JPH0964005A - Method for controlling chemical concentration in piranha cleaning step - Google Patents

Method for controlling chemical concentration in piranha cleaning step

Info

Publication number
JPH0964005A
JPH0964005A JP23070295A JP23070295A JPH0964005A JP H0964005 A JPH0964005 A JP H0964005A JP 23070295 A JP23070295 A JP 23070295A JP 23070295 A JP23070295 A JP 23070295A JP H0964005 A JPH0964005 A JP H0964005A
Authority
JP
Japan
Prior art keywords
concentration
automatically
spectral
caroic acid
chemical solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23070295A
Other languages
Japanese (ja)
Other versions
JP2826082B2 (en
Inventor
Atsushi Sekiguchi
淳 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Litho Tech Japan Corp
Original Assignee
Litho Tech Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Litho Tech Japan Corp filed Critical Litho Tech Japan Corp
Priority to JP23070295A priority Critical patent/JP2826082B2/en
Publication of JPH0964005A publication Critical patent/JPH0964005A/en
Application granted granted Critical
Publication of JP2826082B2 publication Critical patent/JP2826082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To automatically measure Caro's acid concentration and automatically replenish and replace a chamical agent so as to keep its concentration at a constant value by automatically measuring the Caro's acid concentration in chemicals through spectrotransmissivity or spectroabsorbance measurements and automatically adding a hydrogen peroxide or replacing chemicals. SOLUTION: In a piranha cleaning step, Caro's acid concentration in chamicals is measured automatically through spectrotransmissivity or spectroabsorbance measurement. Then, a hydrogen peroxide is automatically replenished on the basis of the result, or a part or the entire part of the chamicals is automatically replaced, so that the concentration is kept within a specified range. For example, a chamical liquid is ducked from a cleaning apparatus by a pump and is allowed to pass through a measuring cell 4, and after a light from a light source 1 is collected by a lens 3, it is directed to a sample in the cell 4. The light passing through the sample enters an optical fiber through a pickup lens 5, and it is dispersed by a spectrum analysis light receiving element 6, then it is measured as spectral light intensity by an optical voltage conversion element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路、液晶
表示装置の作成に際して使用する基板からの有機物の除
去、基板洗浄のための薬液の自動管理方法および装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for automatically removing chemical substances from a substrate used for producing a semiconductor integrated circuit and a liquid crystal display device and for automatically managing a chemical solution for cleaning the substrate.

【0002】[0002]

【従来技術】半導体集積回路装置、液晶表示装置の作成
において基板からの有機物の除去(レジスト)、基板洗
浄の工程が必要である。通常は、硫酸と過酸化水素水を
混合した硫酸過酸化水素混合洗浄液を用いて、有機物剥
離、基板洗浄をおこなう。この工程をピラニア洗浄とも
呼ぶ。ピラニア洗浄液は、ユースポイントにおいて硫酸
と過酸化水素を混合させて作成する。硫酸と過酸化水素
を混合すると、強力な酸化剤であるカロ酸が生成され
る。このカロ酸による酸化作用により有機物の除去が可
能となる。カロ酸生成の反応として、(1)〜(5)が
知られている。 H2SO4+H22→H2SO5+H2O (1) SO3+H22→H2SO5 (2) HSO3C1+H22→H2SO5+HC1 (3) H228+2O→H2SO5+H2SO4 (4) 2H2SO4+H22→H228+2H2O (5) このカロ酸は、不安定な物質であり、硝酸イオン、亜硝
酸イオン、銅イオンの存在で、これらが触媒として働き
分解される。 H2SO5→H++HSO5 - (6) 2HSO5 -+NO3 -→O2+2H++2SO4 2- (7) この為、ユースポイントで薬剤を混合する必要がある。
2. Description of the Related Art In the production of semiconductor integrated circuit devices and liquid crystal display devices, steps of removing organic substances (resist) from a substrate and cleaning the substrate are required. Normally, organic substances are peeled off and the substrate is washed using a mixed solution of sulfuric acid and hydrogen peroxide mixed with sulfuric acid and hydrogen peroxide solution. This step is also called piranha cleaning. The piranha cleaning liquid is prepared by mixing sulfuric acid and hydrogen peroxide at the point of use. Mixing sulfuric acid with hydrogen peroxide produces caroic acid, a strong oxidizing agent. Organic substances can be removed by the oxidizing action of the caroic acid. (1) to (5) are known as reactions of caroic acid generation. H 2 SO 4 + H 2 O 2 → H 2 SO 5 + H 2 O (1) SO 3 + H 2 O 2 → H 2 SO 5 (2) HSO 3 C1 + H 2 O 2 → H 2 SO 5 + HC1 (3) H 2 S 2 O 8+ H 2 O → H 2 SO 5 + H 2 SO 4 (4) 2H 2 SO 4 + H 2 O 2 → H 2 S 2 O 8 + 2H 2 O (5) This caroic acid is an unstable substance In the presence of nitrate ions, nitrite ions, and copper ions, these act as catalysts and are decomposed. H 2 SO 5 → H + + HSO 5 (6) 2HSO 5 + NO 3 → O 2 + 2H + + 2SO 4 2− (7) Therefore, it is necessary to mix the medicine at the point of use.

【0003】当然、生産ラインで使用していると、カロ
酸濃度は低下してくる。そこで、オペレータが定期的に
ラインから薬液を採取し、カロ酸濃度を滴定分析により
求めて、勘と経験により、過酸化水素の添加、または薬
液の交換を行なっている。しかし、ピラニア洗浄液は主
成分が濃硫酸であり、扱いが極めて危険である。又、滴
定分析ではオペレータの熟練が必要であり、手間もかか
る。しかも薬液の補充、添加量の計算も熟練が必要であ
り、間違いを冒す危険がある。また、従来、薬液の誘電
率を測定する事により薬液の濃度を測定する装置が知ら
れていたが、誘電率測定では薬液全体の変化しか測定で
きず、薬液中の個々の成分ごとの濃度変化を測定するこ
とはできなかった。したがって、誘電率が変化しても、
それが測定対象である成分の濃度変化を示すのか、また
はそれ以外の成分の濃度変化を示すのか分からず、誘電
率の測定により薬液中の特定成分の濃度を管理すること
はできなかった。
Naturally, when used in a production line, the concentration of caroic acid decreases. Therefore, the operator periodically collects the chemical from the line, obtains the concentration of caroic acid by titration analysis, and adds hydrogen peroxide or replaces the chemical according to intuition and experience. However, since the main component of the piranha cleaning solution is concentrated sulfuric acid, handling is extremely dangerous. Further, the titration analysis requires the skill of an operator and is troublesome. In addition, replenishment of the chemical solution and calculation of the amount of addition require skill, and there is a risk of making mistakes. Conventionally, there has been known an apparatus for measuring the concentration of a chemical solution by measuring the dielectric constant of the chemical solution.However, the dielectric constant measurement can only measure the change of the entire chemical solution, and the concentration change of each component in the chemical solution is measured. Could not be measured. Therefore, even if the dielectric constant changes,
It is impossible to control the concentration of the specific component in the chemical solution by measuring the dielectric constant, because it is not known whether it shows the concentration change of the component to be measured or the concentration change of the other components.

【0004】[0004]

【本発明が解決しようとする課題】本発明は、カロ酸濃
度を全自動で測定し、濃度を一定に保つ為の必要な薬剤
の添加、交換を全自動でおこなうための方法および装置
を提供する。
SUMMARY OF THE INVENTION The present invention provides a method and an apparatus for automatically measuring the concentration of caroic acid and automatically adding and exchanging a necessary drug for keeping the concentration constant. I do.

【0005】[0005]

【課題を解決するための手段】本発明はピラニア洗浄工
程において、薬液中のカロ酸濃度を分光透過率、または
分光吸光度測定により自動測定し、過酸化水素水の自動
補充、または薬液の一部もしくは全部の自動的な交換に
より、カロ酸濃度を所定範囲内に保持する薬液濃度管理
方法を提供する。
According to the present invention, in a piranha washing step, the concentration of caroic acid in a chemical solution is automatically measured by measuring a spectral transmittance or a spectral absorbance, and automatically replenished with a hydrogen peroxide solution or a part of the chemical solution. Alternatively, there is provided a method for controlling the concentration of a chemical solution in which the concentration of caroic acid is kept within a predetermined range by automatically exchanging all of them.

【0006】カロ酸濃度を分光透過率または分光吸光度
の測定により求める場合、290−400nmの波長が
好ましく用いられ、より好ましくは295−325nm
の波長が、最も好ましくは300−310nmの波長が
用いられる。カロ酸だけでは300−310nmに吸収
が現れず、過酸化水素が共存することにより吸収ピーク
が現れる。また、硫酸は300−310nmの領域では
全く吸収ピークが現れず、硫酸の濃度に影響されないこ
とも、上記の波長範囲で測定する利点の一つである。上
記の波長範囲は妨害成分がない場合のものであり、妨害
成分が存在する場合には、その種類および量に応じ、使
用する波長を適宜変更することができる。カロ酸の濃度
と分光透過率または分光吸光度との関係をあらかじめ測
定することにより検量線を作成し、この検量線に基づい
てカロ酸の濃度測定を行うことが好ましい。
When the concentration of caroic acid is determined by measuring spectral transmittance or spectral absorbance, a wavelength of 290-400 nm is preferably used, and more preferably 295-325 nm.
And most preferably a wavelength of 300 to 310 nm. Absorption does not appear at 300 to 310 nm with caroic acid alone, but an absorption peak appears due to the coexistence of hydrogen peroxide. Also, sulfuric acid has no absorption peak in the range of 300 to 310 nm, and is not affected by the concentration of sulfuric acid. The above-mentioned wavelength range is a case where there is no interfering component, and when there is an interfering component, the wavelength to be used can be appropriately changed according to its type and amount. It is preferable to prepare a calibration curve by previously measuring the relationship between the concentration of the caroic acid and the spectral transmittance or the spectral absorbance, and measure the concentration of the caroic acid based on the calibration curve.

【0007】一般的な分析方法では、妨害成分をサンプ
ルから取り除いて純粋なサンプルを調製し、得られた純
粋なサンプルについて定量を行わなければならない。し
かし、本発明方法ではそのようなサンプルの処理をする
ことなく、妨害成分を含むサンプルについてカロ酸の濃
度を測定することができる。すなわち、本発明はその一
態様として、ピラニア洗浄工程において、妨害成分の濃
度に依存して分光透過率または分光吸光度の値が変化す
る第1の波長、およびカロ酸の濃度に依存して分光透過
率または分光吸光度の値が変化する第2の波長におい
て、分光透過率または分光吸光度を自動測定して薬液中
のカロ酸濃度を求め、その結果に基づき、過酸化水素水
を自動補充し、または薬液の一部もしくは全部を自動的
に交換し、カロ酸濃度を所定範囲内に保持する薬液濃度
管理方法を提供する。複数種の妨害成分を含む場合に
は、妨害成分の濃度に依存して分光透過率または分光吸
光度の値が変化する複数の波長において分光透過率また
は分光吸光度を自動測定し、さらにカロ酸の濃度に依存
して分光透過率または分光吸光度の値が変化する第2の
波長において、分光透過率または分光吸光度を自動測定
して薬液中のカロ酸濃度を求めることもできる。
[0007] In a general analysis method, a pure sample must be prepared by removing an interfering component from a sample, and the obtained pure sample must be quantified. However, the method of the present invention can measure the concentration of caroic acid in a sample containing an interfering component without treating such a sample. That is, according to one aspect of the present invention, in the piranha cleaning step, the first wavelength at which the value of the spectral transmittance or the spectral absorbance changes depending on the concentration of the interfering component, and the spectral transmittance depending on the concentration of caroic acid. At the second wavelength at which the value of the rate or spectral absorbance changes, the spectral transmittance or spectral absorbance is automatically measured to determine the concentration of caroic acid in the drug solution, and based on the result, hydrogen peroxide is automatically replenished, or Provided is a method for controlling the concentration of a chemical solution in which a part or all of the chemical solution is automatically exchanged and the concentration of caroic acid is kept within a predetermined range. In the case of including a plurality of interference components, the spectral transmittance or the spectral absorbance is automatically measured at a plurality of wavelengths at which the value of the spectral transmittance or the spectral absorbance changes depending on the concentration of the interfering component. At the second wavelength at which the value of the spectral transmittance or the spectral absorbance changes depending on the wavelength, the spectral transmittance or the spectral absorbance can be automatically measured to determine the concentration of caroic acid in the drug solution.

【0008】後述の実施例において具体的に示されるよ
うに、妨害成分の濃度に依存して分光透過率または分光
吸光度の値が変化する第1の波長を選択し、その波長で
分光透過率または分光吸光度の測定を行うことにより、
妨害成分の濃度を測定することができる。一方、たとえ
ば290−400nmであるカロ酸の濃度を測定する第
2の波長において、妨害成分濃度についての分光透過率
または分光吸光度の値の変化を示す検量線を求めておく
と、第2の波長における妨害成分の寄与分を知ることが
できる。したがって、異なる波長における測定結果を利
用することにより、妨害成分を含むサンプルについても
サンプル調製をすることなくカロ酸の濃度を測定するこ
とができるのである。また、この方法を用いることによ
り、妨害成分の量が経時的に変化する系においても自動
運転することが可能になる。妨害成分の濃度の変動が少
なくて、無視することができる場合には、カロ酸の濃度
を測定する波長における妨害成分の寄与分を求めておい
て、これを一定とする事により、1波長の測定結果のみ
に基づいてカロ酸濃度を測定することができる。
As specifically shown in the embodiments described later, a first wavelength at which the value of the spectral transmittance or the spectral absorbance changes depending on the concentration of the interfering component is selected, and the spectral transmittance or the first wavelength is selected at that wavelength. By measuring the spectral absorbance,
The concentration of the interfering component can be measured. On the other hand, when a calibration curve indicating a change in the value of the spectral transmittance or the spectral absorbance with respect to the concentration of the interfering component is obtained at the second wavelength at which the concentration of caroic acid is measured, for example, 290 to 400 nm, the second wavelength is obtained. , The contribution of the interfering component can be known. Therefore, by using measurement results at different wavelengths, the concentration of caroic acid can be measured without preparing a sample containing a disturbing component. Also, by using this method, it is possible to automatically operate even in a system in which the amount of the interfering component changes over time. If the fluctuation of the concentration of the interfering component is small and negligible, the contribution of the interfering component at the wavelength at which the concentration of the caroic acid is measured is determined, and by keeping this constant, the wavelength of one wavelength is reduced. Caroic acid concentration can be measured based only on the measurement results.

【0009】本発明はさらに本発明方法を実施するのに
好適な装置を提供する。すなわち、本発明は、光路上に
光源、集光レンズ、測定セル、ピックアップレンズ、ス
ペクトル解析受光素子、および分光光強度測定装置を配
置したピラニア洗浄工程用薬液濃度管理装置を提供す
る。図1に本発明の装置の構成例を示す。光源1から照
射される光は、アパチャー2を経て、集光レンズ3によ
り集光された後、測定セル4に照射される。測定セル4
を通過した光はピックアップレンズ5を通り、スペクト
ル解析受光素子6により分光され、光電圧変換素子によ
り分光光強度が測定される。
The present invention further provides an apparatus suitable for performing the method of the present invention. That is, the present invention provides a chemical liquid concentration management device for a piranha cleaning step in which a light source, a condenser lens, a measurement cell, a pickup lens, a spectrum analysis light receiving element, and a spectral light intensity measurement device are arranged on an optical path. FIG. 1 shows a configuration example of the apparatus of the present invention. Light emitted from the light source 1 passes through the aperture 2 and is condensed by the condenser lens 3, and then is emitted to the measurement cell 4. Measurement cell 4
Passes through the pickup lens 5 and is split by the spectrum analysis light receiving element 6, and the intensity of the spectral light is measured by the light voltage conversion element.

【0010】より詳細には以下の通りである。剥離又
は、洗浄装置から薬液をポンプで吸い上げ、測定セルに
通す。Xe−Hgを光源とする200〜1000nmの
光を反射鏡で集光、さらにレンズで集光した後、測定セ
ル中のサンプルに照射する。サンプルを通過した光は、
対向のピックアップレンズを通って光ファイバーに入
り、プリズムまたは、回折格子、リニアフィルターのよ
うなスペクトル解析受光素子により分光され、CCDア
レイを用いた光電圧変換素子により、分光光強度として
測定される。キャリブレーションと比較する事により分
光透過率又は分光吸光度が得られる。
The details are as follows. A chemical solution is pumped from a peeling or cleaning device by a pump and passed through a measuring cell. Light having a wavelength of 200 to 1000 nm using Xe-Hg as a light source is condensed by a reflecting mirror, further condensed by a lens, and then irradiated to a sample in a measurement cell. The light that has passed through the sample
The light enters the optical fiber through the opposing pickup lens, is separated by a spectral analysis light receiving element such as a prism, a diffraction grating, or a linear filter, and is measured as a spectral light intensity by a light voltage conversion element using a CCD array. Spectral transmittance or spectral absorbance is obtained by comparison with calibration.

【0011】予め濃度既知のサンプルにおける分光透過
率又は、分光吸光度を測定し、検量線を作成しておく。
この検量線と透過率又は、吸光度を比較すれば、未知試
料のカロ酸濃度を知る事ができる。セルの光路長を段階
的もしくは連続的に変化させたセルを用いれば、薬液の
濃度が高すぎる場合にもモニターする場所を変更すれば
よく、薬液を希釈する必要がないという利点が得られ
る。
The spectral transmittance or the spectral absorbance of a sample having a known concentration is measured in advance to prepare a calibration curve.
By comparing the calibration curve with the transmittance or the absorbance, it is possible to know the concentration of caroic acid in the unknown sample. If a cell in which the optical path length of the cell is changed stepwise or continuously is used, the location to be monitored may be changed even when the concentration of the drug solution is too high, and there is an advantage that the drug solution does not need to be diluted.

【0012】薬液濃度の補正は以下の要領で行うことが
できる。 (1)薬液の補充 カロ酸濃度が設定下限濃度に達したら、カロ酸の濃度に
合わせて過酸化水素水を自動的に補充する。過酸化水素
水を補充しながら濃度測定を行ない、規定の設定上限濃
度になったら補充を終了する。 (2)薬液の交換 カロ酸濃度が設定下限濃度に達したら、カロ酸の濃度に
合わせて薬液の1部又は全部の交換を自動的に実施す
る。薬液そのものを補充しながら濃度測定を行ない、規
定の設定上限濃度になったら交換を終了する。なお、カ
ロ酸の管理濃度は4から10%程度の範囲であれば現実
的に問題はないが、管理限界濃度の設定を適宜設定する
ことにより、より狭い範囲での濃度管理を行うことも容
易である。以下、実施例により本発明をより詳細に使用
するが、これらの実施例は本発明の範囲をなんら制限す
るものではない。
The chemical concentration can be corrected in the following manner. (1) Replenishment of chemical solution When the caroic acid concentration reaches the set lower limit concentration, hydrogen peroxide solution is automatically replenished according to the concentration of caroic acid. The concentration is measured while replenishing the hydrogen peroxide solution, and the replenishment is terminated when the concentration reaches the specified upper limit. (2) Exchange of chemical solution When the concentration of the caroic acid reaches the set lower limit concentration, exchange of part or all of the chemical solution is automatically performed in accordance with the concentration of the caroic acid. The concentration is measured while replenishing the chemical solution itself, and the exchange is terminated when the concentration reaches the specified upper limit concentration. There is no practical problem if the control concentration of caroic acid is in the range of about 4 to 10%, but it is easy to control the concentration in a narrower range by appropriately setting the control limit concentration. It is. Hereinafter, the present invention will be used in more detail by way of examples, but these examples do not limit the scope of the present invention in any way.

【0013】実施例1 カロ酸濃度を変化させる為にピラニア洗浄液に硝酸イオ
ンを添加し放置した場合の分光透過率の変化を測定し
た。なお、硝酸はカロ酸の分解を促進するための触媒で
ある。この結果を図2および3に示す。放置時間に従い
分光透過率(特に300〜400nmの範囲で)が上昇
する事がわかる。又、硝酸イオン添加量が多い程、上昇
速度が高いことがわかる。図4に滴定で求めたカロ酸濃
度と305nmにおける透過率の関係、図5に滴定で求
めたカロ酸濃度と305nmにおける吸光度の関係を示
す。透過率とカロ酸濃度及び、吸光度とカロ酸濃度には
線形的な関係が存在することがわかる。したがって、透
過率または吸光度の測定によりカロ酸濃度が測定でき
る。
Example 1 A change in spectral transmittance was measured when nitrate ions were added to a piranha cleaning solution to change the concentration of caroic acid and the solution was allowed to stand. Incidentally, nitric acid is a catalyst for promoting the decomposition of caroic acid. The results are shown in FIGS. It can be seen that the spectral transmittance (especially in the range of 300 to 400 nm) increases with the standing time. Also, it can be seen that the higher the amount of nitrate ions added, the higher the rate of rise. FIG. 4 shows the relationship between the caroic acid concentration determined by titration and the transmittance at 305 nm, and FIG. 5 shows the relationship between the caroic acid concentration determined by titration and the absorbance at 305 nm. It can be seen that there is a linear relationship between the transmittance and the caroic acid concentration, and between the absorbance and the caroic acid concentration. Therefore, the concentration of caroic acid can be measured by measuring the transmittance or the absorbance.

【0014】実施例2 通常濃度のサンプル液(サンプル1)、1.3倍の濃度
のサンプル液(サンプル2)、および通常濃度のサンプ
ル液に妨害成分としてCrを5900mg/リットルの
濃度で溶解したサンプル液(サンプル3)の分光透過率
を測定した。結果を図6に示す。750nmの透過率を
みると、サンプル3のみが低い透過率を示している。し
たがって、750nmの透過率の測定によりCr濃度を
測定できることがわかる。
Example 2 Cr as a disturbing component was dissolved at a concentration of 5900 mg / liter in a sample solution having a normal concentration (sample 1), a sample solution having a 1.3-fold concentration (sample 2), and a sample solution having a normal concentration. The spectral transmittance of the sample solution (sample 3) was measured. FIG. 6 shows the results. Looking at the transmittance at 750 nm, only sample 3 shows a low transmittance. Therefore, it can be seen that the Cr concentration can be measured by measuring the transmittance at 750 nm.

【0015】実施例3 図7に過酸化水素水の添加におけるカロ酸濃度の関係を
示す。本発明方法によれば、このようにユースポイント
において薬液の自動補充を行なうことが可能であり、所
望の管理範囲内に維持することができる。
Example 3 FIG. 7 shows the relationship of the concentration of caroic acid in the addition of aqueous hydrogen peroxide. According to the method of the present invention, it is possible to automatically replenish the liquid medicine at the point of use as described above, and it is possible to maintain the liquid medicine within a desired management range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の構成例を示す図である。FIG. 1 is a diagram showing a configuration example of an apparatus of the present invention.

【図2】実施例1の結果を示す図である。FIG. 2 is a diagram showing the results of Example 1.

【図3】実施例1の結果を示す図である。FIG. 3 is a diagram showing the results of Example 1.

【図4】実施例1の結果を示す図である。FIG. 4 is a diagram showing the results of Example 1.

【図5】実施例1の結果を示す図である。FIG. 5 is a diagram showing the results of Example 1.

【図6】実施例2の結果を示す図である。FIG. 6 is a diagram showing the results of Example 2.

【図7】実施例3の結果を示す図である。FIG. 7 is a diagram showing the results of Example 3.

【符号の説明】[Explanation of symbols]

1.光源 2.アパチャー2 3.集光レンズ 4.測定セル 5.ピックアップレンズ 6.スペクトル解析受光素子6 7.アナログデジタルコンバーター 8.パーソナルコンピューター 9.キャリブレーションライン 1. Light source 2. Aperture 2 3. Condensing lens 4. 4. Measurement cell Pickup lens 6. Spectrum analysis light receiving element 6 7. Analog-to-digital converter Personal computer 9. Calibration line

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ピラニア洗浄工程において、薬液中のカ
ロ酸濃度を分光透過率、または分光吸光度測定により自
動測定し、その結果に基づき、過酸化水素水を自動補充
し、または薬液の一部もしくは全部を自動的に交換し、
カロ酸濃度を所定範囲内に保持する薬液濃度管理方法。
In the piranha washing step, the concentration of caroic acid in a chemical solution is automatically measured by spectral transmittance or spectral absorbance measurement, and based on the result, hydrogen peroxide is automatically replenished, or a part of the chemical solution or Replace everything automatically,
A method for controlling the concentration of a chemical solution in which the concentration of caroic acid is maintained within a predetermined range.
【請求項2】 カロ酸濃度の測定を、290−400n
mの波長を用いた分光透過率または分光吸光度測定によ
り行う、請求項1記載の薬液濃度管理方法。
2. The measurement of the concentration of caroic acid is performed at 290-400 n.
The method according to claim 1, wherein the method is performed by measuring a spectral transmittance or a spectral absorbance using a wavelength of m.
【請求項3】 ピラニア洗浄工程において、妨害成分の
濃度に依存して分光透過率または分光吸光度の値が変化
する第1の波長、およびカロ酸の濃度に依存して分光透
過率または分光吸光度の値が変化する第2の波長におい
て、分光透過率または分光吸光度を自動測定して薬液中
のカロ酸濃度を求め、その結果に基づき、過酸化水素水
を自動補充し、または薬液の一部もしくは全部を自動的
に交換し、カロ酸濃度を所定範囲内に保持する薬液濃度
管理方法。
3. In the piranha washing step, the first wavelength at which the value of the spectral transmittance or the spectral absorbance changes depending on the concentration of the interfering component, and the spectral transmittance or the spectral absorbance of the caroic acid depends on the concentration. At the second wavelength where the value changes, the spectral transmittance or the spectral absorbance is automatically measured to obtain the concentration of caroic acid in the chemical solution, and based on the result, hydrogen peroxide solution is automatically replenished, or a part of the chemical solution or A chemical solution concentration control method in which all of them are automatically replaced and the caroic acid concentration is maintained within a predetermined range.
【請求項4】 複数種の妨害成分を含み、妨害成分の濃
度に依存して分光透過率または分光吸光度の値が変化す
る複数の波長において分光透過率または分光吸光度を自
動測定する請求項3記載の方法。
4. A spectral transmittance or a spectral absorbance is automatically measured at a plurality of wavelengths including a plurality of types of interfering components, and a value of a spectral transmittance or a spectral absorbance changes depending on a concentration of the interfering component. the method of.
【請求項5】 光路上に光源、集光レンズ、測定セル、
ピックアップレンズ、スペクトル解析受光素子、および
分光光強度測定装置を配置したピラニア洗浄工程用薬液
濃度管理装置。
5. A light source, a condenser lens, a measurement cell,
A chemical concentration management device for a piranha cleaning process, in which a pickup lens, a spectrum analysis light receiving element, and a spectral light intensity measurement device are arranged.
JP23070295A 1995-08-17 1995-08-17 Chemical concentration control method in piranha cleaning process Expired - Fee Related JP2826082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23070295A JP2826082B2 (en) 1995-08-17 1995-08-17 Chemical concentration control method in piranha cleaning process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23070295A JP2826082B2 (en) 1995-08-17 1995-08-17 Chemical concentration control method in piranha cleaning process

Publications (2)

Publication Number Publication Date
JPH0964005A true JPH0964005A (en) 1997-03-07
JP2826082B2 JP2826082B2 (en) 1998-11-18

Family

ID=16911984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23070295A Expired - Fee Related JP2826082B2 (en) 1995-08-17 1995-08-17 Chemical concentration control method in piranha cleaning process

Country Status (1)

Country Link
JP (1) JP2826082B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032682A (en) * 1996-06-25 2000-03-07 Cfmt, Inc Method for sulfuric acid resist stripping
US6261845B1 (en) 1999-02-25 2001-07-17 Cfmt, Inc. Methods and systems for determining chemical concentrations and controlling the processing of semiconductor substrates
US6399517B2 (en) * 1999-03-30 2002-06-04 Tokyo Electron Limited Etching method and etching apparatus
JP2007059816A (en) * 2005-08-26 2007-03-08 Dainippon Screen Mfg Co Ltd Method and device of removing resist
JP2012049391A (en) * 2010-08-27 2012-03-08 Kurita Water Ind Ltd Cleaning method and cleaning system
KR101383432B1 (en) * 2007-11-27 2014-04-09 엘지디스플레이 주식회사 Method and apparatus for controling a exchange cycle of stripper
WO2021090582A1 (en) * 2019-11-08 2021-05-14 栗田工業株式会社 Method for suppressing decrease in concentration of oxidizing agent in sulfuric acid solution containing persulfuric acid component
CN116759348A (en) * 2023-08-18 2023-09-15 合肥晶合集成电路股份有限公司 Make up H 2 O 2 Liquid control method, control device thereof and control system thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032682A (en) * 1996-06-25 2000-03-07 Cfmt, Inc Method for sulfuric acid resist stripping
US6261845B1 (en) 1999-02-25 2001-07-17 Cfmt, Inc. Methods and systems for determining chemical concentrations and controlling the processing of semiconductor substrates
US6399517B2 (en) * 1999-03-30 2002-06-04 Tokyo Electron Limited Etching method and etching apparatus
JP2007059816A (en) * 2005-08-26 2007-03-08 Dainippon Screen Mfg Co Ltd Method and device of removing resist
JP4672487B2 (en) * 2005-08-26 2011-04-20 大日本スクリーン製造株式会社 Resist removing method and resist removing apparatus
US8075702B2 (en) 2005-08-26 2011-12-13 Dainippon Screen Mfg. Co., Ltd. Resist removing method and resist removing apparatus
KR101383432B1 (en) * 2007-11-27 2014-04-09 엘지디스플레이 주식회사 Method and apparatus for controling a exchange cycle of stripper
JP2012049391A (en) * 2010-08-27 2012-03-08 Kurita Water Ind Ltd Cleaning method and cleaning system
WO2021090582A1 (en) * 2019-11-08 2021-05-14 栗田工業株式会社 Method for suppressing decrease in concentration of oxidizing agent in sulfuric acid solution containing persulfuric acid component
JP2021075764A (en) * 2019-11-08 2021-05-20 栗田工業株式会社 Method of suppressing decrease in oxidant concentration of sulphuric acid solution containing persulfuric acid
CN116759348A (en) * 2023-08-18 2023-09-15 合肥晶合集成电路股份有限公司 Make up H 2 O 2 Liquid control method, control device thereof and control system thereof
CN116759348B (en) * 2023-08-18 2023-11-14 合肥晶合集成电路股份有限公司 Make up H 2 O 2 Liquid control method, control device thereof and control system thereof

Also Published As

Publication number Publication date
JP2826082B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
Knorr et al. Resolution of multicomponent fluorescence spectra by an emission wavelength-decay time data matrix
EP0418799B1 (en) Quantitative determination method of chemicals for processing semiconductor and an apparatus thereof
KR101054548B1 (en) Silicon concentration measuring device and measuring method in phosphoric acid solution
JP2826082B2 (en) Chemical concentration control method in piranha cleaning process
Laszlo et al. Absorption cross sections, kinetics of formation, and self-reaction of the IO radical produced via the laser photolysis of N2O/I2/N2 mixtures
Wen et al. Photoinduced nucleation of supersaturated vapors in the presence of carbon disulfide
DE4021955A1 (en) LASER OPERATED DETECTING DEVICE
EP0634646B1 (en) Method of and apparatus for analyzing nitrogen compounds and phosphorus compounds contained in water
WO2002054155A1 (en) Method of controlling metallic layer etching process and regenerating etchant for metallic layer etching process based on near infrared spectrometer
JP4722513B2 (en) Apparatus and method for measuring the concentration of an acid solution containing peracetic acid
JPH11194120A (en) Method and apparatus for quantitative analysis of mixed acid solution in etching process as well as etching control method and preparation of the mixed acid solution
KR0158691B1 (en) Quantitative determination method of chemicals for processing semiconductor and an apparatus thereof
JP5770491B2 (en) Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same
KR101958387B1 (en) Method of controlling copper-film etching process and method of regenerating copper-film etchant composition using near infrared spectrometer
JP4048139B2 (en) Concentration measuring device
JP3748071B2 (en) Device for measuring the concentration of inorganic ions produced after oxidative decomposition of organic impurities
WO2017086318A1 (en) Concentration measurement method
JP4634596B2 (en) Dissolved ozone concentration measuring device
KR20080020140A (en) Etching solution control system and etching apparatus and etching solution control method thereof
WO1996018096A1 (en) Quantitative detection of chemical species
JPH07151688A (en) Method and apparatus for analyzing nitrogen compound and phosphorus compound in water
JP2003121352A (en) Measuring method for concentrating solution containing alkaline component and hydrogen peroxide
Filáry et al. Photochemically induced catalysis of iodide ion and iodine in the tetrathionate–periodate reaction
Riccieri et al. Inner Filter Effects in the Evaluation of Photochemical Quantum Yields
JP2002107352A (en) Water quality analyzer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070911

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080911

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees