JP2009244283A - Method of measuring water and aqueous solution with ultraviolet ray - Google Patents

Method of measuring water and aqueous solution with ultraviolet ray Download PDF

Info

Publication number
JP2009244283A
JP2009244283A JP2009175058A JP2009175058A JP2009244283A JP 2009244283 A JP2009244283 A JP 2009244283A JP 2009175058 A JP2009175058 A JP 2009175058A JP 2009175058 A JP2009175058 A JP 2009175058A JP 2009244283 A JP2009244283 A JP 2009244283A
Authority
JP
Japan
Prior art keywords
water
aqueous solution
spectrum
ultraviolet
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009175058A
Other languages
Japanese (ja)
Inventor
Noboru Azuma
昇 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2009175058A priority Critical patent/JP2009244283A/en
Publication of JP2009244283A publication Critical patent/JP2009244283A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To identify water containing micro amounts of various dissolved components. <P>SOLUTION: A method of measuring an aqueous solution with ultraviolet ray includes: preliminarily measuring an ultraviolet spectroscopic spectrum for each of a plurality of standard aqueous solutions in a prescribed wavelength range at the longer wavelength side of an absorption peak at around 160 nm of the water; and then measuring the ultraviolet spectroscopic spectrum of an aqueous sample solution containing the microamount of component in the prescribed wavelength range to determine whether the ultraviolet spectroscopic spectrum of the aqueous sample solution is in agreament with the ultraviolet spectroscopic spectrum of which standard aqueous solution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水または水溶成分の識別・定量分析に関するものである。   The present invention relates to identification and quantitative analysis of water or water-soluble components.

水または水溶成分の識別・定量分析において、分光分析は非常に有効な手段として多種多様に利用されている。その分光分析手法は、測定波長領域によって、紫外可視分光、近赤外分光、赤外分光に大別される。   In the discrimination / quantitative analysis of water or water-soluble components, spectroscopic analysis is widely used as a very effective means. The spectroscopic analysis methods are roughly classified into ultraviolet-visible spectroscopy, near-infrared spectroscopy, and infrared spectroscopy depending on the measurement wavelength region.

特に近赤外分光では、水特有の水素結合を反映する吸収スペクトルが800nm〜1400nmに顕著に観測され、たとえば特開平3−175341号公報には、このスペクトルを利用した水中の溶解成分測定方法が提案されている。水分子は液体状態では互いに水素結合しているが、水中に他の溶解成分が混入された場合には、この水素結合の状態がきわめて敏感に変化する。そして、その変化の様子を調べることで、混入成分の定量分析が可能となるのである。より具体的には、無機電解質が水溶液中でイオン電離する際に、イオン水和によって生じるイオン近傍の水分子とバルクの水分子との間の水素結合の切断や歪み、イオンの電場による水分子の分極の影響などによって、水分子自身の結合状態や、水素結合した水分子同士の結合状態が影響を受け、その近赤外吸収スペクトルは純水の場合と異なるものとなる。そこで、あらかじめその変化を検量することで、近赤外に吸収スペクトルを持たないイオン種の濃度を水の吸収スペクトルの変化から定量できる。   In particular, in near-infrared spectroscopy, an absorption spectrum reflecting water-specific hydrogen bonds is remarkably observed at 800 nm to 1400 nm. For example, JP-A-3-175341 discloses a method for measuring dissolved components in water using this spectrum. Proposed. Water molecules are hydrogen bonded to each other in the liquid state, but when other dissolved components are mixed in water, the hydrogen bond state changes very sensitively. Then, by examining the state of the change, it becomes possible to quantitatively analyze the mixed components. More specifically, when an inorganic electrolyte is ionized in an aqueous solution, hydrogen bonds are broken or distorted between water molecules in the vicinity of ions and bulk water molecules generated by ion hydration, and water molecules are generated by the electric field of ions. Due to the influence of the polarization of water, the bonding state of water molecules themselves and the bonding state of water-bonded water molecules are affected, and the near-infrared absorption spectrum differs from that of pure water. Therefore, by calibrating the change in advance, the concentration of ionic species having no absorption spectrum in the near infrared can be determined from the change in the absorption spectrum of water.

たとえば今日の半導体製造プロセスでは回路の微細化が進み、使用される薬液の無機電解質濃度はそれに伴って低濃度化する傾向がある。また廃液処理に関する環境問題の観点からも非常に低濃度の成分分析が要求されている。しかし近赤外に現れる水の吸収スペクトルは本来禁制遷移で吸収が弱く、極微量の溶解成分の濃度が測定できない。そこで、近赤外スペクトルでは有意差が得られない極微量の溶解成分の濃度の測定が必要になっている。   For example, in today's semiconductor manufacturing process, circuit miniaturization advances and the concentration of the inorganic electrolyte in the chemical solution used tends to decrease accordingly. In addition, from the viewpoint of environmental problems related to waste liquid treatment, component analysis at a very low concentration is required. However, the absorption spectrum of water appearing in the near infrared is inherently forbidden transition and weakly absorbed, and the concentration of trace components cannot be measured. Therefore, it is necessary to measure the concentration of a very small amount of dissolved component for which a significant difference cannot be obtained in the near-infrared spectrum.

なお、後で説明するように本発明は遠紫外分光を用いるが、特開平3-220452号公報には、紫外光の吸光度を用いたアンモニアまたは水酸化ナトリウムと共存の過酸化水素定量法が記載されている。ここで測定されているのは、0〜10重量%の過酸化水素濃度、0〜15重量%のアンモニア濃度、0〜8重量%の水酸化ナトリウム濃度であり、本発明の対象とするような微量成分の分析はしていない。
特開平3−175341号公報 特開平3−220452号公報
As will be described later, the present invention uses far-ultraviolet spectroscopy, but JP-A-3-220452 describes a method for determining hydrogen peroxide in coexistence with ammonia or sodium hydroxide using the absorbance of ultraviolet light. Has been. What is measured here is a hydrogen peroxide concentration of 0 to 10% by weight, an ammonia concentration of 0 to 15% by weight, and a sodium hydroxide concentration of 0 to 8% by weight. We do not analyze trace components.
JP-A-3-175341 JP-A-3-220452

この発明の目的は、遠紫外に現れる水の吸収スペクトルを用いて、種々の微量の溶解成分を含む水の識別を可能にすることである。   An object of the present invention is to enable identification of water containing various trace amounts of dissolved components using the absorption spectrum of water appearing in the far ultraviolet.

160nm付近にピークを有する水のn→σ*遷移による吸収スペクトルが、水自身と水中に溶解する水和イオンとの間に形成する電場の影響で長波長側にシフトし、スペクトルの一部が常用分光装置(真空を要しない分光装置)で測定可能な領域に現れることを利用して、水溶液の識別を行う。   The absorption spectrum due to the n → σ * transition of water having a peak near 160 nm shifts to the longer wavelength side due to the effect of the electric field formed between the water itself and the hydrated ion dissolved in the water, and part of the spectrum is The aqueous solution is identified by utilizing the fact that it appears in a region that can be measured with a regular spectrometer (a spectrometer that does not require vacuum).

本発明に係る紫外光による水溶液測定方法では、複数の標準水溶液について紫外分光スペクトルの波長依存性を水の160nm付近の吸収ピークの長波長側の所定の波長範囲(たとえば180〜210nmの範囲)であらかじめ測定しておく。次に、微量成分を含む水溶液試料の紫外分光スペクトルを所定の波長範囲で測定し、水溶液試料の紫外分光スペクトルが、どの標準水溶液の紫外分光スペクトルと一致するかを判断する。   In the aqueous solution measurement method using ultraviolet light according to the present invention, the wavelength dependence of the ultraviolet spectrum of a plurality of standard aqueous solutions is determined within a predetermined wavelength range (for example, a range of 180 to 210 nm) on the long wavelength side of the absorption peak near 160 nm of water. Measure in advance. Next, the ultraviolet spectrum of the aqueous solution sample containing a trace component is measured in a predetermined wavelength range, and it is determined which standard aqueous solution the ultraviolet spectrum of the aqueous solution sample matches.

水溶液試料の紫外分光スペクトルが、どの標準水溶液の紫外分光スペクトルと一致するかが明瞭に識別可能である。   It is possible to clearly identify which standard aqueous solution the ultraviolet spectrum of the aqueous solution sample matches with.

水の分光スペクトルWater spectrum 純水の温度変化に対する紫外スペクトルの変化の様子を示すグラフGraph showing how the ultraviolet spectrum changes with respect to the temperature change of pure water 亜硝酸イオン水溶液に見られる水のスペクトル変化の様子を示すグラフGraph showing the state of water spectrum change in nitrite aqueous solution 紫外分光測定装置の図Diagram of ultraviolet spectrometer 蒸留水と8種の水溶液の遠紫外スペクトルFar ultraviolet spectra of distilled water and 8 aqueous solutions

以下、添付の図面を参照して本発明の実施の形態を説明する。
一般に、可視・紫外光線による分光分析では、その吸収スペクトルが測定物質分子の電子遷移のエネルギー準位に及ぶため、近赤外線の吸収スペクトルよりはるかに大きなエネルギー変化を伴う。このことを利用した分光分析の歴史は深く、各種発光基の定性・定量分析に応用されており、今日ではたいていの発色団のスペクトルが知られている。このように紫外可視分光は従来から広く使用されているが、200nm〜800nm領域に吸収バンドを有する溶液に対してのみ適用されていた。たとえば、降水中の硝酸イオン(NO 2−)や亜硝酸イオン(NO -)はそれぞれ201nm、210nmにピークをもつ吸収が知られており、それらの波長を用いた検出や測定が行われている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In general, in the spectroscopic analysis using visible / ultraviolet rays, the absorption spectrum extends to the energy level of the electronic transition of the substance to be measured, so that it involves a much larger energy change than the absorption spectrum of near infrared rays. The history of spectroscopic analysis using this fact is deep, and it has been applied to qualitative and quantitative analysis of various luminescent groups. Today, the spectrum of most chromophores is known. As described above, UV-visible spectroscopy has been widely used, but has been applied only to solutions having an absorption band in the 200 nm to 800 nm region. For example, nitrate ions (NO 3 2− ) and nitrite ions (NO 2 ) in precipitation are known to have absorption peaks at 201 nm and 210 nm, respectively, and detection and measurement using those wavelengths are performed. ing.

ところで、水分子は分子中の酸素原子に不対電子を有しており、この不対電子が他の分子との間の共有結合に関与することができ、その際に形成される反結合性分子軌道σとの間で、n→σ遷移とよばれる紫外線領域のエネルギー変化を伴う。そして、この水の吸収スペクトルは気体状態では波長167.0nmにピークを持つことが知られており、液体ではおよそ160nm付近のピークを示す。しかし、これまで水中に溶解する物質をこの水自身の吸収スペクトルを用いて検出あるいは測定する試みはなされなかった。なぜなら、水中に溶解する成分が微量である場合は、明らかに主成分は水であり、微量成分の混入による水自体のスペクトルの吸収量変化は無視されるほど小さいことが自明であるからである。 By the way, the water molecule has an unpaired electron in the oxygen atom in the molecule, and this unpaired electron can participate in the covalent bond with other molecules, and the antibonding property formed at that time An energy change in the ultraviolet region called an n → σ * transition is accompanied with the molecular orbital σ * . The absorption spectrum of water is known to have a peak at a wavelength of 167.0 nm in a gas state, and shows a peak around 160 nm in a liquid. However, no attempt has been made so far to detect or measure substances dissolved in water using the absorption spectrum of the water itself. This is because when the amount of the component dissolved in the water is very small, it is obvious that the main component is water, and it is obvious that the change in the absorption amount of the spectrum of the water itself due to the mixing of the trace component is negligibly small. .

本発明者は、この水のn→σ遷移に要するエネルギーが、水中に溶解成分が水和している状態では、その水和イオンに固有の変化を示すことに着目し、各種の水和イオンに関する水のn→σ遷移スペクトルの変化の様子を系統的に調査した。その結果、水中に溶解成分が水和した状態では、水和イオンの電場が影響して、n→σ遷移に起因する160nm付近の吸収ピークの裾野の部分(180nm〜210nmの常用分光装置で測定可能な領域に現れる吸収バンド)の強度、位置、バンド幅が、水の水素結合や水和に非常に敏感に変化していることを突き止め、これを水溶液の識別や定量分析に利用して、水中に溶解する極微量の成分濃度や水質変化の測定が可能であることを実証するにいたった。すなわち、水のn→σ*遷移による吸収スペクトルは、図1に示すように、180nm〜210nmの波長領域で非常に急峻な傾斜を有しているが、この傾斜の位置が水の状態が変化することによってシフトすると、水中に溶解する物質の濃度が微量であって、そのことによる水の吸収ピークの大きさがほとんど変わらない場合でも、わずかなスペクトルのシフトはその変化の様子を103〜10倍に拡大して反映することになる。 The inventor of the present invention pays attention to the fact that the energy required for the n → σ * transition of water shows an inherent change in the hydrated ion in a state where the dissolved component is hydrated in water. The state of change of n → σ * transition spectrum of water related to ions was systematically investigated. As a result, in a state where the dissolved component is hydrated in water, the electric field of the hydrated ions affects the bottom of the absorption peak near 160 nm due to the n → σ * transition (with a 180 to 210 nm common spectrometer). Ascertaining that the intensity, position, and band width of the absorption band appearing in the measurable region change very sensitively to hydrogen bonding and hydration of water, and use this for the identification and quantitative analysis of aqueous solutions. It was proved that it was possible to measure the concentration of trace components dissolved in water and the change in water quality. That is, the absorption spectrum due to the n → σ * transition of water has a very steep slope in the wavelength region of 180 nm to 210 nm as shown in FIG. 1, but the position of this slope changes the state of water. Even if the concentration of the substance dissolved in water is very small, and the magnitude of the absorption peak of water hardly changes, a slight shift in the spectrum can cause the state of the change to be 10 3 to. It will be magnified 10 5 times and reflected.

例1:純水の紫外スペクトルの温度変化.
純水の紫外スペクトルは、温度変化に対して変化する。たとえば図2に示す紫外スペクトルは、純水の温度を20℃〜55℃の範囲内の5℃おきの8つの温度で変化させた場合の、160nm付近にピークを有する水の吸収の裾野の部分の吸収スペクトルである。純水の温度が上昇して、水自身の水素結合力が緩和されるに従って紫外スペクトルが長波長側へシフトしており、この領域の水のスペクトルが水分子同士の結合状態の変化を反映していることを示している。
Example 1: Temperature change in the ultraviolet spectrum of pure water.
The ultraviolet spectrum of pure water changes with temperature. For example, the ultraviolet spectrum shown in FIG. 2 shows the bottom of the absorption of water having a peak near 160 nm when the temperature of pure water is changed at eight temperatures every 5 ° C. within the range of 20 ° C. to 55 ° C. It is an absorption spectrum of. As the temperature of pure water rises and the hydrogen bond strength of water itself is relaxed, the ultraviolet spectrum shifts to the longer wavelength side, and the water spectrum in this region reflects changes in the bonding state between water molecules. It shows that.

例2:水の紫外スペクトルの極微量の溶解成分による変化.
また、水の紫外スペクトルは、水中に溶解する極微量の成分濃度に対して変化する。たとえば、図3は、亜硝酸イオン水溶液に見られる水の遠紫外スペクトル変化の測定例を示す。ここで、25℃の純水に亜硝酸ナトリウムを20μmol/l〜200μmol/lの範囲内で20μmol/lごとの濃度で溶解させている。亜硝酸ナトリウムの濃度上昇に伴って、亜硝酸イオン(NO -)の吸収ピーク(波長210nm)での吸収量が増加する一方で、190nm〜200nmの領域の吸収が亜硝酸イオンの増加に比例して増加していることがわかる。これは、本来の亜硝酸イオンの吸収スペクトル(図の点線で推測されるスペクトル)に亜硝酸ナトリウムの水和による水の吸収スペクトルの長波長シフトが重なったスペクトルと理解することができる。すなわち、190nm〜200nmのスペクトルの変化は、純水中に亜硝酸ナトリウムが水和することによって水分子同士の結合状態が緩和され、亜硝酸ナトリウムの濃度に相関して水の吸収スペクトルがシフトしている様子を反映しており、このシフトによる190nm〜200nmの領域の吸収量の変化から亜硝酸ナトリウムの濃度が定量可能であることを示すものである。例1、例2の測定では、図4の装置を用いた。
Example 2: Change in the ultraviolet spectrum of water due to a trace amount of dissolved components.
Moreover, the ultraviolet spectrum of water changes with respect to the concentration of a very small amount of components dissolved in water. For example, FIG. 3 shows a measurement example of the change in the far ultraviolet spectrum of water found in an aqueous nitrite ion solution. Here, sodium nitrite is dissolved in pure water at 25 ° C. at a concentration of 20 μmol / l within a range of 20 μmol / l to 200 μmol / l. As the concentration of sodium nitrite increases, the amount of absorption at the absorption peak (wavelength 210 nm) of nitrite ions (NO 2 ) increases, while the absorption in the region of 190 nm to 200 nm is proportional to the increase in nitrite ions. It can be seen that it has increased. This can be understood as a spectrum in which the long-wavelength shift of the absorption spectrum of water due to hydration of sodium nitrite overlaps the original absorption spectrum of nitrite ions (the spectrum estimated by the dotted line in the figure). That is, the change in the spectrum from 190 nm to 200 nm is caused by the hydration of sodium nitrite in pure water, so that the binding state of water molecules is relaxed, and the water absorption spectrum is shifted in correlation with the concentration of sodium nitrite. This shows that the concentration of sodium nitrite can be quantified from the change in the amount of absorption in the region of 190 nm to 200 nm due to this shift. In the measurement of Examples 1 and 2, the apparatus shown in FIG. 4 was used.

図4は、水の紫外スペルトル測定に用いる紫外分光測定装置の構成を示す。光源10から発生される紫外線が、光学セル12の中の測定試料を透過する。光学セルを透過した測定光は、分光部14に入り、複数の波長に分光される。(分光方法にはグレーティングを用いてもよいし、干渉フィルターを用いてもよい。)信号処理部16は、各測定波長での信号を演算して濃度を定量する。さらに、データ出力部18が、演算結果を表示または出力する。この装置構成は、従来と同様である。信号処理部16とデータ表示部18として、具体的には、190nm〜280nmの波長で測定できる常用の分光装置が使用でき、ここでは、島津製作所の紫外・可視分光分析計3100PCを用いた。   FIG. 4 shows the configuration of an ultraviolet spectroscopic measurement apparatus used for measuring ultraviolet spelling of water. Ultraviolet rays generated from the light source 10 pass through the measurement sample in the optical cell 12. The measurement light transmitted through the optical cell enters the spectroscopic unit 14 and is split into a plurality of wavelengths. (A grating may be used for the spectroscopic method, or an interference filter may be used.) The signal processing unit 16 calculates a concentration by calculating a signal at each measurement wavelength. Further, the data output unit 18 displays or outputs the calculation result. This device configuration is the same as the conventional one. Specifically, as the signal processing unit 16 and the data display unit 18, a conventional spectroscopic device capable of measuring at a wavelength of 190 nm to 280 nm can be used. Here, an ultraviolet / visible spectroscopic analyzer 3100PC manufactured by Shimadzu Corporation was used.

1つの測定方法では、検量線を用いる代りに、複数の標準水溶液について紫外分光スペクトルの波長依存性を水の160nm付近の吸収ピークの長波長側の所定の波長範囲(たとえば180nm〜210nmの範囲内)であらかじめ測定しておく。次に、微量成分を含む水溶液試料の紫外分光スペクトルを所定の波長範囲で測定し、水溶液試料の紫外分光スペクトルが、どの標準水溶液の紫外分光スペクトルと一致するかを判断する。   In one measurement method, instead of using a calibration curve, the wavelength dependence of the ultraviolet spectrum is obtained for a plurality of standard aqueous solutions within a predetermined wavelength range on the long wavelength side of the absorption peak near 160 nm of water (for example, within a range of 180 nm to 210 nm). ) Measure in advance. Next, the ultraviolet spectrum of the aqueous solution sample containing a trace component is measured in a predetermined wavelength range, and it is determined which standard aqueous solution the ultraviolet spectrum of the aqueous solution sample matches.

以下に,測定例を説明する。   An example of measurement will be described below.

例3:市販の天然水の識別.
8種の市販の天然水W1〜W8と蒸留水を分析した。表1は、これらの8種の市販天然水W1〜W8のイオン濃度とpH値を示す。純水は、水を2回蒸留し、活性炭と逆浸透フィルターを通して作成した。また、市販天然水のうち、W1は「六甲のおいしい水」(商標)(ハウス食品)であり、W2は「南アルプスの天然水」(商標)(サントリー)であり、W3は「立山連峰の天然水」(商標)(サッポロビール)であり、W4は「森の水だより」(商標)(コカコーラ)であり、W5は「エビアン」(商標) (カルピス)であり、W6は「アルカリイオンの水」(商標)(キリンベバレッジ)であり、W7は「越前の水」(商標)(ハイピース)であり、W8は「ゆうゆう涌水」(商標)(ネスレジャパン)である。
Example 3: Identification of commercial natural water.
Eight types of commercially available natural waters W1 to W8 and distilled water were analyzed. Table 1 shows the ion concentrations and pH values of these eight types of commercially available natural waters W1 to W8. Pure water was prepared by distilling water twice and passing through activated carbon and a reverse osmosis filter. Of the natural waters available on the market, W1 is “Delicious water from Rokko” (trademark) (house food), W2 is “natural water from Southern Alps” (trademark) (Suntory), and W3 is “Natural of Tateyama mountain range” "Water" (trademark) (Sapporo Beer), W4 is "News from Forest Water" (trademark) (Coca-Cola), W5 is "Evian" (trademark) (Calpis), W6 is "alkaline ion" “Water” (trademark) (Kirin Beverage), W7 is “Echizen no Mizu” (trademark) (High Peace), and W8 is “Yuyu Shusui” (trademark) (Nestlé Japan).

表1は、8種の天然水試料の陽イオンと陰イオンの濃度(mg/100ml)とpH値を示す。

Figure 2009244283
Table 1 shows the cation and anion concentrations (mg / 100 ml) and pH values of eight natural water samples.
Figure 2009244283

図4に示した装置を用いた測定において、水の温度は25℃であった。光学セル12として10mmの光路長の水晶キュベットセルを用い、測定試料である水または水溶液は、この水晶キュベットセル12に入れられた。そして、180nm〜310nmの波長領域での紫外分光スペクトルを測定した。   In the measurement using the apparatus shown in FIG. 4, the temperature of water was 25 ° C. A quartz cuvette cell having an optical path length of 10 mm was used as the optical cell 12, and water or an aqueous solution as a measurement sample was placed in the quartz cuvette cell 12. And the ultraviolet spectrum in the wavelength range of 180 nm-310 nm was measured.

図5は、これらの8種の市販天然水W1〜W8および純水(蒸留水)の190nm〜250nmの波長範囲での遠紫外スペクトルパターンを示す。これらのスペクトルの190nm〜210nmの波長範囲は、水のn→σ遷移による160nm付近の吸収バンドの裾野部と重複している。 FIG. 5 shows the far-ultraviolet spectral patterns of these eight kinds of commercially available natural waters W1 to W8 and pure water (distilled water) in the wavelength range of 190 nm to 250 nm. The wavelength range of 190 nm to 210 nm of these spectra overlaps with the bottom of the absorption band near 160 nm due to the n → σ * transition of water.

図5のスペクトルパターンを表1と比較すると分かるように、スペクトルパターンと溶解成分(鉱物)の量との間に単純な関係は存在しない。図5のスペクトルパターンが溶解成分自体の吸収のみで形成されているのではなく、各試料における溶解成分の水和の相違を反映しているためである。つまりデータは、n→σ遷移の強度、ピーク位置、バンド幅が溶解成分の水和により敏感に変化していることを示している。 As can be seen by comparing the spectral pattern of FIG. 5 with Table 1, there is no simple relationship between the spectral pattern and the amount of dissolved component (mineral). This is because the spectral pattern in FIG. 5 is not formed only by the absorption of the dissolved component itself but reflects the difference in hydration of the dissolved component in each sample. That is, the data show that the intensity, peak position, and bandwidth of the n → σ * transition change sensitively due to the hydration of the dissolved component.

図5から明らかなように、これらの8種の天然水W1〜W8は、そのスペクトルパターンの違いから明瞭に識別可能であり、いかなるスペクトルの前処理も識別には必要としない。したがって、8種の天然水の標準水溶液について紫外分光スペクトルの波長依存性をあらかじめ測定しておいて、ある水溶液試料の紫外分光スペクトルを測定し、得られた紫外分光スペクトルが、どの標準水溶液の紫外分光スペクトルと一致するかを判断することにより、その水溶液試料がどの天然水であるかを識別できる。これと対照的に、図示しないが、本発明者が測定した8種の水の近赤外スペクトルは、肉眼では同一に見え、また、高度で複雑な主成分分析を行っても完全な識別はできなかった。   As is clear from FIG. 5, these eight kinds of natural waters W1 to W8 can be clearly identified from the difference in their spectral patterns, and no preprocessing of the spectrum is required for identification. Therefore, the wavelength dependence of the ultraviolet spectral spectrum is measured in advance for the eight types of standard aqueous solutions of natural water, the ultraviolet spectral spectrum of a certain aqueous solution sample is measured, and the ultraviolet spectral spectrum obtained is the ultraviolet spectrum of which standard aqueous solution. By judging whether or not it matches the spectrum, it is possible to identify which natural water the aqueous solution sample is. In contrast, although not shown, the near-infrared spectra of the eight types of water measured by the present inventor appear to be the same with the naked eye, and are completely discernible even when performing sophisticated and complex principal component analysis. could not.

10 光源、 12 光学セル、 14 分光部、 16 信号処理部、 18 データ出力部。   DESCRIPTION OF SYMBOLS 10 Light source, 12 Optical cell, 14 Spectrometer, 16 Signal processing part, 18 Data output part

Claims (2)

それぞれ異なる組成の複数の微量成分を含む複数の標準水溶液について紫外分光スペクトルの波長依存性を水の160nm付近の吸収ピークの長波長側の所定の波長範囲であらかじめ測定しておき、
微量成分を含む水溶液試料の紫外分光スペクトルを所定の波長範囲で測定し、
水溶液試料の紫外分光スペクトルが、どの標準水溶液の紫外分光スペクトルと一致するかを判断する
紫外光による水溶液測定方法。
For a plurality of standard aqueous solutions containing a plurality of trace components having different compositions, the wavelength dependence of the ultraviolet spectrum is previously measured in a predetermined wavelength range on the long wavelength side of the absorption peak near 160 nm of water,
Measure the ultraviolet spectrum of an aqueous solution sample containing trace components in the specified wavelength range,
An aqueous solution measurement method using ultraviolet light to determine which standard aqueous solution the ultraviolet spectrum of an aqueous solution sample matches.
前記の波長領域が180nm〜210nmの範囲内であることを特徴とする請求項1に記載された水溶液測定方法。 The method for measuring an aqueous solution according to claim 1, wherein the wavelength region is in a range of 180 nm to 210 nm.
JP2009175058A 2009-07-28 2009-07-28 Method of measuring water and aqueous solution with ultraviolet ray Pending JP2009244283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175058A JP2009244283A (en) 2009-07-28 2009-07-28 Method of measuring water and aqueous solution with ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175058A JP2009244283A (en) 2009-07-28 2009-07-28 Method of measuring water and aqueous solution with ultraviolet ray

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004023877A Division JP4372567B2 (en) 2004-01-30 2004-01-30 Method for measuring water and aqueous solution by ultraviolet light

Publications (1)

Publication Number Publication Date
JP2009244283A true JP2009244283A (en) 2009-10-22

Family

ID=41306303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175058A Pending JP2009244283A (en) 2009-07-28 2009-07-28 Method of measuring water and aqueous solution with ultraviolet ray

Country Status (1)

Country Link
JP (1) JP2009244283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928375A (en) * 2012-07-25 2013-02-13 苏州派尔精密仪器有限公司 Method for carrying out illegal cooking oil detection by using ultraviolet spectroscopic analysis method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829332A (en) * 1994-07-13 1996-02-02 Horiba Ltd Method and apparatus for analyzing multicomponent aqueous solution
JP2002139429A (en) * 2000-11-06 2002-05-17 Kurabo Ind Ltd Dissolved-ozone concentration measuring instrument
JP2003042949A (en) * 2001-08-01 2003-02-13 Ishikawajima Harima Heavy Ind Co Ltd Multicomponent concentration analyzer
JP2003520347A (en) * 1999-12-23 2003-07-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method and apparatus for online analysis of solvent mixtures
JP2003521686A (en) * 2000-01-28 2003-07-15 ピオン,インコーポレイテッド Determination of solubility-pH profile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829332A (en) * 1994-07-13 1996-02-02 Horiba Ltd Method and apparatus for analyzing multicomponent aqueous solution
JP2003520347A (en) * 1999-12-23 2003-07-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method and apparatus for online analysis of solvent mixtures
JP2003521686A (en) * 2000-01-28 2003-07-15 ピオン,インコーポレイテッド Determination of solubility-pH profile
JP2002139429A (en) * 2000-11-06 2002-05-17 Kurabo Ind Ltd Dissolved-ozone concentration measuring instrument
JP2003042949A (en) * 2001-08-01 2003-02-13 Ishikawajima Harima Heavy Ind Co Ltd Multicomponent concentration analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928375A (en) * 2012-07-25 2013-02-13 苏州派尔精密仪器有限公司 Method for carrying out illegal cooking oil detection by using ultraviolet spectroscopic analysis method

Similar Documents

Publication Publication Date Title
Koch et al. Determination of total sulfite in wine by ion chromatography after in-sample oxidation
JP4372567B2 (en) Method for measuring water and aqueous solution by ultraviolet light
Edwards et al. Determination of nitrate in water containing dissolved organic carbon by ultraviolet spectroscopy
Morgenstern et al. The formation of mixed-hydroxo complexes of Cm (III) and Am (III) with humic acid in the neutral pH range
JP2008224240A (en) Attenuated total reflection probe and aqueous solution spectrometric device by using the same
Zhang et al. Determination of cysteine, homocysteine, cystine, and homocystine in biological fluids by HPLC using fluorosurfactant‐capped gold nanoparticles as postcolumn colorimetric reagents
CN103411943B (en) Method for detecting Ag&lt;+1&gt;, Hg&lt;2+&gt; and Fe&lt;3+&gt; based on fluorescence quenching method or colorimetric method of erythrosine B
WO2019178044A2 (en) Aldehyde detection and analysis using surface-enhanced raman spectroscopy
WO2012016350A1 (en) Simultaneous determination of multiple analytes in industrial water system
CN103649730A (en) Bromate ion measuring method and measuring device
Tavallali et al. Colorimetric detection of copper and chloride in DMSO/H2O media using bromopyrogallol red as a chemosensor with analytical applications
CN101943658B (en) Method for continuously monitoring water quality by combining principal component analysis theory and spectrum analysis technology
Monsallier et al. Influence of photochemical reactions on the complexation of humic acid with europium (III)
CN108507955A (en) The device and method of multispectral synchronous detection chemical oxygen demand of water body
Seetasang et al. Development of a miniaturized photometer with paired emitter-detector light-emitting diodes for investigating thiocyanate levels in the saliva of smokers and non-smokers
Wang et al. Simultaneous detection of trace metal ions in water by solid phase extraction spectroscopy combined with multivariate calibration
JP2009244283A (en) Method of measuring water and aqueous solution with ultraviolet ray
WO2015105722A1 (en) Dry reagent based water analyzer
Uraisin et al. Kinetic-spectrophotometric method for the determination of trace amounts of bromide in seawater
JP2001033388A (en) Method and device for measuring concentration of chlorophyll a
Nakajima et al. Photochemical formation of peroxides and fluorescence characteristics of the water-soluble fraction of bulk aerosols collected in Okinawa, Japan
Nejati-Yazdinejad Spectrophotometric determination of trace amount of copper (II) ion based on complexation with an anthraquinone derivative
WO2008084600A1 (en) Method for identifying wavelength and analytical apparatus
JP2011075447A (en) Method and instrument for measuring concentration of water-soluble radical species in aqueous solution
US20140264055A1 (en) System and process for detecting phosphonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712