JP2005187844A - Device and method for regenerating acid solution and measuring concentration - Google Patents

Device and method for regenerating acid solution and measuring concentration Download PDF

Info

Publication number
JP2005187844A
JP2005187844A JP2003427435A JP2003427435A JP2005187844A JP 2005187844 A JP2005187844 A JP 2005187844A JP 2003427435 A JP2003427435 A JP 2003427435A JP 2003427435 A JP2003427435 A JP 2003427435A JP 2005187844 A JP2005187844 A JP 2005187844A
Authority
JP
Japan
Prior art keywords
acid solution
concentration
light
acid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003427435A
Other languages
Japanese (ja)
Other versions
JP4455043B2 (en
Inventor
Akifumi Mimata
章史 三又
Satoru Hiraki
哲 平木
Hiroshi Yokota
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2003427435A priority Critical patent/JP4455043B2/en
Publication of JP2005187844A publication Critical patent/JP2005187844A/en
Application granted granted Critical
Publication of JP4455043B2 publication Critical patent/JP4455043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/08Apparatus, e.g. for photomechanical printing surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water

Abstract

<P>PROBLEM TO BE SOLVED: To simply perform the regeneration of acid solution and to make measurable of acid concentration in the acid solution and the concentration of eluted material. <P>SOLUTION: In an acid solution regenerating system, the acid solution is held into a vessel and regarding this acid solution, both of the concentration of the acid and the concentration of material eluted in the acid solution are decided. Further, a tank for holding the original liquid of the acid solution, a supplying device for supplying the original liquid from the tank into a vessel and a discharging device for discharging the acid solution from the tank, are arranged, and based on the obtained concentration from a concentration measuring instrument, the original liquid of the acid solution is supplied from the tank with the supplying device and the acid solution in the vessel is discharged with the discharging device, and the acid concentration in the acid solution in the vessel is controlled. Desirably, further, the acid solution is introduced from the vessel into a removing device and the eluted material in the introduced acid solution is removed and the acid solution removing the eluted material is returned back to the vessel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エッチングなどに使用する酸溶液の濃度測定、濃度制御および再生に関するものである。   The present invention relates to concentration measurement, concentration control and regeneration of an acid solution used for etching and the like.

酸溶液は各種物質の溶解などに使用されている。たとえば、銅、アルミニウム、シリコン、鋼鉄などの金属、半導体などの各種材料のエッチングにおいて、塩酸過水、王水、燐酸硝酸酢酸、塩化第2鉄などの酸溶液(薬液)が使用されている。エッチングなどの工程の管理には、酸溶液の濃度および溶出された物資の濃度を知る必要がある。そこで、酸溶液中の酸及び溶出物質の濃度が測定される。   Acid solutions are used to dissolve various substances. For example, in the etching of various materials such as metals such as copper, aluminum, silicon, and steel, and semiconductors, acid solutions (chemicals) such as hydrochloric acid overwater, aqua regia, phosphoric acid nitrate acetic acid, and ferric chloride are used. In order to manage processes such as etching, it is necessary to know the concentration of the acid solution and the concentration of the eluted material. Therefore, the concentration of the acid and the eluted substance in the acid solution is measured.

酸溶液中の酸及び溶出物質の濃度測定には種々の方法が使用されている。特開平6−265471号公報に記載されたエッチング液の中の酸濃度の測定方法では、分光測定を用いている。また、エッチング液に溶出された金属の濃度を測定するには、原子吸光分析法、イオンクロマトグラフィー、ICP分析法などが用いられてきた。たとえば特開平10−227742号に記載された分析方法では、塩化第二鉄エッチング液の銅濃度を、サンプルを希釈し原子吸光分析法で求めている。特開平7−176853号公報では、ITO薄膜エッチング液において、酸濃度を導電率で測定し、さらに、インジウム含有量を吸光光度計を用いて求めている。   Various methods are used to measure the concentration of the acid and the eluted substance in the acid solution. In the method for measuring the acid concentration in the etching solution described in JP-A-6-265471, spectroscopic measurement is used. In addition, atomic absorption analysis, ion chromatography, ICP analysis, and the like have been used to measure the concentration of metal eluted in the etching solution. For example, in the analysis method described in Japanese Patent Laid-Open No. 10-227742, the copper concentration of the ferric chloride etching solution is obtained by diluting the sample by atomic absorption spectrometry. In JP-A-7-176853, in an ITO thin film etching solution, the acid concentration is measured by electrical conductivity, and the indium content is determined using an absorptiometer.

酸溶液は、種々の薬品を追加して濃度を制御することにより再生できる。たとえば、特開平10−280171号公報に記載された制御方法では、塩化第二鉄エッチング液について、測定したpH値を基に酸性液を添加してpHを調整している。   The acid solution can be regenerated by adding various chemicals to control the concentration. For example, in the control method described in Japanese Patent Application Laid-Open No. 10-280171, the pH of a ferric chloride etching solution is adjusted by adding an acidic solution based on the measured pH value.

また、エッチング液に溶出された金属の除去などを行うことにより、エッチング液の再生が可能となり、エッチング速度が一定に管理できる。エッチング液の再生方法には、加熱または冷却を行って金属塩として取り出す方法や、電解法により金属イオンを取り出す方法などがある。再生においては、エッチング液の濃度と、エッチング液に溶け出した物質(エッチング液中の含有材料)の量を監視し、溶解量が多くなると溶け出した材料を除去している。たとえば、特開平11−14606号公報に記載されたアルミニウムエッチング液のアルミニウム含有量測定では、音速測定によりアルミニウム含有量を算出して、設定値に達するとエッチング液を補給して、エッチング液の酸濃度とアルミニウム含有量を一定にしている。また、特開平11−140673号公報に記載された再生方法では、硫酸・過酸化水素系銅エッチング液などにおいて、溶媒抽出により廃液から銅を抽出除去して、エッチング液を再生している。
特開平 6−265471号公報 特開平10−227742号公報 特開平 7−176853号公報 特開平10−280171号公報 特開平11−14606号公報 特開平11−140673号公報 特開平 8−199480号公報 特開2002−20959号公報
Further, by removing the metal eluted in the etching solution, the etching solution can be regenerated and the etching rate can be controlled to be constant. As a method for regenerating the etching solution, there are a method of taking out as a metal salt by heating or cooling, a method of taking out metal ions by an electrolytic method, and the like. In the reproduction, the concentration of the etching solution and the amount of the substance (containing material in the etching solution) dissolved in the etching solution are monitored, and the dissolved material is removed when the amount of dissolution increases. For example, in the measurement of the aluminum content of an aluminum etching solution described in Japanese Patent Application Laid-Open No. 11-14606, the aluminum content is calculated by measuring the speed of sound. Concentration and aluminum content are kept constant. In the regeneration method described in JP-A-11-140673, the etching solution is regenerated by extracting and removing copper from the waste solution by solvent extraction in a sulfuric acid / hydrogen peroxide-based copper etching solution or the like.
JP-A-6-265471 JP-A-10-227742 Japanese Patent Laid-Open No. 7-176853 Japanese Patent Laid-Open No. 10-280171 Japanese Patent Laid-Open No. 11-14606 JP-A-11-140673 JP-A-8-199480 JP 2002-20959 A

エッチング液などの酸溶液中の含有金属の濃度測定法として従来から原子吸光分析法、イオンクロマトグラフィー、ICP分析法などが使用されてきたが、これらは、測定に希釈や燃焼をする必要があるために、インラインでの測定には不向きであり、製造プロセスに組み込むのが困難であった。また、エッチング速度を安定にする管理には、エッチング液の酸の濃度と、溶解した金属等の濃度の両方が必要であるが、従来の測定法ではエッチング液の濃度についての測定を同時に行えないため、エッチング速度を一定にするプロセス制御ができなかった。また、従来の酸溶液再生のための設備では、金属塩や金属イオンを取り出す方法が用いられ、非常に大掛かりで、高額なものであった。   Conventionally, atomic absorption analysis, ion chromatography, ICP analysis, etc. have been used as a method for measuring the concentration of contained metals in an acid solution such as an etchant, but these require dilution or combustion for measurement. Therefore, it is not suitable for in-line measurement, and it is difficult to incorporate it into the manufacturing process. In addition, the management of stabilizing the etching rate requires both the acid concentration of the etching solution and the concentration of the dissolved metal, etc., but the conventional measurement method cannot simultaneously measure the concentration of the etching solution. For this reason, process control with a constant etching rate could not be performed. Also, conventional equipment for regenerating acid solutions uses a method of extracting metal salts and metal ions, which is very large and expensive.

この発明の目的は、酸溶液の再生を簡便に行うことである。
この発明の他の目的は、酸溶液の酸濃度及び溶出物質の濃度をともに測定可能にすることである。
An object of the present invention is to easily regenerate an acid solution.
Another object of the present invention is to make it possible to measure both the acid concentration of the acid solution and the concentration of the eluted substance.

本発明に係る酸溶液再生システムは、酸溶液を収容する槽と、槽内の酸溶液について、酸の濃度と酸溶液に溶出された物質の濃度を共に決定する濃度測定装置と、酸溶液の原液を収容するタンクと、タンクから原液を槽に供給する供給装置と、水槽から酸溶液を排出する排出装置と、濃度測定装置により得られた濃度を基に、供給装置によりタンクから酸溶液の原液を供給し、排出装置により槽内の酸溶液を排出して、槽内の酸溶液中の酸の濃度を制御する濃度制御装置とを備える。   An acid solution regeneration system according to the present invention includes a tank that stores an acid solution, a concentration measuring device that determines both the concentration of an acid and the concentration of a substance eluted in the acid solution, and an acid solution Based on the concentration obtained by the tank that contains the stock solution, the supply device that supplies the stock solution from the tank to the tank, the discharge device that discharges the acid solution from the water tank, and the concentration measurement device, the supply device supplies the acid solution from the tank. A concentration controller for supplying the stock solution, discharging the acid solution in the tank by the discharge device, and controlling the concentration of the acid in the acid solution in the tank;

上記の酸溶液再生システムにおいて、上記タンクの原液は、たとえば、酸溶液の新液、それに含まれている組成薬液および純水である。   In the acid solution regeneration system described above, the stock solution in the tank is, for example, a new acid solution, a composition chemical solution and pure water contained therein.

上記の酸溶液再生システムにおいて、上記濃度制御装置は、たとえば、上記濃度測定装置から濃度データを受け取り、供給量および排出量を演算し、上記供給装置と上記排出装置を制御する。   In the acid solution regeneration system, for example, the concentration control device receives concentration data from the concentration measuring device, calculates a supply amount and a discharge amount, and controls the supply device and the discharge device.

上記の酸溶液再生システムは、好ましくは、さらに、上記槽から酸溶液を導入し、導入された酸溶液中の溶出物質を除去し、溶出物質を除去した酸溶液を上記槽に戻す除去装置を備える。好ましくは、上記除去装置は、たとえば、特定の金属イオンを吸着させるためにプラズマグラフト重合処理を施したフィルタを備える。また、好ましくは、さらに、上記の除去装置と並行にバイパスラインを設ける。   Preferably, the acid solution regeneration system further includes a removing device that introduces the acid solution from the tank, removes the eluted substance in the introduced acid solution, and returns the acid solution from which the eluted substance has been removed to the tank. Prepare. Preferably, the removal device includes a filter that has been subjected to a plasma graft polymerization process to adsorb specific metal ions, for example. In addition, preferably, a bypass line is further provided in parallel with the removal device.

上記の酸溶液再生システムにおいて、上記濃度測定装置は、たとえば分光測定装置である。この分光測定装置は、測定対象の酸溶液サンプルが導入される光透過または反射検出用のセルと、紫外光、可視光及び近赤外光の波長域内の波長の光をセルに照射する光源と、光源からの光をセルに照射して得られる透過光または反射光を分光する分光手段と、分光手段により分光された光を受光し、受光した光の強度に応じた光強度信号を発生する受光手段と、酸溶液中の酸の濃度および酸溶液に溶出される物質の濃度と吸光度の関係を示す検量線式を記憶する記憶手段と、上記受光手段から入力した光強度信号から吸光度を演算し、上記吸光度から上記検量線式に基づいて酸溶液中の酸の濃度と、酸溶液に溶出された物質の濃度を同時に決定する濃度演算手段とからなる。好ましくは、上記槽と上記除去装置の間の酸溶液の経路に分光測定装置のセルが配置される。これにより、除去装置を、濃度測定を行う循環ラインの閉ループに設置でき、酸溶液の再生が濃度測定に並行して行える。   In the acid solution regeneration system, the concentration measuring device is, for example, a spectroscopic measuring device. The spectroscopic measurement apparatus includes a light transmission or reflection detection cell into which an acid solution sample to be measured is introduced, a light source that irradiates the cell with light having a wavelength within the wavelength range of ultraviolet light, visible light, and near infrared light. , A spectroscopic means for splitting transmitted light or reflected light obtained by irradiating the light from the light source to the cell, and receiving the light dispersed by the spectroscopic means, and generating a light intensity signal corresponding to the intensity of the received light Absorbance is calculated from the light receiving means, the storage means for storing the calibration curve formula indicating the relationship between the concentration of the acid in the acid solution and the concentration of the substance eluted in the acid solution and the absorbance, and the light intensity signal input from the light receiving means. And the concentration calculation means for simultaneously determining the concentration of the acid in the acid solution and the concentration of the substance eluted in the acid solution from the absorbance based on the calibration curve equation. Preferably, a cell of the spectroscopic measurement device is disposed in the acid solution path between the tank and the removal device. As a result, the removal device can be installed in a closed loop of the circulation line for measuring the concentration, and the regeneration of the acid solution can be performed in parallel with the concentration measurement.

上記酸溶液再生システムにおいて、上記濃度測定装置は、たとえば、上記槽に浸漬されて濃度測定を行う分光測定プローブである。   In the acid solution regeneration system, the concentration measuring device is, for example, a spectroscopic measurement probe that is immersed in the tank and performs concentration measurement.

本発明に係る濃度測定装置は、測定対象の酸溶液サンプルが導入される光透過または反射検出用のセルと、紫外波長域、可視光波長域及び近赤外波長域内の光をセルに照射する光源と、光源からの光をセルに照射して得られる透過光または反射光を分光する分光手段と、分光手段により分光された光を受光し、受光した光の強度に応じた光強度信号を発生する受光手段と、酸溶液中の酸の濃度および酸溶液に溶出される物質の濃度と吸光度の関係を示す検量線式を記憶する記憶手段と、上記受光手段から入力した光強度信号から吸光度を演算し、上記吸光度から上記検量線式に基づいて酸溶液中の酸の濃度と、酸溶液に溶出された物質の濃度を同時に決定する濃度演算手段とを備える。紫外波長域、可視光波長域及び近赤外波長域内の光は、たとえば、190〜2000nmである。1例では350〜2000nmの波長域である。吸光度は、たとえば、この波長域内で離散的に数点から数十点で測定する。または、この波長域内での連続スペクトルを用いて測定する。   The concentration measuring apparatus according to the present invention irradiates a cell for light transmission or reflection detection into which an acid solution sample to be measured is introduced, and light in an ultraviolet wavelength region, a visible light wavelength region, and a near-infrared wavelength region. A light source, a spectroscopic means for dispersing transmitted light or reflected light obtained by irradiating light from the light source to the cell, light received by the spectroscopic means, and a light intensity signal corresponding to the intensity of the received light The light receiving means to be generated, the storage means for storing the calibration curve formula indicating the relationship between the concentration of the acid in the acid solution and the concentration of the substance eluted in the acid solution and the absorbance, and the absorbance from the light intensity signal input from the light receiving means And concentration calculating means for simultaneously determining the concentration of the acid in the acid solution and the concentration of the substance eluted in the acid solution from the absorbance based on the calibration curve equation. The light in the ultraviolet wavelength range, visible wavelength range, and near infrared wavelength range is, for example, 190 to 2000 nm. In one example, the wavelength range is 350 to 2000 nm. The absorbance is measured at several points to several tens of points, for example, discretely within this wavelength range. Or it measures using the continuous spectrum in this wavelength range.

本発明に係る濃度測定方法では、酸溶液中の酸および酸溶液に溶出される物質の濃度測定を行う。ここで、測定対象の酸溶液サンプルについて、紫外光、可視光及び近赤外光の波長域内の波長の光の透過光または反射光の強度を測定し、次に、光強度信号から吸光度を演算し、次に、上記吸光度から、あらかじめ求められている検量線式に基づいて酸溶液中の酸の濃度と、酸溶液に溶出された物質の濃度をともに演算する。   In the concentration measurement method according to the present invention, the concentration of the acid in the acid solution and the substance eluted in the acid solution are measured. Here, for the acid solution sample to be measured, the intensity of the transmitted or reflected light with a wavelength within the wavelength range of ultraviolet light, visible light and near infrared light is measured, and then the absorbance is calculated from the light intensity signal. Then, both the concentration of the acid in the acid solution and the concentration of the substance eluted in the acid solution are calculated from the absorbance based on the calibration curve equation obtained in advance.

濃度制御装置を設けて濃度測定装置からの濃度測定結果を受けて酸溶液の濃度を制御できる。酸及び物質の濃度を同時に決定できるので、エッチングプロセスが管理できる。   A concentration control device is provided to control the concentration of the acid solution in response to the concentration measurement result from the concentration measuring device. Since the acid and substance concentrations can be determined simultaneously, the etching process can be controlled.

酸溶液に溶出された物質を除去する除去装置を設置して、酸溶液の濃度測定と再生が並行して行える。したがって、大掛かりな設備を用いなくても再生が可能になる。好ましくは、グラフト重合処理されたフィルタを用いることにより、濃度測定用の酸溶液サンプルの中の特定の金属イオンを除去し、エッチング液を再生できる。また、好ましくは、除去装置と並行にバイパスラインを設ける。これにより、エッチング液中の溶出物質の濃度を適当な値に制御できる。   A removal device for removing the substance eluted in the acid solution can be installed to measure the concentration of the acid solution and regenerate it in parallel. Therefore, reproduction is possible without using large-scale equipment. Preferably, by using a graft polymerized filter, specific metal ions in the acid solution sample for concentration measurement can be removed, and the etching solution can be regenerated. Preferably, a bypass line is provided in parallel with the removing device. Thereby, the concentration of the eluted substance in the etching solution can be controlled to an appropriate value.

また、分光測定を用いた濃度測定において、酸溶液中の酸及び酸溶液に溶出された物質の濃度を同時に短時間に決定できる。フローセルを用いることにより、インライン濃度測定が可能となる。また、濃度制御が、エッチング工程などの間に連続的に行える。また、セルからのサンプル酸溶液の含有金属を除去装置で除去できるので、酸溶液の濃度制御や再生が、エッチンググ工程などの間に連続的に行える。   Further, in the concentration measurement using the spectroscopic measurement, the concentration of the acid in the acid solution and the substance eluted in the acid solution can be determined simultaneously in a short time. By using a flow cell, in-line concentration measurement is possible. Further, concentration control can be continuously performed during an etching process or the like. Further, since the metal contained in the sample acid solution from the cell can be removed by the removing device, the concentration control and regeneration of the acid solution can be continuously performed during the etching process and the like.

以下、発明の実施の形態を添付の図面を参照して具体的に説明する。   Embodiments of the present invention will be specifically described below with reference to the accompanying drawings.

銅、アルミニウム、シリコン、鋼鉄などの各種材料のエッチングなどの用途において、塩酸過水、王水、燐酸硝酸酢酸、塩化第二鉄などの各種の酸溶液(薬液)が使用されている。たとえばプリント基板などの銅のエッチングにおいて塩酸過水が用いられる。塩酸過水とは、塩酸、過酸化水素及び水からなる溶液をいう。エッチングは、エッチング対象物のエッチング槽への浸漬、エッチング液の吹き付けなどにより行う。エッチング工程などにおける酸溶液の管理は、酸溶液中の酸の濃度や酸溶液により溶解された物質の濃度の測定を基に行う。   In applications such as etching of various materials such as copper, aluminum, silicon, and steel, various acid solutions (chemicals) such as hydrochloric acid overwater, aqua regia, phosphoric acid nitrate acetic acid, and ferric chloride are used. For example, hydrochloric acid overwater is used in etching copper such as printed circuit boards. Hydrochloric acid overwater refers to a solution composed of hydrochloric acid, hydrogen peroxide and water. Etching is performed by immersing an object to be etched in an etching tank, spraying an etching solution, or the like. The management of the acid solution in the etching process or the like is performed based on the measurement of the concentration of the acid in the acid solution and the concentration of the substance dissolved by the acid solution.

図1と図2は、エッチング槽10内の酸溶液の濃度測定、濃度制御及び再生を行うシステム20を示す。エッチング槽10は、エッチング液としてたとえば塩酸過水で満たされており、この中に、プリント基板等を浸漬させることにより、プリント基板等の銅がエッチされる。このシステムでは、エッチング工程の管理のために、エッチング槽10からエッチング液サンプルを導入し、その透過光または反射光のスペクトルを測定し、吸光度を求める。そして、吸光度と検量線式を用いて酸の濃度及び酸により溶出される物質の濃度を得る。そして、濃度測定値を基に、エッチング液を管理し、また再生する。サンプリング部30は、送液ポンプ32を備え、送液ポンプ32を作動することにより、エッチング槽10からエッチング液のサンプルを連続的に取り出す。濃度測定部40は、分光測定装置であり、セル内に入った測定対象のサンプルに紫外域、可視域および近赤外域の光を当て、それを透過または反射した光の強度を演算処理して濃度値に変換する。   FIGS. 1 and 2 show a system 20 that performs acid concentration measurement, concentration control, and regeneration in an etching bath 10. The etching tank 10 is filled with, for example, hydrochloric acid / hydrogen peroxide as an etching solution, and copper such as the printed circuit board is etched by immersing the printed circuit board or the like therein. In this system, in order to manage the etching process, an etchant sample is introduced from the etching tank 10, the spectrum of the transmitted light or reflected light is measured, and the absorbance is obtained. Then, the concentration of the acid and the concentration of the substance eluted by the acid are obtained using the absorbance and the calibration curve formula. Then, the etching solution is managed and regenerated based on the measured concentration value. The sampling unit 30 includes a liquid feed pump 32 and operates the liquid feed pump 32 to continuously take samples of the etchant from the etching tank 10. The concentration measurement unit 40 is a spectroscopic measurement device, which applies light in the ultraviolet region, visible region, and near-infrared region to a sample to be measured that enters the cell, and calculates the intensity of light transmitted or reflected from the sample. Convert to density value.

濃度測定部40は、塩酸過水の供給ライン中にインラインで設置できる。具体的には、濃度測定部40はたとえば分光測定装置である。このため、サンプルとなる酸溶液を変質させることなく、迅速かつ簡便に、かつ精度よく、エッチング工程中に、酸溶液中の塩酸、過酸化水素及び銅の濃度を連続的に定量できる。これを基に、製品の歩留まりを向上できる。   The concentration measuring unit 40 can be installed in-line in the hydrochloric acid / hydrogen peroxide supply line. Specifically, the concentration measuring unit 40 is a spectroscopic measurement device, for example. For this reason, the concentration of hydrochloric acid, hydrogen peroxide, and copper in the acid solution can be continuously quantified during the etching process quickly, simply and accurately without altering the acid solution as a sample. Based on this, the product yield can be improved.

エッチング槽10からのサンプルは、濃度測定部40で分光測定された後、除去装置50において、溶出した金属が除去された後、エッチング槽10に返される。この閉じた循環ループ内で、濃度測定とエッチング液再生を短時間(10分程度)で行うことができる。酸濃度だけが一定であっても、エッチング速度は溶出物質の量により変わってくる。除去装置50を用いて溶出金属を除去することにより、酸濃度を一定にしながらエッチング速度(エッチングの度合)を安定にさせるプロセス制御が行える。   The sample from the etching tank 10 is spectroscopically measured by the concentration measuring unit 40 and then returned to the etching tank 10 after the eluted metal is removed by the removing device 50. In this closed circulation loop, concentration measurement and etching solution regeneration can be performed in a short time (about 10 minutes). Even if only the acid concentration is constant, the etching rate varies depending on the amount of the eluted material. By removing the eluted metal using the removing device 50, it is possible to perform process control that stabilizes the etching rate (degree of etching) while keeping the acid concentration constant.

除去装置50として金属除去フィルタを用いる。金属除去フィルタは、グラフト重合処理されたフィルタであり、送液ポンプ32によりこれを通過した薬液の中に含まれている特定の金属イオンを捕まえることができる。なお、放射線グラフト重合を用いたフィルタは、廃液処理などに使用できることが知られている(たとえば特開平8−199480号公報、特開2002−20959号公報など)。   A metal removal filter is used as the removal device 50. The metal removal filter is a graft-polymerized filter, and can capture specific metal ions contained in the chemical liquid that has passed through the liquid feed pump 32. It is known that filters using radiation graft polymerization can be used for waste liquid treatment or the like (for example, JP-A-8-199480, JP-A-2002-20959, etc.).

また、エッチング液に溶出した金属は、プロセス制御では、完全には除去せずに、いくらか残した方が好ましいことがある。そこで、図2に示すように、除去装置50である金属除去フィルタに並行にバイパスラインを設け、両者への入口にそれぞれバルブ52,54を設ける。そして、濃度測定部40による濃度測定値をもとにバルブ52,54を制御することにより、エッチング液中の溶出金属の量を適当な値に制御する。   Further, it may be preferable to leave some of the metal eluted in the etching solution without completely removing it in the process control. Therefore, as shown in FIG. 2, a bypass line is provided in parallel to the metal removal filter as the removal device 50, and valves 52 and 54 are provided at the inlets to both. Then, by controlling the valves 52 and 54 based on the concentration measurement value obtained by the concentration measuring unit 40, the amount of the eluted metal in the etching solution is controlled to an appropriate value.

濃度測定部40は、この実施の形態では分光測定装置である。図3は、エッチング液サンプルの光強度測定を行う濃度測定部40の構成を示す。濃度測定部40は、実質的に、分光部、サンプリング部およびデータ処理部とで構成されている。濃度測定では、あらかじめ検証線式を求めておく。まず、既知濃度の酸溶液のサンプルを光透過または反射検出用のセルに導入し、光を透過または反射させ、透過光または反射光の光強度を測定する。この測定を複数のサンプルについて繰返す。次に、上記複数のサンプルの強度値から吸光度を演算し、吸光度と酸溶液中の酸濃度及び溶出物質の濃度の間の検量線式を求める。次に、測定対象の酸溶液を上記セルに導入し、光を透過または反射させ、透過光または反射光の光強度を測定する。そして、光強度値から吸光度を演算し、吸光度と検量線式を用いて、酸溶液中の酸及び溶出物質の濃度をともに決定する。   The concentration measuring unit 40 is a spectroscopic measurement device in this embodiment. FIG. 3 shows the configuration of the concentration measuring unit 40 that measures the light intensity of the etching solution sample. The concentration measuring unit 40 is substantially composed of a spectroscopic unit, a sampling unit, and a data processing unit. In the concentration measurement, a verification line formula is obtained in advance. First, a sample of an acid solution having a known concentration is introduced into a light transmission or reflection detection cell, light is transmitted or reflected, and the light intensity of the transmitted light or reflected light is measured. This measurement is repeated for a plurality of samples. Next, the absorbance is calculated from the intensity values of the plurality of samples, and a calibration curve equation between the absorbance, the acid concentration in the acid solution, and the concentration of the eluted substance is obtained. Next, an acid solution to be measured is introduced into the cell, light is transmitted or reflected, and the light intensity of transmitted light or reflected light is measured. Then, the absorbance is calculated from the light intensity value, and both the acid and the concentration of the eluted substance in the acid solution are determined using the absorbance and the calibration curve equation.

まず分光部について説明すると、たとえば350〜2000nmの波長域の光を発生する光源100を用いる。光源100から放射された光は、第1凸レンズ102によって集光され、第1凸レンズ102の焦点位置に配置された絞り104と干渉フィルタ106を通過する。回転円板108は、複数(たとえば、8枚)の干渉フィルタ106を、円周方向に等角度間隔で保持し、駆動モータ110により所定の回転数(たとえば1000rpm)で回転駆動される。ここで、干渉フィルタ106は、絞り104を通過した光を所定の複数の波長の光に分光する。干渉フィルタ106によって分光された光は、第2凸レンズ112によって集光され、フローセル114を照射する。フローセル114内には、サンプルされたエッチング液が連続的に導入される。フローセル114を用いることにより、インラインで連続的に濃度測定が行える。フローセル114に照射された光の一部はエッチング液によって吸収され、残部はフローセル114を透過する。フローセル114を透過した光は、第3凸レンズ116により集光され、受光素子118に入射される。駆動モータ110により回転円板108が回転駆動されると、受光素子118は、回転円板に保持されている複数の干渉フィルタ106の透過波長に対応する光の、フローセル内の酸溶液に対応する透過度(または反射度)に比例する信号を生成する。受光素子118は、入射された光を、その強度に対応する光電流に変換する。   First, the spectroscopic unit will be described. For example, the light source 100 that generates light in the wavelength range of 350 to 2000 nm is used. The light emitted from the light source 100 is collected by the first convex lens 102 and passes through the diaphragm 104 and the interference filter 106 arranged at the focal position of the first convex lens 102. The rotating disk 108 holds a plurality of (for example, eight) interference filters 106 at equal angular intervals in the circumferential direction, and is rotationally driven by the drive motor 110 at a predetermined number of rotations (for example, 1000 rpm). Here, the interference filter 106 separates the light that has passed through the aperture 104 into light having a plurality of predetermined wavelengths. The light dispersed by the interference filter 106 is collected by the second convex lens 112 and irradiates the flow cell 114. A sampled etchant is continuously introduced into the flow cell 114. By using the flow cell 114, the concentration can be continuously measured in-line. A part of the light irradiated to the flow cell 114 is absorbed by the etching solution, and the remaining part is transmitted through the flow cell 114. The light transmitted through the flow cell 114 is collected by the third convex lens 116 and is incident on the light receiving element 118. When the rotating disk 108 is rotationally driven by the drive motor 110, the light receiving element 118 corresponds to the acid solution in the flow cell of light corresponding to the transmission wavelengths of the plurality of interference filters 106 held on the rotating disk. Generate a signal that is proportional to the transmission (or reflection). The light receiving element 118 converts the incident light into a photocurrent corresponding to the intensity thereof.

回転円板108に保持される各干渉フィルタ106は、測定対象に応じた、互いに異なる透過波長を有している。回転円板108が回転すると、各干渉フィルタ106が、第1凸レンズ102と第2凸レンズ112の光軸に順次挿入される。そして光源100から放射された光が、干渉フィルタ106によって分光された後、フローセル114内のサンプルを透過し(一部は吸収され)、第3凸レンズ116により集光され、受光素子118に入射される。これにより、受光素子118は、各波長の光強度に応じた電気信号を出力する。増幅器120は、受光素子118から出力された、フローセル114の透過光(または反射光)強度信号を増幅し、A/D変換器122は、増幅器120から出力されたアナログ信号をデジタル信号に変換する。   Each interference filter 106 held by the rotating disk 108 has different transmission wavelengths depending on the measurement target. When the rotating disk 108 rotates, the interference filters 106 are sequentially inserted into the optical axes of the first convex lens 102 and the second convex lens 112. The light emitted from the light source 100 is dispersed by the interference filter 106, passes through the sample in the flow cell 114 (partly absorbed), is collected by the third convex lens 116, and enters the light receiving element 118. The Thereby, the light receiving element 118 outputs an electric signal corresponding to the light intensity of each wavelength. The amplifier 120 amplifies the transmitted light (or reflected light) intensity signal output from the light receiving element 118 and the A / D converter 122 converts the analog signal output from the amplifier 120 into a digital signal. .

次に、データ処理部130の具体的な構成を説明する。データ処理部130は、A/D変換器122からデジタル信号である透過光(または反射光)強度信号を受け取り、それから各波長での吸光度を演算する。そして、演算した各波長の吸光度と、あらかじめ記憶されている検量線式とに基づいて、塩酸、過酸化水素及び銅の3成分の濃度を演算する。検量線式は、それらの濃度が既知の複数のサンプルについて複数波長の光の吸光度を測定して、吸光度と各成分の濃度との間の定数項を含む吸光度の多次多項式を用いて多変量解析法により予め求められて、記憶装置(RAM136)に保持されている。上述のとおり、駆動モータ110により回転円板108が回転駆動されると、受光素子118は、干渉フィルタ106の透過波長に対応する各光の、フローセル114内の酸溶液に対応する透過度(または反射度)に比例する信号を生成する。これらの信号は、増幅器120で増幅された後、A/D変換器122でデジタル信号に変換され、データ処理装置130のマイクロプロセッサ132に入力される。データ処理部130は、たとえばマイクロプロセッサ132を備えるパーソナルコンピュータである。マイクロプロセッサ132には、プログラム等を記憶するROM134、ワークエリアであるRAM136、データや各種命令を入力するキーボード、マウスなどの入力装置138および外部に信号を出力する出力装置140などが接続されている。ROM134は、マイクロプロセッサ132を動作させるためのプログラム等を格納している。RAM136は、検量線式や各種データを記憶している。マイクロプロセッサ132は、入力されたデジタル信号から各波長での吸光度を演算し、演算した各波長の光の吸光度から検量線式を用いて、薬液中の酸及び溶出物質の濃度を演算する。出力装置140は、データ処理の結果を出力するプリンタ、ディスプレイ、データ出力インタフェース等である。   Next, a specific configuration of the data processing unit 130 will be described. The data processing unit 130 receives a transmitted light (or reflected light) intensity signal, which is a digital signal, from the A / D converter 122, and then calculates the absorbance at each wavelength. Then, based on the calculated absorbance at each wavelength and the calibration curve formula stored in advance, the concentrations of the three components of hydrochloric acid, hydrogen peroxide and copper are calculated. A calibration curve is a multivariate measurement using a multi-degree polynomial of absorbance that measures the absorbance of light of multiple wavelengths for multiple samples of known concentrations and contains a constant term between the absorbance and the concentration of each component. It is obtained in advance by an analysis method and held in the storage device (RAM 136). As described above, when the rotary disk 108 is rotationally driven by the drive motor 110, the light receiving element 118 transmits the transmittance corresponding to the acid solution in the flow cell 114 (or the light corresponding to the transmission wavelength of the interference filter 106 (or A signal proportional to (reflectance) is generated. These signals are amplified by the amplifier 120, converted into digital signals by the A / D converter 122, and input to the microprocessor 132 of the data processing device 130. The data processing unit 130 is a personal computer including a microprocessor 132, for example. Connected to the microprocessor 132 are a ROM 134 for storing programs, a RAM 136 as a work area, a keyboard for inputting data and various commands, an input device 138 such as a mouse, and an output device 140 for outputting signals to the outside. . The ROM 134 stores a program for operating the microprocessor 132 and the like. The RAM 136 stores a calibration curve type and various data. The microprocessor 132 calculates the absorbance at each wavelength from the input digital signal, and calculates the concentration of the acid and the eluted substance in the drug solution from the calculated absorbance of the light of each wavelength using a calibration curve formula. The output device 140 is a printer, a display, a data output interface, or the like that outputs data processing results.

図4と図5は、マイクロプロセッサ132の処理のフローを示す。まず、既知濃度のサンプルの測定が開始されると(S10)、回転円板108の回転に同期して光測定系のA/D変換器122から複数波長での光強度データを入力する(S12)。そして、光強度データから吸光度を演算して記憶する(S14)。次の既知濃度のサンプルがあれば(S16でYES)、上述の処理を繰返す。次の既知濃度のサンプルがなければ(S16でNO)、吸光度と濃度との間の検量線式を演算し(S18)、RAM136に記憶する(S20)。   4 and 5 show a processing flow of the microprocessor 132. FIG. First, when measurement of a sample having a known concentration is started (S10), light intensity data at a plurality of wavelengths is input from the A / D converter 122 of the light measurement system in synchronization with the rotation of the rotating disk 108 (S12). ). Then, the absorbance is calculated from the light intensity data and stored (S14). If there is a sample of the next known concentration (YES in S16), the above process is repeated. If there is no sample of the next known concentration (NO in S16), a calibration curve formula between absorbance and concentration is calculated (S18) and stored in the RAM 136 (S20).

未知濃度のサンプルの測定が開始されると(S22)、回転円板108の回転に同期して光測定系のA/D変換器122から複数波長での光強度データを入力する(S24)。そして、光強度データから吸光度を演算する(S26)。そして、吸光度と検量線式から濃度を演算し(S28)、RAM136に記憶する(S30)。測定終了でなければ(S32でNO)、ステップ24に戻り、濃度測定を続ける。   When measurement of an unknown concentration sample is started (S22), light intensity data at a plurality of wavelengths is input from the A / D converter 122 of the light measurement system in synchronization with the rotation of the rotating disk 108 (S24). Then, the absorbance is calculated from the light intensity data (S26). Then, the concentration is calculated from the absorbance and the calibration curve formula (S28) and stored in the RAM 136 (S30). If the measurement is not completed (NO in S32), the process returns to step 24 to continue the concentration measurement.

図5に示すマイクロプロセッサ132の処理における光強度データの処理の手法は、近赤外波長域での分光測定に用いられた、本出願人による特開平6−265471号公報に記載されたものと同様である。このデータ処理手法の具体的な内容を以下に説明する。   The processing method of the light intensity data in the processing of the microprocessor 132 shown in FIG. 5 is that described in Japanese Patent Laid-Open No. 6-265471 by the present applicant, which was used for spectroscopic measurement in the near infrared wavelength region. It is the same. The specific contents of this data processing method will be described below.

まず、入力された光強度のデジタル信号に対して、次の式(1)による演算処理を実行し、吸光度Aを演算する。

Figure 2005187844
この式において、iは、分光された複数の波長の光の順番ないし番号(たとえば、1〜8)であり、Rは、測定対象である酸溶液のi番目の波長の光の透過(または反射)光強度値であり、Bは、フローセル114内に導入された基準濃度の酸溶液の、i番目の波長の光の透過(または反射)光強度値であり、Dは、フローセル114を遮光したときのi番目の波長の光の透過(または反射)光強度値である。なお、BおよびDは、あらかじめ測定されているデータであり、データ処理装置のRAM136に格納されている。 First, a calculation process according to the following equation (1) is performed on the input digital signal of light intensity to calculate the absorbance A i .
Figure 2005187844
In this formula, i is the order or number (for example, 1 to 8) of the light having a plurality of wavelengths separated, and R i is the transmission (or the light of the i-th wavelength of the acid solution to be measured) (or B i is the transmitted (or reflected) light intensity value of the i-th wavelength light of the acid solution of the reference concentration introduced into the flow cell 114, and D i is the flow cell 114. Is the transmitted (or reflected) light intensity value of light of the i-th wavelength when the light is shielded. B i and D i are data measured in advance, and are stored in the RAM 136 of the data processing apparatus.

次に、式(1)による演算処理により得られた吸光度Aに、次の式(2)の変換を行う。

Figure 2005187844
Next, the following equation (2) is converted into the absorbance A i obtained by the arithmetic processing according to equation (1).
Figure 2005187844

式(2)の変換を行う理由は以下のとおりである。式(1)により演算される吸光度Aは、光源4の発光強度の変動や、受光素子118の感度変動や、光学系のひずみなどにより変化する。しかし、この変化はあまり波長依存性はなく、各波長の紫外線についての各吸光度データに同相、同レベルで重畳する。したがって、式(2)のように、各波長の間の差をとることにより、この変化を相殺できる。 The reason for performing the conversion of equation (2) is as follows. The absorbance A i calculated by the equation (1) changes due to fluctuations in the light emission intensity of the light source 4, sensitivity fluctuations in the light receiving element 118, distortion of the optical system, and the like. However, this change is not very wavelength-dependent, and is superimposed in the same phase and at the same level on each absorbance data for each wavelength of ultraviolet light. Therefore, this change can be offset by taking the difference between the wavelengths as shown in Equation (2).

なお、酸溶液自体の温度変動による吸光度Aの変動や劣化とともに、色の変動や濁りの増加による変動なども発生するが、これらの変動は、よく知られた方法(たとえば特開平3−209149号公報参照)で除去できるので、その説明は省略する。 Incidentally, with variation or deterioration of the absorbance A i due to temperature variations of the acid solution itself, but also occurs such fluctuations due to an increase in color change and turbidity, these variations are well known methods (e.g. Japanese Patent Laid-Open 3-209149 The description thereof will be omitted.

次に、式(2)により得られたSに基づいて、濃度を演算する。ここで、銅エッチング液である塩酸過水の場合について説明すると、エッチング液における3成分(塩酸、過酸化水素及び銅)について、次の式(3)〜式(5)の演算を行い、塩酸の含有量(濃度)Cと、過酸化水素水の含有量(濃度)Cと、溶出した銅の含有量(濃度)Cとを演算する。

Figure 2005187844
Figure 2005187844
Figure 2005187844
Next, the density is calculated based on Si obtained by the equation (2). Here, the case of hydrochloric acid overwater as a copper etching solution will be described. For the three components (hydrochloric acid, hydrogen peroxide and copper) in the etching solution, the following equations (3) to (5) are calculated, the content of the (concentration) C 1, and calculates the content of hydrogen peroxide (the concentration) C 2, and a content (concentration) C 3 of eluted copper.
Figure 2005187844
Figure 2005187844
Figure 2005187844

式(3)において、F(S)は、塩酸の検量線式であり、Sについての1次項および高次項を含むとともに、SとSi+1またはその高次項の積であるクロス項および定数項を含み、たとえば、次の式(6)であらわされる。

Figure 2005187844
式(6)において、SとSi+1は式(1)と式(2)により得られたデータであり、α、βおよびγは検量線式の係数であり、Zは定数項である。式(6)に含まれる各データは、塩酸、過酸化水素及び銅の濃度が既知の酸溶液の標準サンプルを用いて濃度測定部40による測定によりあらかじめ求められたものであり、データ処理装置130のRAM136に格納されている。 In the formula (3), F (S i ) is a calibration curve equation hydrochloride, with including first-order terms and higher order terms for S i, cross terms and a S i and S i + 1 or the product of the higher order terms Including a constant term, for example, expressed by the following equation (6).
Figure 2005187844
In Equation (6), S i and S i + 1 are data obtained by Equation (1) and Equation (2), α, β, and γ are coefficients of the calibration curve equation, and Z 0 is a constant term. . Each data included in the equation (6) is obtained in advance by measurement by the concentration measuring unit 40 using a standard sample of an acid solution having known concentrations of hydrochloric acid, hydrogen peroxide, and copper. Stored in the RAM 136.

また、式(4)と式(5)において、G(S)とH(S)はそれぞれ過酸化水素水の検量線式と銅の検量線式であって、いずれも式(6)と同様の形式の式である。これらの検量線式も、塩酸の検量線式と同様に、塩酸、過酸化水素及び銅の濃度が既知の酸溶液の標準サンプルを用いて濃度測定部40によりあらかじめ求められたものであり、データ処理部130のRAM136に格納されている。 In the formulas (4) and (5), G (S i ) and H (S i ) are a hydrogen peroxide calibration curve and a copper calibration curve, respectively. Is an expression of the same form as Similar to the calibration curve formula for hydrochloric acid, these calibration curve formulas are obtained in advance by the concentration measuring unit 40 using standard samples of acid solutions with known concentrations of hydrochloric acid, hydrogen peroxide and copper, and data It is stored in the RAM 136 of the processing unit 130.

濃度測定部40のデータ処理装置130のマイクロプロセッサ132は、塩酸の含有量C、過酸化水素の含有量Cおよび銅の含有量Cを、CRT、プリンタ等の出力装置140に出力し、CRT画面に表示したり、印字用紙にハードコピーとして出力し、また、外部の薬剤追加モジュール60に送信する。 The microprocessor 132 of the data processing device 130 of the concentration measuring unit 40 outputs the hydrochloric acid content C 1 , the hydrogen peroxide content C 2, and the copper content C 3 to an output device 140 such as a CRT or a printer. , Displayed on a CRT screen, or output as a hard copy on printing paper, and transmitted to an external medicine addition module 60.

以上では、3成分の濃度を求める場合について説明したが、2成分などの3成分以外の場合も同様に処理できる。   The case where the concentration of the three components is obtained has been described above, but the same processing can be performed for cases other than the three components such as the two components.

図6は、銅エッチング用の酸溶液の可視波長域と近赤外波長域でのスペクトルの1例を示す。図6に示されるように、エッチング液中の酸及び銅による分光スペクトルは、可視波長域と近赤外波長域で、エッチングの前後で変化している。酸濃度と銅含有量は可視波長域と近赤外波長域での分光測定により求められる。そこで、エッチング液中の酸と銅の濃度を得るため、分光測定は、可視域および近赤外域の波長(たとえば、350〜2000nm)で行う。そこで、図3に示した分光装置において、回転円板108に設ける干渉フィルタ106は、350〜2000nmの波長域内の離散的な複数波長の光を透過するようにする。これにより、分光データから、エッチング液中の酸と銅の濃度を同時に決定できる。銅以外の溶出物質を検出する場合も、可視波長域と近赤外波長域の領域で変化する場合は、同様に測定できる。このように、分光測定により酸溶液中の酸及び酸溶液に溶出された物質の濃度を同時に短時間に決定できる。フローセルを用いているので、インライン測定が可能である。   FIG. 6 shows an example of a spectrum in the visible wavelength region and near infrared wavelength region of an acid solution for copper etching. As shown in FIG. 6, the spectral spectrum due to the acid and copper in the etching solution changes in the visible wavelength region and the near-infrared wavelength region before and after etching. The acid concentration and the copper content are determined by spectroscopic measurement in the visible wavelength region and the near infrared wavelength region. Therefore, in order to obtain the concentration of acid and copper in the etching solution, the spectroscopic measurement is performed at wavelengths in the visible region and near infrared region (for example, 350 to 2000 nm). Therefore, in the spectroscopic device shown in FIG. 3, the interference filter 106 provided on the rotating disk 108 transmits light having a plurality of discrete wavelengths within a wavelength range of 350 to 2000 nm. Thereby, the density | concentration of the acid in an etching liquid and copper can be determined simultaneously from spectral data. In the case of detecting an eluting substance other than copper, it can be measured in the same manner if it changes in the visible wavelength region and the near-infrared wavelength region. Thus, the concentration of the acid in the acid solution and the substance eluted in the acid solution can be simultaneously determined in a short time by spectroscopic measurement. Since a flow cell is used, in-line measurement is possible.

分光測定の波長域について説明すると、水溶液の濃度の測定は、190〜400nmの紫外波長域、400〜800nmの可視波長域および800〜2000nmの近赤外波長域の中の適当な波長域が使用される。酸溶液の特徴は近赤外波長域に大きく現れ、溶出した物質の特徴は可視波長域及び紫外波長域に大きく現れる。(図6の例では、溶出された銅の特徴は800nm付近に大きく現れている。)波長域は、上述の例では350〜2000nmの波長域であるが、広く190〜2000nmとしてもよい。一般的には、酸溶液の特徴と溶出した物質の特徴とが検出可能な適当な波長域で分光測定を行えばよい。吸光度は、波長域内で離散的に数点から数十点で測定する。なお、測定する対象物 たとえば塩酸と過水)によって、特徴的な波長における吸光度が違ってくるため、同濃度のものを測定した場合でも、標準偏差及び相関係数が違ってくる。つまり、組成薬液が何であるかによって、測りやすいものと測りにくいものが存在している。したがって、適当な波長を選択すればよい。   Explaining the wavelength range of the spectroscopic measurement, the measurement of the concentration of the aqueous solution uses an appropriate wavelength range among the ultraviolet wavelength range of 190 to 400 nm, the visible wavelength range of 400 to 800 nm, and the near infrared wavelength range of 800 to 2000 nm. Is done. The characteristics of the acid solution appear greatly in the near-infrared wavelength region, and the characteristics of the eluted substance appear greatly in the visible wavelength region and the ultraviolet wavelength region. (In the example of FIG. 6, the characteristics of the eluted copper appear largely in the vicinity of 800 nm.) Although the wavelength range is 350 to 2000 nm in the above example, it may be widely 190 to 2000 nm. In general, the spectroscopic measurement may be performed in an appropriate wavelength region in which the characteristics of the acid solution and the characteristics of the eluted substance can be detected. Absorbance is measured discretely from several points to several tens of points within the wavelength range. Note that the absorbance at a characteristic wavelength varies depending on the object to be measured (for example, hydrochloric acid and water), so even when the same concentration is measured, the standard deviation and correlation coefficient differ. In other words, there are ones that are easy to measure and ones that are difficult to measure depending on what the composition is. Therefore, an appropriate wavelength may be selected.

上に説明したように、紫外領域、可視領域及び近赤外域での各波長の吸光度(反射度)と検量線式とに基づいて、酸溶液中の酸及び物質の濃度が演算される。以下の例では、エッチング液は塩酸過水であり、銅のエッチングに使用される。表1は、塩酸、過酸化水素(「過水」と略する)及び銅について、42個の既知濃度の標準サンプル(塩酸過水中に銅を含有する)について、分光測定装置40により測定された吸光度から演算処理により求めた濃度(理論値(wt%, ppm))と、標準サンプルの実際の濃度(測定値(wt%, ppm))を示す。

Figure 2005187844
As described above, the acid and substance concentrations in the acid solution are calculated based on the absorbance (reflectance) of each wavelength in the ultraviolet region, visible region, and near infrared region, and the calibration curve equation. In the following example, the etchant is hydrochloric acid overwater and is used for etching copper. Table 1 shows a measurement of 42 standard samples of known concentrations (containing copper in hydrochloric acid perwater) by means of the spectroscopic device 40 for hydrochloric acid, hydrogen peroxide (abbreviated as “super water”) and copper. It shows the concentration (theoretical value (wt%, ppm)) obtained by calculation from the absorbance and the actual concentration (measured value (wt%, ppm)) of the standard sample.
Figure 2005187844

また、図8、図9及び図10は、それぞれ、塩酸、過酸化水素及び銅について、表1に示された標準サンプルについて、既知濃度(理論値)と実際の濃度(測定値)との相関関係を示す。いずれについても高い相関が得られた。   8, FIG. 9, and FIG. 10 show the correlation between the known concentration (theoretical value) and the actual concentration (measured value) for the standard samples shown in Table 1 for hydrochloric acid, hydrogen peroxide, and copper, respectively. Show the relationship. High correlation was obtained for both.

上述の例では、取り出すべき波長を段階的に変化した干渉フィルタ106を用いて離散的なスペクトルとしているが、連続スペクトルを用いてもよい。連続スペクトルを測定する場合は、取り出すべき波長を連続的に変化できる光学システムを用いればよい。連続スペクトルを用いると、離散データ(たとえば8点)を用いて演算する場合より、光強度の測定及び演算時間は長くなるが、情報量が増えるために精度の高い測定が可能である。   In the above example, the interference filter 106 in which the wavelength to be extracted is changed stepwise is used as a discrete spectrum, but a continuous spectrum may be used. When measuring a continuous spectrum, an optical system capable of continuously changing the wavelength to be extracted may be used. When a continuous spectrum is used, the measurement and calculation time of light intensity is longer than when calculation is performed using discrete data (for example, 8 points), but high-accuracy measurement is possible because the amount of information increases.

次に、濃度制御について説明すると、薬剤追加モジュール60は、酸溶液の再生のための薬剤(新液およびそれに含まれている組成薬液および純水)のタンク(図示しない)と、薬液追加を制御する薬液追加制御部(図示しないマイクロプロセッサを含む)62、各タンクからエッチング槽10へ薬液を供給する供給バルブ64、および、エッチング槽10から廃液を排出する廃液バルブ66を備える。図に示した例では、過酸化水のエッチング液のため、塩酸、過酸化水素水、塩酸過水及び純水の4個のタンクが設けられる。   Next, the concentration control will be described. The drug addition module 60 controls a tank (not shown) of a drug (new liquid and composition chemical liquid and pure water contained therein) for regeneration of the acid solution, and chemical liquid addition. And a supply valve 64 for supplying a chemical from each tank to the etching tank 10 and a waste liquid valve 66 for discharging the waste liquid from the etching tank 10. In the example shown in the figure, four tanks of hydrochloric acid, hydrogen peroxide solution, hydrochloric acid peroxide solution and pure water are provided for the etching solution of peroxide solution.

図7は、薬液追加制御部62における濃度制御のフローチャートである。薬液追加制御部62は、濃度測定部(分光測定装置)40から塩酸及び過酸化水素の濃度のデータを受け取ると(S50)、その濃度に基いて、現時点における薬剤追加モジュール60内の薬剤タンクの状態を把握し、これらのデータより薬剤タンクの管理に必要なパラメータ値、例えばタンクからの原液追加量(投入薬液の投入量)、原液追加の時間、及び、エッチング槽10からの廃液排出量、廃液時間を演算する(S52)。ここで、必要ならば、さらに、除去装置50のバルブ52,54の開閉時間を演算する。そして、演算結果から薬剤の追加が必要であると判断する場合、その結果を出力装置140に出力する(S54)。出力装置140は、その結果に基いて、投入薬液タンクの各バルブ64、廃液バルブ66と除去装置50のバルブ52,54を制御して、所定時間開閉させる。これにより、必要な原液等をエッチング槽10に供給し、エッチング槽10から廃液を排出するので、エッチング槽10内のエッチング液の濃度を一定に保てる。エッチング工程が終了するまで(S56でNO)、ステップS50に戻り、濃度制御を続ける。このように、槽内の酸溶液の濃度制御は、濃度測定データに基いてバルブ64、66、52、54を開閉することにより、エッチング工程の間に連続的に行える。   FIG. 7 is a flowchart of concentration control in the chemical liquid addition control unit 62. When the chemical solution addition control unit 62 receives the concentration data of hydrochloric acid and hydrogen peroxide from the concentration measurement unit (spectrometer) 40 (S50), based on the concentration, the chemical solution addition control unit 62 stores the drug tank in the drug addition module 60 at the present time. Ascertain the state, and from these data, parameter values necessary for the management of the chemical tank, for example, the amount of stock solution added from the tank (the amount of input chemical solution), the time of stock solution addition, and the amount of waste liquid discharged from the etching tank 10, The waste liquid time is calculated (S52). Here, if necessary, the opening / closing time of the valves 52 and 54 of the removing device 50 is further calculated. Then, when it is determined from the calculation result that a drug needs to be added, the result is output to the output device 140 (S54). Based on the result, the output device 140 controls each valve 64 of the input chemical liquid tank, the waste liquid valve 66 and the valves 52 and 54 of the removing device 50 to open and close for a predetermined time. As a result, the necessary stock solution and the like are supplied to the etching tank 10 and the waste liquid is discharged from the etching tank 10, so that the concentration of the etching liquid in the etching tank 10 can be kept constant. Until the etching process is completed (NO in S56), the process returns to Step S50 and the concentration control is continued. As described above, the concentration control of the acid solution in the tank can be continuously performed during the etching process by opening and closing the valves 64, 66, 52, and 54 based on the concentration measurement data.

なお、濃度測定後のサンプルは、すでに説明したように、金属除去フィルタ50に送られて、サンプル内の金属を除去した後、エッチング槽10に返される。したがって、大掛かりな設備を用いなくても酸溶液の再生がエッチングに並行して行える。また、フローセルからのサンプル酸溶液に含まれる銅を金属除去フィルタ50で除去するので、濃度再生が、エッチング工程の間に連続的に行える。   The sample after the concentration measurement is sent to the metal removal filter 50 as described above, and is returned to the etching tank 10 after removing the metal in the sample. Therefore, the acid solution can be regenerated in parallel with the etching without using a large facility. Further, since the copper contained in the sample acid solution from the flow cell is removed by the metal removal filter 50, the concentration regeneration can be continuously performed during the etching process.

上述の例では、塩酸過水を用いた銅のエッチングについて説明した。しかし、いうまでもなく、上述の酸溶液の濃度制御と再生は、塩酸過水以外の酸溶液(たとえば王水、燐酸硝酸酢酸、塩化第2鉄などのエッチング液)や、銅以外の溶出物質についても適用できる。   In the above-described example, the etching of copper using hydrochloric acid overwater has been described. However, it goes without saying that the concentration control and regeneration of the acid solution described above is not limited to acid solutions other than hydrochloric acid / hydrogen peroxide (for example, etching solutions such as aqua regia, phosphoric acid nitrate acetic acid, ferric chloride, etc.) and elution substances other than copper. It can also be applied.

また、上述の例では分光測定装置を用いて濃度を測定しているが、分光測定装置を用いる代りに、光学測定プローブ(図示しない)をエッチング槽10に浸漬させて濃度測定を行い、濃度データを濃度制御装置(薬液追加モジュール60)に送るようにしてもよい。この場合、エッチング槽10内のエッチング液は、直接に金属除去フィルタ50(及びバイパスライン)に送られる。そして、含有金属が除去された後、エッチング槽10に戻される。   In the above example, the concentration is measured using the spectroscopic measurement device. Instead of using the spectroscopic measurement device, the optical measurement probe (not shown) is immersed in the etching tank 10 to measure the concentration, and the concentration data. May be sent to the concentration control device (chemical solution addition module 60). In this case, the etching solution in the etching tank 10 is sent directly to the metal removal filter 50 (and the bypass line). Then, after the contained metal is removed, it is returned to the etching tank 10.

エッチング槽内の酸溶液の濃度測定及び再生を行うシステムのブロック図Block diagram of a system that measures and regenerates the concentration of an acid solution in an etching bath エッチング槽内の酸溶液の濃度測定及び再生を行うシステムの1部の図Diagram of part of a system that measures and regenerates the concentration of acid solution in the etching bath 濃度測定部の構成の1例を示す図The figure which shows an example of a structure of a density | concentration measurement part マイクロプロセッサのデータ処理のフローチャートMicroprocessor data processing flowchart マイクロプロセッサのデータ処理のフローチャートMicroprocessor data processing flowchart 銅エッチングによる可視波長域と近赤外波長域でのスペクトル変化の1例を示すグラフGraph showing one example of spectral change in visible and near infrared wavelength range due to copper etching 薬液追加モジュールの制御のフローチャートFlow chart for controlling the chemical addition module 塩酸について、表1に示された既知濃度(理論値)の標準サンプルについて実際の濃度(測定値)との相関を示すグラフFor hydrochloric acid, a graph showing the correlation with the actual concentration (measured value) of a standard sample of the known concentration (theoretical value) shown in Table 1 過酸化水素水について、表1に示された既知濃度(理論値)の標準サンプルについて実際の濃度(測定値)との相関を示すグラフA graph showing the correlation between the hydrogen peroxide solution and the actual concentration (measured value) of a standard sample of the known concentration (theoretical value) shown in Table 1. 銅について、表1に示された既知濃度(理論値)の標準サンプルについて実際の濃度(測定値)との相関を示すグラフAbout copper, the graph which shows the correlation with an actual density | concentration (measurement value) about the standard sample of the known density | concentration (theoretical value) shown in Table 1

符号の説明Explanation of symbols

10 エッチング槽、 20 酸溶液の濃度測定及び再生を行うシステム、 30 サンプリング部、 32 送液ポンプ、 40 濃度測定部(分光測定装置)、 50 金属除去フィルタ、 52,54 除去装置50のバルブ、 60 薬液追加モジュール、 62 濃度制御装置、 64 供給バルブ、 66 廃液バルブ。   DESCRIPTION OF SYMBOLS 10 Etching tank, 20 System which performs density | concentration measurement and reproduction | regeneration of acid solution, 30 Sampling part, 32 Liquid feed pump, 40 Concentration measuring part (spectrometer), 50 Metal removal filter, 52,54 Valve of removal apparatus 50, 60 Chemical solution addition module, 62 concentration controller, 64 supply valve, 66 waste liquid valve.

Claims (11)

酸溶液を収容する槽と、
槽内の酸溶液について、酸の濃度と酸溶液に溶出された物質の濃度を共に決定する濃度測定装置と、
酸溶液の原液を収容するタンクと、
タンクから原液を槽に供給する供給装置と、
水槽から酸溶液を排出する排出装置と、
上記濃度測定装置により得られた濃度を基に、上記供給装置によりタンクから酸溶液の原液を供給し、上記排出装置により槽内の酸溶液を排出して、槽内の酸溶液中の酸の濃度を制御する濃度制御装置と
を備えた酸溶液再生システム。
A tank containing an acid solution;
A concentration measuring device that determines both the concentration of the acid and the concentration of the substance eluted in the acid solution for the acid solution in the tank;
A tank containing a stock solution of the acid solution;
A supply device for supplying the stock solution from the tank to the tank;
A discharge device for discharging the acid solution from the water tank;
Based on the concentration obtained by the concentration measuring device, an acid solution stock solution is supplied from the tank by the supplying device, the acid solution in the tank is discharged by the discharging device, and the acid in the acid solution in the tank is discharged. An acid solution regeneration system comprising a concentration control device for controlling the concentration.
上記タンクの原液は、酸溶液の新液、それに含まれている組成薬液および純水であることを特徴とする請求項1に記載された酸溶液再生システム。   2. The acid solution regeneration system according to claim 1, wherein the stock solution of the tank is a new acid solution, a composition chemical solution and pure water contained therein. 上記濃度制御装置は、上記濃度測定装置から濃度データを受け取り、上記供給装置の供給量および上記排出装置の排出量を演算し、演算された供給量と排出量を基に上記供給装置と上記排出装置を制御することを特徴とする請求項1または2に記載された酸溶液再生システム。   The concentration control device receives concentration data from the concentration measuring device, calculates a supply amount of the supply device and a discharge amount of the discharge device, and based on the calculated supply amount and discharge amount, the supply device and the discharge amount The acid solution regeneration system according to claim 1 or 2, wherein the apparatus is controlled. さらに、上記槽から酸溶液を導入し、導入された酸溶液中の溶出物質を除去し、溶出物質を除去した酸溶液を上記槽に戻す除去装置を備えることを特徴とする請求項1から3のいずれかに記載された酸溶液再生システム。   The apparatus further comprises a removing device for introducing the acid solution from the tank, removing the eluted substance in the introduced acid solution, and returning the acid solution from which the eluted substance has been removed to the tank. The acid solution regeneration system described in any of the above. 上記除去装置は、特定の金属イオンを吸着させるためにプラズマグラフト重合処理を施したフィルタを備えることを特徴とする請求項4に記載された酸溶液再生システム。   5. The acid solution regeneration system according to claim 4, wherein the removing device includes a filter subjected to a plasma graft polymerization process to adsorb specific metal ions. さらに、上記の除去装置と並行にバイパスラインを設けることを特徴とする請求項4または5に記載された酸溶液再生システム。   The acid solution regeneration system according to claim 4 or 5, further comprising a bypass line in parallel with the removing device. 上記濃度測定装置は、分光測定装置であり、この分光測定装置は、
測定対象の酸溶液サンプルが導入される光透過または反射検出用のセルと、
紫外光、可視光及び近赤外光の波長域内の波長の光をセルに照射する光源と、
光源からの光をセルに照射して得られる透過光または反射光を分光する分光手段と、
分光手段により分光された光を受光し、受光した光の強度に応じた光強度信号を発生する受光手段と、
酸溶液中の酸の濃度および酸溶液に溶出される物質の濃度と吸光度の関係を示す検量線式を記憶する記憶手段と、
上記受光手段から入力した光強度信号から吸光度を演算し、上記吸光度から上記検量線式に基づいて酸溶液中の酸の濃度と、酸溶液に溶出された物質の濃度を同時に決定する濃度演算手段と
からなることを特徴とする、請求項1から6のいずれかに記載された酸溶液再生システム。
The concentration measuring device is a spectroscopic measuring device.
A light transmission or reflection detection cell into which the acid solution sample to be measured is introduced;
A light source that irradiates the cell with light having a wavelength within the wavelength range of ultraviolet light, visible light, and near-infrared light;
A spectroscopic means for spectroscopically analyzing transmitted light or reflected light obtained by irradiating the cell with light from a light source;
A light receiving means for receiving light split by the spectroscopic means and generating a light intensity signal corresponding to the intensity of the received light;
Storage means for storing a calibration curve formula indicating the relationship between the concentration of acid in the acid solution and the concentration of the substance eluted in the acid solution and the absorbance;
Concentration calculating means for calculating the absorbance from the light intensity signal input from the light receiving means and simultaneously determining the concentration of the acid in the acid solution and the concentration of the substance eluted in the acid solution from the absorbance based on the calibration curve equation The acid solution regeneration system according to any one of claims 1 to 6, characterized by comprising:
上記槽と上記除去装置の間の酸溶液の経路に上記分光測定装置のセルが配置されることを特徴とする、請求項6に記載された酸溶液再生システム。   7. The acid solution regeneration system according to claim 6, wherein a cell of the spectroscopic measurement device is disposed in a path of the acid solution between the tank and the removal device. 上記濃度測定装置は、上記槽に浸漬されて濃度測定を行う分光測定プローブであることを特徴とする、請求項1から6のいずれかに記載された酸溶液再生システム。   The acid solution regeneration system according to any one of claims 1 to 6, wherein the concentration measuring device is a spectroscopic measurement probe that is immersed in the tank and performs concentration measurement. 測定対象の酸溶液サンプルが導入される光透過または反射検出用のセルと、
紫外光、可視光及び近赤外光の波長域内の波長の光をセルに照射する光源と、
光源からの光をセルに照射して得られる透過光または反射光を分光する分光手段と、
分光手段により分光された光を受光し、受光した光の強度に応じた光強度信号を発生する受光手段と、
酸溶液中の酸の濃度および酸溶液に溶出される物質の濃度と吸光度の関係を示す検量線式を記憶する記憶手段と、
上記受光手段から入力した光強度信号から吸光度を演算し、上記吸光度から上記検量線式に基づいて酸溶液中の酸の濃度と、酸溶液に溶出された物質の濃度をともに決定する濃度演算手段と
からなる濃度測定装置。
A light transmission or reflection detection cell into which the acid solution sample to be measured is introduced;
A light source that irradiates the cell with light having a wavelength within the wavelength range of ultraviolet light, visible light, and near-infrared light;
A spectroscopic means for spectroscopically analyzing transmitted light or reflected light obtained by irradiating the cell with light from a light source;
A light receiving means for receiving light split by the spectroscopic means and generating a light intensity signal corresponding to the intensity of the received light;
Storage means for storing a calibration curve formula indicating the relationship between the concentration of acid in the acid solution and the concentration of the substance eluted in the acid solution and the absorbance;
Concentration calculating means for calculating the absorbance from the light intensity signal input from the light receiving means and determining both the concentration of the acid in the acid solution and the concentration of the substance eluted in the acid solution from the absorbance based on the calibration curve equation Concentration measuring device consisting of
酸溶液中の酸および酸溶液に溶出される物質の濃度測定において、
測定対象の酸溶液サンプルについて、紫外光、可視光及び近赤外光の波長域内の波長の光の透過光または反射光の強度を測定し、
光強度信号から吸光度を演算し、
上記吸光度から、あらかじめ求められている検量線式に基づいて酸溶液中の酸の濃度と、酸溶液に溶出された物質の濃度をともに演算する
濃度測定方法。
In measuring the concentration of acids in acid solutions and substances eluted in acid solutions,
For the acid solution sample to be measured, measure the intensity of transmitted or reflected light of wavelengths within the wavelength range of ultraviolet light, visible light and near infrared light,
Calculate the absorbance from the light intensity signal,
A concentration measurement method that calculates both the concentration of the acid in the acid solution and the concentration of the substance eluted in the acid solution from the absorbance based on a calibration curve equation that is determined in advance.
JP2003427435A 2003-12-24 2003-12-24 System for regeneration of acid solutions Expired - Lifetime JP4455043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427435A JP4455043B2 (en) 2003-12-24 2003-12-24 System for regeneration of acid solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427435A JP4455043B2 (en) 2003-12-24 2003-12-24 System for regeneration of acid solutions

Publications (2)

Publication Number Publication Date
JP2005187844A true JP2005187844A (en) 2005-07-14
JP4455043B2 JP4455043B2 (en) 2010-04-21

Family

ID=34786712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427435A Expired - Lifetime JP4455043B2 (en) 2003-12-24 2003-12-24 System for regeneration of acid solutions

Country Status (1)

Country Link
JP (1) JP4455043B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236565A (en) * 2008-03-26 2009-10-15 Jasco Corp Automatic continuous quantifying and analyzing method of plurality of components and automatic continuous quantifying and analyzing apparatus
WO2010071078A1 (en) * 2008-12-17 2010-06-24 三菱製紙株式会社 Etching solution for copper or copper alloy, etching method, and method for managing reproduction of etching solution
WO2012011535A1 (en) * 2010-07-23 2012-01-26 倉敷紡績株式会社 Substrate processing device
CN102901713A (en) * 2011-07-28 2013-01-30 株式会社东进世美肯 Method for controlling copper film etching process and method for regenerating copper film etching solution composition
CN102969257A (en) * 2011-08-31 2013-03-13 仓敷纺织株式会社 Substrate processing apparatus
CN103217395A (en) * 2012-01-19 2013-07-24 库特勒自动化系统(苏州)有限公司 System for online control of concentration of chemical solution, and method thereof
EP2677064A1 (en) * 2012-06-22 2013-12-25 General Electric Company Method for refreshing an acid bath solution
JP2014130917A (en) * 2012-12-28 2014-07-10 Panasonic Corp Component concentration measuring method of etching solution and management method of etching solution
JP2014146715A (en) * 2013-01-30 2014-08-14 Panasonic Corp Etching solution constituent concentration measuring device and etching solution management device
CN105548018A (en) * 2015-11-30 2016-05-04 临沂大学 Device and method for measuring solid content of solid-liquid system
JP2020031182A (en) * 2018-08-24 2020-02-27 株式会社東芝 Measuring instrument, etching system, silicon concentration measuring method, and silicon concentration measuring program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102539345A (en) * 2010-12-21 2012-07-04 湖南晟通科技集团有限公司 Method for measuring and analyzing Fe content of carbon material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236565A (en) * 2008-03-26 2009-10-15 Jasco Corp Automatic continuous quantifying and analyzing method of plurality of components and automatic continuous quantifying and analyzing apparatus
JPWO2010071078A1 (en) * 2008-12-17 2012-05-31 三菱製紙株式会社 Etching solution for copper or copper alloy, etching method, and regeneration management method of etching solution
WO2010071078A1 (en) * 2008-12-17 2010-06-24 三菱製紙株式会社 Etching solution for copper or copper alloy, etching method, and method for managing reproduction of etching solution
JP5604307B2 (en) * 2008-12-17 2014-10-08 三菱製紙株式会社 Etching solution for copper or copper alloy, etching method, and regeneration management method of etching solution
US20130240143A1 (en) * 2010-07-23 2013-09-19 Chemical Art Technology, Inc. Substrate processing apparatus
CN103155113A (en) * 2010-07-23 2013-06-12 仓敷纺织株式会社 Substrate processing device
JP2012028580A (en) * 2010-07-23 2012-02-09 Kurabo Ind Ltd Substrate processing apparatus
WO2012011535A1 (en) * 2010-07-23 2012-01-26 倉敷紡績株式会社 Substrate processing device
US10226959B2 (en) * 2010-07-23 2019-03-12 Kurashiki Boseki Kabushiki Kaisha Substrate processing apparatus
CN103155113B (en) * 2010-07-23 2015-09-02 仓敷纺织株式会社 Substrate board treatment
KR101436765B1 (en) * 2010-07-23 2014-09-01 구라시키 보세키 가부시키가이샤 Substrate processing device
CN102901713A (en) * 2011-07-28 2013-01-30 株式会社东进世美肯 Method for controlling copper film etching process and method for regenerating copper film etching solution composition
CN102969257A (en) * 2011-08-31 2013-03-13 仓敷纺织株式会社 Substrate processing apparatus
CN103217395A (en) * 2012-01-19 2013-07-24 库特勒自动化系统(苏州)有限公司 System for online control of concentration of chemical solution, and method thereof
EP2677064A1 (en) * 2012-06-22 2013-12-25 General Electric Company Method for refreshing an acid bath solution
US8877084B2 (en) 2012-06-22 2014-11-04 General Electric Company Method for refreshing an acid bath solution
JP2014130917A (en) * 2012-12-28 2014-07-10 Panasonic Corp Component concentration measuring method of etching solution and management method of etching solution
JP2014146715A (en) * 2013-01-30 2014-08-14 Panasonic Corp Etching solution constituent concentration measuring device and etching solution management device
CN105548018A (en) * 2015-11-30 2016-05-04 临沂大学 Device and method for measuring solid content of solid-liquid system
CN105548018B (en) * 2015-11-30 2018-11-06 临沂大学 The measuring device and measuring method of solid content in a kind of solid-liquid system
JP2020031182A (en) * 2018-08-24 2020-02-27 株式会社東芝 Measuring instrument, etching system, silicon concentration measuring method, and silicon concentration measuring program
TWI695971B (en) * 2018-08-24 2020-06-11 日商東芝股份有限公司 Measuring instrument, etching system, silicon concentration measuring method and silicon concentration measuring program

Also Published As

Publication number Publication date
JP4455043B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4455043B2 (en) System for regeneration of acid solutions
US7248370B2 (en) Method to reduce background noise in a spectrum
JPH0915156A (en) Spectroscopic measuring method and measuring device
EP1286239A2 (en) Method and system for controlling the concentration of a component in a composition with absorption spectroscopy
Kirsanov et al. UV–Vis spectroscopy with chemometric data treatment: an option for on-line control in nuclear industry
JP5522584B2 (en) ICP emission spectroscopy method
US20150021491A1 (en) Method and apparatus for measuring concentration of advanced-oxidation active species
JP4722513B2 (en) Apparatus and method for measuring the concentration of an acid solution containing peracetic acid
Frenich et al. Standardization of SPE signals in multicomponent analysis of three benzimidazolic pesticides by spectrofluorimetry
US20050243313A1 (en) Method and device for conducting the spectral differentiating, imaging measurement of fluorescent light
CN112161959B (en) Chlorophyll concentration measuring method based on fluorescence spectrum global reconstruction
JP3893068B2 (en) Solution concentration meter and concentration measuring method
JP2004279339A (en) Concentration measuring instrument
Lin Near-IR calibration transfer between different temperatures
JP6061031B2 (en) Spectroscopic analysis system and method
JP6308857B2 (en) Component concentration measuring device and method
JP6696458B2 (en) Optical emission spectrometer
JP3223097B2 (en) Method for analyzing the concentration of multiple components contained in a solution
US20080153173A1 (en) Method and Device for Determining the Concentration of Organically Bound Halogens
Vassileva et al. Environmental monitoring of total mercury content in different marine compartments after cold vapor generation and inductively coupled plasma mass spectrometry determination
JP4600228B2 (en) ICP emission spectroscopic analysis method and ICP emission spectroscopic analysis apparatus
JP4634596B2 (en) Dissolved ozone concentration measuring device
JP3824904B2 (en) Method for measuring the concentration of a solution containing an alkali component and hydrogen peroxide
JP2000022255A (en) Method for stabilizing and controlling fluorine gas concentration and control mechanism thereof
JP2005181008A (en) Device and method for concentration measurement of acid solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4455043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term