JP2002139429A - Dissolved-ozone concentration measuring instrument - Google Patents

Dissolved-ozone concentration measuring instrument

Info

Publication number
JP2002139429A
JP2002139429A JP2000337362A JP2000337362A JP2002139429A JP 2002139429 A JP2002139429 A JP 2002139429A JP 2000337362 A JP2000337362 A JP 2000337362A JP 2000337362 A JP2000337362 A JP 2000337362A JP 2002139429 A JP2002139429 A JP 2002139429A
Authority
JP
Japan
Prior art keywords
ozone
spectrum
ultraviolet
sample solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000337362A
Other languages
Japanese (ja)
Other versions
JP4634596B2 (en
Inventor
Akifumi Mimata
章史 三又
Hiroshi Yokota
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2000337362A priority Critical patent/JP4634596B2/en
Publication of JP2002139429A publication Critical patent/JP2002139429A/en
Application granted granted Critical
Publication of JP4634596B2 publication Critical patent/JP4634596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dissolved-ozone concentration measuring instrument which can quickly and accurately measure the concentrations of dissolved ozone and an interfering component contained in a sample solution and has a simple structure. SOLUTION: The reference spectrum storing section of an arithmetic processing section S2 for data stores a reference ozone spectrum ω (λ) and a reference organic-matter spectrum δ(λ). A concentration computing section computes the numerical values p and q which are most approximate to the ultraviolet spectrum μ (λ) of the sample solution measured by means of an ultraviolet spectrum measuring section S1 and [p.ω (λ)+q.δ (λ)] and uses p.Co and q.Cd as the ozone concentration and organic-matter concentration of the sample solution, respectively. A reference spectrum updating section appropriately computes the numerical value which is most approximate to the ultraviolet spectrum ν (λ) of a blank sample solution and q'.δ (λ) and performs blank calibration by updating the ultraviolet spectrum δ (λ) with ν(λ)/q'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶存オゾン濃度測
定装置に関するものであって、とくにオゾン処理が行わ
れる高度浄水処理システム等において、オゾンを含む試
料液中の溶存オゾン濃度と有機物濃度とを高精度で連続
的に測定することができる溶存オゾン濃度測定装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring dissolved ozone concentration, and more particularly, to an advanced water purification system or the like for performing ozone treatment, which measures the concentration of dissolved ozone and the concentration of organic matter in a sample liquid containing ozone. The present invention relates to a dissolved ozone concentration measuring device capable of continuously measuring with high accuracy.

【0002】[0002]

【従来の技術】オゾンは極めて強い酸化力ないしは殺菌
力をもち、かつ容易に生成することができるので、例え
ば、河川等から取水した原水の浄化等に広く利用されて
いる。しかしながら、溶存オゾン量は、水中へのオゾン
ガス供給量(ないしはオゾンガス発生量)や水温によっ
て大きく変化する。また、水中のオゾンは化学的に不安
定な状態にあり、容易に分解する。このため、原水の浄
化等にオゾンを使用する場合は、溶存オゾン濃度を常時
測定ないしは監視することが必要である。
2. Description of the Related Art Ozone has an extremely strong oxidizing or bactericidal activity and can be easily produced, and thus is widely used, for example, for purification of raw water taken from rivers and the like. However, the amount of dissolved ozone greatly varies depending on the amount of ozone gas supplied to water (or the amount of ozone gas generated) and the temperature of water. Ozone in water is in a chemically unstable state and easily decomposes. For this reason, when using ozone for purification of raw water, etc., it is necessary to constantly measure or monitor the dissolved ozone concentration.

【0003】水中のオゾン濃度は、例えば紫外線吸光分
析等により測定される。かかる紫外線吸光分析では、ま
ずオゾンを含む試料液の紫外線吸光度が測定される。そ
して、オゾン濃度とオゾンの吸収帯における紫外線吸光
度との間にはほぼ比例関係があることを利用して、試料
液の紫外線吸光度からオゾン濃度が算出される。
[0003] The ozone concentration in water is measured, for example, by ultraviolet absorption spectroscopy. In the ultraviolet absorption analysis, first, the ultraviolet absorbance of a sample liquid containing ozone is measured. The ozone concentration is calculated from the ultraviolet absorbance of the sample liquid by utilizing the fact that there is a substantially proportional relationship between the ozone concentration and the ultraviolet absorbance in the ozone absorption band.

【0004】ところで、紫外線吸光分析によりオゾン濃
度を測定する場合、その吸収帯がオゾンの吸収帯と近似
する成分(妨害成分)が試料液に含まれていると、測定
された紫外線吸光度は、オゾンに起因する吸収分と妨害
成分に起因する吸収分とを含んだものとなる。このた
め、実際に測定された紫外線吸光度から上記比例関係を
用いてオゾン濃度を正確に算出することは不可能とな
る。
When the ozone concentration is measured by ultraviolet absorption analysis, if the sample solution contains a component (interfering component) whose absorption band is similar to the ozone absorption band, the measured ultraviolet absorbance becomes And the absorbed component caused by the interfering component. For this reason, it becomes impossible to accurately calculate the ozone concentration from the actually measured ultraviolet absorbance using the above proportional relationship.

【0005】具体的には、オゾンの最大吸収帯はおおむ
ね250〜260nmの波長域内に存在するが、有機物
の最大吸収帯もおおむね250〜260nmの波長域内
に存在する。したがって、オゾン濃度を測定すべき試料
液中に有機物が含まれていると、測定された紫外線吸光
度は、溶存オゾンに起因する吸収分に、有機物に起因す
る吸収分が加わったものとなり、オゾン濃度の測定値は
真の値よりも高くなり、正確なオゾン濃度を得ることが
できない。
More specifically, the maximum absorption band of ozone generally exists within a wavelength range of 250 to 260 nm, but the maximum absorption band of organic substances also exists generally within a wavelength range of 250 to 260 nm. Therefore, if an organic substance is contained in the sample liquid for which the ozone concentration is to be measured, the measured ultraviolet absorbance will be a value obtained by adding the absorption component due to the organic substance to the absorption component due to the dissolved ozone. Is higher than the true value, and an accurate ozone concentration cannot be obtained.

【0006】そこで、例えば、特開平8−136526
号公報には、吸光度測定部を2つ設け、一方の吸光度測
定部ではオゾン及び有機物を含む試料液の紫外線吸光度
を測定し、他方の吸光度測定部では該試料液からオゾン
を除去したもの(ブランク試料液)の紫外線吸光度を測
定し、両紫外線吸光度の差分値からオゾン濃度を算出す
るようにした、すなわちブランク校正を行うようにした
溶存オゾン濃度測定装置が開示されている。
Therefore, for example, Japanese Patent Laid-Open No. 8-136526
In this publication, two absorbance measurement units are provided, one absorbance measurement unit measures the ultraviolet absorbance of a sample solution containing ozone and organic substances, and the other absorbance measurement unit removes ozone from the sample solution (blank). There is disclosed a dissolved ozone concentration measuring apparatus which measures the ultraviolet absorbance of a sample liquid) and calculates the ozone concentration from the difference between the two ultraviolet absorbances, that is, performs blank calibration.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、例え
ば、特開平8−136526号公報に開示されている従
来の溶存オゾン濃度測定装置では、試料液ないしはブラ
ンク試料液を収容するセル、光検出器等からなる吸光度
測定部を2つ設けなければならないので、その構造が複
雑化ないしは大型化するといった問題がある。また、両
吸光度測定部間でのセルないしは検出器の特性の個体差
に起因して測定誤差が生じるおそれがあるといった問題
もある。さらに、試料液のオゾン濃度を測定するたび
に、ブランク試料液を調製してその紫外線吸光度を測定
し、ブランク校正を行わなければならないので、毎回の
オゾン濃度の測定に長時間を要するといった問題があ
る。
However, for example, in a conventional dissolved ozone concentration measuring apparatus disclosed in Japanese Patent Application Laid-Open No. 8-136526, a cell containing a sample liquid or a blank sample liquid, a photodetector, and the like are used. Since two light absorbance measurement units must be provided, there is a problem that the structure is complicated or large. There is also a problem that a measurement error may occur due to individual differences in characteristics of a cell or a detector between the two absorbance measurement units. Furthermore, every time the ozone concentration of the sample solution is measured, a blank sample solution must be prepared, the ultraviolet absorbance of the sample solution must be measured, and blank calibration must be performed. is there.

【0008】なお、特開平7−12720号公報には、
吸光度測定部を1つだけ設け、この吸光度測定部への試
料液供給系統を切り替えることにより、試料液とブラン
ク試料液とを測定するようにした溶存オゾン濃度測定装
置が開示されている。しかしながら、この溶存オゾン濃
度測定装置でも、試料液のオゾン濃度を測定するたび
に、ブランク試料液を調製してブランク校正を行わなけ
ればならないので、毎回のオゾン濃度の測定にはやはり
長時間を要するといった問題がある。
Japanese Patent Application Laid-Open No. 7-12720 discloses that
There is disclosed a dissolved ozone concentration measuring apparatus in which only one absorbance measurement unit is provided and a sample liquid and a blank sample liquid are measured by switching a sample liquid supply system to the absorbance measurement unit. However, even with this dissolved ozone concentration measurement device, every time the ozone concentration of the sample solution is measured, a blank sample solution must be prepared and blank calibration must be performed. There is a problem.

【0009】本発明は上記従来の問題を解決するために
なされたものであって、オゾンと妨害成分とを含む試料
液中のオゾン濃度さらには妨害成分濃度を迅速かつ正確
に測定することができる簡素な構造の溶存オゾン濃度測
定装置を提供することを解決すべき課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and can quickly and accurately measure the concentration of ozone in a sample liquid containing ozone and an interfering component, and the concentration of the interfering component. An object of the present invention is to provide a dissolved ozone concentration measuring device having a simple structure.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
になされた本発明にかかる溶存オゾン濃度測定装置は、
(i)オゾンと、オゾンの濃度測定を妨害する妨害成分
とが溶解している試料液中のオゾン濃度及び妨害成分濃
度(あるいは、いずれか一方)を測定する溶存オゾン濃
度測定装置であって、(ii)任意の試料について、紫外
線吸光度と紫外線の波長λとの関係(相関関係、対応関
係)を示す紫外線スペクトルを測定することができる光
学分析手段(例えば、紫外線吸光度測定装置)と、(ii
i)オゾン濃度が一定値Coでありかつ妨害成分を含ま
ない基準試料液の紫外線スペクトルω(λ)と、妨害成
分濃度が一定値Cdでありかつオゾンを含まない基準試
料液の紫外線スペクトルδ(λ)とを記録(あるいは、
保持、設定)している基準スペクトル記録手段と、(i
v)光学分析手段によって測定された任意の試料液の紫
外線スペクトルμ(λ)と、(p・ω(λ)+q・δ
(λ))とが最もよく近似(あるいは、一致、符合)す
る数値p、qを演算した上で、p・Coを該試料液のオ
ゾン濃度とし、q・Cdを該試料液の妨害成分濃度とす
る濃度演算手段とが設けられていることを特徴とするも
のである。
Means for Solving the Problems A dissolved ozone concentration measuring apparatus according to the present invention, which has been made to solve the above problems, comprises:
(I) A dissolved ozone concentration measuring device for measuring the ozone concentration and / or the concentration of an interfering component in a sample liquid in which ozone and an interfering component that interferes with the measurement of ozone concentration are dissolved, (Ii) optical analysis means (for example, an ultraviolet absorbance measuring device) capable of measuring an ultraviolet spectrum indicating a relationship (correlation, correspondence) between ultraviolet absorbance and ultraviolet wavelength λ for an arbitrary sample;
i) The ultraviolet spectrum ω (λ) of the reference sample liquid having a constant ozone concentration Co and no interfering component and the ultraviolet spectrum δ (δ) of the reference sample liquid having a constant interfering element concentration Cd and no ozone λ) and (or
Holding and setting reference spectrum recording means;
v) The ultraviolet spectrum μ (λ) of any sample solution measured by the optical analysis means and (p · ω (λ) + q · δ)
(Λ)) and the numerical values p and q that best approximate (or match or match) with each other, and then p · Co is the ozone concentration of the sample liquid, and q · Cd is the concentration of the interfering component of the sample liquid. And a density calculating means.

【0011】ここで、数値p、qの演算は、例えば、最
小2乗法を用いて行われる。すなわち、複数の波長点に
おけるμ(λ)の値と(p・ω(λ)+q・δ(λ))
の値との各偏差の2乗値の総和が最小となるような数値
p、qが演算される。妨害成分としては、典型的には有
機物があげられる。また、過酸化水素も妨害成分とな
る。
Here, the calculation of the numerical values p and q is performed using, for example, the least square method. That is, the value of μ (λ) at a plurality of wavelength points and (p · ω (λ) + q · δ (λ))
Are calculated such that the sum of the squared values of the respective deviations from the value of becomes the minimum. The interfering component typically includes an organic substance. In addition, hydrogen peroxide is also an interfering component.

【0012】この溶存オゾン濃度測定装置によれば、試
料液の紫外線スペクトルを1回測定するだけで、オゾン
濃度と、有機物ないしは過酸化水素等の妨害成分の濃度
とを正確に演算(測定)することができる。なお、オゾ
ン濃度のみを必要とする場合は、妨害成分の影響を受け
ずに溶存オゾン濃度を正確に測定することができる。ま
た、妨害成分濃度のみを必要とする場合は、溶存オゾン
の影響を受けずに妨害成分濃度を正確に測定することが
できる。
According to this dissolved ozone concentration measuring device, the ozone concentration and the concentration of an interfering component such as an organic substance or hydrogen peroxide can be accurately calculated (measured) only by measuring the ultraviolet spectrum of the sample solution once. be able to. When only the ozone concentration is required, the dissolved ozone concentration can be accurately measured without being affected by the interfering components. Further, when only the concentration of the interfering component is required, the concentration of the interfering component can be accurately measured without being affected by the dissolved ozone.

【0013】また、この溶存オゾン濃度測定装置では、
紫外線吸光度測定装置等の光学分析手段は1つ設けるだ
けでよいので、その構造が簡素化されるとともに、誤差
要因が低減され、その測定精度が高められる。また、ブ
ランク校正は、試料液の紫外線スペクトルを測定するた
びに行う必要はなく、適宜、例えば1日数回程度行うだ
けでよい。このため、オゾン濃度と妨害成分濃度とを測
定するのに必要な時間が大幅に短縮される。
In this dissolved ozone concentration measuring apparatus,
Since only one optical analysis means such as an ultraviolet absorbance measuring device is required, the structure is simplified, the error factor is reduced, and the measurement accuracy is improved. Further, the blank calibration does not need to be performed every time the ultraviolet spectrum of the sample solution is measured, and may be appropriately performed, for example, about several times a day. For this reason, the time required for measuring the ozone concentration and the interfering component concentration is greatly reduced.

【0014】上記溶存オゾン濃度測定装置においては、
試料液からオゾンが除去されたブランク試料液の紫外線
スペクトルν(λ)と、q’・δ(λ)とが最もよく近
似(あるいは、一致、符合)する数値q’を演算した上
で、ν(λ)/q’を新たに紫外線スペクトルδ(λ)
とする(つまり、紫外線スペクトルδ(λ)を更新す
る、すなわちブランク校正を行う)妨害成分基準スペク
トル更新手段が設けられているのが好ましい。このよう
にすれば、妨害成分が有機物である場合は、有機物ない
しは試料液の種類、組成、性質等の変化に応じて、紫外
線スペクトルδ(λ)が最適なものに更新される。つま
り、ブランク校正を容易に行うことができる。
In the above dissolved ozone concentration measuring device,
After calculating the numerical value q ′ that makes the ultraviolet spectrum ν (λ) of the blank sample solution from which ozone is removed from the sample solution best (or matches or matches) with q ′ · δ (λ), (Λ) / q ′ is newly changed to ultraviolet spectrum δ (λ)
(That is, updating the ultraviolet spectrum δ (λ), that is, performing blank calibration) is preferably provided. In this manner, when the interfering component is an organic substance, the ultraviolet spectrum δ (λ) is updated to an optimum one according to a change in the kind, composition, property, etc. of the organic substance or the sample liquid. That is, blank calibration can be easily performed.

【0015】また、試料液からオゾンが除去されたブラ
ンク試料液の紫外線スペクトルν(λ)の所定波長λ0
に対応する数値ν(λ0)と、紫外線スペクトルδ
(λ)の上記所定波長λ0に対応する数値δ(λ0)とを
演算した上で、(δ(λ0)/ν(λ0))・ν(λ)を
新たに紫外線スペクトルδ(λ)とする妨害成分基準ス
ペクトル更新手段が設けられていてもよい。この場合、
紫外線スペクトルδ(λ)の更新、すなわちブランク校
正が極めて容易となる。
A predetermined wavelength λ 0 of the ultraviolet spectrum ν (λ) of the blank sample liquid from which ozone has been removed from the sample liquid.
Numerical ν (λ 0) which corresponds to the ultraviolet spectrum δ
After calculating a numerical value δ (λ 0 ) of (λ) corresponding to the predetermined wavelength λ 0 , (δ (λ 0 ) / ν (λ 0 )) · ν (λ) is newly added to the ultraviolet spectrum δ ( λ) may be provided. in this case,
Updating of the ultraviolet spectrum δ (λ), that is, blank calibration becomes extremely easy.

【0016】上記溶存オゾン濃度測定装置においては、
ブランク試料液は、例えば次のような手法で調製するこ
とができる。 (1)試料液の温度を上げてオゾンを除去する。 (2)試料液を白金触媒と接触させてオゾンを除去す
る。 (3)試料液に超音波振動を印加してオゾンを除去す
る。 (4)試料液を自然放置してオゾンが大気中に放散する
のを待つ。 (5)試料液を撹拌機で撹拌してオゾンを除去する。 なお、(1)〜(5)中の複数の手法を組み合わせて用
いてもよい。
In the above-mentioned dissolved ozone concentration measuring device,
The blank sample solution can be prepared, for example, by the following method. (1) Ozone is removed by increasing the temperature of the sample solution. (2) The sample solution is brought into contact with a platinum catalyst to remove ozone. (3) Ultrasonic vibration is applied to the sample liquid to remove ozone. (4) The sample solution is left to stand naturally and waits for ozone to diffuse into the atmosphere. (5) The sample liquid is stirred by a stirrer to remove ozone. Note that a plurality of methods in (1) to (5) may be used in combination.

【0017】上記溶存オゾン濃度測定装置において、紫
外線スペクトルとしては、例えば、180nmから30
0nmまでの波長域内における連続スペクトルを用いる
ことができる。また、紫外線スペクトルは、180nm
から300nmまでの波長域内における数点〜数十点の
離散的な吸光度データで構成されていてもよい。
In the above-mentioned dissolved ozone concentration measuring apparatus, the ultraviolet spectrum is, for example, from 180 nm to 30 nm.
A continuous spectrum in the wavelength range up to 0 nm can be used. The ultraviolet spectrum is 180 nm
It may be composed of several to several tens of discrete absorbance data in the wavelength range from to 300 nm.

【0018】上記溶存オゾン濃度測定装置において、光
学分析手段としては、例えば、ポンプ又はアスピレータ
を用いて試料セル内に供給された試料の紫外線吸光度を
測定することにより該試料の紫外線スペクトルを測定す
るようになっている紫外線吸光度測定装置を用いること
ができる。また、光学測定プローブを試料中に浸漬させ
て該試料の紫外線吸光度を測定することにより該試料の
紫外線スペクトルを測定するようになっている紫外線吸
光度測定装置も用いることができる。
In the above-mentioned dissolved ozone concentration measuring apparatus, the optical analysis means may be, for example, a method in which the ultraviolet spectrum of the sample is measured by measuring the ultraviolet absorbance of the sample supplied into the sample cell using a pump or an aspirator. The ultraviolet absorbance measuring device described in the above can be used. Further, an ultraviolet absorbance measuring device that measures the ultraviolet spectrum of the sample by immersing the optical measurement probe in the sample and measuring the ultraviolet absorbance of the sample can also be used.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を具体
的に説明する。図1に示すように、オゾンと有機物(オ
ゾンに対する妨害成分)とが溶解している試料液中のオ
ゾン濃度及び有機物濃度を連続的に又は間欠的に測定す
る溶存オゾン濃度測定装置は、実質的に、任意の試料
(液体)の紫外線スペクトルを測定することができる紫
外線スペクトル測定部S1(紫外線吸光度測定装置)
と、紫外線スペクトル測定部S1から出力された紫外線
スペクトルデータに対して後記の各種演算処理を施し
て、オゾン濃度及び有機物濃度を演算するとともに適宜
ブランク校正を行うデータ演算処理部S2とで構成され
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below. As shown in FIG. 1, a dissolved ozone concentration measuring device for continuously or intermittently measuring the ozone concentration and the organic matter concentration in a sample liquid in which ozone and an organic substance (an obstruction component to ozone) are dissolved is substantially used. In addition, an ultraviolet spectrum measuring unit S1 (ultraviolet absorbance measuring device) capable of measuring an ultraviolet spectrum of an arbitrary sample (liquid)
And a data calculation processing unit S2 that performs various calculation processes described below on the ultraviolet spectrum data output from the ultraviolet spectrum measurement unit S1, calculates the ozone concentration and the organic matter concentration, and appropriately performs blank calibration. I have.

【0020】紫外線スペクトル測定部S1では、光源1
から放射された紫外線(連続光)が、集光レンズ2を経
由して干渉フィルタ3に導入される。この干渉フィルタ
3は、光源1から放射された紫外線中の特定波長の紫外
線(単色光)のみを取り出す(通過させる)ことができ
る光学フィルタであり、取り出される紫外線の波長を連
続的又は段階的に変化させることができるようになって
いる。
In the ultraviolet spectrum measuring section S1, the light source 1
(Continuous light) radiated from the light source is introduced into the interference filter 3 via the condenser lens 2. The interference filter 3 is an optical filter capable of extracting (passing) only ultraviolet light (monochromatic light) of a specific wavelength in the ultraviolet light emitted from the light source 1, and continuously or stepwise changing the wavelength of the extracted ultraviolet light. It can be changed.

【0021】干渉フィルタ3で取り出された特定波長の
紫外線は、第1レンズ4を経由して試料セル5に照射さ
れる。この試料セル5内には、紫外線スペクトルを測定
すべき試料(試料液、ブランク試料液等)が保持されて
いる。なお、試料は、例えばポンプ、アスピレータ等を
用いて試料セル5内に供給される。このため、試料セル
5に照射された特定波長の紫外線の一部は試料によって
吸収される。そして、試料セル5(試料)を透過した特
定波長の紫外線は、第2レンズ6を経由して受光センサ
7に導入され、該紫外線の強度ひいては試料の紫外線吸
光度に対応する電気信号に変換される。この電気信号は
データ演算処理部S2に導入される。
The ultraviolet light of a specific wavelength extracted by the interference filter 3 is applied to the sample cell 5 via the first lens 4. The sample cell 5 holds a sample (a sample solution, a blank sample solution, etc.) whose ultraviolet spectrum is to be measured. Note that the sample is supplied into the sample cell 5 using, for example, a pump, an aspirator, or the like. For this reason, a part of the ultraviolet light having the specific wavelength applied to the sample cell 5 is absorbed by the sample. Then, the ultraviolet light of a specific wavelength transmitted through the sample cell 5 (sample) is introduced into the light receiving sensor 7 via the second lens 6, and is converted into an electric signal corresponding to the intensity of the ultraviolet light, and thus the ultraviolet light absorbance of the sample. . This electric signal is introduced to the data operation processing unit S2.

【0022】つまり、紫外線スペクトル測定部S1で
は、試料セル5(試料)に照射される紫外線の波長を干
渉フィルタ3により連続的に又は段階的に変化させつ
つ、試料液あるいはブランク試料液等の試料の紫外線吸
光度が検出され、試料の紫外線吸光度と紫外線の波長λ
との対応関係、すなわち試料の紫外線スペクトル(紫外
線吸光度スペクトル)が測定される。図2〜図4に、そ
れぞれ、純水にオゾンが溶存している試料と、オゾンが
溶存していない河川水と、オゾンが溶存している河川水
とについて、上記手法により測定された紫外線スペクト
ルの一例を示す。
That is, in the ultraviolet spectrum measuring section S1, while the wavelength of the ultraviolet light irradiated to the sample cell 5 (sample) is continuously or stepwise changed by the interference filter 3, the sample liquid or the blank sample liquid or the like is changed. UV absorbance of the sample is detected.
, That is, the ultraviolet spectrum (ultraviolet absorbance spectrum) of the sample is measured. FIGS. 2 to 4 show ultraviolet spectra measured by the above-described method for a sample in which ozone is dissolved in pure water, a river water in which ozone is not dissolved, and a river water in which ozone is dissolved. An example is shown below.

【0023】ここで、紫外線スペクトルの波長域は、オ
ゾンの最大吸収帯(おおむね、250〜260nm)と
有機物の最大吸収帯(おおむね、250〜260nm)
とを含むように設定され、例えば180〜300nmに
設定される。また、紫外線スペクトルは上記波長域内に
おける連続スペクトル、又は数点〜数十点の離散的な紫
外線吸光度データからなるものが用いられる。なお、紫
外線スペクトルを連続スペクトルとする場合は取り出す
べき紫外線の波長を連続的に変化させることができる干
渉フィルタ3を用い、離散的なスペクトルとする場合は
取り出すべき紫外線の波長を段階的に変化させることが
できる干渉フィルタ3を用いればよい。
Here, the wavelength range of the ultraviolet spectrum is the maximum absorption band of ozone (generally, 250 to 260 nm) and the maximum absorption band of organic substances (generally, 250 to 260 nm).
And is set to, for example, 180 to 300 nm. As the ultraviolet spectrum, a continuous spectrum in the above-mentioned wavelength range or a spectrum consisting of several to several tens discrete ultraviolet absorbance data is used. When the ultraviolet spectrum is a continuous spectrum, the interference filter 3 that can continuously change the wavelength of the ultraviolet light to be extracted is used. When the spectrum is a discrete spectrum, the wavelength of the ultraviolet light to be extracted is changed stepwise. What is necessary is just to use the interference filter 3 which can be used.

【0024】なお、図1に示す紫外線スペクトル測定部
S1では、試料セル5内に保持された試料の紫外線吸光
度を測定するようにしているが、このようにせず、光学
測定プローブを試料中に浸漬させて該試料の紫外線吸光
度を測定することにより該試料の紫外線スペクトルを測
定するようにしてもよい。
The ultraviolet spectrum measuring section S1 shown in FIG. 1 measures the ultraviolet absorbance of the sample held in the sample cell 5. However, the optical measuring probe is immersed in the sample. Then, the ultraviolet spectrum of the sample may be measured by measuring the ultraviolet absorbance of the sample.

【0025】データ演算処理部S2には、詳しくは図示
していないが、基準スペクトル記憶部と、濃度演算部
と、基準スペクトル更新部とが設けられている。データ
演算処理部S2の基準スペクトル記憶部(メモリ)は、
基準オゾンスペクトルω(λ)と基準有機物スペクトル
δ(λ)とを記憶している。ここで、基準オゾンスペク
トルω(λ)は、オゾン濃度が一定値Coでありかつ有
機物を含まない基準試料液の紫外線スペクトルを意味す
る。また、基準有機物スペクトルδ(λ)は、有機物濃
度が一定値Cdでありかつオゾンを含まない基準試料液
の紫外線スペクトルを意味する。なお、基準オゾンスペ
クトルω(λ)は試料液の種類、性状等にかかわりなく
不変である。これに対して、基準有機物スペクトルδ
(λ)は、例えば河川水等の場合、試料液ないしは有機
物の種類、性状等の変化に伴って経時的に緩やかに変化
する。
Although not shown in detail, the data calculation processing section S2 includes a reference spectrum storage section, a density calculation section, and a reference spectrum update section. The reference spectrum storage unit (memory) of the data operation processing unit S2 is
The reference ozone spectrum ω (λ) and the reference organic substance spectrum δ (λ) are stored. Here, the reference ozone spectrum ω (λ) means an ultraviolet spectrum of a reference sample liquid having an ozone concentration of a constant value Co and containing no organic matter. The reference organic substance spectrum δ (λ) refers to an ultraviolet spectrum of a reference sample liquid in which the organic substance concentration is a constant value Cd and does not contain ozone. Note that the reference ozone spectrum ω (λ) is invariant regardless of the type and properties of the sample liquid. In contrast, the reference organic matter spectrum δ
For example, in the case of river water or the like, (λ) gradually changes with time according to changes in the type, properties, and the like of the sample liquid or organic substance.

【0026】データ演算処理部S2の濃度演算部は、ま
ず、紫外線スペクトル測定部S1によって測定された任
意の試料液の紫外線スペクトルμ(λ)と、[p・ω
(λ)+q・δ(λ)]とが最もよく近似(一致、符
合)する数値p、qを、最小2乗法を用いて演算する。
例えば、複数の波長点(あるいは波長域)λ1、λ2、λ
3、……λnについて、それぞれ、μ(λ)の値と[p
・ω(λ)+q・δ(λ)]の値との偏差を演算し、各
偏差の2乗値の総和が最小となるような数値p、qを演
算する。つまり、次の式1に最も合致するp、qを演算
する。 μ(λ)=p・ω(λ)+q・δ(λ)…………………………式1 そして、p・Coを該試料液のオゾン濃度とし、q・C
dを該試料液の有機物濃度とする。
The concentration calculation unit of the data calculation processing unit S2 firstly calculates the ultraviolet spectrum μ (λ) of an arbitrary sample liquid measured by the ultraviolet spectrum measurement unit S1 and [p · ω
(Λ) + q · δ (λ)] is calculated using the least squares method.
For example, a plurality of wavelength points (or wavelength ranges) λ 1 , λ 2 , λ
3 ,... Λn, the value of μ (λ) and [p
.Omega. (. Lambda.) + Q.delta. (. Lambda.)], And calculate numerical values p and q such that the sum of the squares of the respective deviations is minimized. That is, p and q that best match Expression 1 are calculated. μ (λ) = p · ω (λ) + q · δ (λ) Equation 1 Then, p · Co is the ozone concentration of the sample liquid, and q · C
d is the organic matter concentration of the sample solution.

【0027】データ演算処理部S2の基準スペクトル更
新部は、まず、試料液からオゾンが除去されたブランク
試料液の紫外線スペクトルν(λ)と、q’・δ(λ)
とが最もよく近似(一致、符合)する数値q’を、最小
2乗法を用いて演算する。なお、ここで用いられる最小
2乗法は、基本的には、濃度演算部で用いられる最小2
乗法と同様のものである。そして、ν(λ)/q’を新
たに紫外線スペクトルδ(λ)とし、紫外線スペクトル
δ(λ)を更新する。すなわち、ブランク校正を行う。
The reference spectrum updating unit of the data arithmetic processing unit S2 firstly determines the ultraviolet spectrum ν (λ) of the blank sample solution from which ozone has been removed from the sample solution and q ′ · δ (λ).
Is calculated using the least-squares method. Note that the least square method used here is basically the least square method used in the density calculation unit.
It is similar to multiplication. Then, ν (λ) / q ′ is newly set as the ultraviolet spectrum δ (λ), and the ultraviolet spectrum δ (λ) is updated. That is, blank calibration is performed.

【0028】なお、基準スペクトル更新部で、ブランク
試料液の紫外線スペクトルν(λ)の所定波長λ0に対
応する数値ν(λ0)と、紫外線スペクトルδ(λ)の
所定波長λ0に対応する数値δ(λ0)とを演算し、[δ
(λ0)/ν(λ0)]・ν(λ)を新たに紫外線スペク
トルδ(λ)とするようにしてもよい。この場合、紫外
線スペクトルδ(λ)の更新、すなわちブランク校正が
極めて容易となる。
[0028] In the reference spectrum update unit, values corresponding to a predetermined wavelength lambda 0 of the ultraviolet spectrum [nu (lambda) of the blank sample solution [nu and (lambda 0), corresponding to a predetermined wavelength lambda 0 of the ultraviolet spectrum [delta] (lambda) Δ (λ 0 ) and [δ
0 ) / ν (λ 0 )] · ν (λ) may be newly set as the ultraviolet spectrum δ (λ). In this case, updating of the ultraviolet spectrum δ (λ), that is, blank calibration becomes extremely easy.

【0029】ブランク試料液は、ブランク校正を行う際
に、試料液の温度を上昇させて溶存オゾンを分解させて
除去することにより調製される。すなわち、水中に溶存
しているオゾンは化学的に不安定であり、比較的容易に
分解するが、この分解速度は温度が高いときほど大きく
なる。そこで、試料液の温度を上昇させて溶存オゾンを
迅速に分解させ、短時間でブランク試料液を調製するよ
うにしている。例えば、図5に示すように、溶存オゾン
濃度が約6.7ppmである河川水の場合、溶存オゾン
の分解に要する時間は、水温が25℃であれば約180
0秒であるが、水温が80℃であれば約250秒であ
る。
The blank sample solution is prepared by increasing the temperature of the sample solution to decompose and remove dissolved ozone when performing blank calibration. That is, ozone dissolved in water is chemically unstable and decomposes relatively easily, but the decomposition rate increases as the temperature increases. Therefore, the temperature of the sample solution is raised to dissolve dissolved ozone quickly, and a blank sample solution is prepared in a short time. For example, as shown in FIG. 5, in the case of river water having a dissolved ozone concentration of about 6.7 ppm, the time required for the decomposition of dissolved ozone is about 180 when the water temperature is 25 ° C.
0 seconds, but about 250 seconds if the water temperature is 80 ° C.

【0030】なお、次のような手法を用いて試料液から
オゾンを除去し、ブランク試料液を調製するようにして
もよい。 (a)試料液を白金触媒と接触させてオゾンを分解・除
去する。 (b)試料液に超音波振動を印加してオゾンを分解・除
去する。 (c)試料液を自然放置してオゾンが大気中に放散する
のを待つ。 (d)試料液を撹拌機で撹拌してオゾンを分解・除去す
る。 なお、上記各手法を組み合わせて用いてもよい。
The blank sample solution may be prepared by removing ozone from the sample solution using the following method. (A) A sample liquid is brought into contact with a platinum catalyst to decompose and remove ozone. (B) Ultrasonic vibration is applied to the sample liquid to decompose and remove ozone. (C) The sample liquid is allowed to stand naturally and wait for ozone to diffuse into the atmosphere. (D) The sample liquid is stirred by a stirrer to decompose and remove ozone. In addition, you may use combining each said method.

【0031】この溶存オゾン濃度測定装置によれば、試
料液の紫外線スペクトルを1回測定するだけで、オゾン
濃度と有機物濃度とを正確に測定することができる。ま
た、試料の紫外線吸光度を測定するための紫外線スペク
トル測定部S1は1つ設けるだけでよいので、該溶存オ
ゾン濃度測定装置の構造が簡素化されるとともに、誤差
要因が低減され、その測定精度が高められる。
According to this dissolved ozone concentration measuring apparatus, the ozone concentration and the organic matter concentration can be accurately measured only by measuring the ultraviolet spectrum of the sample liquid once. Further, since only one ultraviolet spectrum measuring section S1 for measuring the ultraviolet absorbance of the sample is required, the structure of the dissolved ozone concentration measuring device is simplified, error factors are reduced, and the measuring accuracy is improved. Enhanced.

【0032】また、ブランク校正は、試料液の紫外線ス
ペクトルを測定するたびに行う必要はなく、適宜、例え
ば1日数回程度行うだけでよい。このため、オゾン濃度
と有機物濃度とを測定するのに必要な時間が従来に比べ
て大幅に短縮される。つまり、簡素な構造でもって、オ
ゾンと有機物とを含む試料液中のオゾン濃度及び有機物
濃度を迅速かつ正確に測定することができる。
The blank calibration does not need to be performed each time the ultraviolet spectrum of the sample solution is measured, but may be appropriately performed, for example, several times a day. For this reason, the time required to measure the ozone concentration and the organic matter concentration is significantly reduced as compared with the conventional case. That is, with a simple structure, the ozone concentration and the organic substance concentration in the sample liquid containing ozone and the organic substance can be measured quickly and accurately.

【0033】なお、この実施の形態では妨害成分が有機
物である場合を例にとって説明しているが、妨害成分が
その他の物質、例えば過酸化水素である場合でも、同様
にオゾン濃度及び妨害成分濃度を迅速かつ正確に測定す
ることができるのはもちろんである。
In this embodiment, the case where the interfering component is an organic substance is described as an example. However, even when the interfering component is another substance, for example, hydrogen peroxide, the ozone concentration and the interfering component concentration are similarly determined. Can be measured quickly and accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態にかかる溶存オゾン濃度
測定装置のシステム構成を示す模式図である。
FIG. 1 is a schematic diagram showing a system configuration of a dissolved ozone concentration measuring device according to an embodiment of the present invention.

【図2】 純水にオゾンが溶存している試料の紫外線ス
ペクトルの一例を示す図である。
FIG. 2 is a diagram showing an example of an ultraviolet spectrum of a sample in which ozone is dissolved in pure water.

【図3】 オゾンが溶存していない河川水の紫外線スペ
クトルの一例を示す図である。
FIG. 3 is a diagram showing an example of an ultraviolet spectrum of river water in which ozone is not dissolved.

【図4】 オゾンが溶存している河川水の紫外線スペク
トルの一例を示す図である。
FIG. 4 is a diagram showing an example of an ultraviolet spectrum of river water in which ozone is dissolved.

【図5】 河川水中の溶存オゾンを分解するのに必要な
時間の水温に対する依存性を示すグラフである。
FIG. 5 is a graph showing the dependence of the time required to decompose dissolved ozone in river water on water temperature.

【符号の説明】[Explanation of symbols]

S1…紫外線スペクトル測定部、S2…データ演算処理
部、1…光源、2…集光レンズ、3…干渉フィルタ、4
…第1レンズ、5…試料セル、6…第2レンズ、7…受
光センサ。
S1: ultraviolet spectrum measuring unit, S2: data operation processing unit, 1: light source, 2: condensing lens, 3: interference filter, 4
.. A first lens, 5 a sample cell, 6 a second lens, 7 a light receiving sensor.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G059 AA01 BB04 BB05 CC08 CC12 DD05 EE01 EE12 FF07 FF08 GG00 HH03 HH06 JJ03 JJ11 KK01 LL04 MM10 MM14 NN01 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G059 AA01 BB04 BB05 CC08 CC12 DD05 EE01 EE12 FF07 FF08 GG00 HH03 HH06 JJ03 JJ11 KK01 LL04 MM10 MM14 NN01

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 オゾンと、オゾンの濃度測定を妨害する
妨害成分とが溶解している試料液中のオゾン濃度及び妨
害成分濃度を測定する溶存オゾン濃度測定装置であっ
て、 任意の試料について、紫外線吸光度と紫外線の波長λと
の関係を示す紫外線スペクトルを測定することができる
光学分析手段と、 オゾン濃度が一定値Coでありかつ妨害成分を含まない
基準試料液の紫外線スペクトルω(λ)と、妨害成分濃
度が一定値Cdでありかつオゾンを含まない基準試料液
の紫外線スペクトルδ(λ)とを記録している基準スペ
クトル記録手段と、 上記光学分析手段によって測定された任意の試料液の紫
外線スペクトルμ(λ)と、(p・ω(λ)+q・δ
(λ))とが最もよく近似する数値p、qを演算した上
で、p・Coを上記試料液のオゾン濃度とし、q・Cd
を上記試料液の妨害成分濃度とする濃度演算手段とが設
けられていることを特徴とする溶存オゾン濃度測定装
置。
1. A dissolved ozone concentration measuring device for measuring the concentration of ozone and the concentration of an interfering component in a sample liquid in which ozone and an interfering component which interferes with the measurement of the concentration of ozone are dissolved. An optical analysis means capable of measuring an ultraviolet spectrum indicating the relationship between ultraviolet absorbance and ultraviolet wavelength λ; and an ultraviolet spectrum ω (λ) of a reference sample solution having an ozone concentration of a constant value Co and containing no interfering components. A reference spectrum recording means for recording an ultraviolet spectrum δ (λ) of a reference sample solution having a constant concentration Cd and no ozone, and an arbitrary sample solution measured by the optical analysis unit. UV spectrum μ (λ) and (p · ω (λ) + q · δ
(Λ)), and after calculating the numerical values p and q that are most similar to each other, p · Co is defined as the ozone concentration of the sample liquid,
And a concentration calculating means for determining the concentration of the interfering component in the sample liquid.
【請求項2】 上記濃度演算手段が、最小2乗法を用い
て上記数値p、qを演算するようになっていることを特
徴とする請求項1に記載の溶存オゾン濃度測定装置。
2. The dissolved ozone concentration measuring apparatus according to claim 1, wherein the concentration calculating means calculates the numerical values p and q using a least square method.
【請求項3】 上記試料液からオゾンが除去されたブラ
ンク試料液の紫外線スペクトルν(λ)と、q’・δ
(λ)とが最もよく近似する数値q’を演算した上で、
ν(λ)/q’を新たに紫外線スペクトルδ(λ)とす
る妨害成分基準スペクトル更新手段が設けられているこ
とを特徴とする請求項1又は2に記載の溶存オゾン濃度
測定装置。
3. An ultraviolet spectrum ν (λ) of a blank sample solution from which ozone has been removed from the sample solution, and q ′ · δ.
After calculating a numerical value q ′ that best approximates (λ),
3. The dissolved ozone concentration measuring device according to claim 1, further comprising an interference component reference spectrum updating unit that newly sets ν (λ) / q ′ to an ultraviolet spectrum δ (λ).
【請求項4】 上記試料液からオゾンが除去されたブラ
ンク試料液の紫外線スペクトルν(λ)の所定波長λ0
に対応する数値ν(λ0)と、紫外線スペクトルδ
(λ)の上記所定波長λ0に対応する数値δ(λ0)とを
演算した上で、(δ(λ0)/ν(λ0))・ν(λ)を
新たに紫外線スペクトルδ(λ)とする妨害成分基準ス
ペクトル更新手段が設けられていることを特徴とする請
求項1又は2に記載の溶存オゾン濃度測定装置。
4. A predetermined wavelength λ 0 of an ultraviolet spectrum ν (λ) of a blank sample solution from which ozone has been removed from the sample solution.
Numerical ν (λ 0) which corresponds to the ultraviolet spectrum δ
After calculating a numerical value δ (λ 0 ) of (λ) corresponding to the predetermined wavelength λ 0 , (δ (λ 0 ) / ν (λ 0 )) · ν (λ) is newly added to the ultraviolet spectrum δ ( The dissolved ozone concentration measuring apparatus according to claim 1 or 2, further comprising means for updating an interference component reference spectrum to be λ).
【請求項5】 上記妨害成分が有機物であることを特徴
とする請求項1〜4のいずれか1つに記載の溶存オゾン
濃度測定装置。
5. The dissolved ozone concentration measuring apparatus according to claim 1, wherein the interfering component is an organic substance.
【請求項6】 上記妨害成分が過酸化水素であることを
特徴とする請求項1〜4のいずれか1つに記載の溶存オ
ゾン濃度測定装置。
6. The dissolved ozone concentration measuring apparatus according to claim 1, wherein the interfering component is hydrogen peroxide.
【請求項7】 上記ブランク試料液が、試料液の温度を
上昇させてオゾンを除去することにより生成されること
を特徴とする請求項3〜5のいずれか1つに記載の溶存
オゾン濃度測定装置。
7. The measurement of dissolved ozone concentration according to claim 3, wherein the blank sample solution is generated by removing the ozone by increasing the temperature of the sample solution. apparatus.
【請求項8】 上記ブランク試料液が、試料液を白金触
媒と接触させてオゾンを除去することにより生成される
ことを特徴とする請求項3〜5のいずれか1つに記載の
溶存オゾン濃度測定装置。
8. The dissolved ozone concentration according to claim 3, wherein the blank sample solution is generated by contacting the sample solution with a platinum catalyst to remove ozone. measuring device.
【請求項9】 上記ブランク試料液が、試料液に超音波
振動を印加してオゾンを除去することにより生成される
ことを特徴とする請求項3〜5のいずれか1つに記載の
溶存オゾン濃度測定装置。
9. The dissolved ozone according to claim 3, wherein the blank sample liquid is generated by applying ultrasonic vibration to the sample liquid to remove ozone. Concentration measuring device.
【請求項10】 上記ブランク試料液が、試料液を自然
放置してオゾンが大気中に放散するのを待つことにより
生成されることを特徴とする請求項3〜5のいずれか1
つに記載の溶存オゾン濃度測定装置。
10. The method according to claim 3, wherein the blank sample solution is generated by allowing the sample solution to stand naturally and waiting for ozone to diffuse into the atmosphere.
3. A dissolved ozone concentration measuring device according to any one of the above.
【請求項11】 上記ブランク試料液が、試料液を撹拌
機で撹拌してオゾンを除去することにより生成されるこ
とを特徴とする請求項3〜5のいずれか1つに記載の溶
存オゾン濃度測定装置。
11. The concentration of dissolved ozone according to claim 3, wherein the blank sample solution is generated by stirring the sample solution with a stirrer to remove ozone. measuring device.
【請求項12】 上記各紫外線スペクトルが、180n
mから300nmまでの波長域内における連続スペクト
ルであることを特徴とする請求項1〜11のいずれか1
つに記載の溶存オゾン濃度測定装置。
12. Each of the ultraviolet spectra has a wavelength of 180 n.
12. A continuous spectrum in a wavelength range from m to 300 nm.
3. A dissolved ozone concentration measuring device according to any one of the above.
【請求項13】 上記各紫外線スペクトルが、180n
mから300nmまでの波長域内における数点〜数十点
の離散的な吸光度データで構成されることを特徴とする
請求項1〜11のいずれか1つに記載の溶存オゾン濃度
測定装置。
13. Each of the ultraviolet spectra has a wavelength of 180 n.
The dissolved ozone concentration measuring apparatus according to any one of claims 1 to 11, comprising discrete light absorbance data of several to several tens of points in a wavelength range from m to 300 nm.
【請求項14】 上記光学分析手段が、ポンプ又はアス
ピレータを用いて試料セル内に供給された試料の紫外線
吸光度を測定することにより該試料の紫外線スペクトル
を測定するようになっていることを特徴とする請求項1
〜13のいずれか1つに記載の溶存オゾン濃度測定装
置。
14. The method according to claim 1, wherein the optical analysis means measures an ultraviolet spectrum of the sample supplied to the sample cell by using a pump or an aspirator to measure an ultraviolet absorbance of the sample. Claim 1
14. The dissolved ozone concentration measuring apparatus according to any one of items 13 to 13.
【請求項15】 上記光学分析手段が、光学測定プロー
ブを試料中に浸漬させて該試料の紫外線吸光度を測定す
ることにより該試料の紫外線スペクトルを測定するよう
になっていることを特徴とする請求項1〜13のいずれ
か1つに記載の溶存オゾン濃度測定装置。
15. The method according to claim 15, wherein the optical analysis means measures an ultraviolet spectrum of the sample by immersing an optical measurement probe in the sample and measuring an ultraviolet absorbance of the sample. Item 14. The dissolved ozone concentration measuring device according to any one of Items 1 to 13.
JP2000337362A 2000-11-06 2000-11-06 Dissolved ozone concentration measuring device Expired - Fee Related JP4634596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000337362A JP4634596B2 (en) 2000-11-06 2000-11-06 Dissolved ozone concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000337362A JP4634596B2 (en) 2000-11-06 2000-11-06 Dissolved ozone concentration measuring device

Publications (2)

Publication Number Publication Date
JP2002139429A true JP2002139429A (en) 2002-05-17
JP4634596B2 JP4634596B2 (en) 2011-02-16

Family

ID=18812761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000337362A Expired - Fee Related JP4634596B2 (en) 2000-11-06 2000-11-06 Dissolved ozone concentration measuring device

Country Status (1)

Country Link
JP (1) JP4634596B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139465A (en) * 2005-11-15 2007-06-07 Yanmar Co Ltd Residual agricultural chemical judging apparatus
JP2007529012A (en) * 2004-03-12 2007-10-18 エムケイエス インストゥルメンツ, インコーポレイテッド Ozone concentration sensor
JP2009244283A (en) * 2009-07-28 2009-10-22 Kurabo Ind Ltd Method of measuring water and aqueous solution with ultraviolet ray

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244341A (en) * 1988-03-25 1989-09-28 Seki Electron Kk Light absorbing type ozone concentration measuring device
JPH0416749A (en) * 1990-05-11 1992-01-21 Japan Steel Works Ltd:The Method and apparatus for measuring ozone concentration
JPH04148830A (en) * 1990-10-13 1992-05-21 Horiba Ltd Multiple-component determining method in spectrochemical analysis
JPH06221998A (en) * 1993-01-28 1994-08-12 Meidensha Corp Measuring apparatus for ultraviolet ray absorbance
JPH06308027A (en) * 1993-04-27 1994-11-04 Japan Steel Works Ltd:The Light measuring apparatus and ozone water concentration meter
JPH07218428A (en) * 1994-01-28 1995-08-18 Meidensha Corp Ultraviolet-ray absorbancy-measuring instrument
JPH08136526A (en) * 1994-11-04 1996-05-31 Meidensha Corp Continuous measuring apparatus for concentration of dissolved ozone
JPH08297119A (en) * 1995-04-27 1996-11-12 Meidensha Corp Method and device for measuring ultraviolet-ray absorbance of process
JPH08304378A (en) * 1995-05-11 1996-11-22 Dkk Corp Ozone decomposing equipment, and ultraviolet ray absorbing type ozone gauge
JP2000171394A (en) * 1998-12-01 2000-06-23 Tetra Laval Holdings & Finance Sa Method and device for determining substance concentration of sample in which disturbing material exist

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244341A (en) * 1988-03-25 1989-09-28 Seki Electron Kk Light absorbing type ozone concentration measuring device
JPH0416749A (en) * 1990-05-11 1992-01-21 Japan Steel Works Ltd:The Method and apparatus for measuring ozone concentration
JPH04148830A (en) * 1990-10-13 1992-05-21 Horiba Ltd Multiple-component determining method in spectrochemical analysis
JPH06221998A (en) * 1993-01-28 1994-08-12 Meidensha Corp Measuring apparatus for ultraviolet ray absorbance
JPH06308027A (en) * 1993-04-27 1994-11-04 Japan Steel Works Ltd:The Light measuring apparatus and ozone water concentration meter
JPH07218428A (en) * 1994-01-28 1995-08-18 Meidensha Corp Ultraviolet-ray absorbancy-measuring instrument
JPH08136526A (en) * 1994-11-04 1996-05-31 Meidensha Corp Continuous measuring apparatus for concentration of dissolved ozone
JPH08297119A (en) * 1995-04-27 1996-11-12 Meidensha Corp Method and device for measuring ultraviolet-ray absorbance of process
JPH08304378A (en) * 1995-05-11 1996-11-22 Dkk Corp Ozone decomposing equipment, and ultraviolet ray absorbing type ozone gauge
JP2000171394A (en) * 1998-12-01 2000-06-23 Tetra Laval Holdings & Finance Sa Method and device for determining substance concentration of sample in which disturbing material exist

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529012A (en) * 2004-03-12 2007-10-18 エムケイエス インストゥルメンツ, インコーポレイテッド Ozone concentration sensor
US8085401B2 (en) 2004-03-12 2011-12-27 Mks Instruments, Inc. Ozone concentration sensor
JP4928437B2 (en) * 2004-03-12 2012-05-09 エムケイエス インストゥルメンツ, インコーポレイテッド Ozone concentration sensor
US8339607B2 (en) 2004-03-12 2012-12-25 Mks Instruments, Inc. Ozone concentration sensor
JP2007139465A (en) * 2005-11-15 2007-06-07 Yanmar Co Ltd Residual agricultural chemical judging apparatus
JP2009244283A (en) * 2009-07-28 2009-10-22 Kurabo Ind Ltd Method of measuring water and aqueous solution with ultraviolet ray

Also Published As

Publication number Publication date
JP4634596B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
Svensson et al. Reaction monitoring using Raman spectroscopy and chemometrics
JPH0643967B2 (en) Fluorometric concentration measuring method and measuring device
Gilles et al. Kinetics of the IO radical. 2. Reaction of IO with BrO
JP6086524B2 (en) Method and apparatus for measuring concentration of accelerated oxidation active species
JP4372567B2 (en) Method for measuring water and aqueous solution by ultraviolet light
JP2006258491A (en) Device and method for measuring concentration of acid solution including peracetic acid
JP4048139B2 (en) Concentration measuring device
JP2005187844A (en) Device and method for regenerating acid solution and measuring concentration
JPH01244341A (en) Light absorbing type ozone concentration measuring device
Berger et al. Analytical method of estimating chemometric prediction error
JP2002139429A (en) Dissolved-ozone concentration measuring instrument
JP3893068B2 (en) Solution concentration meter and concentration measuring method
Müller et al. The mass accommodation coefficient of ozone on an aqueous surface
JP3223097B2 (en) Method for analyzing the concentration of multiple components contained in a solution
Goldfarb et al. Photodissociation of ClONO2: 1. Atomic resonance fluorescence measurements of product quantum yields
AU2006218103A1 (en) Method and device for determining the concentration of organically bound halogens
JPH0964005A (en) Method for controlling chemical concentration in piranha cleaning step
Laine et al. Kinetic and mechanistic study of the reactions of atomic chlorine with CH3CH2Br, CH3CH2CH2Br, and CH2BrCH2Br
Kim et al. Comparison of near-infrared and Raman spectroscopy for on-line monitoring of etchant solutions directly through a Teflon tube
JP3824904B2 (en) Method for measuring the concentration of a solution containing an alkali component and hydrogen peroxide
JP4642211B2 (en) Measuring method of measured component concentration
JP2011075447A (en) Method and instrument for measuring concentration of water-soluble radical species in aqueous solution
JPH0797079B2 (en) Total nitrogen measurement method by UV method
Herndon et al. Kinetics of the Reaction of SH and SD with NO2
Espinoza et al. Total organic carbon content in aqueous samples determined by near-IR spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees