JP6308857B2 - Component concentration measuring device and method - Google Patents

Component concentration measuring device and method Download PDF

Info

Publication number
JP6308857B2
JP6308857B2 JP2014089775A JP2014089775A JP6308857B2 JP 6308857 B2 JP6308857 B2 JP 6308857B2 JP 2014089775 A JP2014089775 A JP 2014089775A JP 2014089775 A JP2014089775 A JP 2014089775A JP 6308857 B2 JP6308857 B2 JP 6308857B2
Authority
JP
Japan
Prior art keywords
concentration
component
target component
relationship
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014089775A
Other languages
Japanese (ja)
Other versions
JP2014224812A (en
Inventor
淳 伊澤
淳 伊澤
孝男 倉田
孝男 倉田
易 松永
易 松永
藤井 隆
隆 藤井
修三 江藤
修三 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
IHI Corp
Original Assignee
Central Research Institute of Electric Power Industry
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, IHI Corp filed Critical Central Research Institute of Electric Power Industry
Priority to JP2014089775A priority Critical patent/JP6308857B2/en
Publication of JP2014224812A publication Critical patent/JP2014224812A/en
Application granted granted Critical
Publication of JP6308857B2 publication Critical patent/JP6308857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、物質に含まれる成分濃度を計測する装置と方法に関する。   The present invention relates to an apparatus and method for measuring the concentration of a component contained in a substance.

化学薬品、微生物、放射線物質、爆発物などを分析する手段として、レーザ誘起ブレークダウン分光分析法(Laser Induced Breakdown Spectroscopy:以下、LIBS法)が知られている。
LIBS法は、パルスレーザ光をレンズで集光させて試料に照射し、試料を急速に高温にすることでプラズマを生成し、励起された電子が低いエネルギーレベルに落ちる時に発生する光の波長と強度を分析することにより試料に含まれる成分などを計測するものである。
As a means for analyzing chemicals, microorganisms, radioactive substances, explosives, etc., a laser induced breakdown spectroscopy (hereinafter referred to as LIBS method) is known.
The LIBS method collects pulsed laser light with a lens, irradiates the sample, generates plasma by rapidly raising the temperature of the sample, and the wavelength of light generated when excited electrons fall to a low energy level. The components contained in the sample are measured by analyzing the intensity.

さらに、LIBS法を用いて、試料に含まれる特定成分の濃度を計測する手段として、例えば特許文献1、2が開示されている。   Further, for example, Patent Documents 1 and 2 are disclosed as means for measuring the concentration of a specific component contained in a sample using the LIBS method.

特許文献1は、LIBS法で検出された輝線強度と、プラズマの再結合により生じる白色光の強度との比から、試料の定量分析を行うものである。
特許文献2は、Na元素の発光スペクトル線の強度と、この発光スペクトル線を含まない波長範囲の強度とを測定し、それらの比からNa元素の濃度を求めるものである。
Patent Document 1 performs a quantitative analysis of a sample from the ratio between the intensity of the bright line detected by the LIBS method and the intensity of white light generated by plasma recombination.
Patent Document 2 measures the intensity of an emission spectrum line of Na element and the intensity of a wavelength range not including this emission spectrum line, and obtains the concentration of Na element from the ratio thereof.

特許第2763907号公報Japanese Patent No. 2763907 特許第4357710号公報Japanese Patent No. 4357710

特許文献1、2に開示された従来の手段では、輝線強度と白色光強度との比、或いは、発光スペクトル線の強度とこれを含まない波長範囲の強度との比から試料に含まれる特定成分の濃度を計測している。
しかし、LIBS法において、励起された電子が低いエネルギーレベルに落ちる時に発生する光の信号強度は光学系、照射条件、外乱など様々な要因の影響を受けるため、計測毎に信号強度が大きく変動し、成分濃度を安定して正確に計測することができなかった。
In the conventional means disclosed in Patent Documents 1 and 2, the specific component contained in the sample from the ratio between the emission line intensity and the white light intensity, or the ratio between the emission spectrum line intensity and the intensity in the wavelength range not including this. Concentration is measured.
However, in the LIBS method, the signal intensity of the light generated when the excited electrons fall to a low energy level is affected by various factors such as the optical system, irradiation conditions, and disturbances, so the signal intensity varies greatly from measurement to measurement. The component concentration could not be measured stably and accurately.

本発明は上述した問題点を解決するために創案されたものである。すなわち本発明の目的は、LIBS法において、計測毎に信号強度が大きく変動する場合でも、物質に含まれる成分濃度を正確に計測することができる成分濃度計測装置と方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to provide a component concentration measuring apparatus and method capable of accurately measuring the concentration of a component contained in a substance even in the case where the signal intensity greatly varies every measurement in the LIBS method.

本発明によれば、被対象物に光を照射し、被対象物と光との相互作用から得られるスペクトルデータから被対象物に含まれる対象成分の濃度を計測する成分濃度計測装置であって、
前記被対象物に前記光を照射する照射装置と、
前記被対象物から得られるスペクトルデータを分析し、前記対象成分と参照成分に特有な輝線の波長及び強度をそれぞれ計測する分析装置と、
前記対象成分の輝線強度から前記対象成分の濃度を特定する演算装置と、を備え、
該演算装置は、
参照成分の濃度を一定に維持した状態における、対象成分と参照成分の輝線強度と対象成分の濃度との関係から求めた、対象成分の濃度に対する対象成分の輝線強度の補正関係を記憶し、
前記補正関係を用いて新たに計測された前記対象成分の輝線強度から前記対象成分の濃度を特定する、ことを特徴とする成分濃度計測装置が提供される。
According to the present invention, there is provided a component concentration measuring apparatus that irradiates a target object with light and measures the concentration of a target component contained in the target object from spectrum data obtained from the interaction between the target object and light. ,
An irradiation device for irradiating the object with the light;
Analyzing spectral data obtained from the object, an analyzer for measuring the wavelength and intensity of the emission line specific to the target component and the reference component, and
An arithmetic device that identifies the concentration of the target component from the emission line intensity of the target component,
The arithmetic unit is
Store the correction relationship of the emission line intensity of the target component with respect to the concentration of the target component, obtained from the relationship between the emission line intensity of the target component and the reference component and the concentration of the target component in a state where the concentration of the reference component is kept constant,
There is provided a component concentration measuring apparatus characterized by identifying the concentration of the target component from the bright line intensity of the target component newly measured using the correction relationship.

前記補正関係は、
参照成分の濃度を一定に維持した状態における、前記対象成分の濃度と前記参照成分の輝線強度との第1関係と、前記対象成分の濃度と対象成分の輝線強度との第2関係とから、前記対象成分の濃度に対する前記参照成分の輝線強度の平準化率を求め、第2関係を前記平準化率で補正して求める。
The correction relationship is
From a first relationship between the concentration of the target component and the bright line intensity of the reference component in a state in which the concentration of the reference component is maintained constant, and a second relationship between the concentration of the target component and the bright line intensity of the target component, The leveling rate of the bright line intensity of the reference component with respect to the concentration of the target component is obtained, and the second relationship is obtained by correcting with the leveling rate.

前記補正は、対象成分の濃度が0のときの参照成分の輝線強度を1として、平準化率を無次元化し、
前記第2関係の輝線強度の値を対象成分の濃度に相当する平準化率で除して求める、ことが好ましい。
In the correction, the brightening line intensity of the reference component when the concentration of the target component is 0 is set to 1, and the leveling rate is made dimensionless.
It is preferable that the value of the bright line intensity in the second relationship is obtained by dividing by the leveling rate corresponding to the concentration of the target component.

また本発明によれば、被対象物に光を照射し、被対象物と光との相互作用から得られるスペクトルデータから被対象物に含まれる対象成分の濃度を計測する成分濃度計測方法であって、
照射装置により、前記被対象物に前記光を照射し、
分析装置により、前記被対象物から得られるスペクトルデータを分析し、対象成分と参照成分に特有な輝線の波長及び強度をそれぞれ計測し、
参照成分の濃度を一定に維持した状態における、対象成分と参照成分の輝線強度と対象成分の濃度との関係から求めた、対象成分の濃度に対する対象成分の輝線強度の補正関係を記憶し、
前記補正関係を用いて新たに計測された前記対象成分の輝線強度から前記対象成分の濃度を特定する、ことを特徴とする成分濃度計測方法が提供される。
Further, according to the present invention, there is provided a component concentration measurement method for irradiating an object with light and measuring the concentration of the target component contained in the object from spectrum data obtained from the interaction between the object and light. And
The irradiation device irradiates the object with the light,
Analyzing the spectrum data obtained from the object by the analyzer, measuring the wavelength and intensity of the emission line specific to the target component and the reference component,
Store the correction relationship of the emission line intensity of the target component with respect to the concentration of the target component, obtained from the relationship between the emission line intensity of the target component and the reference component and the concentration of the target component in a state where the concentration of the reference component is maintained constant
A component concentration measuring method is provided, wherein the concentration of the target component is specified from the bright line intensity of the target component newly measured using the correction relationship.

前記補正関係は、
(A)参照成分の濃度を一定に維持した状態において、前記対象成分の濃度を変化させて、前記対象成分の濃度と前記参照成分の輝線強度との第1関係と、前記対象成分の濃度と対象成分の輝線強度との第2関係とを求め、
(B)前記第1関係から、前記対象成分の濃度に対する前記参照成分の輝線強度の平準化率を求め、
(C)前記第2関係を前記平準化率で補正して求める。
The correction relationship is
(A) In a state where the concentration of the reference component is kept constant, the concentration of the target component is changed, and the first relationship between the concentration of the target component and the emission line intensity of the reference component, and the concentration of the target component Obtain the second relationship with the emission line intensity of the target component,
(B) From the first relationship, obtain the leveling rate of the emission line intensity of the reference component with respect to the concentration of the target component,
(C) The second relationship is obtained by correcting with the leveling rate.

前記補正は、対象成分の濃度が0のときの参照成分の輝線強度を1として、平準化率を無次元化し、
前記第2関係の輝線強度の値を対象成分の濃度に相当する平準化率で除して求める、ことが好ましい。
In the correction, the brightening line intensity of the reference component when the concentration of the target component is 0 is set to 1, and the leveling rate is made dimensionless.
It is preferable that the value of the bright line intensity in the second relationship is obtained by dividing by the leveling rate corresponding to the concentration of the target component.

LIBS法において、計測毎に信号強度が大きく変動する場合でも、同時に計測される対象成分と参照成分の輝線強度の比率は一定である。また、参照成分の濃度が一定である場合、参照成分の輝線強度は本来一定となる。
本発明はかかる新規の知見に基づくものである。
In the LIBS method, even when the signal intensity varies greatly for each measurement, the ratio of the bright line intensity of the target component and the reference component that are simultaneously measured is constant. Further, when the concentration of the reference component is constant, the bright line intensity of the reference component is essentially constant.
The present invention is based on such novel findings.

すなわち、本発明の装置と方法によれば、参照成分の濃度を一定に維持した状態における、対象成分と参照成分の輝線強度と対象成分の濃度との関係から求めた、対象成分の濃度に対する対象成分の輝線強度の補正関係を求めておくので、この補正関係を用いて新たに計測された対象成分の輝線強度から対象成分の濃度を特定することができる。   That is, according to the apparatus and method of the present invention, the target for the concentration of the target component obtained from the relationship between the target component, the emission line intensity of the reference component and the concentration of the target component in a state where the concentration of the reference component is kept constant. Since the correction relationship of the bright line intensity of the component is obtained, the concentration of the target component can be specified from the bright line intensity of the target component newly measured using this correction relationship.

従って本発明によれば、LIBS法において、計測毎に信号強度が大きく変動する場合でも、物質に含まれる成分濃度を正確に計測することができる。   Therefore, according to the present invention, in the LIBS method, the concentration of a component contained in a substance can be accurately measured even when the signal intensity varies greatly from measurement to measurement.

本発明による成分濃度計測装置の全体構成図である。1 is an overall configuration diagram of a component concentration measuring apparatus according to the present invention. 計測されたスペクトルデータの一例を示す図である。It is a figure which shows an example of the measured spectrum data. 平準化率を求める手段の説明図である。It is explanatory drawing of the means for calculating | requiring a leveling rate. 補正前と補正後のCs濃度と輝線強度の関係図である。It is a relationship figure of Cs density | concentration and bright line intensity | strength before correction | amendment and after correction | amendment.

以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明による成分濃度計測装置10の全体構成図である。
本発明の成分濃度計測装置10は、被対象物1に光2を照射し、被対象物1と光2との相互作用から得られるスペクトルデータ3から被対象物1に含まれる対象成分aの濃度を計測する装置である。
FIG. 1 is an overall configuration diagram of a component concentration measuring apparatus 10 according to the present invention.
The component concentration measuring apparatus 10 of the present invention irradiates the object 1 with light 2, and the target component a included in the object 1 from the spectrum data 3 obtained from the interaction between the object 1 and the light 2. It is a device that measures concentration.

図1において、本発明の成分濃度計測装置10は、照射装置12、分析装置14、及び演算装置16を備える。   In FIG. 1, a component concentration measuring apparatus 10 according to the present invention includes an irradiation device 12, an analysis device 14, and a calculation device 16.

照射装置12は、例えばパルスレーザ装置であり、集光光学系13を介して、被対象物1に光2を集光して照射する。被対象物1は、例えば大気中の雲、エアロゾル、等である。また、光2は、例えば、ナノ秒パルスレーザ光である。   The irradiation device 12 is a pulse laser device, for example, and condenses and irradiates the object 1 with the light 2 via the condensing optical system 13. The object 1 is, for example, an atmospheric cloud, an aerosol, or the like. The light 2 is, for example, nanosecond pulse laser light.

分析装置14は、被対象物1から得られるスペクトルデータ3を分析し、対象成分aと参照成分bに特有な輝線の波長及び強度をそれぞれ計測する。   The analysis device 14 analyzes the spectrum data 3 obtained from the object 1 and measures the wavelength and intensity of the emission line specific to the target component a and the reference component b, respectively.

分析装置14は、この例では、被対象物1と光2との相互作用で発生する発光4をフィルタ14aと望遠レンズ14bを介して分光器15bまで導く光ファイバ15a、発光4をスペクトルデータ3に分光する分光器15b、及び分光器15bを制御する分光制御装置15cを有する。   In this example, the analysis device 14 includes an optical fiber 15a for guiding the light emission 4 generated by the interaction between the object 1 and the light 2 to the spectroscope 15b via the filter 14a and the telephoto lens 14b, and the light emission 4 for the spectral data 3. And a spectroscopic control device 15c for controlling the spectroscope 15b.

分光器15bは、好ましくはICCD付分光器である。ICCD(Intensified CCD)は、CCDの前にイメージインテンシファイチューブが取り付けられたCCD検出器である。ICCD付分光器を用いることで、微弱光と瞬間現象の計測が可能となる。
分光制御装置15cは、好ましくはコンピュータ(PC)である。
The spectroscope 15b is preferably a spectroscope with ICCD. The ICCD (Intensified CCD) is a CCD detector in which an image intensifying tube is attached in front of the CCD. By using a spectroscope with ICCD, it is possible to measure faint light and instantaneous phenomena.
The spectroscopic control device 15c is preferably a computer (PC).

上述した構成により、照射装置12(パルスレーザ装置)から光2(ナノ秒パルスレーザ光)を大気中の被対象物1に集光して照射し、被対象物1と光2との相互作用によりプラズマを発生させ、そのブレークダウンにより、プラズマ発光を発生させ、その発光4をフィルタ14aと望遠レンズ14bを介して集光し、分光器15bにて計測することができる。   With the configuration described above, the light 2 (nanosecond pulsed laser light) from the irradiation device 12 (pulse laser device) is condensed and irradiated on the object 1 in the atmosphere, and the interaction between the object 1 and the light 2 is achieved. The plasma is generated by the above, and the plasma emission is generated by the breakdown, and the emitted light 4 is condensed through the filter 14a and the telephoto lens 14b and can be measured by the spectroscope 15b.

演算装置16は、好ましくは解析用コンピュータ(PC)であり、計測されたスペクトルデータ3の対象成分aの輝線強度から対象成分aの濃度を特定する。   The arithmetic device 16 is preferably an analysis computer (PC), and specifies the concentration of the target component a from the bright line intensity of the target component a of the measured spectrum data 3.

演算装置16は、記憶装置17を有している。
記憶装置17は、対象成分aの濃度と参照成分bの輝線強度との第1関係から、対象成分aの濃度に対する参照成分bの輝線強度の平準化率NEを求め、対象成分aの濃度とその輝線強度との第2関係を平準化率NEで補正した補正関係を記憶している。
演算装置16は、この補正関係を用いて新たに計測された対象成分aの輝線強度から対象成分aの濃度を特定する。
The arithmetic device 16 has a storage device 17.
The storage device 17 obtains the leveling rate NE of the bright line intensity of the reference component b with respect to the density of the target component a from the first relationship between the density of the target component a and the bright line intensity of the reference component b, and A correction relationship in which the second relationship with the bright line intensity is corrected with the leveling rate NE is stored.
The arithmetic unit 16 specifies the concentration of the target component a from the bright line intensity of the target component a newly measured using this correction relationship.

図2は、計測されたスペクトルデータ3の一例を示す図である。この図において、横軸は波長(nm)、縦軸は信号強度(相対強度)である。
この例では、塩化セシウムの水溶液を大気中に散布し、セシウムエアロゾルのスペクトルを取得した例である。
この例で対象成分aはセシウム(Cs)であり、参照成分bはHα線(水素のα線)である。なお、参照成分bはHα線に限定されず、酸素(O)、窒素(N)、その他であってもよい。
FIG. 2 is a diagram illustrating an example of measured spectrum data 3. In this figure, the horizontal axis represents wavelength (nm) and the vertical axis represents signal intensity (relative intensity).
In this example, an aqueous solution of cesium chloride is dispersed in the atmosphere, and a spectrum of cesium aerosol is obtained.
In this example, the target component a is cesium (Cs), and the reference component b is Hα rays (hydrogen α rays). Note that the reference component b is not limited to Hα rays, but may be oxygen (O), nitrogen (N), or the like.

Hα線、酸素(O)、及びセシウム(Cs)の輝線の波長はそれぞれ既知(656.3nm、777.4nm、852.1nm)である。従って、図2から、Hα線、酸素、及びセシウムの輝線の強度(以下「輝線強度」と呼ぶ)は、順に、約19×10、約14×10、約7.5×10であることがわかる。 The wavelengths of emission lines of Hα ray, oxygen (O 2 ), and cesium (Cs) are known (656.3 nm, 777.4 nm, 852.1 nm), respectively. Accordingly, from FIG. 2, the intensity of the emission lines of Hα rays, oxygen, and cesium (hereinafter referred to as “bright line intensity”) is about 19 × 10 4 , about 14 × 10 4 , and about 7.5 × 10 4 , respectively. I know that there is.

しかし、LIBS法で計測されたスペクトルデータ3の輝線強度は、計測毎に信号強度が大きく変動するため、図2から対象成分a(この例ではセシウム)の成分濃度を安定して正確に計測することはできない。   However, since the signal intensity of the bright line intensity of the spectrum data 3 measured by the LIBS method varies greatly from measurement to measurement, the component concentration of the target component a (cesium in this example) is stably and accurately measured from FIG. It is not possible.

本発明の成分濃度計測方法は、上述した成分濃度計測装置10を用い、被対象物1に光2を照射し、被対象物1と光2との相互作用から得られるスペクトルデータ3から被対象物1に含まれる対象成分aの濃度を計測する方法である。   The component concentration measuring method of the present invention uses the above-described component concentration measuring apparatus 10 to irradiate the object 1 with the light 2 and from the spectrum data 3 obtained from the interaction between the object 1 and the light 2. In this method, the concentration of the target component a contained in the object 1 is measured.

本発明の成分濃度計測方法は、S1〜S3の各ステップ(工程)からなる。
ステップS1では、照射装置12により、被対象物1に光2を照射する。
ステップS2では、分析装置14により、被対象物1から得られるスペクトルデータ3を分析し、対象成分aと参照成分bに特有な輝線の波長及び強度をそれぞれ計測する。
ステップS3では、対象成分aの輝線強度から対象成分aの濃度を特定する。
The component concentration measurement method of the present invention includes steps (steps) S1 to S3.
In step S <b> 1, the irradiation device 12 irradiates the object 1 with light 2.
In step S2, the spectrum data 3 obtained from the object 1 is analyzed by the analyzer 14, and the wavelengths and intensities of the emission lines specific to the target component a and the reference component b are measured.
In step S3, the concentration of the target component a is specified from the bright line intensity of the target component a.

ステップS3は、以下に説明するS3−1〜S3−3の各ステップからなる。   Step S3 includes steps S3-1 to S3-3 described below.

図3は、平準化率NEを求める手段の説明図である。図3(A)は対象成分aと参照成分bの輝線強度と対象成分aの濃度との関係図である。   FIG. 3 is an explanatory diagram of a means for obtaining the leveling rate NE. FIG. 3A is a relationship diagram between the bright line intensities of the target component a and the reference component b and the concentration of the target component a.

ステップS3−1では、参照成分bの濃度を一定に維持した状態で、対象成分aの濃度を変化させて、対象成分aの濃度と参照成分bの輝線強度との関係(「第1関係」と呼ぶ)と、対象成分aの濃度と対象成分aの輝線強度との関係(「第2関係」と呼ぶ)とを求める。すなわち、参照成分bの濃度が既知の一定値であり、対象成分aの濃度が既知であって、かつ、対象成分aの濃度が互いに異なる複数または多数の被対象物1をサンプルとして用意し、これらの被対象物1の各々に対し上述のステップS1、S2を行うことにより、対象成分aの濃度を変化させた複数または多数のスペクトルデータ3を取得し、これらのスペクトルデータ3から第1関係と第2関係を求める。
図3(A)の横軸は対象成分aの濃度、縦軸は対象成分aと参照成分bの輝線強度である。すなわち図3(A)は、参照成分bの濃度を一定に維持した状態における第1関係と第2関係を示している。
In step S3-1, the concentration of the target component a is changed in a state where the concentration of the reference component b is kept constant, and the relationship between the concentration of the target component a and the bright line intensity of the reference component b ("first relationship"). And the relationship between the concentration of the target component a and the bright line intensity of the target component a (referred to as “second relationship”). In other words, the concentration of the reference component b is a known constant value, the concentration of the target component a is known, and a plurality or a large number of objects 1 having different concentrations of the target component a are prepared as samples, By performing the above-described steps S1 and S2 for each of these objects 1, a plurality or a large number of spectrum data 3 in which the concentration of the target component a is changed are obtained, and the first relation is obtained from these spectrum data 3. And obtain the second relationship.
In FIG. 3A, the horizontal axis represents the concentration of the target component a, and the vertical axis represents the bright line intensities of the target component a and the reference component b. That is, FIG. 3A shows the first relationship and the second relationship in a state where the concentration of the reference component b is kept constant.

参照成分bの濃度が一定である場合、参照成分bの輝線強度は本来一定となる。しかし、図3(A)の第1関係に示すように、実際の計測では変化している。この原因は、計測毎に信号強度が大きく変動することによる。
一方、対象成分aと参照成分bの輝線強度の比率は、この影響を受けない。従って、同一の計測において、参照成分bの輝線強度の変化率と対象成分aの輝線強度の変化率は、同一と考えることができる。
When the concentration of the reference component b is constant, the bright line intensity of the reference component b is essentially constant. However, as shown in the first relationship in FIG. 3A, the actual measurement changes. This is due to the fact that the signal intensity varies greatly from measurement to measurement.
On the other hand, the ratio of the bright line intensity of the target component a and the reference component b is not affected by this. Therefore, in the same measurement, the change rate of the bright line intensity of the reference component b and the change rate of the bright line intensity of the target component a can be considered to be the same.

従ってステップS3−2では、第1関係から、対象成分aの濃度に対する参照成分bの輝線強度の平準化率NEを求める。
図3(B)は、対象成分aの濃度と参照成分bの輝線強度の平準化率NE(無次元)との関係図である。この例では、対象成分aの濃度が0のときの参照成分bの輝線強度を1として、平準化率NEを無次元化している。すなわち、対象成分aの各濃度について、この濃度に対応する参照成分bの輝線強度を、対象成分aの濃度が0のときの参照成分bの輝線強度で除することにより、参照成分bの輝線強度を無次元化した平準化率NEを求めている。
この場合、平準化率NEは、0以上の正数である。
Accordingly, in step S3-2, the leveling rate NE of the bright line intensity of the reference component b with respect to the concentration of the target component a is obtained from the first relationship.
FIG. 3B is a relationship diagram between the concentration of the target component a and the leveling rate NE (dimensionless) of the bright line intensity of the reference component b. In this example, the leveling rate NE is made dimensionless by setting the bright line intensity of the reference component b when the concentration of the target component a is 0 to 1. That is, for each concentration of the target component a, the bright line intensity of the reference component b corresponding to this concentration is divided by the bright line intensity of the reference component b when the concentration of the target component a is 0. The leveling rate NE obtained by making the intensity dimensionless is obtained.
In this case, the leveling rate NE is a positive number of 0 or more.

図4は、補正前と補正後のCs濃度と輝線強度の関係図である。この図において、(A)は補正前の関係図、(B)は補正後の関係図である。   FIG. 4 is a relationship diagram between the Cs concentration before and after the correction and the bright line intensity. In this figure, (A) is a relationship diagram before correction, and (B) is a relationship diagram after correction.

図4(A)は、図3(A)における対象成分aの濃度とその輝線強度との第2関係図である。この第2関係図には、参照成分bの濃度を一定に維持した状態で、対象成分aと参照成分bの輝線強度が計測毎に大きく変動する影響がそのまま含まれている。
この図における直線は線形化した関係図であり、相関係数rは0.8695であった。
FIG. 4A is a second relationship diagram between the concentration of the target component a in FIG. This second relationship diagram includes the influence that the bright line intensities of the target component a and the reference component b greatly vary from measurement to measurement while maintaining the concentration of the reference component b constant.
The straight line in this figure is a linearized relationship diagram, and the correlation coefficient r 2 was 0.8695.

ステップS3−3では、第2関係(図4(A)のデータ)を平準化率NEを用いて補正して、対象成分aの濃度と対象成分aの輝線強度との補正関係を求める。この補正は、対象成分aの濃度が0のときの参照成分bの輝線強度を1として、平準化率NEを無次元化した場合、図4(A)の輝線強度の値を対象成分aの濃度に相当する平準化率NEで除することに相当する。
図4(B)は、補正後の対象成分aの濃度と対象成分aの輝線強度との関係(「補正関係」と呼ぶ)を示している。
この図における直線は線形化した関係図であり、相関係数rは0.9874であり、図4(A)よりも1に近く、正確な関係であることがわかる。
In step S3-3, the second relationship (data in FIG. 4A) is corrected using the leveling rate NE to obtain a correction relationship between the density of the target component a and the bright line intensity of the target component a. In this correction, when the bright line intensity of the reference component b when the concentration of the target component a is 0 and the leveling rate NE is made dimensionless, the value of the bright line intensity in FIG. This corresponds to dividing by the leveling rate NE corresponding to the concentration.
FIG. 4B shows the relationship between the corrected concentration of the target component a and the bright line intensity of the target component a (referred to as “correction relationship”).
The straight line in this figure is a linearized relationship diagram, and the correlation coefficient r 2 is 0.9874, which is closer to 1 than in FIG.

ステップS3−4では、演算装置16により、図4(B)の補正関係から、新たに計測された対象成分aの輝線強度から対象成分aの濃度を特定する。すなわち、次のように、対象成分aの濃度を特定する。対象成分aの濃度が未知である新たな(対象成分aの濃度計測対象となる)被対象物1に対して、照射装置12により光2を照射し、これによりスペクトルデータ3を得る。このスペクトルデータ3を、分析装置14により分析することにより、対象成分aと参照成分bに特有な輝線の波長及びその強度をそれぞれ新たに計測する。次に、演算装置16は、このように新たに計測された参照成分bの輝線強度を、上述した補正関係を求めるのに使用した、対象成分aの濃度が0のときの参照成分bの輝線強度で除することにより、新たな平準化率NEを得る。次に、演算装置16は、この新たな平準化率NEで、新たに計測された対象成分aの輝線強度を除した値(輝線強度)を、上述の補正関係に適用することにより、対象成分aの濃度を特定する。   In step S3-4, the concentration of the target component a is specified by the arithmetic device 16 from the bright line intensity of the target component a newly measured from the correction relationship in FIG. That is, the concentration of the target component a is specified as follows. The irradiation object 12 irradiates light 2 to a new object 1 whose concentration of the target component a is unknown (which is a target for measuring the concentration of the target component a), thereby obtaining spectrum data 3. The spectrum data 3 is analyzed by the analyzer 14 to newly measure the wavelength and intensity of the emission line specific to the target component a and the reference component b. Next, the arithmetic unit 16 uses the bright line intensity of the reference component b newly measured in this way to obtain the above-described correction relationship, and the bright line of the reference component b when the concentration of the target component a is 0. By dividing by the intensity, a new leveling rate NE is obtained. Next, the arithmetic unit 16 applies a value (bright line intensity) obtained by dividing the newly measured bright line intensity of the target component a (bright line intensity) at the new leveling rate NE to the above-described correction relationship, thereby obtaining the target component. Specify the concentration of a.

LIBS法において、計測毎に信号強度が大きく変動する場合でも、同時に計測される対象成分aと参照成分bの輝線強度の比率は一定である。また、参照成分bの濃度が一定である場合、参照成分bの輝線強度は本来一定となる。
従って、参照成分bの濃度を一定に維持した状態で、対象成分aの濃度を変化させて得られた対象成分aの濃度に対する参照成分bの輝線強度の平準化率NE(例えば、対象成分aの濃度が0のときの参照成分bの輝線強度を1とする値)は、計測毎に信号強度が大きく変動する場合でも、常に対象成分aの濃度に対し同じ値となる。
In the LIBS method, even when the signal intensity varies greatly for each measurement, the ratio of the bright line intensity of the target component a and the reference component b that are simultaneously measured is constant. When the concentration of the reference component b is constant, the bright line intensity of the reference component b is essentially constant.
Accordingly, the leveling rate NE of the bright line intensity of the reference component b with respect to the concentration of the target component a obtained by changing the concentration of the target component a while maintaining the concentration of the reference component b constant (for example, the target component a The value of the bright line intensity of the reference component b when the density of the reference component is 0) is always the same value as the density of the target component a even when the signal intensity varies greatly from measurement to measurement.

上述した本発明の装置と方法によれば、参照成分bの濃度を一定に維持した状態で、予め対象成分aの濃度を変化させて、平準化率NEを求め、これを用いて対象成分aの濃度と対象成分aの輝線強度との補正された補正関係を求めておくので、この補正関係と、新たに計測された対象成分aの輝線強度とから対象成分aの濃度を特定することができる。   According to the above-described apparatus and method of the present invention, while maintaining the concentration of the reference component b constant, the concentration of the target component a is changed in advance to obtain the leveling rate NE, and this is used to determine the target component a. Since the corrected correction relationship between the density of the target component a and the emission line intensity of the target component a is obtained, the density of the target component a can be specified from this correction relationship and the newly measured emission line intensity of the target component a. it can.

従って本発明によれば、LIBS法において、計測毎に信号強度が大きく変動する場合でも、物質に含まれる成分濃度を正確に計測することができる。   Therefore, according to the present invention, in the LIBS method, the concentration of a component contained in a substance can be accurately measured even when the signal intensity varies greatly from measurement to measurement.

上述したように、本発明によれば、外乱要因等により信号の絶対強度が変化しても物質内の濃度比に起因する輝線強度の比が一定であるため、分析対象成分aの濃度を正確に計測することができる。
特に水分を含有する物質の場合には、Hα線(656.3nm)を使用することにより、物質ごとに参照となる輝線を変更することなく普遍的な計測システムを構成することが可能である。
As described above, according to the present invention, even if the absolute intensity of the signal changes due to a disturbance factor or the like, the ratio of the emission line intensity due to the concentration ratio in the substance is constant, so the concentration of the analysis target component a can be accurately determined. Can be measured.
In particular, in the case of a substance containing moisture, it is possible to configure a universal measurement system by using Hα rays (656.3 nm) without changing the reference bright line for each substance.

なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

a 対象成分、b 参照成分、NE 平準化率、1 被対象物、2 光(ナノ秒パルスレーザ光)、3 スペクトルデータ、10 成分濃度計測装置、12 照射装置、13 集光光学系、14 分析装置、14a フィルタ、14b 望遠レンズ、15a 光ファイバ、15b 分光器(ICCD付分光器)、15c 分光制御装置(PC)、16 演算装置(PC)、17 記憶装置 a target component, b reference component, NE leveling rate, 1 object, 2 light (nanosecond pulse laser light), 3 spectral data, 10 component concentration measuring device, 12 irradiation device, 13 condensing optical system, 14 analysis Device, 14a filter, 14b telephoto lens, 15a optical fiber, 15b spectroscope (spectroscope with ICCD), 15c spectroscopic control device (PC), 16 arithmetic unit (PC), 17 storage device

Claims (6)

参照成分と対象成分が含まれる被対象物に光を照射し、被対象物と光との相互作用から得られるスペクトルデータから被対象物に含まれる前記対象成分の濃度を計測する成分濃度計測装置であって、
前記計測について、前記参照成分の濃度を一定に維持した状態における、前記対象成分の濃度と前記参照成分の輝線強度との関係を第1関係とし、
前記第1関係において、前記対象成分の各濃度について、当該濃度に対応する前記参照成分の輝線強度を、前記対象成分の濃度が0のときの前記参照成分の輝線強度を1として無次元化したものを平準化率とし、
前記成分濃度計測装置は、前記対象成分の濃度に対するそれぞれの前記平準化率が常に同じとなる前記対象成分と前記参照成分の輝線強度を利用して、前記対象成分の濃度を計測するものであり、
前記被対象物に前記光を照射する照射装置と、
前記被対象物から得られるスペクトルデータを分析し、前記対象成分と前記参照成分に特有な輝線の波長及び強度をそれぞれ計測する分析装置と、
前記対象成分の輝線強度から前記対象成分の濃度を特定する演算装置と、を備え、
該演算装置は、
前記第1関係から求めた、前記対象成分の濃度に対する前記対象成分の輝線強度の補正関係を記憶し、
新たに計測された前記参照成分の輝線強度と、新たに計測された前記対象成分の輝線強度と、前記補正関係とから、前記対象成分の濃度を特定する、成分濃度計測装置。
A component concentration measuring device that irradiates an object including a reference component and a target component with light and measures the concentration of the target component included in the object from spectrum data obtained from the interaction between the object and light Because
For the measurement, the relationship between the concentration of the target component and the bright line intensity of the reference component in a state where the concentration of the reference component is kept constant is a first relationship,
In the first relationship, for each concentration of the target component, the emission line intensity of the reference component corresponding to the concentration is made non-dimensional with the emission line intensity of the reference component when the concentration of the object component is 0 as 1. The leveling rate of the thing,
The constituent concentration measuring device utilizes the emission line intensities of the target component and the reference component, each of said leveling rate is always the same against the respective concentration of the target component, which measures the concentration of the target component And
An irradiation device for irradiating the object with the light;
Analyzing spectral data obtained from the object, an analyzer for measuring the wavelength and intensity of the emission line specific to the target component and the reference component, and
An arithmetic device that identifies the concentration of the target component from the emission line intensity of the target component,
The arithmetic unit is
Storing the correction relationship of the emission line intensity of the target component with respect to the concentration of the target component obtained from the first relationship;
A component concentration measurement device that specifies the concentration of the target component from the newly measured emission line intensity of the reference component, the newly measured emission line intensity of the target component, and the correction relationship.
前記補正関係は、
(A)前記参照成分の濃度を一定に維持した状態において、前記第1関係と、前記対象成分の濃度と前記対象成分の輝線強度との第2関係とを求め、
(B)前記第1関係から、前記対象成分の濃度に対する前記参照成分の輝線強度の前記平準化率を求め、
(C)前記第2関係を前記平準化率で補正して求めたものである、ことを特徴とする請求項1に記載の成分濃度計測装置。
The correction relationship is
(A) In a state where the concentration of the reference component is maintained constant, the first relationship and the second relationship between the concentration of the target component and the emission line intensity of the target component are determined,
(B) From the first relationship, obtain the leveling rate of the bright line intensity of the reference component with respect to the concentration of the target component,
(C) The component concentration measurement apparatus according to claim 1, wherein the second relation is obtained by correcting the second relation with the leveling rate.
前記補正関係は、前記第2関係の輝線強度の値を対象成分の濃度に相当する前記平準化率で除して求めたものである、ことを特徴とする請求項2に記載の成分濃度計測装置。   The component concentration measurement according to claim 2, wherein the correction relationship is obtained by dividing the value of the bright line intensity of the second relationship by the leveling rate corresponding to the concentration of the target component. apparatus. 参照成分と対象成分が含まれる被対象物に光を照射し、被対象物と光との相互作用から得られるスペクトルデータから被対象物に含まれる前記対象成分の濃度を計測する成分濃度計測方法であって、
前記計測について、前記参照成分の濃度を一定に維持した状態における、前記対象成分の濃度と前記参照成分の輝線強度との関係を第1関係とし、
前記第1関係において、前記対象成分の各濃度について、当該濃度に対応する前記参照成分の輝線強度を、前記対象成分の濃度が0のときの前記参照成分の輝線強度を1として無次元化したものを平準化率とし、
前記成分濃度計測方法は、前記対象成分の濃度に対するそれぞれの前記平準化率が常に同じとなる前記対象成分と前記参照成分の輝線強度を利用して、前記対象成分の濃度を計測するものであり、
照射装置により、前記被対象物に前記光を照射し、
分析装置により、前記被対象物から得られるスペクトルデータを分析し、前記対象成分と前記参照成分に特有な輝線の波長及び強度をそれぞれ計測し、
前記第1関係から求めた、前記対象成分の濃度に対する前記対象成分の輝線強度の補正関係を記憶し、
新たに計測された前記参照成分の輝線強度と、新たに計測された前記対象成分の輝線強度と、前記補正関係とから前記対象成分の濃度を特定する、ことを特徴とする成分濃度計測方法。
A component concentration measurement method for irradiating a target object including a reference component and a target component with light, and measuring the concentration of the target component included in the target object from spectrum data obtained from the interaction between the target object and light Because
For the measurement, the relationship between the concentration of the target component and the bright line intensity of the reference component in a state where the concentration of the reference component is kept constant is a first relationship,
In the first relationship, for each concentration of the target component, the emission line intensity of the reference component corresponding to the concentration is made non-dimensional with the emission line intensity of the reference component when the concentration of the object component is 0 as 1. The leveling rate of the thing,
The component concentration measuring method utilizes an emission line intensities of the target component and the reference component, each of said leveling rate is always the same against the respective concentration of the target component, which measures the concentration of the target component And
The irradiation device irradiates the object with the light,
Analyzing spectral data obtained from the object by an analyzer, measuring the wavelength and intensity of the emission line specific to the target component and the reference component,
Storing the correction relationship of the emission line intensity of the target component with respect to the concentration of the target component obtained from the first relationship;
A component concentration measurement method, wherein the concentration of the target component is specified from the bright line intensity of the reference component newly measured, the bright line intensity of the target component newly measured, and the correction relationship.
前記補正関係は、
(A)前記参照成分の濃度を一定に維持した状態において、前記対象成分の濃度を変化させて、前記第1関係と、前記対象成分の濃度と対象成分の輝線強度との第2関係とを求め、
(B)前記第1関係から、前記対象成分の濃度に対する前記参照成分の輝線強度の前記平準化率を求め、
(C)前記第2関係を前記平準化率で補正して求めたものである、ことを特徴とする請求項4に記載の成分濃度計測方法。
The correction relationship is
(A) In a state where the concentration of the reference component is kept constant, the concentration of the target component is changed, and the first relationship and the second relationship between the concentration of the target component and the emission line intensity of the target component are obtained. Seeking
(B) From the first relationship, obtain the leveling rate of the bright line intensity of the reference component with respect to the concentration of the target component,
(C) The component concentration measurement method according to claim 4, wherein the second relationship is obtained by correcting the second relationship with the leveling rate.
前記補正関係は、前記第2関係の輝線強度の値を対象成分の濃度に相当する前記平準化率で除して求めたものである、ことを特徴とする請求項5に記載の成分濃度計測方法。
6. The component concentration measurement according to claim 5, wherein the correction relationship is obtained by dividing the bright line intensity value of the second relationship by the leveling rate corresponding to the concentration of the target component. Method.
JP2014089775A 2013-04-24 2014-04-24 Component concentration measuring device and method Active JP6308857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014089775A JP6308857B2 (en) 2013-04-24 2014-04-24 Component concentration measuring device and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013090976 2013-04-24
JP2013090976 2013-04-24
JP2014089775A JP6308857B2 (en) 2013-04-24 2014-04-24 Component concentration measuring device and method

Publications (2)

Publication Number Publication Date
JP2014224812A JP2014224812A (en) 2014-12-04
JP6308857B2 true JP6308857B2 (en) 2018-04-11

Family

ID=51791930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014089775A Active JP6308857B2 (en) 2013-04-24 2014-04-24 Component concentration measuring device and method

Country Status (2)

Country Link
JP (1) JP6308857B2 (en)
WO (1) WO2014175363A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106770195B (en) * 2017-01-24 2019-11-29 浙江大学 Blade heavy metal content detection method based on CN element ratios correction moisture content
CN106841173B (en) * 2017-01-24 2019-09-10 浙江大学 Blade heavy metal content detection method based on K element ratiometric correction moisture content
CN114636689B (en) * 2022-05-23 2022-08-16 武汉七斗光电科技有限公司 Tibetan medicine raw ore component quantitative detection method and system based on LIBS technology

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930215B2 (en) * 1978-12-01 1984-07-25 株式会社日立製作所 Analyzer using internal standard correction method
JP3274187B2 (en) * 1992-09-25 2002-04-15 日本板硝子株式会社 Emission spectroscopy method
JP3510561B2 (en) * 2000-04-28 2004-03-29 三菱重工業株式会社 Coolant metal leak detection method and leak detector
FR2892194B1 (en) * 2005-10-17 2008-04-11 Commissariat Energie Atomique METHOD OF QUALITATIVE AND QUANTITATIVE ANALYSIS BY OPTICAL TRANSMISSION SPECTROSCOPY
JP2007163383A (en) * 2005-12-15 2007-06-28 Mitsubishi Heavy Ind Ltd Instrument and method for measuring microingredient

Also Published As

Publication number Publication date
JP2014224812A (en) 2014-12-04
WO2014175363A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP4247559B2 (en) X-ray fluorescence analyzer and program used therefor
US6801595B2 (en) X-ray fluorescence combined with laser induced photon spectroscopy
US20150153225A1 (en) Quantitative elemental profiling in optical emission spectroscopy
KR101281105B1 (en) The method of quantitative analysis for uranium in an aqueous solution
JP2011099749A (en) Concentration measuring method and x-ray fluorescence spectrometer
JP6308857B2 (en) Component concentration measuring device and method
JP5956587B2 (en) Method and experimental equipment for quantitative optical measurements
RU2017118052A (en) OBTAINING FLUIDAL CHARACTERISTICS OF POROUS MATERIALS USING SPECTROSCOPY OF EXCITATION BY LASER BREAKTHROUGH
JP2008249328A (en) Method and apparatus for analyzing concentration of uranium in solution
US20150025847A1 (en) Quantitative elemental profiling in optical emission spectroscopy
JP6528279B2 (en) Method and apparatus for analyzing trace elements in concrete
JP5204655B2 (en) Methods for qualitative and quantitative analysis by emission spectroscopy
JP6507898B2 (en) Resin discrimination device
JP6467572B2 (en) Radiation measurement method and apparatus using laser
CN111272735A (en) Detection method of laser-induced breakdown spectroscopy
JP4048139B2 (en) Concentration measuring device
JP2001091481A (en) Background correction method for fluorescent x-ray analyzer
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JP2014041065A (en) X-ray analyzer and computer program
JP2014215055A (en) Emission spectrophotometer and data processing unit
CN110582692B (en) Fluorescence spectrophotometer, spectrometry method, and control software for fluorescence spectrophotometer
JP5846364B2 (en) Water quality evaluation method and water quality evaluation apparatus
Fu et al. Ultra-wide range of concentration measurement assisted by fluorescence intensity distribution imaging
JP2000065764A (en) X-ray fluorescence analysis of liquid sample
WO2024009681A1 (en) Gas analysis device, gas analysis method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180313

R150 Certificate of patent or registration of utility model

Ref document number: 6308857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250