

そこで、このような光学光路の構成において、測定成分によって吸収を受けた透過光量Iを、測定成分以外の条件がすべて等価な基準液透過光量Iで割ることによって、濃度にかかわる吸収量のみを取り出し、測定成分濃度cを式(3)により求めることができる。

Figure 2005214863
Therefore, in such a configuration of the optical path, the transmitted light amount I s having received the absorption by measurement component, and dividing by the conditions other than the measurement components are all equivalent reference fluid quantity of transmitted light I b, absorption related to the concentration only And the measured component concentration c can be obtained from the equation (3).
Figure 2005214863

また、実際の濃度測定には2波長法も用いられる。2波長法では、第1の波長を試料に対して吸光度が大きな波長に選び、第2の波長として、吸光度が第1の波長と異なり、それ以外の要因は第1の波長と同様に変化する波長を選択し、この2つの波長で測定して濃度cを計算する。   A two-wavelength method is also used for actual concentration measurement. In the two-wavelength method, the first wavelength is selected as a wavelength having a large absorbance with respect to the sample, the absorbance is different from the first wavelength as the second wavelength, and other factors are changed in the same manner as the first wavelength. Select the wavelength and measure at these two wavelengths to calculate the concentration c.

また、複数の成分の濃度を定量する場合には、スペクトルから得られる複数の波長の吸光度を多変量解析して検量線を作成し、得られた検量線から各成分の濃度を計算するという手法(重回帰分析や主成分分析)が有効である。   In addition, when quantifying the concentration of multiple components, a multi-variate analysis of absorbance at multiple wavelengths obtained from the spectrum is used to create a calibration curve, and the concentration of each component is calculated from the obtained calibration curve. (Multiple regression analysis and principal component analysis) are effective.

このように、紫外光による水溶液中の微量成分の測定方法では、水の160nm付近の吸収ピークの長波長側での1以上の波長(たとえば180nm〜210nmの範囲内)での吸収強度と1または2以上の微量成分の濃度との検量線をあらかじめ決定しておく。次に、水溶液の紫外分光スペクトルを、前記の1以上の波長で測定する。そして、得られた紫外分光スペクトルデータより検量線を用いて水溶液中の微量成分の濃度を定量する。この測定方法は、溶解物質自体のスペクトルが遠紫外領域に現れない場合でも極微量の水溶性物質の定量測定を可能にしたものであるが、水の160nm付近の吸収ピークの長波長側の裾野に、溶解物質自体の吸収ピークの裾野が重なることもある。その場合も、同様に検量線を決定して水溶液中の微量成分の濃度を定量できる。なお、この測定方法は溶解物質自体の吸収ピークを測定するものではないので、測定波長としては、溶解物質自体の吸収ピークを含めなくてもよく、吸収ピークを含まない適当な波長を選択すればよい。   Thus, in the method for measuring trace components in an aqueous solution by ultraviolet light, the absorption intensity at one or more wavelengths (for example, in the range of 180 nm to 210 nm) on the long wavelength side of the absorption peak near 160 nm of water is 1 or A calibration curve with the concentration of two or more trace components is determined in advance. Next, the ultraviolet spectrum of the aqueous solution is measured at the one or more wavelengths. And the density | concentration of the trace component in aqueous solution is quantified using a calibration curve from the obtained ultraviolet spectroscopy spectrum data. This measurement method enables quantitative measurement of a very small amount of water-soluble substance even when the spectrum of the dissolved substance itself does not appear in the far ultraviolet region. In addition, the base of the absorption peak of the dissolved substance may overlap. In this case as well, the calibration curve can be similarly determined to quantify the concentration of the trace component in the aqueous solution. Since this measurement method does not measure the absorption peak of the dissolved substance itself, the measurement wavelength does not need to include the absorption peak of the dissolved substance itself. Good.

また、別の測定方法では、検量線を用いる代りに、複数の標準水溶液について紫外分光スペクトルの波長依存性を水の160nm付近の吸収ピークの長波長側の所定の波長範囲(たとえば180nm〜210nmの範囲内)であらかじめ測定しておく。次に、微量成分を含む水溶液試料の紫外分光スペクトルを所定の波長範囲で測定し、水溶液試料の紫外分光スペクトルが、どの標準水溶液の紫外分光スペクトルと一致するかを判断する。   In another measurement method, instead of using a calibration curve, the wavelength dependence of the ultraviolet spectrum for a plurality of standard aqueous solutions is set to a predetermined wavelength range (for example, 180 nm to 210 nm) on the long wavelength side of the absorption peak near 160 nm of water. Measure within the range. Next, the ultraviolet spectrum of the aqueous solution sample containing a trace component is measured in a predetermined wavelength range, and it is determined which standard aqueous solution the ultraviolet spectrum of the aqueous solution sample matches.

以下に,測定例を説明する。   An example of measurement will be described below.

例3:市販の天然水の識別.
8種の市販の天然水W1〜W8と蒸留水を分析した。表1は、これらの8種の市販天然水W1〜W8のイオン濃度とpH値を示す。純水は、水を2回蒸留し、活性炭と逆浸透フィルタを通して作成した。また、市販天然水のうち、W1は「六甲のおいしい水」(商標)(ハウス食品)であり、W2は「南アルプスの天然水」(商標)(サントリー)であり、W3は「立山連峰の天然水」(商標)(サッポロビール)であり、W4は「森の水だより」(商標)(コカコーラ)であり、W5は「エビアン」(商標) (カルピス)であり、W6は「アルカリイオンの水」(商標)(キリンベバレッジ)であり、W7は「越前の水」(商標)(ハイピース)であり、W8は「ゆうゆう涌水」(商標)(ネスレジャパン)である。
Example 3: Identification of commercial natural water.
Eight types of commercially available natural waters W1 to W8 and distilled water were analyzed. Table 1 shows the ion concentrations and pH values of these eight types of commercially available natural waters W1 to W8. Pure water was prepared by distilling water twice and passing through activated carbon and a reverse osmosis filter. Of the commercially available natural waters, W1 is “Rokuko's delicious water” (trademark) (house food), W2 is “Southern Alps natural water” (trademark) (Suntory), and W3 is “Nature of Tateyama mountain range” "Water" (trademark) (Sapporo Beer), W4 is "News from the Forest" (trademark) (Coca-Cola), W5 is "Evian" (trademark) (Calpis), and W6 is "alkaline ion""Water" (trademark) (Kirin Beverage), W7 is "Echizen no Mizu" (trademark) (High Peace), and W8 is "Yuyu Shusui" (trademark) (Nestlé Japan).

表1は、8種の天然水試料の陽イオンと陰イオンの濃度(mg/100ml)とpH値を示す。

Figure 2005214863
Table 1 shows the cation and anion concentrations (mg / 100 ml) and pH values of eight natural water samples.
Figure 2005214863

図4に示した装置を用いた測定において、水の温度は25℃であった。光学セル12として10mmの光路長の水晶キュベットセルを用い、測定試料である水または水溶液は、この水晶キュベットセル12に入れられた。そして、180nm〜310nmの波長領域での紫外分光スペクトルを測定した。   In the measurement using the apparatus shown in FIG. 4, the temperature of water was 25 ° C. A quartz cuvette cell having an optical path length of 10 mm was used as the optical cell 12, and water or an aqueous solution as a measurement sample was placed in the quartz cuvette cell 12. And the ultraviolet spectrum in the wavelength range of 180 nm-310 nm was measured.

図5は、これらの8種の市販天然水W1〜W8および純水(蒸留水)の190nm〜250nmの波長範囲での遠紫外スペクトルパターンを示す。これらのスペクトルの190nm〜210nmの波長範囲は、水のn→σ遷移による160nm付近の吸収バンドの裾野部と重複している。 FIG. 5 shows the far-ultraviolet spectral patterns of these eight kinds of commercially available natural waters W1 to W8 and pure water (distilled water) in the wavelength range of 190 nm to 250 nm. The wavelength range of 190 nm to 210 nm of these spectra overlaps with the bottom of the absorption band near 160 nm due to the n → σ * transition of water.

図5のスペクトルパターンを表1と比較すると分かるように、スペクトルパターンと溶解成分(鉱物)の量との間に単純な関係は存在しない。図5のスペクトルパターンが溶解成分自体の吸収のみで形成されているのではなく、各試料における溶解成分の水和の相違を反映しているためである。つまりデータは、n→σ遷移の強度、ピーク位置、バンド幅が溶解成分の水和により敏感に変化していることを示している。 As can be seen by comparing the spectral pattern of FIG. 5 with Table 1, there is no simple relationship between the spectral pattern and the amount of dissolved component (mineral). This is because the spectral pattern in FIG. 5 is not formed only by the absorption of the dissolved component itself but reflects the difference in hydration of the dissolved component in each sample. That is, the data show that the intensity, peak position, and bandwidth of the n → σ * transition change sensitively due to the hydration of the dissolved component.

図5から明らかなように、これらの8種の天然水W1〜W8は、そのスペクトルパターンの違いから明瞭に識別可能であり、いかなるスペクトルの前処理も識別には必要としない。したがって、8種の天然水の標準水溶液について紫外分光スペクトルの波長依存性をあらかじめ測定しておいて、ある水溶液試料の紫外分光スペクトルを測定し、得られた紫外分光スペクトルが、どの標準水溶液の紫外分光スペクトルと一致するかを判断することにより、その水溶液試料がどの天然水であるかを識別できる。これと対照的に、図示しないが、本発明者が測定した8種の水の近赤外スペクトルは、肉眼では同一に見え、また、高度で複雑な主成分分析を行っても完全な識別はできなかった。   As is clear from FIG. 5, these eight kinds of natural waters W1 to W8 can be clearly identified from the difference in their spectral patterns, and no preprocessing of the spectrum is required for identification. Accordingly, the wavelength dependence of the ultraviolet spectral spectrum is measured in advance for the eight standard aqueous solutions of natural water, and the ultraviolet spectral spectrum of a certain aqueous solution sample is measured. By judging whether or not it matches the spectrum, it is possible to identify which natural water the aqueous solution sample is. In contrast, although not shown, the near-infrared spectra of the eight types of water measured by the present inventor appear to be the same with the naked eye, and are completely discernible even when performing sophisticated and complex principal component analysis. could not.

例4:水中の0〜20ppmの微量塩酸の定量測定.
塩酸溶液は、以下のように作成した。まず、三菱化学の36%塩酸溶液を純水で1000ppmに希釈し、さらにそれを純水でそれぞれ、1、2、3、4、5、6、8、10、12、16、20ppmの11通りのHCl濃度に希釈した。
Example 4: Quantitative measurement of trace amounts of 0-20 ppm hydrochloric acid in water.
The hydrochloric acid solution was prepared as follows. First, Mitsubishi Chemical's 36% hydrochloric acid solution was diluted to 1000 ppm with pure water, and further diluted with pure water in 11 ways: 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20 ppm. Diluted to a HCl concentration of

例3と同様に、図4に示した装置を用いた測定において、水の温度は25℃であった。光学セル12として10mmの光路長の水晶キュベットセルを用い、測定試料である水または水溶液は、この水晶キュベットセル12に入れられた。そして、遠紫外スペクトルのうち、193nmと215nmの2つの波長を測定波長に用いた。後者は、2波長法の参照波長である。1成分系のスペクトル解析のため、検量線は上記2波長の差吸光度に対する最小二乗法による近似により得られた。   As in Example 3, the temperature of water was 25 ° C. in the measurement using the apparatus shown in FIG. A quartz cuvette cell having an optical path length of 10 mm was used as the optical cell 12, and water or an aqueous solution as a measurement sample was placed in the quartz cuvette cell 12. In the far ultraviolet spectrum, two wavelengths of 193 nm and 215 nm were used as measurement wavelengths. The latter is a reference wavelength for the two-wavelength method. For the spectral analysis of the one-component system, a calibration curve was obtained by approximation by the least square method with respect to the difference absorbance at the two wavelengths.

HClの定量は、今日種々の分野で重要である。たとえば半導体の洗浄工程においてHClは洗剤液として利用され、その工程監視のため濃度は正確に管理されねばならない。図6は、0〜20ppmの範囲内の11の濃度(1、2、3、4、5、6、8、10、12、16、20ppm)のHCl水溶液の遠紫外スペクトルを示し、図7は、HClの濃度を予測する検量線モデルの相関性を示す。モデルの相関係数Rと標準偏差σは、0.9987と0.18ppmであった。少なくとも100ppmまで微量のHClが高精度で定量測定できることが分かる。本測定例での水溶液中のHClの検出限界は0.5ppmであった。もちろん、より長い光路長のセルを用いれば、検出限界はさらに改善される。また、装置の光学系部分を窒素パージして空気中の酸素による吸収を除去した状態で、測定をより短波長の185nmで行った場合の検出限界は0.05ppmであった。   The determination of HCl is important in various fields today. For example, HCl is used as a detergent solution in a semiconductor cleaning process, and the concentration must be accurately controlled for monitoring the process. FIG. 6 shows the far ultraviolet spectrum of an aqueous HCl solution at 11 concentrations (1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20 ppm) in the range of 0-20 ppm. , Shows the correlation of a calibration curve model for predicting the concentration of HCl. The model correlation coefficient R and standard deviation σ were 0.9987 and 0.18 ppm. It can be seen that a trace amount of HCl up to at least 100 ppm can be quantitatively measured with high accuracy. The detection limit of HCl in the aqueous solution in this measurement example was 0.5 ppm. Of course, if a cell having a longer optical path length is used, the detection limit is further improved. Further, when the measurement was performed at a shorter wavelength of 185 nm in a state where the optical system portion of the apparatus was purged with nitrogen and absorption by oxygen in the air was removed, the detection limit was 0.05 ppm.

これに対し、現在、水溶液中の微量のHClの簡単な測定法は知られていない。近赤外分光はハロゲン化イオンの測定に使用されており、簡単であるが、多変量解析を必要とする。また、検出限界は約100ppmである。したがって、上述の遠紫外スペクトルを用いる測定は、微量なHClの定量に非常に有効であることが分かる。   On the other hand, at present, there is no known simple method for measuring a trace amount of HCl in an aqueous solution. Near-infrared spectroscopy is used to measure halide ions and is simple but requires multivariate analysis. The detection limit is about 100 ppm. Therefore, it turns out that the measurement using the above-mentioned far ultraviolet spectrum is very effective for the determination of a trace amount of HCl.

また、より複雑な水溶液中のHCl濃度測定例として、純水中に多種多様の陽イオン・陰イオンを含む天然水(南アルプス天然水)中のHClの測定を実施した。図8は天然水にHClを0〜20ppmの濃度に添加した水溶液のスペクトルを示す。HCl濃度は、2、4、6、8、10、16、20ppmである。HClを含まない天然水をスペクトルのブランクとしている。水溶液中に多様の溶解成分が存在するために、その挙動は純水中でHClが増加する場合と異なってはいるが、そのスペクトルの変化にはHClの増加に対して一定の相関が得られており、検量線を作成した場合の相関係数Rと標準偏差σはそれぞれ0.9971と0.34ppmであった。したがってこの方法では、純水中に定量の溶解成分が存在する状態でも、特定の溶解成分の定量測定が可能であることがわかる。   In addition, as an example of measuring the HCl concentration in a more complex aqueous solution, HCl in natural water (South Alps natural water) containing a wide variety of cations and anions in pure water was measured. FIG. 8 shows a spectrum of an aqueous solution in which HCl is added to natural water at a concentration of 0 to 20 ppm. The HCl concentration is 2, 4, 6, 8, 10, 16, 20 ppm. Natural water containing no HCl is used as a spectrum blank. Because of the presence of various dissolved components in aqueous solution, the behavior is different from that of increasing HCl in pure water, but the change in spectrum shows a certain correlation with increasing HCl. The correlation coefficient R and standard deviation σ when the calibration curve was created were 0.9971 and 0.34 ppm, respectively. Therefore, it can be seen that this method allows quantitative measurement of a specific dissolved component even in a state where a fixed amount of the dissolved component exists in pure water.

例5:水中微量アンモニアと微量過酸化水素の混合溶液の0〜100ppmの定量測定.
アンモニア水と過酸化水素水との混合溶液を、純水を用いて、10ppm〜100ppmの濃度範囲の溶液に希釈して用意し、例3、例4と同様に、図4に示した装置を用いて測定した。
Example 5: Quantitative measurement of 0 to 100 ppm of a mixed solution of trace ammonia in water and trace hydrogen peroxide.
A mixed solution of ammonia water and hydrogen peroxide solution was prepared by diluting to a solution having a concentration range of 10 ppm to 100 ppm using pure water, and the apparatus shown in FIG. And measured.

図9は、100ppmの濃度のアンモニアと過酸化水素をそれぞれ含む溶液の遠紫外スペクトル(190nm〜330nmの波長範囲)を示す。このように、水溶液中のアンモニアと過酸化水素の遠紫外スペクトルは異なり、それらは純水のスペクトルにも異なる影響を与えている。   FIG. 9 shows the far ultraviolet spectrum (wavelength range of 190 nm to 330 nm) of a solution containing ammonia and hydrogen peroxide at a concentration of 100 ppm. Thus, the far ultraviolet spectra of ammonia and hydrogen peroxide in an aqueous solution are different, and they have different effects on the spectrum of pure water.

図10と図11は、アンモニアと過酸化水素の濃度を予測する検量線モデルの相関性を示す。2成分系の解析のため、重回帰分析を用いた。ここでは測定波長に195、200、205、230、290nmの5波長を用いた。アンモニアと過酸化水素に対するモデルの相関係数Rと標準偏差σは、それぞれ、0.9988と1.44と、0.9999と0.50であった。アンモニアと過酸化水素のいずれも100ppmの濃度まで高精度に定量できることが分かる。アンモニアと過酸化水素の検出限界は、本測定例では0.2ppmである。このように、この方法は2成分系に対しても有用である。 10 and 11 show the correlation of the calibration curve model that predicts the concentrations of ammonia and hydrogen peroxide. Multiple regression analysis was used for the analysis of the binary system. Here, five wavelengths of 195, 200, 205, 230, and 290 nm were used as measurement wavelengths. The correlation coefficient R and standard deviation σ of the model for ammonia and hydrogen peroxide were 0.9998 and 1.44, 0.99999 and 0.50, respectively. It can be seen that both ammonia and hydrogen peroxide can be accurately quantified to a concentration of 100 ppm. The detection limit of ammonia and hydrogen peroxide is 0.2 ppm in this measurement example. Thus, this method is also useful for two-component systems.

水の分光スペクトルWater spectrum 純水の温度変化に対する紫外スペクトルの変化の様子を示すグラフGraph showing how the ultraviolet spectrum changes with respect to the temperature change of pure water 亜硝酸イオン水溶液に見られる水のスペクトル変化の様子を示すグラフGraph showing the state of water spectrum change in nitrite aqueous solution 紫外分光測定装置の図Diagram of ultraviolet spectrometer 蒸留水と8種の水溶液の遠紫外スペクトルFar ultraviolet spectra of distilled water and 8 aqueous solutions 0〜20pmの濃度のHCl水溶液の遠紫外スペクトルFar-ultraviolet spectrum of HCl aqueous solution with a concentration of 0-20pm HClの濃度を予測する検量線モデルの相関性を表すグラフGraph showing correlation of calibration curve model for predicting HCl concentration 天然水中の0〜20ppmの濃度のHCl水溶液の遠紫外スペクルFar ultraviolet speckle of HCl aqueous solution with concentration of 0-20ppm in natural water 100ppmの濃度のアンモニアと過酸化水素の溶液の遠紫外スペクトルFar ultraviolet spectrum of a solution of ammonia and hydrogen peroxide at a concentration of 100 ppm アンモニアの濃度を予測する検量線モデルの相関性を表すグラフGraph showing the correlation of a calibration curve model for predicting ammonia concentration 過酸化水素の濃度を予測する検量線モデルの相関性を表すグラフGraph showing the correlation of a calibration curve model that predicts the concentration of hydrogen peroxide

符号の説明Explanation of symbols

10 光源、 12 光学セル、 14 分光部、 16 信号処理部、 18 データ出力部。
DESCRIPTION OF SYMBOLS 10 Light source, 12 Optical cell, 14 Spectrometer, 16 Signal processing part, 18 Data output part

Claims (4)

水の160nm付近の吸収ピークの長波長側での溶解物質自体の吸収ピークを含まない1以上の波長での吸収強度と濃度との検量線をあらかじめ決定しておき、
水溶液の紫外分光スペクトルを、前記の1以上の波長で測定し、
得られた紫外分光スペクトルデータより検量線を用いて水溶液中の微量成分の濃度を定量する
紫外光による水溶液測定方法。
A calibration curve between absorption intensity and concentration at one or more wavelengths not including the absorption peak of the dissolved substance itself on the long wavelength side of the absorption peak near 160 nm of water is determined in advance.
Measure the ultraviolet spectrum of the aqueous solution at one or more of the above wavelengths,
An aqueous solution measurement method using ultraviolet light, wherein the concentration of trace components in an aqueous solution is quantified using a calibration curve from the obtained ultraviolet spectral data.
前記の波長が180nm〜210nmの範囲内であることを特徴とする請求項1に記載された水溶液測定方法。 The method for measuring an aqueous solution according to claim 1, wherein the wavelength is in a range of 180 nm to 210 nm. 複数の標準水溶液について紫外分光スペクトルの波長依存性を水の160nm付近の吸収ピークの長波長側の所定の波長範囲であらかじめ測定しておき、
微量成分を含む水溶液試料の紫外分光スペクトルを所定の波長範囲で測定し、
水溶液試料の紫外分光スペクトルが、どの標準水溶液の紫外分光スペクトルと一致するかを判断する
紫外光による水溶液測定方法。
The wavelength dependence of the ultraviolet spectrum for a plurality of standard aqueous solutions was previously measured in a predetermined wavelength range on the long wavelength side of the absorption peak near 160 nm of water,
Measure the ultraviolet spectrum of an aqueous solution sample containing trace components in the specified wavelength range,
An aqueous solution measurement method using ultraviolet light to determine which standard aqueous solution the ultraviolet spectrum of an aqueous solution sample matches.
前記の波長領域が180nm〜210nmの範囲内であることを特徴とする請求項3に記載された水溶液測定方法。
The aqueous solution measurement method according to claim 3, wherein the wavelength region is in a range of 180 nm to 210 nm.
JP2004023877A 2004-01-30 2004-01-30 Method for measuring water and aqueous solution by ultraviolet light Expired - Fee Related JP4372567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023877A JP4372567B2 (en) 2004-01-30 2004-01-30 Method for measuring water and aqueous solution by ultraviolet light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023877A JP4372567B2 (en) 2004-01-30 2004-01-30 Method for measuring water and aqueous solution by ultraviolet light

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009175058A Division JP2009244283A (en) 2009-07-28 2009-07-28 Method of measuring water and aqueous solution with ultraviolet ray

Publications (3)

Publication Number Publication Date
JP2005214863A true JP2005214863A (en) 2005-08-11
JP2005214863A5 JP2005214863A5 (en) 2007-02-15
JP4372567B2 JP4372567B2 (en) 2009-11-25

Family

ID=34906751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023877A Expired - Fee Related JP4372567B2 (en) 2004-01-30 2004-01-30 Method for measuring water and aqueous solution by ultraviolet light

Country Status (1)

Country Link
JP (1) JP4372567B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187624A (en) * 2006-01-16 2007-07-26 Yokogawa Electric Corp Correction method of calibration curve in near-infrared spectroscopy
WO2007108328A1 (en) 2006-03-16 2007-09-27 Kurashiki Boseki Kabushiki Kaisha Total reflection attenuation optical probe and aqueous solution spectrometric device
JP2007279025A (en) * 2006-03-16 2007-10-25 Kurabo Ind Ltd Attenuated total reflection type optical probe, and aqueous solution spectrometric measuring device using the same
EP1970695A1 (en) 2007-03-08 2008-09-17 Kurashiki Boseki Kabushiki Kaisha Attenuated total reflection probe and spectrometer therewith
JP2009520205A (en) * 2005-12-20 2009-05-21 イーコラブ インコーポレイティド Near-UV absorption spectrometer and method for using it
CN101008610B (en) * 2006-11-21 2010-05-19 宁夏启元药业有限公司 Dissolution determination method of hawthorn extract lipid-lowering dispersion tablet
WO2010092985A1 (en) * 2009-02-12 2010-08-19 倉敷紡績株式会社 Fluid control method and fluid control device
US8390816B2 (en) 2008-03-04 2013-03-05 Kurashiki Boseki Kabushiki Kaisha Method for attenuated total reflection far ultraviolet spectroscopy and an apparatus for measuring concentrations therewith
CN103712930A (en) * 2013-12-30 2014-04-09 华南理工大学 Method for determining content of hydrogen peroxide
CN110174362A (en) * 2019-05-05 2019-08-27 贵州中烟工业有限责任公司 A method of detection neutral sugar and acid sugared content
CN112763440A (en) * 2020-12-29 2021-05-07 西安邮电大学 Method for detecting thiram based on silver nano triangular plate
CN113049512A (en) * 2021-03-12 2021-06-29 厦门斯坦道科学仪器股份有限公司 Water quality on-line monitoring method based on full-wavelength ultraviolet-visible absorption spectrum
CN113218893A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device and measurement method
CN114324231A (en) * 2021-12-24 2022-04-12 安徽新宇环保科技股份有限公司 River channel patrol full-spectrum water quality data analysis method
CN118032695A (en) * 2024-04-02 2024-05-14 山东创宇能源科技股份有限公司 Nitrogen-sulfur in-situ measurement method and system based on differential ultraviolet spectrum technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928375B (en) * 2012-07-25 2014-10-29 苏州派尔精密仪器有限公司 Method for carrying out illegal cooking oil detection by using ultraviolet spectroscopic analysis method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520205A (en) * 2005-12-20 2009-05-21 イーコラブ インコーポレイティド Near-UV absorption spectrometer and method for using it
JP2007187624A (en) * 2006-01-16 2007-07-26 Yokogawa Electric Corp Correction method of calibration curve in near-infrared spectroscopy
US7978331B2 (en) 2006-03-16 2011-07-12 Kurashiki Boseki Kabushiki Kaisha Attenuated total reflection optical probe and apparatus therewith for spectroscopic measurement of aqueous solution
WO2007108328A1 (en) 2006-03-16 2007-09-27 Kurashiki Boseki Kabushiki Kaisha Total reflection attenuation optical probe and aqueous solution spectrometric device
JP2007279025A (en) * 2006-03-16 2007-10-25 Kurabo Ind Ltd Attenuated total reflection type optical probe, and aqueous solution spectrometric measuring device using the same
TWI414774B (en) * 2006-03-16 2013-11-11 Kurashiki Boseki Kk A total reflection optical probe, and an aqueous solution spectrophotometer using the probe
JP2012098303A (en) * 2006-03-16 2012-05-24 Kurabo Ind Ltd Attenuated total reflection optical probe, and aqueous solution spectrometer using the same
KR101359169B1 (en) 2006-03-16 2014-02-05 구라시키 보세키 가부시키가이샤 Total reflection attenuation optical probe and aqueous solution spectrometric device
CN101008610B (en) * 2006-11-21 2010-05-19 宁夏启元药业有限公司 Dissolution determination method of hawthorn extract lipid-lowering dispersion tablet
EP1970695A1 (en) 2007-03-08 2008-09-17 Kurashiki Boseki Kabushiki Kaisha Attenuated total reflection probe and spectrometer therewith
US7791729B2 (en) 2007-03-08 2010-09-07 Kurashiki Boseki Kabushiki Kaisha Attenuated total reflection probe and spectrometer therewith
KR101477803B1 (en) * 2007-03-08 2014-12-30 구라시키 보세키 가부시키가이샤 Attenuated total reflection probe and spectrometer therewith
JP2008224240A (en) * 2007-03-08 2008-09-25 Kurabo Ind Ltd Attenuated total reflection probe and aqueous solution spectrometric device by using the same
US8390816B2 (en) 2008-03-04 2013-03-05 Kurashiki Boseki Kabushiki Kaisha Method for attenuated total reflection far ultraviolet spectroscopy and an apparatus for measuring concentrations therewith
WO2010092985A1 (en) * 2009-02-12 2010-08-19 倉敷紡績株式会社 Fluid control method and fluid control device
JP2010184203A (en) * 2009-02-12 2010-08-26 Kurabo Ind Ltd Method and device for controlling fluid
CN102316967A (en) * 2009-02-12 2012-01-11 仓敷纺织株式会社 Fluid control method and fluid control device
CN103712930A (en) * 2013-12-30 2014-04-09 华南理工大学 Method for determining content of hydrogen peroxide
CN103712930B (en) * 2013-12-30 2016-04-13 华南理工大学 A kind of method measuring content of hydrogen peroxide
CN110174362A (en) * 2019-05-05 2019-08-27 贵州中烟工业有限责任公司 A method of detection neutral sugar and acid sugared content
CN110174362B (en) * 2019-05-05 2024-05-03 贵州中烟工业有限责任公司 Method for detecting content of neutral sugar and acidic sugar
CN113218893A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measurement device and measurement method
CN112763440B (en) * 2020-12-29 2023-05-19 西安邮电大学 Method for detecting thiram based on silver nano triangular plate
CN112763440A (en) * 2020-12-29 2021-05-07 西安邮电大学 Method for detecting thiram based on silver nano triangular plate
CN113049512A (en) * 2021-03-12 2021-06-29 厦门斯坦道科学仪器股份有限公司 Water quality on-line monitoring method based on full-wavelength ultraviolet-visible absorption spectrum
CN113049512B (en) * 2021-03-12 2022-10-14 厦门斯坦道科学仪器股份有限公司 Water quality on-line monitoring method based on full-wavelength ultraviolet-visible absorption spectrum
CN114324231B (en) * 2021-12-24 2023-11-03 安徽新宇环保科技股份有限公司 Riverway patrol full-spectrum water quality data analysis method
CN114324231A (en) * 2021-12-24 2022-04-12 安徽新宇环保科技股份有限公司 River channel patrol full-spectrum water quality data analysis method
CN118032695A (en) * 2024-04-02 2024-05-14 山东创宇能源科技股份有限公司 Nitrogen-sulfur in-situ measurement method and system based on differential ultraviolet spectrum technology

Also Published As

Publication number Publication date
JP4372567B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4372567B2 (en) Method for measuring water and aqueous solution by ultraviolet light
Moo et al. New development of optical fibre sensor for determination of nitrate and nitrite in water
US5489977A (en) Photomeric means for monitoring solids and fluorescent material in waste water using a falling stream water sampler
JP4911606B2 (en) Total reflection attenuation optical probe and aqueous solution spectrometer using the same
JP7446276B2 (en) Detection and analysis of aldehydes using surface-enhanced Raman spectroscopy
Fontana et al. Raman spectroscopic sensors for inorganic salts
US20160084809A1 (en) Simultaneous determination of multiple analytes in industrial water system
TWI477760B (en) A changed optical path measureing device for component concentration of water and measureing method thereof
US20150198540A1 (en) Dry reagent based water analyzer
Sperling et al. A cross-reactive plasmonic sensing array for drinking water assessment
JP2001033388A (en) Method and device for measuring concentration of chlorophyll a
Uraisin et al. Kinetic-spectrophotometric method for the determination of trace amounts of bromide in seawater
Van den Broeke On-line and in-situ UV/vis spectroscopy
JP5468344B2 (en) Method for measuring concentration of water-soluble radical species in aqueous solution and apparatus for measuring concentration of water-soluble radical species
US7427508B2 (en) Method for assaying multi-component mixtures
JP2009244283A (en) Method of measuring water and aqueous solution with ultraviolet ray
CN104380086A (en) Quantitative analyzing method for oxidant and quantitative analyzing instrument for oxidant
US20140264055A1 (en) System and process for detecting phosphonate
US20110222055A1 (en) Determination of the salt concentration of an aqueous solution
Biswas et al. Simultaneous multi-analyte sensing using a 2D quad-beam diffraction smartphone imaging spectrometer
CN109030377B (en) Colorimetric analyzer with improved error detection
US11099131B2 (en) Systems and methods for copper etch rate monitoring and control
Dai et al. The determination of trace lead in drinking water by flow injection spectrophotometry
TWM565796U (en) Full spectrum water quality analysis system
JP3545928B2 (en) Magnesium ion concentration measurement device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4372567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees