JP2006258491A - Device and method for measuring concentration of acid solution including peracetic acid - Google Patents

Device and method for measuring concentration of acid solution including peracetic acid Download PDF

Info

Publication number
JP2006258491A
JP2006258491A JP2005073628A JP2005073628A JP2006258491A JP 2006258491 A JP2006258491 A JP 2006258491A JP 2005073628 A JP2005073628 A JP 2005073628A JP 2005073628 A JP2005073628 A JP 2005073628A JP 2006258491 A JP2006258491 A JP 2006258491A
Authority
JP
Japan
Prior art keywords
light
concentration
peracetic acid
cell
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005073628A
Other languages
Japanese (ja)
Other versions
JP4722513B2 (en
Inventor
Noboru Azuma
昇 東
Satoru Hiraki
哲 平木
Hiroshi Yokota
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2005073628A priority Critical patent/JP4722513B2/en
Publication of JP2006258491A publication Critical patent/JP2006258491A/en
Application granted granted Critical
Publication of JP4722513B2 publication Critical patent/JP4722513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new measuring method of the acid concentration in aqueous solution, and a device therefor. <P>SOLUTION: In order to perform optical density measurement of the aqueous solution including peracetic acid, a sample of the aqueous solution having a plurality of components including peracetic acid having a known concentration is introduced into a cell, and light having a different wavelength in an ultraviolet zone including the wavelength below 190 nm is transmitted through the sample in the cell, and the intensity value of transmitted light is measured. The measurement is repeated relative to the plurality of samples. The absorbance is operated from each intensity value of the plurality of samples, and a calibration curve expression between the concentration and the absorbance of the plurality of components including peracetic acid is determined. Then, the aqueous solution including peracetic acid which is a measuring object is introduced into the cell, and light having a different wavelength is transmitted through the aqueous solution in the cell, and the intensity value of transmitted light is measured. The absorbance is operated from the intensity value, and the concentration of the plurality of components including peracetic acid in the aqueous solution is determined by using the absorbance and the calibration curve expression. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水溶液における濃度の光学的測定に関するものである。   The present invention relates to optical measurement of concentration in an aqueous solution.

水溶液中の成分の濃度の測定は種々の用途で必要である。殺菌、洗浄などの用途において酸溶液(薬液)が使用されるが、たとえば過酢酸含有薬剤が医療器、食品容器などの殺菌、洗浄用に使用される。そのような酸溶液を使用する工程において、酸溶液の管理のため、酸溶液の濃度の測定が行われる。過酢酸含有薬剤の中の過酢酸と過酸化水素水の濃度を高精度で測定する方法としては、主として、ヨウ素滴定法、電気化学センサーを用いた分析、電気伝導度法が用いられている(例えば特開平6−130051号公報、特開平4−45798号公報、特開2001−13102号公報参照)。   Measurement of the concentration of components in an aqueous solution is necessary for various applications. An acid solution (chemical solution) is used in applications such as sterilization and cleaning. For example, peracetic acid-containing drugs are used for sterilization and cleaning of medical devices, food containers, and the like. In the process of using such an acid solution, the concentration of the acid solution is measured in order to manage the acid solution. As a method for measuring the concentration of peracetic acid and hydrogen peroxide water in peracetic acid-containing drugs with high accuracy, the iodine titration method, analysis using an electrochemical sensor, and electrical conductivity method are mainly used ( For example, see JP-A-6-130051, JP-A-4-45798, JP-A-2001-13102).

特開平6−130051号公報JP-A-6-130051 特開平4−45798号公報JP-A-4-45798 特開2001−13102号公報JP 2001-13102 A

上述のように、酸溶液の濃度の監視のためにヨウ素滴定法、電気化学センサーを用いた分析、電気伝導度法などが用いられている。しかし、ヨウ素滴定法は、サンプルとなる過酢酸含有薬液に試薬を加えるので、採取した酸溶液を実使用できない。さらに、濃度を瞬時に測定できないので、洗浄、殺菌現場などでのインライン使用には不向きである。また、電気化学センサー法は、瞬時の測定には適しているが、実際の測定においては緩衝液を使用し、酸溶液と混合した後に測定を行っていることから、全く酸溶液を変質させていないとは言い難い。したがって、酸溶液中の酸の濃度を、酸溶液を変質させること無く、非接触で、精度よく決定できることが望ましい。また、インライン使用を可能にすることが望ましい。   As described above, iodine titration method, analysis using an electrochemical sensor, electrical conductivity method, and the like are used for monitoring the concentration of an acid solution. However, in the iodine titration method, since the reagent is added to the peracetic acid-containing chemical solution as a sample, the collected acid solution cannot be actually used. Furthermore, since the concentration cannot be measured instantaneously, it is not suitable for in-line use at cleaning and sterilization sites. In addition, the electrochemical sensor method is suitable for instantaneous measurement, but in actual measurement, a buffer solution is used and measurement is performed after mixing with an acid solution, so that the acid solution is completely altered. It ’s hard to say. Therefore, it is desirable that the acid concentration in the acid solution can be accurately determined without contact without altering the acid solution. It is also desirable to allow inline use.

この発明の目的は、水溶液の酸濃度の新規の測定方法及び装置を提供することである。   An object of the present invention is to provide a novel method and apparatus for measuring the acid concentration of an aqueous solution.

上述の目的のため、発明者らは紫外分光に着目した。
本発明に係る過酢酸を含む水溶液の光学的濃度測定方法では、(1)既知濃度の過酢酸を含む複数成分の水溶液のサンプルをセルに導入し、セル中のサンプルに対して190nm以下の波長を含む紫外域における異なる波長の光を透過させ、透過光の強度値を測定する。この測定を複数のサンプルについて繰返す。そして、(2)前記の複数のサンプルの強度値から吸光度を演算し、過酢酸を含む複数成分の濃度と吸光度の間の検量線式を求める。次に、(3)測定対象の過酢酸を含む水溶液を前記のセルに導入し、セル中の水溶液に対して前記の異なる波長の光を透過させ、透過光の強度値を測定する。そして、(4)強度値から吸光度を演算し、吸光度と前記検量線式を用いて、前記水溶液中の過酢酸を含む複数成分の濃度を決定する。たとえば、前記の複数成分は、過酢酸、過酸化水素および酢酸である。また、前記の紫外波長域は、たとえば、180〜210nmである。
For the above purpose, the inventors paid attention to ultraviolet spectroscopy.
In the method for measuring the optical concentration of an aqueous solution containing peracetic acid according to the present invention, (1) a sample of a multi-component aqueous solution containing a known concentration of peracetic acid is introduced into the cell, and a wavelength of 190 nm or less with respect to the sample in the cell. The light of different wavelengths in the ultraviolet region including is transmitted, and the intensity value of the transmitted light is measured. This measurement is repeated for a plurality of samples. Then, (2) absorbance is calculated from the intensity values of the plurality of samples, and a calibration curve formula between the concentration and absorbance of a plurality of components including peracetic acid is obtained. Next, (3) an aqueous solution containing peracetic acid to be measured is introduced into the cell, the light of the different wavelengths is transmitted through the aqueous solution in the cell, and the intensity value of the transmitted light is measured. Then, (4) the absorbance is calculated from the intensity value, and the concentration of a plurality of components including peracetic acid in the aqueous solution is determined using the absorbance and the calibration curve equation. For example, the multiple components are peracetic acid, hydrogen peroxide and acetic acid. Moreover, the said ultraviolet wavelength range is 180-210 nm, for example.

本発明に係る濃度測定装置は、過酢酸を含む複数成分の水溶液を導入するセルと、190nm以下の波長を含む紫外波長域の光(たとえば180〜210nmの波長域の光)をセルに照射する光源と、セルからの透過光の光強度を5nm以下で0.2nmより大きい波長分解能で検出する受光素子(たとえばダイヤモンド薄膜センサ)と、光源から受光素子までの光路において、190nm以下の波長を含む異なる波長に光を分光する分光素子とを備える。   The concentration measuring apparatus according to the present invention irradiates a cell with a cell into which a multi-component aqueous solution containing peracetic acid is introduced, and light in an ultraviolet wavelength region including a wavelength of 190 nm or less (for example, light in a wavelength region of 180 to 210 nm). Including a light source, a light receiving element (for example, a diamond thin film sensor) that detects light intensity of transmitted light from the cell with a wavelength resolution of 5 nm or less and greater than 0.2 nm, and a wavelength of 190 nm or less in the optical path from the light source to the light receiving element And a spectroscopic element that splits light into different wavelengths.

前記の濃度測定装置において、好ましくは、前記の分光素子は、それぞれ異なる設計波長より短波長を反射し、その設計波長より長波長を透過する複数のフィルタからなり、これらの複数のフィルタを光路中に設計波長の順に並べ、いずれかのフィルタから反射される特定波長の光を選択して出射することを特徴とする、請求項4または5に記載された濃度測定装置。   In the concentration measuring apparatus, preferably, the spectroscopic element is composed of a plurality of filters that reflect shorter wavelengths than different design wavelengths and transmit longer wavelengths than the design wavelengths. 6. The concentration measuring apparatus according to claim 4 or 5, wherein light having a specific wavelength reflected from one of the filters is selected and emitted in order of design wavelengths.

前記の濃度測定装置は、好ましくは、さらに、前記の過酢酸を含む複数成分の濃度と吸光度との関係を示す検量線式を記憶する記憶手段と、前記の受光素子が出力する光強度信号から吸光度を演算し、前記の吸光度から前記検量線式に基づいて過酢酸を含む複数成分の濃度を決定する濃度演算手段とを備える。   Preferably, the concentration measuring device further includes a storage means for storing a calibration curve expression indicating a relationship between the concentration and absorbance of the plurality of components including the peracetic acid, and a light intensity signal output from the light receiving element. Concentration calculating means for calculating the absorbance and determining the concentration of a plurality of components including peracetic acid from the absorbance based on the calibration curve equation.

前記の濃度測定装置において、好ましくは、前記のセルは、サンプルが連続的に導入されるフローセルであり、前記の濃度測定装置は、さらに、フローセルに導入されるサンプルを水で希釈する希釈装置を備える。   In the concentration measuring device, preferably, the cell is a flow cell into which a sample is continuously introduced, and the concentration measuring device further includes a diluting device for diluting the sample introduced into the flow cell with water. Prepare.

190nm以下の短波長域で過酢酸の濃度に依存する吸収スペクトルが急激に増加するという特性を利用するので、紫外波長域での分光測定を用いて、水溶液中の過酢酸を含む複数成分の濃度を、水溶液を変質させること無く、非接触で、精度よく定量できる。
また、濃度を短時間に精度よく決定できるので、フローセルを用いることにより、インライン測定が可能となる。
Since the absorption spectrum depending on the concentration of peracetic acid is rapidly increased in a short wavelength region of 190 nm or less, the concentration of a plurality of components including peracetic acid in an aqueous solution is measured using spectroscopic measurement in the ultraviolet wavelength region. Can be accurately quantified in a non-contact manner without altering the aqueous solution.
In addition, since the concentration can be accurately determined in a short time, in-line measurement can be performed by using a flow cell.

以下、発明の実施の形態を添付の図面を参照して具体的に説明する。   Embodiments of the present invention will be specifically described below with reference to the accompanying drawings.

昨今、ペットボトル飲料の無菌充填システムで利用されている過酢酸系殺菌洗浄剤は、その精製上必ず過酢酸と過酸化水素水と酢酸の3成分混合水溶液として利用される。殺菌洗浄剤中の過酢酸濃度をインラインで正確に測定できる装置の実現が望まれているが、従来検討されていた方法では、過酢酸系殺菌洗浄剤中の過酢酸濃度を混合成分の1つである過酸化水素に影響されずに測定することが難しかった。また、インラインでサンプルを連続供給して、連続的に濃度を測定する装置も実用化されていなかった。   In recent years, peracetic acid-based sterilizing detergents used in aseptic filling systems for PET bottle beverages are always used as a three-component mixed aqueous solution of peracetic acid, hydrogen peroxide solution and acetic acid for purification. Although it is desired to realize an apparatus capable of accurately measuring the peracetic acid concentration in a sterilizing detergent in-line, in the methods that have been studied in the past, the peracetic acid concentration in a peracetic acid-based sterilizing detergent is one of the mixed components. It was difficult to measure without being affected by hydrogen peroxide. Also, an apparatus for continuously supplying samples in-line and continuously measuring the concentration has not been put into practical use.

発明者らは、各種水溶液の濃度についての紫外分光測定の可能性を検討するため、図1と図2に示すように各種水溶液について紫外分光データを測定した。ここで、酢酸水溶液、過酸化水素水溶液のほか、希釈された過酢酸系殺菌洗浄剤も測定対象とした。図1は、(a)1.7重量%の酢酸水溶液、(b)0.2重量%の過酸化水素水溶液、および、(c)希釈された過酢酸系殺菌洗浄剤(0.86重量%の過酢酸、0.23重量%の過酸化水素、0.22重量%の酢酸を含むアクティブ90)の紫外域での吸光度を示す。また、図2は、図1に示した吸光度の2次微分を示す。この吸光度測定では、190nm以上の紫外域を測定する市販の分光測定装置(島津製作所の紫外可視分光計UV−2550)を用いた。セルとして、光路長10mmのキュベットセルを用いた。これらの水溶液は約300nm以下で大きな吸収を生じることが分かり、紫外分光測定により水溶液中の各種成分の濃度が測定できた。   Inventors measured the ultraviolet spectroscopy data about various aqueous solution, as shown in FIG. 1 and FIG. 2, in order to examine the possibility of the ultraviolet spectroscopy measurement about the density | concentration of various aqueous solution. Here, in addition to the acetic acid aqueous solution and the hydrogen peroxide aqueous solution, a diluted peracetic acid-based sterilizing detergent was also measured. FIG. 1 shows (a) a 1.7 wt% acetic acid aqueous solution, (b) a 0.2 wt% hydrogen peroxide aqueous solution, and (c) a diluted peracetic acid-based disinfectant (0.86 wt%). Shows the absorbance in the ultraviolet region of active 90) containing 2% peracetic acid, 0.23% by weight hydrogen peroxide, 0.22% by weight acetic acid. FIG. 2 shows the second derivative of the absorbance shown in FIG. In this absorbance measurement, a commercially available spectroscopic measurement apparatus (Shimadzu Corporation UV-visible spectrometer UV-2550) that measures an ultraviolet region of 190 nm or more was used. A cuvette cell having an optical path length of 10 mm was used as the cell. These aqueous solutions were found to have large absorption at about 300 nm or less, and the concentration of various components in the aqueous solution could be measured by ultraviolet spectroscopy.

従来は、上述の殺菌洗浄剤において過酢酸の濃度を測定するために紫外吸収スペクトルを用いることは注目されていなかった。その理由は、市販の紫外分光計で測定される紫外域では、過酢酸の吸収バンドが0.2重量%以下の濃度では吸光係数が非常に小さいため、また、実際の殺菌洗浄剤では、典型的な濃度範囲は過酢酸では0.1〜0.2重量%であり過酸化水素では0.5〜2.0重量%であるため、過酢酸の紫外域での吸収が、共存する大量の過酸化水素により干渉されるためである。しかし、図1と図2のデータより、過酢酸による特性吸収バンドが190nmより下にあることが推測される。なぜなら、希釈された過酢酸系殺菌洗浄剤のデータ(c)において、過酸化水素による吸収の強度は(b)のように波長が短くなるにつれ増大し、かつ、酢酸の吸収の強度は(a)のように205nm付近に吸収のピークを生じ波長がさらに短くなると小さくなるので、図1と図2において、希釈された過酢酸系殺菌洗浄剤の吸収の強度が波長が短くなるにつれ大きくなる傾向を過酸化水素や酢酸に帰することはできないからである。したがって、これらのデータは、過酢酸を含む水溶液における過酢酸成分などの測定の定量精度が190nmより低い波長域まで分光測定することにより大きく改善されることを示唆している。   Conventionally, the use of an ultraviolet absorption spectrum for measuring the concentration of peracetic acid in the above-described sterilizing detergent has not been noticed. The reason is that, in the ultraviolet region measured by a commercially available ultraviolet spectrometer, the absorption coefficient of peracetic acid is very small at a concentration of 0.2% by weight or less. The typical concentration range is 0.1 to 0.2% by weight for peracetic acid and 0.5 to 2.0% by weight for hydrogen peroxide. This is because it is interfered by hydrogen peroxide. However, from the data of FIGS. 1 and 2, it is presumed that the characteristic absorption band due to peracetic acid is below 190 nm. This is because in the data (c) of the diluted peracetic acid-based disinfectant, the intensity of absorption by hydrogen peroxide increases as the wavelength becomes shorter as shown in (b), and the intensity of absorption of acetic acid is (a As shown in FIG. 1 and FIG. 2, the absorption intensity of the diluted peracetic acid-based disinfectant detergent tends to increase as the wavelength decreases. This is because it cannot be attributed to hydrogen peroxide or acetic acid. Therefore, these data suggest that the quantitative accuracy of measurement of peracetic acid components in an aqueous solution containing peracetic acid is greatly improved by spectroscopic measurement to a wavelength region lower than 190 nm.

そこで、発明者らは、190nm以下の波長域でも分光測定が可能な紫外分光測定装置を開発し、過酢酸、過酸化水素及び酢酸を含む過酢酸系殺菌洗浄剤の遠紫外スペクトルを測定して、過酢酸は、190nm以下の紫外域で急激な吸収バンドを生じるのに対し、過酸化水素は、紫外域で緩やかな吸収バンドを生じることを見出した。そして、その分光分析の結果からそれらの3成分の濃度をすべて同時に精度よく定量できることを見出した。具体的には、この装置は、たとえば175〜280nmの遠紫外域で測定可能であるが、使用する波長域は180〜210nmで充分であった。また、190nm以下の波長で吸収が大きくなるけれども、0.5mmの光路長のセルで測定できることがわかった。   Therefore, the inventors have developed an ultraviolet spectroscopic measurement apparatus capable of performing spectroscopic measurement even in a wavelength region of 190 nm or less, and measured the far ultraviolet spectrum of a peracetic acid-based disinfectant cleaning agent containing peracetic acid, hydrogen peroxide, and acetic acid. It was found that peracetic acid produces a sharp absorption band in the ultraviolet region of 190 nm or less, whereas hydrogen peroxide produces a gentle absorption band in the ultraviolet region. And from the result of the spectral analysis, it discovered that the density | concentration of all these 3 components could be quantified simultaneously and accurately. Specifically, this apparatus can measure, for example, in the far ultraviolet region of 175 to 280 nm, but a wavelength region of 180 to 210 nm is sufficient. Moreover, although absorption became large at a wavelength of 190 nm or less, it was found that measurement was possible with a cell having an optical path length of 0.5 mm.

図3は、発明者らが製作した紫外分光測定装置のうち、分光測定を行う分光部の構成を示す。市販の紫外線分光測定装置は190nm〜350nmの範囲の波長の光を測定できるが、この紫外分光測定装置は、180〜220nmの遠紫外領域で分光測定ができる。また、紫外分光測定において、0.5nm以下の解像度をもつ光増倍管を用いなくても、5nm以下の波長分解能のセンサーを用いて濃度が高精度で測定できることがわかった。この測定装置は、構成が単純で、小型で安価に作製できる。また、測定時間は30秒以下にすることが可能であり、インラインでの連続測定に適している。   FIG. 3 shows a configuration of a spectroscopic unit that performs spectroscopic measurement in the ultraviolet spectroscopic measurement apparatus manufactured by the inventors. A commercially available ultraviolet spectrometer can measure light having a wavelength in the range of 190 nm to 350 nm, but this ultraviolet spectrometer can perform spectroscopic measurement in the far ultraviolet region of 180 to 220 nm. Further, it was found that, in the ultraviolet spectroscopic measurement, the concentration can be measured with high accuracy using a sensor having a wavelength resolution of 5 nm or less without using a photomultiplier having a resolution of 0.5 nm or less. This measuring apparatus has a simple configuration, and can be manufactured in a small size at low cost. Moreover, the measurement time can be set to 30 seconds or less, which is suitable for in-line continuous measurement.

紫外分光測定装置についてさらに説明すると、紫外光源10として、180〜220nmの分光領域で透明な窓を備える重水素ランプを用いる。紫外光源10により発生される遠紫外光は、集光レンズ(MgFレンズ)12によって集光され、フローセル(光吸収セル)14を照射する。フローセル14内には、サンプルされた水溶液が導入される。フローセル14を透過した遠紫外光は、スリット16を通って単色グレーティング分光器18に入る。ここで、透過光は、ミラー20aとコリメートミラー22で反射されたのち、グレーティングミラー(分光素子)24で拡散され、さらにコリメートミラー22ともう1つのミラー20bで反射されたのち、スリット26を通って紫外光受光素子28に入射する。200nm以下の波長の紫外光を効率よく分離できる干渉フィルタを製造することは困難なので、ここでは分光素子としてグレーティングミラー24を用いた。グレーティングミラー24の溝のピッチは2400/mmであり、ブレーズ波長は250nmである。グレーティングミラー24は、波長を変えるため回転ステージ(図示しない)の上に置かれる。紫外光受光素子28は、入射された紫外線を、その強度に対応する光電流に変換する。180〜220nmの波長域でスペクトルを測定するのに要する時間は30秒と短く、インラインでのリアルタイム測定が可能である。上述の光学系は、気密容器28内に収容されていて、容器30内に窒素ガスまたはアルゴンガスを、たとえば0.1リットル/分の流量で、入口32から導入し、出口34から排出する。このガス導入は、容器28内の光学系から酸素ガスを排除するためであり、これにより酸素ガスによる紫外域での吸収の影響をなくす。 The ultraviolet spectroscopic measurement apparatus will be further described. As the ultraviolet light source 10, a deuterium lamp having a transparent window in a spectral region of 180 to 220 nm is used. The far ultraviolet light generated by the ultraviolet light source 10 is collected by a condenser lens (MgF 2 lens) 12 and irradiates a flow cell (light absorption cell) 14. A sampled aqueous solution is introduced into the flow cell 14. The far ultraviolet light transmitted through the flow cell 14 passes through the slit 16 and enters the monochromatic grating spectrometer 18. Here, the transmitted light is reflected by the mirror 20a and the collimating mirror 22, then diffused by the grating mirror (spectral element) 24, further reflected by the collimating mirror 22 and the other mirror 20b, and then passed through the slit 26. Is incident on the ultraviolet light receiving element 28. Since it is difficult to manufacture an interference filter capable of efficiently separating ultraviolet light having a wavelength of 200 nm or less, the grating mirror 24 is used here as a spectroscopic element. The groove pitch of the grating mirror 24 is 2400 / mm, and the blaze wavelength is 250 nm. The grating mirror 24 is placed on a rotating stage (not shown) for changing the wavelength. The ultraviolet light receiving element 28 converts the incident ultraviolet light into a photocurrent corresponding to its intensity. The time required to measure the spectrum in the wavelength range of 180 to 220 nm is as short as 30 seconds, and real-time measurement in line is possible. The optical system described above is accommodated in the hermetic container 28, and nitrogen gas or argon gas is introduced into the container 30 from the inlet 32 and discharged from the outlet 34 at a flow rate of, for example, 0.1 liter / min. This gas introduction is for removing oxygen gas from the optical system in the container 28, thereby eliminating the influence of absorption in the ultraviolet region by the oxygen gas.

図4に示すように、フローセル14内の流路14aには、図示しない測定対象の水溶液からのサンプル液が導入される。なお、図4は、図3の紙面に垂直な断面を示している。このようなフローセルを用いることにより、インラインで連続的に濃度測定が行える。フローセル14の光路長は、遠紫外領域での吸収が大きいため、0.5mmと短くした。なお、フローセル内の水溶液の侵入の深さに照射される光の透過率は182nmの波長で約45%である。   As shown in FIG. 4, a sample liquid from an aqueous solution to be measured (not shown) is introduced into the flow path 14 a in the flow cell 14. 4 shows a cross section perpendicular to the paper surface of FIG. By using such a flow cell, the concentration can be continuously measured in-line. The optical path length of the flow cell 14 is as short as 0.5 mm because of the large absorption in the far ultraviolet region. In addition, the transmittance | permeability of the light irradiated to the penetration depth of the aqueous solution in the flow cell is about 45% at a wavelength of 182 nm.

この装置で使用する受光素子28は、ダイヤモンド薄膜センサであり、エキシマレーザの照度測定などに使用されているものである。0.6mmのスリット24とダイヤモンド薄膜センサを用いて約5nmの波長解像度で測定する。この解像度は、市販の紫外分光測定装置に用いられる光増倍管(0.5nm以下の解像度)に比べて1桁のオーダで劣っている。しかし、測定対象の過酢酸などの吸収バンドが広く、また吸収バンドの肩部で測定するため、この測定ではそのような高解像度は必要でない。また、受光素子28の大きさは、電気回路を含んで3×3×1cmと小さく、また、その動作は安定しているという特徴がある。このような小型の受光素子28を使用するので、測定装置を小型化でき、インライン測定に使用できる。これに対し、光像倍管を用いる市販の紫外分光測定装置は、冷却などを必要とするため寸法が大きく、また、しばしば較正しなければならない。また大きな容積から酸素を排気するための真空モータなども必要となる。このため、市販の紫外分光測定装置はインライン測定に使用できなかった。   The light receiving element 28 used in this apparatus is a diamond thin film sensor, which is used for excimer laser illuminance measurement and the like. Measurement is performed with a wavelength resolution of about 5 nm using a 0.6 mm slit 24 and a diamond thin film sensor. This resolution is inferior on the order of one digit as compared with a photomultiplier tube (resolution of 0.5 nm or less) used in a commercially available ultraviolet spectrometer. However, since the absorption band of peracetic acid or the like to be measured is wide and measurement is performed at the shoulder of the absorption band, such a high resolution is not necessary for this measurement. In addition, the size of the light receiving element 28 is as small as 3 × 3 × 1 cm including the electric circuit, and the operation is stable. Since such a small light receiving element 28 is used, the measuring apparatus can be downsized and used for in-line measurement. On the other hand, a commercially available ultraviolet spectroscopic measuring apparatus using an optical image doubling tube has a large size because it requires cooling or the like, and must often be calibrated. A vacuum motor for exhausting oxygen from a large volume is also required. For this reason, a commercially available ultraviolet spectrometer cannot be used for in-line measurement.

グレーティングミラー24の代わりに、バンドパスミラーを用いてもよい。バンドパスミラーとは、設計波長より短波長の光を反射し、長波長の光を透過するミラーをいう。図5に示される例では、上部に5種のフィルタ40,42,44,46,48の透過率を示している。第1のフィルタ40は、180nm以下の波長の光を反射し183nm以上の波長の光を透過する。第2のフィルタ42は、185nm以下の波長の光を反射し188nm以上の波長の光を透過する。第3のフィルタ44は、190nm以下の波長の光を反射し193nm以上の波長の光を透過する。第4のフィルタ46は、195nm以下の波長の光を反射し198nm以上の波長の光を透過する。第5のフィルタ48は、200nm以下の波長の光を反射し203nm以上の波長の光を透過する。図6に示すように、それらのフィルタを組み合わせ、光路を選択的に切り換えることにより、特定の波長の光を順次サンプルに照射できる。具体的には、これらの5種のフィルタ40〜48を順次並べて、第1のフィルタを透過した光を第2のフィルタに入射させ、第2のフィルタを透過した光を第3のフィルタに入射させる。以下同様に入射と反射を行う。これにより5種のバンド透過特性を実現できる。すなわち、180nm以下の波長の光を透過するバンドパス光路、183〜185nmの波長の光を透過するバンドパス光路、188〜190nmの波長の光を透過するバンドパス光路、193〜195nmの波長の光を透過するバンドパス光路、198〜200nmの波長の光を透過するバンドパス光路を形成できる。また、図6に示す構成では、5種のフィルタ40〜48をそれぞれ2枚用い、各測定光を同一設計のフィルタで2回反射(透過)させることにより、分光性能を向上している(透過率5%×5%=0.25%)。さらに、光路中に、選択的に光路をスイッチする位置に設けた開口部50(図6では1個のみを示す)を有する円板52を挿入し、円板52を回転することにより、測定波長を選択(切り替え)する。   A band pass mirror may be used instead of the grating mirror 24. A bandpass mirror refers to a mirror that reflects light having a shorter wavelength than the design wavelength and transmits light having a longer wavelength. In the example shown in FIG. 5, the transmittances of five types of filters 40, 42, 44, 46 and 48 are shown in the upper part. The first filter 40 reflects light having a wavelength of 180 nm or less and transmits light having a wavelength of 183 nm or more. The second filter 42 reflects light having a wavelength of 185 nm or less and transmits light having a wavelength of 188 nm or more. The third filter 44 reflects light having a wavelength of 190 nm or less and transmits light having a wavelength of 193 nm or more. The fourth filter 46 reflects light having a wavelength of 195 nm or less and transmits light having a wavelength of 198 nm or more. The fifth filter 48 reflects light having a wavelength of 200 nm or less and transmits light having a wavelength of 203 nm or more. As shown in FIG. 6, by combining these filters and selectively switching the optical path, it is possible to sequentially irradiate the sample with light of a specific wavelength. Specifically, these five types of filters 40 to 48 are sequentially arranged so that the light transmitted through the first filter is incident on the second filter, and the light transmitted through the second filter is incident on the third filter. Let Thereafter, incidence and reflection are performed in the same manner. As a result, five types of band transmission characteristics can be realized. That is, a bandpass optical path that transmits light having a wavelength of 180 nm or less, a bandpass optical path that transmits light having a wavelength of 183 to 185 nm, a bandpass optical path that transmits light having a wavelength of 188 to 190 nm, and light having a wavelength of 193 to 195 nm A bandpass optical path that transmits light and a bandpass optical path that transmits light having a wavelength of 198 to 200 nm can be formed. Further, in the configuration shown in FIG. 6, the spectral performance is improved by using two of the five types of filters 40 to 48 and reflecting (transmitting) each measurement light twice with the filter of the same design (transmission). (Rate 5% × 5% = 0.25%). Further, by inserting a disk 52 having an opening 50 (only one is shown in FIG. 6) provided in a position for selectively switching the optical path in the optical path, and rotating the disk 52, the measurement wavelength is measured. Select (switch).

図7は、紫外分光測定装置のデータ処理部を示す。上述の受光素子28から入力される電気信号は、フローセル14の透過光の強度信号である。増幅器60は、受光素子28から入力された強度信号を増幅し、A/D変換器62は、増幅器60から出力されたアナログ信号をデジタル信号に変換する。濃度演算部64は、この透過光強度のデジタル信号を基に、各成分の濃度を演算する。濃度演算部64は、たとえばCPU66を備えるパーソナルコンピュータである。CPU66には、プログラム等を記憶するROM68、ワークエリアであるRAM70、データや各種命令を入力するキーボード、マウスなどの入力装置72および外部に信号を出力する出力装置74、各種プログラムやデータを記憶する補助記憶装置であるハードディスクドライブ76などが接続されている。ROM68は、CPU66を動作させるためのプログラム等を格納している。RAM70は、検量線式や各種データを記憶している。CPU66は、入力されたデジタル信号から各波長での吸光度を演算し、演算した各波長の光の吸光度から検量線式を用いて、薬液中の酸の濃度を演算する。出力装置74は、データ処理の結果を出力するプリンタ、ディスプレイ、データ出力インタフェース等である。   FIG. 7 shows a data processing unit of the ultraviolet spectrometer. The electric signal input from the light receiving element 28 described above is an intensity signal of light transmitted through the flow cell 14. The amplifier 60 amplifies the intensity signal input from the light receiving element 28, and the A / D converter 62 converts the analog signal output from the amplifier 60 into a digital signal. The density calculation unit 64 calculates the density of each component based on the digital signal of the transmitted light intensity. The density calculation unit 64 is a personal computer including a CPU 66, for example. The CPU 66 stores a ROM 68 that stores programs and the like, a RAM 70 that is a work area, a keyboard that inputs data and various commands, an input device 72 such as a mouse, an output device 74 that outputs signals to the outside, and various programs and data. A hard disk drive 76, which is an auxiliary storage device, is connected. The ROM 68 stores a program for operating the CPU 66 and the like. The RAM 70 stores a calibration curve type and various data. The CPU 66 calculates the absorbance at each wavelength from the input digital signal, and calculates the concentration of the acid in the chemical solution from the calculated absorbance of the light at each wavelength using a calibration curve formula. The output device 74 is a printer, a display, a data output interface, or the like that outputs data processing results.

濃度演算部64では、A/D変換器62からデジタル信号である透過光強度信号を受け取り、それから各波長の紫外線の吸光度を演算する。そして、演算した各波長の紫外線の吸光度と、あらかじめ記憶されている検量線式とに基づいて、過酢酸、酢酸および過酸化水素の3成分の濃度を演算する。検量線式は、それらの濃度が既知の複数のサンプルについて複数波長の光の吸光度を測定して、吸光度と各成分の濃度との間の定数項を含む吸光度の多次多項式を用いて多変量解析法により予め求められている。   The concentration calculation unit 64 receives a transmitted light intensity signal, which is a digital signal, from the A / D converter 62, and then calculates the absorbance of ultraviolet light of each wavelength. Then, based on the calculated absorbance of ultraviolet rays of each wavelength and a calibration curve formula stored in advance, the concentrations of the three components peracetic acid, acetic acid and hydrogen peroxide are calculated. A calibration curve is a multivariate measurement using a multi-degree polynomial of absorbance that measures the absorbance of light of multiple wavelengths for multiple samples of known concentrations and contains a constant term between the absorbance and the concentration of each component. It is obtained in advance by an analysis method.

図8は、希釈装置80を組み合わせたインライン測定のためのサンプリング部を示す。このサンプリング部は、殺菌洗浄剤のように紫外吸収が大きいサンプルに用いる。殺菌洗浄剤の水溶液の槽(図示しない)からのサンプル循環ライン82から一部をバイパスライン84にバイパスしてサンプル液を導入し、次に、希釈装置80でサンプル液に純水を混入して1/10に希釈する。そして、希釈したサンプルを紫外分光測定装置のフローセル14に導入する。測定後のサンプルは、上述の漕に戻して循環利用するか、または、排水する。測定サンプルは、不純物で汚染されることはないので、循環利用が可能である。サンプルを槽に戻して再使用する場合は、殺菌洗浄剤を構成する各成分の原液を、槽内の殺菌洗浄剤の濃度が薄くならないように計算された量だけ追加する。すなわち、測定のために濃度を薄めた場合でも、元に戻す場合にそれを補正することは可能である。   FIG. 8 shows a sampling unit for in-line measurement combined with the diluting device 80. This sampling unit is used for a sample having a large ultraviolet absorption such as a sterilizing detergent. A sample solution is introduced by bypassing a part from a sample circulation line 82 from a bath (not shown) of a sterilizing detergent aqueous solution to a bypass line 84, and then pure water is mixed into the sample solution by a diluting device 80. Dilute to 1/10. Then, the diluted sample is introduced into the flow cell 14 of the ultraviolet spectrometer. The sample after the measurement is returned to the above-mentioned dredger and recycled or drained. Since the measurement sample is not contaminated with impurities, it can be recycled. When the sample is returned to the tank and reused, the stock solution of each component constituting the sterilizing detergent is added in an amount calculated so that the concentration of the sterilizing detergent in the tank does not become thin. That is, even when the concentration is reduced for measurement, it can be corrected when returning to the original state.

上述の測定装置を用いて、遠紫外域で吸光度を測定した。図9は、(a)0.02重量%の過酸化水素水溶液、(b)希釈された混酸(0.01重量%の過酢酸、0.02重量%の過酸化水素、0.05重量%の酢酸を含む希釈殺菌洗浄剤)の180〜200nmの波長での吸光度を示す。この図は、殺菌洗浄剤中の過酢酸が190nm以下の短波長域で過酸化水素に比べて大きな吸収を示すことを示している。これは、図1と図2に基づく上述の予測に対応している。   Absorbance was measured in the far ultraviolet region using the above-described measuring apparatus. FIG. 9 shows (a) 0.02 wt% aqueous hydrogen peroxide solution, (b) diluted mixed acid (0.01 wt% peracetic acid, 0.02 wt% hydrogen peroxide, 0.05 wt% The absorbance at a wavelength of 180 to 200 nm is shown. This figure shows that peracetic acid in the sterilizing detergent exhibits a larger absorption than hydrogen peroxide in a short wavelength region of 190 nm or less. This corresponds to the above prediction based on FIG. 1 and FIG.

図10と図11は、CPU66による濃度演算処理のフローを示す。まず、既知濃度のサンプルの測定が開始されると(S10)、A/D変換器62から複数波長での光強度データを入力する(S12)。そして、光強度データから吸光度を演算して記憶する(S14)。次の既知濃度のサンプルがあれば(S16でYES)、上述の処理を繰返す。次の既知濃度のサンプルがなければ(S16でNO)、吸光度と濃度との間の検量線式を演算し(S18)、RAM50に記憶する(S20)。   10 and 11 show a flow of density calculation processing by the CPU 66. FIG. First, when measurement of a sample having a known concentration is started (S10), light intensity data at a plurality of wavelengths is input from the A / D converter 62 (S12). Then, the absorbance is calculated from the light intensity data and stored (S14). If there is a sample of the next known concentration (YES in S16), the above process is repeated. If there is no sample of the next known concentration (NO in S16), a calibration curve formula between the absorbance and the concentration is calculated (S18) and stored in the RAM 50 (S20).

次に、未知濃度のサンプルの測定が開始されると(S22)、A/D変換器62から複数波長での光強度データを入力する(S24)。そして、光強度データから吸光度を演算する(S26)。そして、吸光度と検量線式から濃度を演算し(S28)、RAM70に記憶する(S30)。ここで測定終了か否かを判断し(S32)、終了でなければ、ステップ24に戻り、濃度測定を続ける。   Next, when measurement of a sample having an unknown concentration is started (S22), light intensity data at a plurality of wavelengths is input from the A / D converter 62 (S24). Then, the absorbance is calculated from the light intensity data (S26). Then, the concentration is calculated from the absorbance and the calibration curve (S28) and stored in the RAM 70 (S30). Here, it is determined whether or not the measurement is finished (S32). If not finished, the process returns to step 24 and the density measurement is continued.

図10に示すCPU66の処理における光強度データの処理の手法は、近赤外波長域での分光測定に用いられた、本出願人による特開平6−265471号公報に記載されたものと同様である。データ処理の具体的な内容を以下に説明する。   The method of processing the light intensity data in the processing of the CPU 66 shown in FIG. 10 is the same as that described in Japanese Patent Laid-Open No. 6-265471 by the present applicant, which was used for the spectroscopic measurement in the near infrared wavelength region. is there. Specific contents of the data processing will be described below.

まず、入力された光強度のデジタル信号に対して、次の式(1)による演算処理を実行し、吸光度Aを演算する。

Figure 2006258491
この式において、iは、分光される複数の紫外線波長の順番ないし番号(たとえば、1〜7)であり、Rは、測定対象である酸溶液のi番目の波長の紫外線の透過強度値(または反射強度値)であり、Bは、フローセル14内に導入された基準濃度の酸溶液の、i番目の波長の紫外線の透過強度値(または反射強度値)であり、Dは、フローセル14を遮光したときのi番目の波長の紫外線の透過強度値(または反射強度値)である。なお、BおよびDは、あらかじめ測定されているデータであり、データ処理装置のRAM50に格納されている。 First, a calculation process according to the following equation (1) is performed on the input digital signal of light intensity to calculate the absorbance A i .
Figure 2006258491
In this equation, i is the order or number (for example, 1 to 7) of a plurality of ultraviolet wavelengths to be spectrally separated, and R i is the transmission intensity value of ultraviolet rays of the i-th wavelength of the acid solution to be measured ( or a reflection intensity value), B i is the acid solutions of reference density introduced into the flow cell 14, i-th transmission intensity value of ultraviolet rays having a wavelength (or reflection intensity value), D i is the flow cell 14 is the transmission intensity value (or reflection intensity value) of the ultraviolet light of the i-th wavelength when 14 is shielded. B i and D i are data measured in advance, and are stored in the RAM 50 of the data processing apparatus.

次に、式(1)による演算処理により得られた吸光度Aに、次の式(2)の変換を行う。

Figure 2006258491
Next, the following equation (2) is converted into the absorbance A i obtained by the arithmetic processing according to equation (1).
Figure 2006258491

式(2)の変換を行う理由は以下のとおりである。式(1)により演算される吸光度Aは、紫外線ランプ10の発光強度の変動や、受光素子28の感度変動や、光学系のひずみなどにより変化する。しかし、この変化はあまり波長依存性はなく、各波長の紫外線についての各吸光度データに同相、同レベルで重畳する。したがって、式(2)のように、各波長の間の差をとることにより、この変化を相殺できる。 The reason for performing the conversion of equation (2) is as follows. The absorbance A i calculated by the equation (1) changes due to fluctuations in the light emission intensity of the ultraviolet lamp 10, fluctuations in sensitivity of the light receiving element 28, distortion of the optical system, and the like. However, this change is not very wavelength-dependent, and is superimposed in the same phase and at the same level on each absorbance data for each wavelength of ultraviolet light. Therefore, this change can be offset by taking the difference between the wavelengths as shown in Equation (2).

なお、酸溶液自体の温度変動による吸光度Aの変動や劣化とともに、色の変動や濁りの増加による変動なども発生するが、これらの変動は、よく知られた方法(たとえば特開平3−209149号公報参照)で除去できるので、その説明は省略する。 Incidentally, with variation and degradation in absorbance A i due to temperature variations of the acid solution itself, but also occurs such fluctuations due to an increase in color change and turbidity, these variations are well known methods (e.g. Japanese Patent Laid-Open 3-209149 The description thereof will be omitted.

次に、式(2)により得られたSに基づいて、過酢酸含有薬液における3成分(過酢酸、酢酸と過酸化水素)について、次の式(3)〜式(5)の演算を行い、過酢酸の含有量(濃度)Cと、酢酸の含有量(濃度)Cと、過酸化水素の含有量(濃度)Cを演算する。

Figure 2006258491
Figure 2006258491
Figure 2006258491
Next, based on Si obtained by equation (2), the following equations (3) to (5) are calculated for the three components (peracetic acid, acetic acid and hydrogen peroxide) in the peracetic acid-containing chemical solution. Then, the content (concentration) C 1 of peracetic acid, the content (concentration) C 2 of acetic acid, and the content (concentration) C 3 of hydrogen peroxide are calculated.
Figure 2006258491
Figure 2006258491
Figure 2006258491

式(3)において、F(S)は、過酢酸の検量線式であり、Sについての1次項および高次項を含むとともに、SとSi+1またはその高次項の積であるクロス項および定数項を含み、たとえば、次の式(6)で表される。

Figure 2006258491
式(6)において、SとSi+1は式(1)と式(2)により得られたデータであり、α、βおよびγは検量線式の係数であり、Zは定数項である。式(6)に含まれる各データは、過酢酸、酢酸および過酸化水素の濃度が既知の酸溶液の標準サンプルを用いて濃度測定部64による測定によりあらかじめ求められたものであり、濃度演算部64のRAM70に格納されている。 In the formula (3), F (S i ) is a calibration curve equation peracetic acid, with including first-order terms and higher order terms for S i, S i and S i + 1 or cross section is the product of the higher order terms And a constant term, for example, represented by the following formula (6).
Figure 2006258491
In Equation (6), S i and S i + 1 are data obtained by Equation (1) and Equation (2), α, β, and γ are coefficients of the calibration curve equation, and Z 0 is a constant term. . Each data included in the equation (6) is obtained in advance by measurement by the concentration measuring unit 64 using a standard sample of an acid solution with known concentrations of peracetic acid, acetic acid, and hydrogen peroxide. 64 RAMs 70.

また、式(4)と式(5)において、G(S)とH(S)はそれぞれ酢酸の検量線式と過酸化水素の検量線式であって、いずれも式(6)と同様の形式の式である。これらの検量線式も、過酢酸の検量線式と同様に、過酢酸、酢酸及び過酸化水素の濃度が既知の酸溶液の標準サンプルを用いてあらかじめ求められたものであり、濃度演算部64のRAM70に格納されている。 In the formulas (4) and (5), G (S i ) and H (S i ) are an acetic acid calibration curve formula and a hydrogen peroxide calibration curve formula, respectively. It is an expression of the same form. Similar to the calibration curve formula for peracetic acid, these calibration curve formulas are obtained in advance using a standard sample of an acid solution with known concentrations of peracetic acid, acetic acid and hydrogen peroxide. Stored in the RAM 70.

つまり、この酸溶液中の過酢酸、酢酸及び過酸化水素の濃度の測定においては、波長が180〜220nmの紫外線を、内部に酸溶液が導入されたフローセル14に照射し、フローセル14を透過(または反射)した紫外線を受光素子28に入射させ、受光素子28から出力される紫外線の透過光量(または反射光量)に対応する信号に基づいて、複数の波長の紫外線の吸収量をそれぞれ演算する。以上では、3成分の濃度を求める場合について説明したが、2成分、4成分などの場合も同様に処理できる。   That is, in the measurement of the concentration of peracetic acid, acetic acid, and hydrogen peroxide in the acid solution, the flow cell 14 into which the acid solution is introduced is irradiated with ultraviolet light having a wavelength of 180 to 220 nm and transmitted through the flow cell 14 ( Or, reflected ultraviolet light is incident on the light receiving element 28, and the amounts of absorbed ultraviolet light having a plurality of wavelengths are respectively calculated based on signals corresponding to the transmitted light quantity (or reflected light quantity) of the ultraviolet light output from the light receiving element 28. The case of obtaining the concentration of the three components has been described above, but the same processing can be performed for the case of the two components, the four components, and the like.

次に、過酢酸を含む複数成分の水溶液の中の複数成分の濃度の測定について説明する。そのような水溶液は、1例では、殺菌、洗浄などに用いられる過酢酸含有薬液である。エコラボ(株)製の薬剤(アクティブ90)を純水、過酸化水素水または過酢酸で希釈して、19個の既知濃度の試験溶液を作成した。アクティブ90は、8.6重量%過酢酸、23重量%酢酸、22重量%過酸化水素水及び純水からなる。得られた試験溶液は、0.15〜0.40重量%の過酢酸、0.20〜1.50重量%の過酸化水素および0.20〜1.50重量%の酢酸を含む。それらの濃度(真値)は滴定法で決定した。   Next, the measurement of the concentration of a plurality of components in a multi-component aqueous solution containing peracetic acid will be described. In one example, such an aqueous solution is a peracetic acid-containing chemical solution used for sterilization, washing, and the like. A drug (active 90) manufactured by Ecolab Co., Ltd. was diluted with pure water, hydrogen peroxide solution or peracetic acid to prepare 19 test solutions having known concentrations. Active 90 is composed of 8.6% by weight peracetic acid, 23% by weight acetic acid, 22% by weight hydrogen peroxide and pure water. The resulting test solution contains 0.15 to 0.40 wt% peracetic acid, 0.20 to 1.50 wt% hydrogen peroxide and 0.20 to 1.50 wt% acetic acid. Their concentration (true value) was determined by titration.

表1 試験溶液の組成

Figure 2006258491
Table 1 Composition of test solution
Figure 2006258491

上述の紫外線分光測定装置において、まず、フローセル14に純水を流し、背景スペクトルを測定した。次に、試験溶液を希釈装置80で純水で10倍に希釈し、フローセル14に5ml/分の速度で流し、遠紫外線スペクトルを測定した。ここで、各サンプルは、約1分間流して前のサンプルと置換したのちに測定を行った。なお、サンプルの温度は25℃に保たれた。   In the above-described ultraviolet spectrometer, first, pure water was passed through the flow cell 14 to measure the background spectrum. Next, the test solution was diluted 10 times with pure water by the diluting device 80, and flowed through the flow cell 14 at a rate of 5 ml / min, and the far ultraviolet spectrum was measured. Here, each sample was flowed for about 1 minute to replace the previous sample, and the measurement was performed. Note that the temperature of the sample was kept at 25 ° C.

図12は、上述の19個の試験溶液の180〜220nmの波長域での紫外スペクトルを示す。図12から分かるように、これらの試験溶液の紫外スペクトルの波長依存性は互いにはっきりと異なっている。それは、3成分すなわち過酢酸、酢酸および過酸化水素水のスペクトルが異なるためである。すなわち、図9に示したように、過酢酸の紫外吸収スペクトルの吸収極大は180nmより低い波長にあり、吸光度は波長が短くなっていくと急激に増大する。また、図1に示したように、酢酸の紫外吸収スペクトルは、約205nmに吸収のピークがあり、また、過酸化水素水の吸収スペクトルは、過酢酸と同様に180nm以下にピークがあるが、吸収は緩やかに増大する。   FIG. 12 shows an ultraviolet spectrum in the wavelength range of 180 to 220 nm of the 19 test solutions described above. As can be seen from FIG. 12, the wavelength dependence of the ultraviolet spectra of these test solutions is clearly different from each other. This is because the spectra of the three components, that is, peracetic acid, acetic acid, and hydrogen peroxide water are different. That is, as shown in FIG. 9, the absorption maximum of the ultraviolet absorption spectrum of peracetic acid is at a wavelength lower than 180 nm, and the absorbance rapidly increases as the wavelength becomes shorter. In addition, as shown in FIG. 1, the ultraviolet absorption spectrum of acetic acid has an absorption peak at about 205 nm, and the absorption spectrum of hydrogen peroxide water has a peak at 180 nm or less like peracetic acid. Absorption increases slowly.

この3成分系の紫外スペクトルデータの解析において、上述の多重線形回帰法を採用した。遠紫外域で7波長(182,185,187.5,190,200,205,210nm)を選択し、3成分の濃度を予測する較正モデル(検量線)を作成した。   In the analysis of the three-component ultraviolet spectrum data, the above-described multiple linear regression method was employed. Seven wavelengths (182, 185, 187.5, 190, 200, 205, 210 nm) were selected in the far ultraviolet region, and a calibration model (calibration curve) for predicting the concentration of the three components was created.

図13aは、0〜0.02重量%の濃度の過酢酸についての真値と予測値の対応を示すグラフであり、図13bは、0〜0.15重量%の過酸化水素についての真値と予測値の対応を示すグラフであり、図13cは、0〜0.15重量%の酢酸についての真値と予測値の対応を示すグラフである。いずれの場合も非常によい一致が観測された。相関係数と標準予測誤差は、過酢酸について、0.969と0.002重量%であり、過酸化水素について、0.997と0.003重量%であり、酢酸について、0.967と0.01重量%であった。これより、過酢酸が0.002重量%の精度で測定できることが分かる。この分光測定法で、このように過酸化水素と過酢酸の定量精度が非常に高まったのは、190nm以下の短波長域で過酢酸の濃度に依存する吸収スペクトルが急激に増加するという特性を利用できるためである。   FIG. 13a is a graph showing the correspondence between the true value and the predicted value for peracetic acid at a concentration of 0-0.02 wt%, and FIG. 13b is the true value for 0-0.15 wt% hydrogen peroxide. And FIG. 13c is a graph showing the correspondence between the true value and the predicted value for 0 to 0.15% by weight of acetic acid. In both cases, very good agreement was observed. The correlation coefficients and standard prediction errors are 0.969 and 0.002 wt% for peracetic acid, 0.997 and 0.003% wt for hydrogen peroxide, and 0.967 and 0 for acetic acid. 0.01% by weight. This shows that peracetic acid can be measured with an accuracy of 0.002% by weight. In this spectroscopic measurement method, the quantitative accuracy of hydrogen peroxide and peracetic acid has been greatly improved. The absorption spectrum depending on the concentration of peracetic acid increases rapidly in the short wavelength region of 190 nm or less. This is because it can be used.

なお、200nm以下の波長域では、使用中に酸液中に含まれてくる多くの無機及び有機化合物のスペクトル干渉による悪影響が懸念される。また、水溶液に溶け込む酸素は200nmより下で吸収バンドを示すが、大気圧下では約8ppmと少ないので、影響は無視できると考えられるが、この仮定が正しいかを確認する必要もある。そこで、図14に示すように、(a)新しく希釈した殺菌液の吸光度と(b)使用後の殺菌廃液の170〜300nmでの吸光度を測定した。測定は、鋭いピークを逃さないため、0.1nmの分解能で行った。図14のデータより、この波長域では、汚染物に由来するピークは存在しないことがわかった。(a)と(b)の2つの場合のスペクトルの違いは、過酸化水素による250nm以下での広い吸収の増加によるものである。なぜなら、実際に使用中の殺菌液では、時間経過と共に生じる過酢酸の減少を補うため濃い殺菌液が追加されるので、過酢酸の濃度は一定に保たれているけれども、殺菌液の追加により過酸化水素の濃度は増加していくからである。   In addition, in the wavelength range of 200 nm or less, there is a concern about an adverse effect due to spectral interference of many inorganic and organic compounds contained in the acid solution during use. Moreover, although the oxygen dissolved in the aqueous solution shows an absorption band below 200 nm, the influence is considered to be negligible because it is small at about 8 ppm under atmospheric pressure, but it is necessary to confirm whether this assumption is correct. Therefore, as shown in FIG. 14, (a) the absorbance of the newly diluted sterilizing solution and (b) the absorbance of the used sterilizing waste solution at 170 to 300 nm were measured. The measurement was performed with a resolution of 0.1 nm in order not to miss a sharp peak. From the data in FIG. 14, it was found that there was no peak derived from contaminants in this wavelength region. The difference in spectrum between the two cases (a) and (b) is due to the increase in broad absorption below 250 nm by hydrogen peroxide. This is because, in the sterilizing solution that is actually in use, a thick sterilizing solution is added to compensate for the decrease in peracetic acid that occurs over time, so the concentration of peracetic acid is kept constant. This is because the concentration of hydrogen oxide increases.

表2は、上述の殺菌液における過酢酸、過酸化水素及び酢酸の濃度を、本実施形態による遠紫外分光測定法と滴定法で決定したデータを示す。2種の測定法による結果を比較すると、よく一致しているので、遠紫外分光測定法が非常に有用であることを示している。   Table 2 shows data obtained by determining the concentrations of peracetic acid, hydrogen peroxide and acetic acid in the sterilizing solution by the far ultraviolet spectroscopic measurement method and the titration method according to the present embodiment. When the results of the two measurement methods are compared, they are in good agreement, indicating that the far ultraviolet spectroscopy method is very useful.

表2 新しく希釈した殺菌液と使用後の殺菌廃液における濃度測定の結果

Figure 2006258491
Table 2 Concentration measurement results in newly diluted sterilization liquid and sterilization waste liquid after use
Figure 2006258491

なお、紫外線を照射すると水溶液中で過酢酸と過酸化水素の分解を生じるので、以下の実験を行って分光分析への紫外線照射の影響を確かめた。まず、キュベットセルを純水で満たしてゼロ較正を行った。次に、0.02重量%の過酢酸、0.11重量%の過酸化水素及び0.06重量%の酢酸を含む水溶液をセルに入れて、50Wの重水素ランプを用いて紫外線で3分間照射した。ここで、過酢酸と過酸化水素の濃度を5秒ごとに測定した。図15は、その測定結果を示す。まず、182nmの測定波長で吸光度を5秒間隔で3分間測定した。さらに、他の6波長でも、同様に、セル中のサンプルを置き換えて測定した。このデータは、分解が30秒後に始まることを示している。したがって、前述の測定で用いている5ml/分の流速では、フローセルを通るとき紫外線にさらされる時間は15秒より短いので、インライン測定において紫外線照射によるサンプルの分解はほとんど無視できることがわかった。   In addition, since the decomposition of peracetic acid and hydrogen peroxide occurs in an aqueous solution when irradiated with ultraviolet rays, the following experiment was conducted to confirm the influence of ultraviolet irradiation on spectroscopic analysis. First, zero calibration was performed by filling the cuvette cell with pure water. Next, an aqueous solution containing 0.02% by weight of peracetic acid, 0.11% by weight of hydrogen peroxide and 0.06% by weight of acetic acid was placed in the cell and irradiated with UV light for 3 minutes using a 50 W deuterium lamp. Irradiated. Here, the concentrations of peracetic acid and hydrogen peroxide were measured every 5 seconds. FIG. 15 shows the measurement results. First, the absorbance was measured for 3 minutes at 5 second intervals at a measurement wavelength of 182 nm. Furthermore, the measurement was performed by replacing the sample in the cell at the other six wavelengths in the same manner. This data indicates that the decomposition begins after 30 seconds. Therefore, at the flow rate of 5 ml / min used in the above-mentioned measurement, the time of exposure to ultraviolet rays when passing through the flow cell is shorter than 15 seconds, so that it was found that the sample decomposition due to ultraviolet irradiation is almost negligible in in-line measurement.

なお、上述の例では、過酢酸と過酸化水素水と酢酸の3成分混合水溶液について測定しているが、上述の紫外線分光測定装置及び方法は、一般に過酢酸を含む複数成分を含む水溶液の濃度測定に使用できることはいうまでもない。高精度の測定が可能になったのは、190nm以下の短波長域で過酢酸の濃度に依存する吸収スペクトルが急激に増加するという特性を利用できるためであり、過酢酸以外の成分を限定するものではない。   In the above-described example, measurement is performed on a three-component mixed aqueous solution of peracetic acid, hydrogen peroxide solution, and acetic acid. However, the above-described ultraviolet spectroscopic measurement apparatus and method generally uses a concentration of an aqueous solution containing a plurality of components containing peracetic acid. Needless to say, it can be used for measurement. The reason why high-accuracy measurement is possible is that the characteristic that the absorption spectrum depending on the concentration of peracetic acid increases rapidly in a short wavelength region of 190 nm or less can be used, and components other than peracetic acid are limited. It is not a thing.

以上に説明したように、過酢酸を含む水溶液の遠紫外光学測定において、水溶液中の複数成分の濃度が同時に定量的に測定できた。この方法は、非常に単純であり、分光測定と解析が速く行える。また、たとえば、過酢酸の検出限度は0.002重量%であり、過酸化水素の検出限度は0.003重量%であり、酢酸の検出限度は0.01重量%であった。過酸化水素の濃度は、希釈のため0.2重量%以下にする必要があったが、希釈装置を用いて自動的に測定を行えた。また、測定装置を小型化でき、また、インライン測定にも使用できた。   As explained above, in the far ultraviolet optical measurement of an aqueous solution containing peracetic acid, the concentration of a plurality of components in the aqueous solution could be quantitatively measured simultaneously. This method is very simple and allows rapid spectroscopic measurement and analysis. For example, the detection limit of peracetic acid was 0.002% by weight, the detection limit of hydrogen peroxide was 0.003% by weight, and the detection limit of acetic acid was 0.01% by weight. The concentration of hydrogen peroxide was required to be 0.2% by weight or less for dilution, but the measurement could be automatically performed using a diluter. In addition, the measuring device could be downsized and used for in-line measurement.

(a)1.7重量%の酢酸水溶液、(b)0.2重量%の過酸化水素水溶液、および、(c)希釈された過酢酸系殺菌洗浄剤の紫外域での吸光度のグラフGraph of absorbance in ultraviolet region of (a) 1.7 wt% aqueous acetic acid solution, (b) 0.2 wt% aqueous hydrogen peroxide solution, and (c) diluted peracetic acid-based disinfectant cleaner 図1の吸光度の2次微分のグラフGraph of the second derivative of absorbance in FIG. 濃度測定部の構成の1例を示す図The figure which shows an example of a structure of a density | concentration measurement part フローセルの図Flow cell diagram バンドパスミラーの動作を説明する図Diagram explaining the operation of the bandpass mirror バンドパスミラーの構成を示す図Diagram showing the configuration of a bandpass mirror 濃度演算部のブロック図Block diagram of concentration calculator 希釈装置を組み合わせたインライン測定装置の図Diagram of an in-line measuring device combined with a dilution device (a)0.02%の過酸化水素と(b)希釈された殺菌消毒液の吸光度のグラフGraph of absorbance of (a) 0.02% hydrogen peroxide and (b) diluted disinfectant solution マイクロプロセッサのデータ処理のフローチャートMicroprocessor data processing flowchart マイクロプロセッサのデータ処理のフローチャートMicroprocessor data processing flowchart 複数の過酢酸試料について紫外領域におけるスペクトルのグラフSpectral graphs in the ultraviolet region for several peracetic acid samples. 0〜0.02重量%の過酢酸について真値と予測値の対応を示すグラフGraph showing correspondence between true value and predicted value for 0-0.02% by weight of peracetic acid 0〜0.15重量%の過酸化水素について真値と予測値の対応を示すグラフGraph showing correspondence between true value and predicted value for 0 to 0.15 wt% hydrogen peroxide 0〜0.15重量%の酢酸について真値と予測値の対応を示すグラフGraph showing the correspondence between true value and predicted value for 0-0.15% by weight acetic acid (a)新しく希釈した殺菌液の吸光度と、(b)殺菌廃液の吸光度のグラフ(A) graph of absorbance of newly diluted sterilization solution and (b) absorbance of sterilization waste solution 紫外線照射中のサンプルにおける過酢酸と過酸化水素の分解のグラフGraph of decomposition of peracetic acid and hydrogen peroxide in samples during UV irradiation

符号の説明Explanation of symbols

10 紫外光源、 14 フローセル、 18 単色グレーティング分光器、 26 受光素子、 64 濃度演算部、 66 CPU、 68 ROM、 70 RAM、 80 希釈装置。
10 UV light source, 14 flow cell, 18 monochromatic grating spectroscope, 26 light receiving element, 64 density calculation unit, 66 CPU, 68 ROM, 70 RAM, 80 dilution device.

Claims (9)

過酢酸を含む水溶液の光学的濃度測定方法であって、
既知濃度の過酢酸を含む複数成分の水溶液のサンプルをセルに導入し、セル中のサンプルに対して190nm以下の波長を含む紫外域における異なる波長の光を透過させ、透過光の強度値を測定し、この測定を複数のサンプルについて繰返し、
前記の複数のサンプルの強度値から吸光度を演算し、過酢酸を含む複数成分の濃度と吸光度の間の検量線式を求め、
測定対象の過酢酸を含む水溶液を前記のセルに導入し、セル中の水溶液に対して前記の異なる波長の光を透過させ、透過光の強度値を測定し、
強度値から吸光度を演算し、吸光度と前記検量線式を用いて、前記水溶液中の過酢酸を含む複数成分の濃度を決定する
光学的濃度測定方法。
An optical concentration measurement method for an aqueous solution containing peracetic acid,
Samples of multi-component aqueous solutions containing known concentrations of peracetic acid are introduced into the cell, and light of different wavelengths in the ultraviolet region including wavelengths of 190 nm or less are transmitted to the sample in the cell, and the intensity value of the transmitted light is measured Repeat this measurement for multiple samples,
Calculate the absorbance from the intensity values of the plurality of samples, find a calibration curve formula between the concentration and absorbance of multiple components containing peracetic acid,
An aqueous solution containing peracetic acid to be measured is introduced into the cell, light of the different wavelengths is transmitted through the aqueous solution in the cell, and the intensity value of the transmitted light is measured.
An optical concentration measurement method that calculates an absorbance from an intensity value and determines a concentration of a plurality of components including peracetic acid in the aqueous solution using the absorbance and the calibration curve equation.
前記の複数成分は、過酢酸、過酸化水素および酢酸であることを特徴とする請求項1に記載された濃度測定方法。   The concentration measuring method according to claim 1, wherein the plurality of components are peracetic acid, hydrogen peroxide, and acetic acid. 前記の紫外波長域は、180〜210nmであることを特徴とする請求項1または2に記載された濃度測定方法。   The concentration measurement method according to claim 1, wherein the ultraviolet wavelength region is 180 to 210 nm. 過酢酸を含む複数成分の水溶液を導入するセルと、
190nm以下の波長を含む紫外波長域の光をセルに照射する光源と、
セルからの透過光の光強度を5nm以下で0.2nmより大きい波長分解能で検出する受光素子と、
光源から受光素子までの光路において、190nm以下の波長を含む異なる波長に光を分光する分光素子と
を備えた濃度測定装置。
A cell for introducing a multi-component aqueous solution containing peracetic acid;
A light source that irradiates the cell with light in an ultraviolet wavelength region including a wavelength of 190 nm or less;
A light receiving element for detecting the light intensity of transmitted light from the cell with a wavelength resolution of 5 nm or less and greater than 0.2 nm;
A concentration measuring device comprising: a spectroscopic element that splits light into different wavelengths including a wavelength of 190 nm or less in an optical path from a light source to a light receiving element.
前記の受光素子はダイヤモンド薄膜センサーであることを特徴とする、請求項4に記載された濃度測定装置。   5. The concentration measuring apparatus according to claim 4, wherein the light receiving element is a diamond thin film sensor. 前記の分光素子は、それぞれ異なる設計波長より短波長を反射し、その設計波長より長波長を透過する複数のフィルタからなり、これらの複数のフィルタを光路中に設計波長の順に並べ、いずれかのフィルタから反射される特定波長の光を選択して出射することを特徴とする、請求項4または5に記載された濃度測定装置。   The spectroscopic element is composed of a plurality of filters that reflect shorter wavelengths than different design wavelengths and transmit longer wavelengths than the design wavelengths, and arrange these filters in the optical path in the order of the design wavelengths. 6. The concentration measuring apparatus according to claim 4, wherein light having a specific wavelength reflected from the filter is selected and emitted. 前記の分光素子は、180〜210nmの波長域の光を分光することを特徴とする請求項4〜6のいずれかに記載された濃度測定装置。   The concentration measuring apparatus according to claim 4, wherein the spectroscopic element splits light in a wavelength region of 180 to 210 nm. さらに、
前記の過酢酸を含む複数成分の濃度と吸光度との関係を示す検量線式を記憶する記憶手段と、
前記の受光素子が出力する光強度信号から吸光度を演算し、前記の吸光度から前記検量線式に基づいて過酢酸を含む複数成分の濃度を決定する濃度演算手段と
を備えたことを特徴とする、請求項4〜7のいずれかに記載された濃度測定装置。
further,
Storage means for storing a calibration curve equation indicating the relationship between the concentration and absorbance of a plurality of components containing the peracetic acid;
A concentration calculating means for calculating an absorbance from a light intensity signal output from the light receiving element, and determining a concentration of a plurality of components including peracetic acid based on the calibration curve formula from the absorbance; The concentration measuring device according to any one of claims 4 to 7.
前記のセルは、サンプルが連続的に導入されるフローセルであり、さらに、フローセルに導入されるサンプルを水で希釈する希釈装置を備えることを特徴とする、請求項4〜8のいずれかに記載された濃度測定装置。
9. The cell according to claim 4, wherein the cell is a flow cell into which a sample is continuously introduced, and further includes a diluting device for diluting the sample introduced into the flow cell with water. Concentration measuring device.
JP2005073628A 2005-03-15 2005-03-15 Apparatus and method for measuring the concentration of an acid solution containing peracetic acid Active JP4722513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073628A JP4722513B2 (en) 2005-03-15 2005-03-15 Apparatus and method for measuring the concentration of an acid solution containing peracetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073628A JP4722513B2 (en) 2005-03-15 2005-03-15 Apparatus and method for measuring the concentration of an acid solution containing peracetic acid

Publications (2)

Publication Number Publication Date
JP2006258491A true JP2006258491A (en) 2006-09-28
JP4722513B2 JP4722513B2 (en) 2011-07-13

Family

ID=37097935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073628A Active JP4722513B2 (en) 2005-03-15 2005-03-15 Apparatus and method for measuring the concentration of an acid solution containing peracetic acid

Country Status (1)

Country Link
JP (1) JP4722513B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075447A (en) * 2009-09-30 2011-04-14 Kurabo Ind Ltd Method and instrument for measuring concentration of water-soluble radical species in aqueous solution
KR101271103B1 (en) 2012-01-31 2013-06-04 삼성테크윈 주식회사 Method and apparatus of measuring concentration of sample using a general camera
JP2016038303A (en) * 2014-08-08 2016-03-22 株式会社日立ハイテクノロジーズ Liquid analyzer
EP2459996A4 (en) * 2009-07-27 2016-10-19 Diversey Inc Systems and methods for detecting an h202 level in a cold aseptic filling system that uses a peracetic acid cleaning solution
JP2020020778A (en) * 2018-06-05 2020-02-06 クロネス アーゲー Method and measurement device for measuring peracetic acid concentration in peracetic acid and hydrogen peroxide-containing sterilizing medium
CN113218892A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measuring apparatus and measuring method
JP6995329B1 (en) 2021-09-06 2022-01-14 サラヤ株式会社 Indicator for measuring percarboxylic acid concentration, method for measuring percarboxylic acid concentration using it

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244341A (en) * 1988-03-25 1989-09-28 Seki Electron Kk Light absorbing type ozone concentration measuring device
JPH04173097A (en) * 1990-11-08 1992-06-19 Tokyo Rika Kikai Kk Method for measuring amount of bacterium cell
JPH0666718A (en) * 1992-03-04 1994-03-11 Wr Grace & Co Connecticut Simultaneous monitoring of many water-processing performance indicators
JPH07190931A (en) * 1993-11-20 1995-07-28 Horiba Ltd Gas analyzer and gas analyzing mechanism
JP2640847B2 (en) * 1987-12-19 1997-08-13 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for analyzing peracid and reagent for analysis
JP2002502636A (en) * 1998-02-06 2002-01-29 ステリス コーポレイション Electrochemical synthesis of peracetic acid and other oxidants
JP2004037173A (en) * 2002-07-02 2004-02-05 Iwasaki Electric Co Ltd Ultraviolet sensor and ultraviolet illuminometer
JP2004279339A (en) * 2003-03-18 2004-10-07 Kurabo Ind Ltd Concentration measuring instrument
JP2005181008A (en) * 2003-12-17 2005-07-07 Kurabo Ind Ltd Device and method for concentration measurement of acid solution

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640847B2 (en) * 1987-12-19 1997-08-13 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for analyzing peracid and reagent for analysis
JPH01244341A (en) * 1988-03-25 1989-09-28 Seki Electron Kk Light absorbing type ozone concentration measuring device
JPH04173097A (en) * 1990-11-08 1992-06-19 Tokyo Rika Kikai Kk Method for measuring amount of bacterium cell
JPH0666718A (en) * 1992-03-04 1994-03-11 Wr Grace & Co Connecticut Simultaneous monitoring of many water-processing performance indicators
JPH07190931A (en) * 1993-11-20 1995-07-28 Horiba Ltd Gas analyzer and gas analyzing mechanism
JP2002502636A (en) * 1998-02-06 2002-01-29 ステリス コーポレイション Electrochemical synthesis of peracetic acid and other oxidants
JP2004037173A (en) * 2002-07-02 2004-02-05 Iwasaki Electric Co Ltd Ultraviolet sensor and ultraviolet illuminometer
JP2004279339A (en) * 2003-03-18 2004-10-07 Kurabo Ind Ltd Concentration measuring instrument
JP2005181008A (en) * 2003-12-17 2005-07-07 Kurabo Ind Ltd Device and method for concentration measurement of acid solution

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2459996A4 (en) * 2009-07-27 2016-10-19 Diversey Inc Systems and methods for detecting an h202 level in a cold aseptic filling system that uses a peracetic acid cleaning solution
JP2011075447A (en) * 2009-09-30 2011-04-14 Kurabo Ind Ltd Method and instrument for measuring concentration of water-soluble radical species in aqueous solution
KR101271103B1 (en) 2012-01-31 2013-06-04 삼성테크윈 주식회사 Method and apparatus of measuring concentration of sample using a general camera
JP2016038303A (en) * 2014-08-08 2016-03-22 株式会社日立ハイテクノロジーズ Liquid analyzer
JP2020020778A (en) * 2018-06-05 2020-02-06 クロネス アーゲー Method and measurement device for measuring peracetic acid concentration in peracetic acid and hydrogen peroxide-containing sterilizing medium
JP7300311B2 (en) 2018-06-05 2023-06-29 クロネス アーゲー Method and apparatus for measuring peracetic acid concentration in peracetic acid and hydrogen peroxide-containing disinfectants
CN113218892A (en) * 2020-02-05 2021-08-06 阿自倍尔株式会社 Measuring apparatus and measuring method
JP6995329B1 (en) 2021-09-06 2022-01-14 サラヤ株式会社 Indicator for measuring percarboxylic acid concentration, method for measuring percarboxylic acid concentration using it
WO2023032239A1 (en) * 2021-09-06 2023-03-09 サラヤ株式会社 Indicator for measuring percarboxylic acid concentration and method for measuring percarboxylic acid concentration using same
JP2023038124A (en) * 2021-09-06 2023-03-16 サラヤ株式会社 Percarboxylic acid concentration measurement indicator and percarboxylic acid concentration measurement method using the same

Also Published As

Publication number Publication date
JP4722513B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4722513B2 (en) Apparatus and method for measuring the concentration of an acid solution containing peracetic acid
JP6436266B2 (en) Water quality analyzer
EP0418799B1 (en) Quantitative determination method of chemicals for processing semiconductor and an apparatus thereof
US20110307187A1 (en) Spectroscopic analyzer and spectroscopic analysis method
KR102662656B1 (en) Gas analysis methods and devices
US20150021491A1 (en) Method and apparatus for measuring concentration of advanced-oxidation active species
JP4372567B2 (en) Method for measuring water and aqueous solution by ultraviolet light
JP4048139B2 (en) Concentration measuring device
JP6547507B2 (en) Residual chlorine measurement system, residual chlorine measurement method, and program
TW200944776A (en) Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
JP2005187844A (en) Device and method for regenerating acid solution and measuring concentration
Loring et al. Infrared spectra of phthalic acid, the hydrogen phthalate ion, and the phthalate ion in aqueous solution
Pettas et al. Simultaneous spectra-kinetic determination of peracetic acid and hydrogen peroxide in a brewery cleaning-in-place disinfection process
JP2019207137A (en) Calibration curve setting method for use in medicine analysis
JP2005181008A (en) Device and method for concentration measurement of acid solution
Kim et al. Comparison of near-infrared and Raman spectroscopy for on-line monitoring of etchant solutions directly through a Teflon tube
JP4634596B2 (en) Dissolved ozone concentration measuring device
JP3824904B2 (en) Method for measuring the concentration of a solution containing an alkali component and hydrogen peroxide
JP2017032502A (en) Residual chlorine measurement system and program
Birks et al. Portable ozone calibration source independent of changes in temperature, pressure and humidity for research and regulatory applications
JP2000022255A (en) Method for stabilizing and controlling fluorine gas concentration and control mechanism thereof
JP2000131228A (en) Spectroscopic measurement method using ultraviolet rays and near infrared rays
KR20110061491A (en) Method and apparatus for measuring silica concentration
KR20240112258A (en) Ingredient concentration measuring device, component concentration measuring program, and component concentration measuring method
Bollyky Ozone in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4722513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250