JP2000131228A - Spectroscopic measurement method using ultraviolet rays and near infrared rays - Google Patents

Spectroscopic measurement method using ultraviolet rays and near infrared rays

Info

Publication number
JP2000131228A
JP2000131228A JP10302100A JP30210098A JP2000131228A JP 2000131228 A JP2000131228 A JP 2000131228A JP 10302100 A JP10302100 A JP 10302100A JP 30210098 A JP30210098 A JP 30210098A JP 2000131228 A JP2000131228 A JP 2000131228A
Authority
JP
Japan
Prior art keywords
data
ultraviolet
infrared
converted
affected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10302100A
Other languages
Japanese (ja)
Other versions
JP4167765B2 (en
Inventor
Hiroshi Yokota
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP30210098A priority Critical patent/JP4167765B2/en
Publication of JP2000131228A publication Critical patent/JP2000131228A/en
Application granted granted Critical
Publication of JP4167765B2 publication Critical patent/JP4167765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately obtain a characteristic value of a sample from ultraviolet absorbance data and near infrared absorbance data, by eliminating influence of respective independent fluctuation factors in a near infrared spectroscopy process and an ultraviolet spectroscopy process, preferably, by eliminating influence of fluctuation factors common to both the processes. SOLUTION: A dichroic mirror 63 has a characteristic transmitting near infrared rays and reflecting ultraviolet rays. The mirror 63 converges light from two light sources 61, 62 to one light beam. Then, the light beam is transmitted through an interference filter 64. An interference filter disc 65 has plural interference filters 64 having different transmission wavelengths. The transmitted light beam through the interference filter 64 passes through a cell 66 and is received by a sensor. The sensor is a composite element comprising a silicon photodiode for receiving light in an ultraviolet area and a germanium photodiode for receiving light in a near infrared area. The sensor converts a light intensity into a current intensity, while an A/D converter converts the current intensity into a digital value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、紫外領域と近赤外
領域で特性吸収をするサンプルの特性値(濃度など)を
測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring characteristic values (concentrations, etc.) of a sample that absorbs characteristics in an ultraviolet region and a near infrared region.

【0002】[0002]

【従来の技術】薬液の濃度の管理は、たとえば半導体製
造工程において、半導体ウエハの洗浄,エッチングなど
のウエット処理工程において必要である。薬液の濃度測
定について、本出願人による特開平3−175341号
公報に記載された測定法では、近赤外線を使用してイオ
ン水和による変化の度合いから複数成分の定量を行う。
たとえば過酸化水素スペクトルは、近赤外領域では、水
スペクトルと良く似ていて、そのわずかな差を高精度に
測定して過酸化水素の定量を行っていた。しかし、その
領域で明確な特性吸収を持たない成分、例えば、アンモ
ニアと過酸化水素の混合水溶液の場合の過酸化水素定量
などに関しては、どうしても測定精度が悪いという問題
があった。
2. Description of the Related Art It is necessary to control the concentration of a chemical solution in a wet process such as cleaning and etching of a semiconductor wafer, for example, in a semiconductor manufacturing process. Regarding the measurement of the concentration of a chemical solution, in the measurement method described in Japanese Patent Application Laid-Open No. 3-175341 by the present applicant, a plurality of components are quantified based on the degree of change due to ion hydration using near infrared rays.
For example, the hydrogen peroxide spectrum is very similar to the water spectrum in the near-infrared region, and the slight difference is measured with high precision to quantify the hydrogen peroxide. However, there is a problem that the measurement accuracy is inevitably low for components having no clear characteristic absorption in that region, for example, for the determination of hydrogen peroxide in the case of a mixed aqueous solution of ammonia and hydrogen peroxide.

【0003】[0003]

【発明が解決しようとする課題】ところが、薬液中の測
定対象成分の分子に2重結合(C=C、C=O、N=N)
が存在する場合などでは、紫外領域に強い吸収が存在す
ることが知られている。上記の過酸化水素の例でも紫外
領域に強い吸収がある。そのため、紫外領域に強い吸収
のある成分は、紫外線で測定して、近赤外領域で特性吸
収を持っている成分は近赤外線で測定して、両成分を高
精度で測定するということが考えられる。ただし、多く
の場合、紫外領域に強い吸収のある成分も近赤外領域に
いくぶんかスペクトル変化の影響があり、その逆の近赤
外領域で特性吸収を持っている成分もいくぶんか紫外領
域のスペクトルに影響を持っている。そのため、紫外領
域のデータと近赤外領域のデータを組み合わせて、それ
ぞれの干渉を補正して、後の濃度定量に用いなければな
らない。
However, a double bond (C = C, C = O, N = N) is added to the molecule of the component to be measured in the drug solution.
It is known that strong absorption is present in the ultraviolet region when is present. The above example of hydrogen peroxide also has strong absorption in the ultraviolet region. Therefore, it is considered that components having strong absorption in the ultraviolet region are measured with ultraviolet light, components having characteristic absorption in the near infrared region are measured with near infrared light, and both components are measured with high accuracy. Can be However, in many cases, components having strong absorption in the ultraviolet region also have some spectral change effect in the near-infrared region, while components having characteristic absorption in the near-infrared region also have some absorption in the ultraviolet region. Has an effect on the spectrum. Therefore, it is necessary to combine the data in the ultraviolet region and the data in the near-infrared region to correct the respective interferences and use the corrected data in the subsequent concentration determination.

【0004】本発明の目的は、紫外線吸光度データと近
赤外線吸光度データから特性値を正確に求める測定方法
を提供することである。
An object of the present invention is to provide a measuring method for accurately determining a characteristic value from ultraviolet light absorbance data and near infrared light absorbance data.

【0005】[0005]

【課題を解決するための手段】近赤外線のデータ測定と
紫外線のデータ測定は、同一分光器でできることが望ま
しい。しかし、両領域にまたがって感度を有する高感
度、高安定のセンサが存在しないことと、両領域にまた
がって発光強度を有する高強度、高安定の光源が存在し
ないことなどから、紫外領域と近赤外領域では分光過程
が異なることになる。ただし、安定な測定のためには、
同一測定対象ポイントに両種の光束を照射することが必
要である。もしこの条件が満足しない場合は、測定対象
の場所ごとに成分濃度条件が異なったり、とりわけ液体
などでは、泡による散乱条件の変化などで、紫外線デー
タを基にした近赤外線データの補正とか、その逆の補正
操作がうまくいかなくなる。そこで、本発明に係る分光
測定方法では、同一測定対象ポイントに両種の光束を照
射することにした。本発明に係る紫外線と近赤外線を使
用した分光測定方法では、サンプルの透過強度または反
射強度を紫外線分光過程と近赤外線分光過程により測定
する分光測定装置において、既知特性値のサンプルの吸
光度データを紫外線と近赤外線の複数波長で測定する。
次に、測定により得られた複数波長の紫外線吸光度デー
タを、紫外線分光に関係する装置変動に影響されないよ
うに変換し、また、測定により得られた複数波長の近赤
外線吸光度データを、近赤外線分光に関係する装置変動
に影響されないように変換する。こうして、近赤外線分
光過程と紫外線分光過程について、それぞれ独立の変動
要因の影響をデータから除去する。変換された紫外線と
近赤外線のデータを説明変数として、サンプルの特性値
を得るための重回帰式を求める。特性値は、たとえば液
体の濃度である。未知サンプルの特性値を求めるとき
は、測定データから装置変動の影響を除去し、そのデー
タを重回帰式(検量線)に代入する。好ましくは、装置
変動に影響されないように変換された前記の紫外線のデ
ータと近赤外線のデータについて、さらに、紫外線のデ
ータと近赤外線のデータの分散を一致するように変換す
る。そして、分散が一致された紫外線と近赤外線のデー
タを重回帰式の説明変数とする。好ましくは、装置変動
に影響されないように変換された前記の紫外線のデータ
と近赤外線のデータについて、さらに、紫外線分光過程
と近赤外線分光過程の両方に共通の変動要因に影響され
ないようにデータを変換する。そして、共通の変動要因
に影響されないように変換された紫外線と近赤外線のデ
ータを重回帰式の説明変数とする。好ましくは、データ
の分散を一致するように変換された前記の紫外線のデー
タと近赤外線のデータについて、さらに、紫外線分光過
程と近赤外線分光過程の両方に共通の変動要因に影響さ
れないようにデータを変換する。そして、共通の変動要
因に影響されないように変換された紫外線と近赤外線の
データを重回帰式の説明変数とする。
It is desirable that data measurement of near infrared rays and data measurement of ultraviolet rays can be performed by the same spectroscope. However, since there is no high-sensitivity, high-stable sensor that has sensitivity across both regions, and because there is no high-intensity, high-stable light source that has emission intensity across both regions, it is close to the ultraviolet region. The spectral process will be different in the infrared region. However, for stable measurement,
It is necessary to irradiate the same measurement point with both types of light beams. If this condition is not satisfied, the component concentration conditions will differ depending on the location of the measurement object, especially in liquids, etc., due to changes in scattering conditions due to bubbles, etc., correction of near-infrared data based on ultraviolet data, The reverse correction operation does not work. Therefore, in the spectroscopic measurement method according to the present invention, the same measurement target point is irradiated with both types of light beams. In the spectroscopic measurement method using ultraviolet light and near-infrared light according to the present invention, in a spectrometer for measuring the transmission intensity or reflection intensity of a sample by an ultraviolet spectroscopic process and a near-infrared spectroscopic process, the absorbance data of a sample having a known characteristic value And multiple wavelengths of near infrared.
Next, the multi-wavelength ultraviolet absorbance data obtained by the measurement is converted so as not to be affected by apparatus fluctuations related to the ultraviolet spectroscopy, and the multi-wavelength near-infrared absorbance data obtained by the measurement is converted to near-infrared spectroscopy. Is converted so as not to be affected by device fluctuations related to. In this way, the effects of independent fluctuation factors for the near-infrared spectroscopy process and the ultraviolet spectroscopy process are removed from the data. Using the converted ultraviolet and near-infrared data as explanatory variables, a multiple regression equation for obtaining the characteristic value of the sample is obtained. The characteristic value is, for example, the concentration of the liquid. When obtaining the characteristic value of the unknown sample, the influence of the device fluctuation is removed from the measured data, and the data is substituted into a multiple regression equation (calibration curve). Preferably, the ultraviolet data and the near-infrared data converted so as not to be affected by apparatus fluctuations are further converted so that the variances of the ultraviolet data and the near-infrared data match. Then, the data of the ultraviolet ray and the near infrared ray whose variances are matched are used as explanatory variables of the multiple regression equation. Preferably, for the ultraviolet data and near-infrared data converted so as not to be affected by device fluctuations, the data is further converted so as not to be affected by a common variation factor in both the ultraviolet spectroscopy process and the near-infrared spectroscopy process. I do. Then, the ultraviolet and near-infrared data converted so as not to be affected by the common fluctuation factors are used as explanatory variables of the multiple regression equation. Preferably, the ultraviolet data and the near-infrared data converted so as to match the variance of the data, and further, the data so as not to be affected by a common variation factor in both the ultraviolet spectroscopy process and the near-infrared spectroscopy process. Convert. Then, the ultraviolet and near-infrared data converted so as not to be affected by the common fluctuation factors are used as explanatory variables of the multiple regression equation.

【0006】[0006]

【発明の実施の形態】以下、添付の図面を参照して本発
明の実施の形態の測定法を説明する。この測定法では、
紫外線と近赤外線を使用して、紫外線と近赤外線の両方
で吸収をする液体の特性値(たとえば濃度)を測定する。
この方法を用いて測定する薬液の具体例として、アンモ
ニアと過酸化水素の混合液、塩酸と過酸化水素の混合
液、硫酸と過酸化水素の混合液、フッ酸と過酸化水素の
混合液、フッ酸とオゾンの混合液、フッ酸と硝酸と酢酸
の混合液、リン酸と硝酸と酢酸の混合液がある。概し
て、C=C、C=O、N=Nの2重結合を有している分
子を含む混合液である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A measuring method according to an embodiment of the present invention will be described below with reference to the accompanying drawings. In this measurement,
Ultraviolet and near-infrared light are used to determine the characteristic value (eg, concentration) of a liquid that absorbs both ultraviolet and near-infrared light.
Specific examples of the chemical solution measured using this method include a mixed solution of ammonia and hydrogen peroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of hydrofluoric acid and hydrogen peroxide, There are a mixture of hydrofluoric acid and ozone, a mixture of hydrofluoric acid, nitric acid and acetic acid, and a mixture of phosphoric acid, nitric acid and acetic acid. Generally, it is a mixture containing molecules having a double bond of C = C, C = O, N = N.

【0007】測定に用いる分光測定装置は、紫外線測定
部と近赤外線測定部とからなる。両測定部に共通の分光
器のセルに導入した同じ液体サンプルについて紫外線と
近赤外線を透過し、透過強度を紫外線測定部と近赤外線
測定部により測定する。したがって、セルの中のサンプ
ルの同一測定対象点に紫外線と近赤外線の光束を照射し
て測定するので、測定における補正が容易になる。
[0007] The spectrometer used for the measurement includes an ultraviolet ray measuring section and a near infrared ray measuring section. Ultraviolet light and near-infrared light are transmitted through the same liquid sample introduced into the spectrometer cell common to both measurement units, and the transmission intensity is measured by the ultraviolet measurement unit and the near-infrared measurement unit. Therefore, the measurement is performed by irradiating the same measurement target point of the sample in the cell with the luminous flux of the ultraviolet ray and the near-infrared ray, so that the correction in the measurement is facilitated.

【0008】セルの同一測定対象点に紫外線と近赤外線
の光束を照射して測定するので、測定データに影響する
因子は、紫外線分光過程に関するものと、近赤外線分光
過程に関するものと、紫外線分光過程と近赤外線分光過
程にともに関するものとがある。そこで、紫外線吸光度
データと近赤外線吸光度データをそのまま説明変数とし
て用いた換算式を求めるのではなく、紫外線吸光度デー
タは、その紫外線分光手段に特有の変動量を除いたデー
タに変換して、同じく近赤外線吸光度データも、その近
赤外線分光手段に特有の変動量を除いたデータに変換す
る。こうして、近赤外線分光過程と紫外線分光過程にわ
たって、それぞれ独立の部分に関しては、その装置から
起因する誤差変動量は、近赤外線分光の場合も、紫外線
分光の場合もそれぞれ初期段階で除去する。好ましく
は、次に、変換された紫外線のデータと近赤外線のデー
タの分散を一致させる。また、好ましくは、紫外線分光
過程と近赤外線分光過程にともに関する変動要因の影響
を除く。こうして、共通の変動要因から起因する誤差変
動量は、それぞれ独立に変動する部分に関する誤差変動
量を除去してから変換されることになる。
[0008] Since the measurement is performed by irradiating the same measurement target point of the cell with ultraviolet rays and near-infrared rays, factors affecting the measurement data are those relating to the ultraviolet spectroscopy process, those relating to the near infrared spectroscopy process, and those relating to the ultraviolet spectroscopy process. And those related to near-infrared spectroscopy. Therefore, instead of obtaining a conversion formula using the ultraviolet absorbance data and the near-infrared absorbance data as they are as explanatory variables, the ultraviolet absorbance data is converted into data excluding the variation specific to the ultraviolet spectroscopic means, and the near-infrared data is similarly calculated. The infrared absorbance data is also converted into data excluding the fluctuation amount peculiar to the near-infrared spectroscopic means. In this manner, for the independent portions in the near-infrared spectroscopy process and the ultraviolet spectroscopy process, the error fluctuation amount caused by the device is removed at the initial stage in both the near-infrared spectroscopy and the ultraviolet spectroscopy. Preferably, the variances of the converted ultraviolet data and near-infrared data are then matched. In addition, preferably, the influence of a variation factor relating to both the ultraviolet spectral process and the near infrared spectral process is excluded. In this manner, the error fluctuation amounts resulting from the common fluctuation factors are converted after removing the error fluctuation amounts relating to the independently fluctuating portions.

【0009】測定に用いる重回帰式(検量線)は次のよ
うに求められる。まず、紫外線と近赤外線の複数波長で
既知特性値のサンプルの吸光度データを測定する。そし
て、測定により得られた複数波長の紫外線吸光度データ
を、紫外線分光に関係する装置変動に影響されないよう
に変換し、測定により得られた複数波長の近赤外線吸光
度データを、近赤外線分光に関係する装置変動に影響さ
れないように変換する。こうして変換されたデータにつ
いて、好ましくは、変換された紫外線のデータと近赤外
線のデータの分散を一致させる。また、好ましくは、紫
外線分光過程と近赤外線分光過程の両方に共通の変動要
因に影響されないように変換する。最後に、上述の変換
され、及び/又は、分散を一致された前記の紫外線と近
赤外線のデータを説明変数として、サンプルの特性値
(たとえば液体の濃度)を求めるための重回帰式を求め
る。したがって、重回帰式は、紫外線吸光度データと近
赤外線吸光度データをそのまま説明変数として用いたも
のではない。重回帰式を求める前に、紫外線吸光度デー
タは、その紫外線分光手段に特有の変動量を除いたデー
タに変換して、同じく近赤外線吸光度データも、その近
赤外線分光手段に特有の変動量を除いたデータに変換し
ている。好ましくはさらにデータの分散や共通の変動要
因などについても処理したものである。未知特性値のサ
ンプルの測定においては、測定データから装置変動の影
響を除く。次に、得られたデータを重回帰式(検量線)
に代入して、未知サンプルの特性値を求める。
The multiple regression equation (calibration curve) used for the measurement is obtained as follows. First, absorbance data of a sample having a known characteristic value at a plurality of wavelengths of ultraviolet light and near infrared light is measured. Then, the multi-wavelength ultraviolet absorbance data obtained by the measurement is converted so as not to be affected by the device fluctuation related to the ultraviolet spectroscopy, and the multi-wavelength near-infrared absorbance data obtained by the measurement is related to the near-infrared spectroscopy. Conversion is performed so as not to be affected by device fluctuation. Regarding the data thus converted, preferably, the variances of the converted ultraviolet data and near-infrared data are matched. Preferably, the conversion is performed so as not to be affected by a variation factor common to both the ultraviolet spectral process and the near infrared spectral process. Finally, a multiple regression equation for determining the characteristic value of the sample (for example, the concentration of the liquid) is determined by using the above-described converted and / or dispersion-matched ultraviolet and near-infrared data as explanatory variables. Therefore, the multiple regression equation does not directly use the ultraviolet light absorbance data and the near infrared light absorbance data as explanatory variables. Before obtaining the multiple regression equation, the UV absorbance data is converted to data excluding the fluctuation amount peculiar to the ultraviolet spectroscopic means, and the near infrared absorbance data is also excluded from the fluctuation amount peculiar to the near infrared spectroscopic means. Data. Preferably, data variance and common fluctuation factors are also processed. In the measurement of a sample having an unknown characteristic value, the influence of apparatus fluctuation is removed from the measurement data. Next, multiple regression equation (calibration curve)
To obtain the characteristic value of the unknown sample.

【0010】上述の紫外線吸光度データと近赤外線吸光
度データのそれぞれについての誤差変動、または、紫外
線吸光度データと近赤外線吸光度データに共通の誤差変
動を除く変換方法としては、主成分分析法などの一般的
手法を利用できる。主成分分析法では、一番有効なデー
タが取れる方向に主成分を求めて、第1から第N主成分
までを採用して、その方向に線形変換をしてもよい。そ
の場合は、採用しなかった主成分に分光部特有の変動量
が大方存在しているという仮定がある。また、本出願人
が特開平3−209149号公報に記された方法を使用
して線形変換をしてもよい。ここでは特開平3−209
149号公報に示した方法を用いる。この方法では、紫
外線ランプ変動データと紫外線センサ変動データはベク
トルとみなし、あらかじめその方向が判っていることが
多いのでその方向と直交する方向に線形変換をする。ま
ず、単位あたりのサンプルの温度変動に対する複数波長
での出力変化Δ1、Δ2、・・・を以下のように測定波長数
に等しい次元のベクトルTとして表す。 T=(Δ1,Δ2,・・・) 同様に、単位あたりのサンプル散乱変動と機器温度変動
に対する出力変化もベクトルS、Mと表す。次に、 P・T=0 P・S=0 P・M=0 の3式が成り立つベクトルPを求める。このPの解とし
て独立なものは、この場合3つ存在する。それらを
1、P2、P3とする。このP1、P2、P3は、いずれも
ベクトルT、S、Mに直交する部分空間を形成するベク
トルである。次に、既知サンプルについて得られた実測
データを、測定波長数に等しい次元のベクトルA=(A
1,A2,...)とし、次の演算によりこの部分空間に射
影して誤差変動の影響を受けないデータX1,X2,X3
に変換する。 X1=P1・A X2=P2・A X3=P3・A X1,X2,X3は、それぞれAをP1,P2,P3で表され
る部分空間に射影したデータであり、上記の誤差変動の
影響を全く受けない。
As a conversion method for eliminating the above-mentioned error fluctuation of each of the above-mentioned ultraviolet absorbance data and near-infrared absorbance data, or a common error fluctuation between the ultraviolet absorbance data and the near-infrared absorbance data, a general method such as a principal component analysis method is used. Techniques are available. In the principal component analysis method, a principal component may be obtained in a direction in which the most effective data can be obtained, and the first to N-th principal components may be employed, and linear transformation may be performed in that direction. In such a case, it is assumed that the fluctuation amount peculiar to the spectroscopic unit mostly exists in the main components not adopted. Further, the present applicant may perform linear conversion using a method described in Japanese Patent Application Laid-Open No. 3-209149. Here, JP-A-3-209
No. 149 is used. In this method, the ultraviolet lamp variation data and the ultraviolet sensor variation data are regarded as vectors, and their directions are often known in advance, so that linear conversion is performed in a direction orthogonal to the directions. First, the output changes Δ 1 , Δ 2 ,... At a plurality of wavelengths with respect to the temperature fluctuation of the sample per unit are expressed as a vector T of a dimension equal to the number of measured wavelengths as follows. T = (Δ 1 , Δ 2 ,...) Similarly, the output change with respect to the sample scattering fluctuation per unit and the equipment temperature fluctuation is also expressed as vectors S and M. Next, a vector P that satisfies the following three equations, P · T = 0 P · S = 0 P · M = 0, is obtained. In this case, there are three independent solutions of P. Let them be P 1 , P 2 and P 3 . P 1 , P 2 , and P 3 are vectors forming a subspace orthogonal to the vectors T, S, and M. Next, the measured data obtained for the known sample is converted into a vector A = (A
1, A 2, ...) and then, the data X 1 which is not affected by the error variation by projecting the next operation in this subspace, X 2, X 3
Convert to X 1 = P 1 · A X 2 = P 2 · A X 3 = P 3 · A X 1 , X 2 , and X 3 project A to a subspace represented by P 1 , P 2 , and P 3 , respectively. This data is not affected by the above-mentioned error fluctuation at all.

【0011】以下に3つの測定例について説明する。 (測定例1)アンモニアと過酸化水素の混合水溶液にお
ける濃度を測定する。この混合液は、半導体製造ライン
において、シリコンウエハの洗浄に用いられている。液
の特性として、アンモニアはガスとして蒸散し、過酸化
水素は分解して水に変わる。両者とも薄くなるように変
化する。この混合比は洗浄能力とシリコンウエハへのダ
メージにかかわっているので、オンラインでその両方の
濃度を精度良く測定することが望まれている。
Hereinafter, three measurement examples will be described. (Measurement Example 1) The concentration in a mixed aqueous solution of ammonia and hydrogen peroxide is measured. This mixed solution is used for cleaning a silicon wafer in a semiconductor manufacturing line. As a characteristic of the liquid, ammonia evaporates as a gas, and hydrogen peroxide decomposes to water. Both change to be thin. Since this mixing ratio is related to the cleaning ability and damage to the silicon wafer, it is desired to accurately measure the concentrations of both on-line.

【0012】図1は、薬液濃度測定装置の構成を示す。
洗浄槽2からの液をポンプ4により吸引して、分光器6
のセル66に導入する。図2が分光器6の構造を示す。
近赤外領域の光源はハロゲンランプ61であり、紫外線
領域の光源62はD2(重水素)ランプである。ダイクロ
イックミラー63は、近赤外線を透過して紫外線を反射
する特性を持っている。ダイクロイックミラー63によ
り、2つの光源61,62からの光をひとつの光束にし
た後、干渉フィルタ64に透過させる。干渉フィルタデ
ィスク65は透過波長の異なる複数のフィルタ64を並
べたものであり、ディスク65は毎秒20回で回転して
いる。フィルタ64の構成は、近赤外領域では8波長で
あり、具体的には980, 1040, 1080, 1110, 1150, 1200,
1255,1300nmを使用している。また、紫外線領域では6
波長であり、220, 230, 260,280, 300, 330nmを使用し
ている。干渉フィルタ64を通過した光は、セル66を
通過する。セル長は10mmである。セル66を通過した
光はセンサ67で受光する。このセンサ67はシリコン
フォトダイオードとゲルマニウムフォトダイオードの複
合素子(浜松ホトニクス社製)であり、紫外領域の光は
前者で、近赤外領域の光は後者で受光する。センサ67
は、光の強度を電流に変えて、その強度をAD変換によ
りデジタル値に変換する。
FIG. 1 shows the configuration of a chemical concentration measuring device.
The liquid from the cleaning tank 2 is sucked by the pump 4 and the spectroscope 6
To the cell 66. FIG. 2 shows the structure of the spectroscope 6.
The light source in the near infrared region is a halogen lamp 61, and the light source 62 in the ultraviolet region is a D2 (deuterium) lamp. The dichroic mirror 63 has a property of transmitting near infrared rays and reflecting ultraviolet rays. The light from the two light sources 61 and 62 is converted into one light beam by the dichroic mirror 63 and then transmitted through the interference filter 64. The interference filter disk 65 is formed by arranging a plurality of filters 64 having different transmission wavelengths, and the disk 65 rotates 20 times per second. The configuration of the filter 64 is eight wavelengths in the near infrared region, and specifically, 980, 1040, 1080, 1110, 1150, 1200,
1255,1300nm is used. In the ultraviolet region, 6
The wavelength is 220, 230, 260, 280, 300, 330 nm. The light that has passed through the interference filter 64 passes through the cell 66. The cell length is 10 mm. The light passing through the cell 66 is received by the sensor 67. The sensor 67 is a composite element (manufactured by Hamamatsu Photonics) of a silicon photodiode and a germanium photodiode. Light in the ultraviolet region is received by the former, and light in the near infrared region is received by the latter. Sensor 67
Converts the light intensity into a current and converts the intensity into a digital value by AD conversion.

【0013】測定においては、セル66中に基準サンプ
ルとして、水を入れておき、その透過強度をまず測定す
る。その各波長の強度値Wλとして、上述の14個の波
長のデータW220, W230, 〜, W1300をメモリに格納す
る。次にセル66中に測定すべきサンプルを入れる。そ
の強度値をSλとし、次の演算により吸光度Aλを求め
る。得られた強度Aλを紫外領域と近赤外領域に分け
る。紫外領域のAλをUλと記し、近赤外領域のAλ
λと記す。 Aλ=−LOG10(Sλ/Wλ) ここで、紫外領域での重水素ランプ62の強度変動とシ
リコンフォトダイオードセンサの感度変動を含めた各波
長の変動比Cλを、(C220, C230, C260, C280, C
300, C330)と記せば、この例では以下のようになっ
た。この変動は外乱要因として装置設置温度が考えられ
るので、このデータを取得する場合は、装置を恒温槽に
入れて、設定温度を変化させれば、その前後での吸光度
変化率が以下の値になる。 (1.2, 1.1, 1.05, 1.04, 1.04, 1.00) アンモニアと過酸化水素の混合液測定の場合、過酸化水
素の吸収が、270nmより短い波長では強すぎるので、22
0, 230, 260nmの3波長は、測定はするが、以下の演算
には使用しない。残りの280, 300, 330nmの3波長での
変動比Cλだけを次のように書き出す。 (1.04, 1.04, 1.00)
In the measurement, water is put in the cell 66 as a reference sample, and its transmission intensity is measured first. The data W 220 , W 230 ,..., W 1300 of the above-mentioned 14 wavelengths are stored in the memory as the intensity value W λ of each wavelength. Next, the sample to be measured is placed in the cell 66. The intensity value and S lambda, determine the absorbance A lambda by the following calculation. The resulting intensity A λ divided into the ultraviolet region and the near-infrared region. The A λ in the ultraviolet region marked U λ, referred to as the A λ of the near-infrared region N λ. A λ = -LOG 10 (S λ / W λ) here, the variation ratio of each wavelength including the sensitivity variation of the intensity change and a silicon photodiode sensor deuterium lamp 62 in the ultraviolet region C lambda, (C 220 , C 230 , C 260 , C 280 , C
300 , C 330 ), this example is as follows. This fluctuation can be caused by the temperature of the equipment installed as a disturbance factor.To obtain this data, put the equipment in a constant temperature bath and change the set temperature. Become. (1.2, 1.1, 1.05, 1.04, 1.04, 1.00) When measuring a mixture of ammonia and hydrogen peroxide, the absorption of hydrogen peroxide is too strong at wavelengths shorter than 270 nm.
The three wavelengths of 0, 230, and 260 nm are measured but not used in the following calculations. Only the variation ratio C λ at the remaining three wavelengths of 280, 300, and 330 nm is written as follows. (1.04, 1.04, 1.00)

【0014】次に、複数の紫外線吸光度データを、紫外
線分光に関係する装置変動に影響されないように変換す
る。この変換において、本出願人が特開平3−2091
49号公報に記載した方法を使用する。紫外領域を測定
するのは主に過酸化水素の濃度を測定するためである。
それによる吸光度変化を最大限に取得して、なおかつ装
置変動を除去できるように、上述の3つの吸光度からひ
とつのパラメータを求める。過酸化水素の単位濃度あた
りの吸光度変化率を上記変動率と同じく括弧形式で表せ
ば、以下のようになる。 (0.30, 0.15, 0.01) この2つの括弧で表したデータを3次元のベクトルA,
Bとみなすことができる。 A=(0.30, 0.15, 0.01) B=(1.04, 1.04, 1.00) Bベクトルに直交していて、Aベクトルの方向になるべ
く近い方向へ射影する変換で得られるデータが求めるパ
ラメータである。それを X=(x1, x2, x3) とすれば、次式より求めることができる。図3から、X
=A−qBと表して、X・B=0 になるようなqを求め
れば良い。まとめれば、 X=A−((A・B)/(B・B))B である。具体的な値を代入すれば、 X=(0.1428, -0.007, -0.1411) すなわち K=0.1428U280−0.007U300−0.1411U330 と変換すれば、Bベクトルの変化に影響されないように
変換できる。
Next, a plurality of ultraviolet absorbance data are converted so as not to be affected by apparatus fluctuations related to ultraviolet spectroscopy. In this conversion, the present applicant has disclosed in
The method described in Japanese Patent Publication No. 49 is used. The purpose of measuring the ultraviolet region is mainly to measure the concentration of hydrogen peroxide.
One parameter is obtained from the above three absorbances so as to obtain the maximum change in the absorbance and remove fluctuations in the apparatus. If the rate of change in absorbance per unit concentration of hydrogen peroxide is expressed in parenthesis as in the above rate of change, the following is obtained. (0.30, 0.15, 0.01) The data expressed by these two parentheses is converted into a three-dimensional vector A,
B can be considered. A = (0.30, 0.15, 0.01) B = (1.04, 1.04, 1.00) Data obtained by conversion orthogonal to the B vector and projected in a direction as close as possible to the direction of the A vector is a parameter to be obtained. If X = (x 1 , x 2 , x 3 ), it can be obtained from the following equation. From FIG. 3, X
= A−qB, and q that satisfies X · B = 0 may be obtained. In summary, X = A-((AB) / (BB)) B. By substituting a specific value, X = (0.1428, -0.007, -0.1411), ie, K = 0.1428U 280 -0.007U 300 -0.1411U 330 , can be converted so as not to be affected by the change of the B vector. .

【0015】近赤外線領域のデータに関して、近赤外領
域のハロゲン・タングステンランプ強度変動とゲルマニ
ウムフォトダイオードセンサの感度変動を含めた各波長
の変動比Cλを、(C980, C1040, C1080
1110, C1150, C1200, C1255, C1300) と記せ
ば、この例では以下のようになった。この変動は外乱要
因として装置設置温度が考えられるので、このデータを
取得する場合は、装置を恒温槽に入れて、設定温度を変
化させれば、その前後での吸光度変化率が以下の値にな
る。 (1.00, 1.04, 1.01, 1.03, 1.01, 1.02, 1.04, 1.03) また、近赤外領域のスペクトルは水溶液の温度変動の影
響が大きく、水が10℃変化すれば、吸光度変化率は以
下の値になる。 (0.0053, -0.0020, -0.0009, 0.0007, 0.0171, -0.003
0, -0.0090, -0.0010)
Regarding the data in the near infrared region, the fluctuation ratio C λ of each wavelength including the halogen / tungsten lamp intensity fluctuation in the near infrared region and the sensitivity fluctuation of the germanium photodiode sensor is expressed by (C 980 , C 1040 , C 1080). ,
C 1110 , C 1150 , C 1200 , C 1255 , C 1300 ), the following was obtained in this example. This fluctuation can be caused by the temperature of the equipment installed as a disturbance factor.To obtain this data, put the equipment in a constant temperature bath and change the set temperature. Become. (1.00, 1.04, 1.01, 1.03, 1.01, 1.02, 1.04, 1.03) The spectrum in the near infrared region is greatly affected by the temperature fluctuation of the aqueous solution. become. (0.0053, -0.0020, -0.0009, 0.0007, 0.0171, -0.003
0, -0.0090, -0.0010)

【0016】次に、複数の近赤外線吸光度データを、近
赤外線分光に関係する装置変動に影響されないように変
換する。この変換において、紫外線分光の場合と同じ
く、本出願人が特開平3−209149号公報に記載し
た方法を使用する。近赤外領域を測定するのは主にアン
モニアの濃度を測定するためである。それによる吸光度
変化を最大限に取得して、なおかつ装置変動とサンプル
の温度変動を除去できるように、8つの吸光度からひと
つのパラメータを求める。アンモニアの濃度1wt%あた
りの吸光度変化率を上記変動率と同じく括弧形式で表せ
ば、以下のようになる。 (-0.0037, 0.0088, 0.0010, -0.0003, -0.0065, -0.001
8, 0.0003, 0.0047) 以上の3つの括弧で表したデータを8次元のベクトルと
見なすことができる。
Next, a plurality of near-infrared absorbance data are converted so as not to be affected by apparatus fluctuations related to near-infrared spectroscopy. In this conversion, as in the case of ultraviolet spectroscopy, the present applicant uses the method described in JP-A-3-209149. The reason for measuring the near infrared region is mainly to measure the concentration of ammonia. One parameter is obtained from the eight absorbances so that the change in absorbance due to the change is obtained to the maximum and the fluctuation in the apparatus and the fluctuation in the temperature of the sample can be removed. If the rate of change in absorbance per 1 wt% of ammonia concentration is expressed in parenthesis as in the above rate of change, the following is obtained. (-0.0037, 0.0088, 0.0010, -0.0003, -0.0065, -0.001
(8, 0.0003, 0.0047) The data expressed in the three parentheses can be regarded as an 8-dimensional vector.

【0017】D=(-0.0037, 0.0088, 0.0010, -0.0003,
-0.0065, -0.0018, 0.0003,0.0047) E=(1.00, 1.04, 1.01, 1.03, 1.01, 1.02, 1.04, 1.0
3) F=(0.0053, -0.0020, -0.0009, 0.0007, 0.0171, -0.
0030, -0.0090,-0.0010) とすれば、EベクトルとFベクトルに直交していて、D
ベクトルの方向になるべく近い方向へ射影する変換で得
られるデータが求めるパラメータである。それを Y=(y1, y2, y3, y4, y5, y6, y7, y8) と表せば、以下のように求めることができる。
D = (-0.0037, 0.0088, 0.0010, -0.0003,
-0.0065, -0.0018, 0.0003,0.0047) E = (1.00, 1.04, 1.01, 1.03, 1.01, 1.02, 1.04, 1.0
3) F = (0.0053, -0.0020, -0.0009, 0.0007, 0.0171, -0.
0030, -0.0090, -0.0010), it is orthogonal to the E and F vectors and D
Data obtained by a conversion projecting in a direction as close as possible to the direction of the vector is a parameter to be obtained. If it is expressed as Y = (y 1 , y 2 , y 3 , y 4 , y 5 , y 6 , y 7 , y 8 ), it can be obtained as follows.

【0018】図4から、EベクトルとFベクトルの線形
結合で得られるベクトルをGベクトルとする。Gベクト
ルは次式で表される。 G=sE+tF Y=D−Gと表して、Y・G=0 になるようなsとt
を求めれば良い。このパラメータs、tは、Y・G=0
の時、ベクトルYの長さが最小になるという条件から簡
単に求められる。Yの長さの2乗値Lは、次式で表され
る。D, E,Fベクトルの成分をdI, eI, fIとすれ
ば、 L=Σ(dI−seI−tfI)2 このL値は、 ∂L/∂s=0 ∂L/∂t=0 の2式を満足する。展開すると次式になる。 sΣeI 2+tΣeII = ΣeII sΣeII+tΣfI 2 = ΣfII よって、 s=ΣeII/(ΣeI 2ΣfI 2−(ΣeII)2) t=ΣfII/(ΣeI 2ΣfI 2−(ΣeII)2) と表される。このs、tを使い Y=D−G=D−(sE+tF) よりYベクトルを求める。実際の値に適用すると、s=
0.000654, t=−0.37416であり、 Y=(-0.00237, 0.00737, 0.00000, -0.00071, -0.0007
6, -0.00359,-0.00375, O.00365) である。すなわち J=−0.00237N980+0.00737N1040−0.00000N1080
0.00071N1110−0.00076N1150−0.00359N1200−0.003
75N1255+0.00365N1300 と変換すれば、Eベクトル、Fベクトルの変化に影響さ
れないように変換できる。
From FIG. 4, a vector obtained by a linear combination of the E vector and the F vector is defined as a G vector. The G vector is represented by the following equation. G = sE + tF Y = DG, s and t such that Y · G = 0
Should be obtained. These parameters s and t are Y · G = 0.
In this case, the length can be easily obtained from the condition that the length of the vector Y is minimized. The square value L of the length of Y is represented by the following equation. Assuming that the components of the D, E, and F vectors are d I , e I , and f I , L = Σ (d I −se I −tf I ) 2 This L value is given by ∂L / ∂s = 0 0L / Δt = 0 is satisfied. When expanded, the following equation is obtained. sΣe I 2 + tΣe I f I = Σe I d I sΣe I f I + tΣf I 2 = Σf I d I Therefore, s = Σe I d I / (Σe I 2 Σf I 2 - (Σe I f I) 2) t = Σf I d I / (Σe I 2 Σf I 2- (Σe I f I ) 2 ). Using these s and t, a Y vector is obtained from Y = DG = D− (sE + tF). When applied to actual values, s =
0.000654, t = -0.37416, Y = (-0.00237, 0.00737, 0.00000, -0.00071, -0.0007
6, -0.00359, -0.00375, O.00365). That J = -0.00237N 980 + 0.00737N 1040 -0.00000N 1080 -
0.00071N 1110 -0.00076N 1150 -0.00359N 1200 -0.003
If converted to 75N 1255 + 0.00365N 1300 , conversion can be performed without being affected by changes in the E vector and F vector.

【0019】次に、以上のように装置変動が影響されな
いように変換された紫外線のデータKと近赤外線のデー
タJを分散を一致させて、アンモニアと過酸化水素の両
方の濃度を精度良く求める。ここで、JとKのデータの
S/Nを一致させておく。すなわち、必要ならば、S/
Nが近くなるように、重み係数をかける。 M=K/SU N=J/SN ここに、SUは、あらかじめ実験で求めておいた紫外線
分光部の誤差の標準偏差量であり、SNは、あらかじめ
実験で求めておいた近赤外線分光部の誤差の標準偏差量
である。図5は、NをX軸に、MをY軸にとり、アンモ
ニアと過酸化水素の各種混合液のデータをプロットした
グラフであり、同一アンモニア濃度に関して、線を引い
ている。また、図7は、NをX軸に、MをY軸にとり、
アンモニアと過酸化水素の各種混合液のデータをプロッ
トしたグラフであり、同一過酸化水素濃度に関して、線
を引いている。
Next, the data K of the ultraviolet ray and the data J of the near infrared ray which have been converted so as not to be affected by the fluctuation of the apparatus are made to have the same variance, and the concentrations of both ammonia and hydrogen peroxide are accurately obtained. . Here, the S / N of the data of J and K is matched. That is, if necessary, S /
A weighting factor is applied so that N is close. Here M = K / S U N = J / S N, S U is the standard deviation of the error in the ultraviolet spectral portion that has been determined in advance experimentally, S N is near that had been determined in advance experimentally This is the standard deviation of the error of the infrared spectroscopy unit. FIG. 5 is a graph in which N is set on the X axis and M is set on the Y axis, and data of various mixed liquids of ammonia and hydrogen peroxide are plotted. Lines are drawn for the same ammonia concentration. FIG. 7 shows N on the X axis and M on the Y axis.
It is the graph which plotted the data of various mixed liquids of ammonia and hydrogen peroxide, and draws a line about the same hydrogen peroxide concentration.

【0020】なお、好ましくは、データKとJを、たと
えば特開平3−209149号公報に記載した方法を使
用して、紫外線分光過程と近赤外線分光過程の両方に共
通の変動要因に影響されないように変換する。近赤外線
分光過程と紫外線分光過程の両方にまたがっている部分
は、それぞれ独立の部分に関する誤差変動量を除去して
から処理することになる。両方にまたがっている部分の
典型的な例は、測定対象まわりであり、サンプルが液体
の場合はセルになる。紫外線分光過程と近赤外線分光過
程の両方に共通の変動要因には、同一セルを透過してい
る場合、サンプルの温度変動、セルの窓板汚れ、セル長
変動、サンプルの散乱変動などがある。液体でない場合
は、測定ポイントの表面状態による光散乱条件などがそ
れになる。これらは、近赤外データと紫外データの両方
を効率良く使用する必要があるため、それぞれのS/N
を一致させることが好ましい。このようにして近赤外デ
ータと紫外データから、両方にまたがった変動量を除去
する。このようにして除去された後のデータは、成分の
濃度など定量演算に使いたい情報が十分存在して、かつ
定量演算への妨害情報は効率良く除去されている。
It is preferable that the data K and J are not affected by a variation factor common to both the ultraviolet spectroscopy process and the near-infrared spectroscopy process using, for example, a method described in Japanese Patent Application Laid-Open No. 3-209149. Convert to The portion that covers both the near-infrared spectroscopy process and the ultraviolet spectroscopy process is processed after removing the amount of error variation for each independent portion. A typical example of a portion that spans both is around an object to be measured, and becomes a cell when the sample is a liquid. Fluctuation factors common to both the ultraviolet spectroscopy process and the near-infrared spectroscopy process include sample temperature fluctuation, cell window plate contamination, cell length fluctuation, and sample scattering fluctuation when transmitted through the same cell. If the liquid is not a liquid, the light scattering conditions depending on the surface state of the measurement point are the same. Since it is necessary to use both near-infrared data and ultraviolet data efficiently, their S / N
Are preferably matched. In this way, the variation over both the near-infrared data and the ultraviolet data is removed. In the data after the removal in this manner, there is sufficient information to be used for the quantitative calculation, such as the concentration of the components, and the interference information to the quantitative calculation is efficiently removed.

【0021】次に、変動要因を除くように変換されたデ
ータを説明変数として、サンプルの知りたい特性値(例
えば濃度データ)を求める重回帰式を求める。図6は、
Z軸にアンモニア濃度にして、図5のデータを3次元の
曲面で最小2乗法で適合した結果を示す。曲面式は、次
式で表された。 アンモニア濃度=86.983N−0.58731M−98.6907N2
0.208974M2+15.821MN+606.98M3−0.0531N3−88.
958M2N−0.4704MN2
Next, a multiple regression equation for obtaining a characteristic value (for example, density data) of the sample that is desired to be obtained is obtained using the data converted so as to remove the fluctuation factor as an explanatory variable. FIG.
The results of fitting the data of FIG. 5 to a three-dimensional curved surface by the least squares method with the ammonia concentration on the Z axis are shown. The surface equation was expressed by the following equation. Ammonia concentration = 86.983N-0.58731M-98.6907N 2 +
0.208974M 2 + 15.821MN + 606.98M 3 -0.0531N 3 -88.
958M 2 N-0.4704MN 2

【0022】図8は、Z軸に過酸化水素濃度にして、図
7のデータを3次元の曲面で最小2乗法で適合した結果
である。データの曲面式は、次式で表された。 過酸化水素濃度=−109.32N+14.743M+2406.97N2
3.3155M2−205.873MN−12427.1M3+0.41837N3+94
6.616M2N+19.5979MN2 この2つの曲面が、検量線式であり、未知の濃度のアン
モニアと過酸化水素の混合液を測定して、N値とM値を
求めて、この式に代入すれば、アンモニアの濃度と過酸
化水素の濃度を精度よく求めることができる。以上に説
明したように、測定例1では、複数の紫外線データから
ひとつの変換データKを求めて、複数の近赤外線データ
からひとつの変換データJを求める。KとJの2つのデ
ータを説明変数として、それぞれアンモニア濃度と過酸
化水素濃度の換算式を最小2乗法回帰演算で求めた。
FIG. 8 shows the result of fitting the data of FIG. 7 to a three-dimensional curved surface by the least squares method with the hydrogen peroxide concentration on the Z axis. The surface equation of the data was expressed by the following equation. Hydrogen peroxide concentration = -109.32N + 14.743M + 2406.97N 2 -
3.3155M 2 -205.873MN-12427.1M 3 + 0.41837N 3 +94
6.616M 2 N + 19.5979 MN 2 These two curved surfaces are the calibration curve formula, measure the mixed solution of ammonia and hydrogen peroxide of unknown concentration, find the N value and M value, and substitute them into this formula. For example, the concentration of ammonia and the concentration of hydrogen peroxide can be accurately obtained. As described above, in Measurement Example 1, one conversion data K is obtained from a plurality of ultraviolet data, and one conversion data J is obtained from a plurality of near-infrared data. Using the two data of K and J as explanatory variables, conversion formulas of the ammonia concentration and the hydrogen peroxide concentration were respectively obtained by a least squares regression calculation.

【0023】(測定例2)紫外線吸光度と近赤外線吸光
度は測定例1と同様に測定される。次に、複数の紫外線
吸光度データを、紫外線分光に関係する装置変動に影響
されないように、たとえば特開平3−209149号公
報に記載した方法を使用して、変換する。すなわち、紫
外領域の3つの波長での吸光度を、紫外分光器の変動比
(1.04, 1.04, 1.00)の方向に直交する空間に射影変換す
る。この場合は、この空間は2次元平面になる。測定例
1では、3つの吸光度から1つの軸へ射影変換した。そ
の場合、過酸化水素の変化量が最大限にするという条件
が余分に入れたためである。現実には、過酸化水素の変
化量は、その濃度毎にその方向が少しずつ変化するの
で、1つのベクトルの方向で代表するのは、濃度変化量
が少ない場合はよいが、大きい場合は情報の多少の欠落
が発生する。そこで、測定例2では、3つの吸光度か
ら、すぐに1つのデータに変換するのではなく、2つの
データに変換する。
(Measurement Example 2) The ultraviolet absorbance and the near infrared absorbance are measured in the same manner as in Measurement Example 1. Next, a plurality of ultraviolet absorbance data are converted using, for example, a method described in Japanese Patent Application Laid-Open No. 3-209149 so as not to be affected by apparatus fluctuations related to ultraviolet spectroscopy. That is, the absorbance at three wavelengths in the ultraviolet region is determined by the variation ratio of the ultraviolet spectrometer.
Projective transformation to a space orthogonal to the direction of (1.04, 1.04, 1.00). In this case, this space becomes a two-dimensional plane. In Measurement Example 1, the three light absorbances were projected and converted into one axis. In this case, the condition that the amount of change of hydrogen peroxide is maximized is added. In reality, the change amount of hydrogen peroxide changes its direction little by little for each concentration. Therefore, the direction of one vector is represented by the direction of one vector when the change amount of the concentration is small, Some lack of occurs. Thus, in Measurement Example 2, the three absorbances are not immediately converted to one data, but are converted to two data.

【0024】B=(1.04, 1.04, 1.00) に直交する2次
元空間の基底ベクトルをX1, X2とすれば、 B・X1=0 B・X2=0 X1・X2=0 が成り立つX1、X2 を求めればよい。変数が6個で式
が3個であるから、一義的に決定しないが、ひとつのX
1またはX2 が求まれば、後の解はこれの線形結合式で
表される。以下が求めた値である。 X1= (-0.3976,-0.3976, 0.8270) X2= (-0.3976, 0.3976, 0.0000) K1=−0.3976U280−0.3976U300+0.8270U3302=−0.3976U280+0.3976U300 と変換すれば、Bベクトルの変化に影響されないデータ
に変換できる。
Assuming that base vectors in a two-dimensional space orthogonal to B = (1.04, 1.04, 1.00) are X 1 and X 2 , BX 1 = 0 BX 2 = 0 X 1 X 2 = 0 X 1 and X 2 satisfying the following condition may be obtained. Since there are six variables and three expressions, it is not decided uniquely, but one X
If 1 or X 2 is obtained, the later solution is expressed by a linear combination equation. The following are the values determined. X 1 = (-0.3976, -0.3976, 0.8270) X 2 = (-0.3976, 0.3976, 0.0000) K 1 = -0.3976U 280 -0.3976U 300 + 0.8270U 330 K 2 = -0.3976U 280 + 0.3976U 300 With the conversion, the data can be converted into data that is not affected by the change in the B vector.

【0025】同様に、複数の近赤外線吸光度データを、
近赤外線分光に関係する装置変動に影響されないよう
に、変換する。すなわち、近赤外線領域のデータに関し
て、8波長の吸光度からサンプルの温度変動と近赤外分
光器の装置温度変動の2つの変動を取り除いた6個のデ
ータYi(i=1〜6)に変換する。装置温度変化率は、 E=(1.00, 1.04, 1.01, 1.03, 1.01, 1.02, 1.04, 1.0
3) と表し、サンプルの温度変化率は、 F=(0.0053, -0.0020, -0.0009, 0.0007, 0.0171, -0.
0030, -0.0090,-0.0010) と表し、以下の式を満足するYi(i=1〜6)を求め
る。これも一義的に決定しないが、ひとつのYiが求ま
れば、後の解はこれの線形結合式で表される。 E・Yi=0 F・Yi=0 Yi・Yj=0 Yi・Yi=1 (ここに、i=1〜6、j=1〜6、i≠
j)
Similarly, a plurality of near-infrared absorbance data are
Conversion is performed so as not to be affected by device fluctuations related to near-infrared spectroscopy. That is, the data in the near-infrared region is converted into six data Y i (i = 1 to 6) obtained by removing two variations of the sample temperature variation and the device temperature variation of the near-infrared spectrometer from the absorbance at eight wavelengths. I do. The device temperature change rate is E = (1.00, 1.04, 1.01, 1.03, 1.01, 1.02, 1.04, 1.0
3), and the temperature change rate of the sample is F = (0.0053, -0.0020, -0.0009, 0.0007, 0.0171, -0.
0030, -0.0090, -0.0010), and Y i (i = 1 to 6) satisfying the following expression is obtained. This is also not uniquely determined, but if one Y i is obtained, the subsequent solution can be expressed by a linear combination thereof. E · Y i = 0 F · Y i = 0 Y i · Y j = 0 Y i · Y i = 1 (where i = 1 to 6, j = 1 to 6, i ≠
j)

【0026】実際の値より求めたYi(i=1〜6)を以下
に記す。 Y1=(-0.1022,-0.6481, 0.0000, 0.0000, 0.0000, 0.0
000, 0.0000, 0.7546) Y2=(-0.0737,-0.3986, 0.8435, 0.0000, 0.0000, 0.0
000, 0.0000,-0.3524) Y3=(-0.2710,-0.2053,-0.2097, 0.8917, 0.0000, 0.0
000, 0.0000,-0.2130) Y4=( 0.8544,-0.3235,-0.1460, 0.1122,-0.3244, 0.0
000, 0.0000,-0.1621) Y5=(-0.0999,-0.2529,-0.2247,-0.1965, 0.1375, 0.8
745, 0.0000,-0.2308) Y6=(-0.0228,-0.2479,-0.2093,-0.1648, 0.3323,-0.2
743, 0.7967,-0.2160) したがって、 J1=−0.1022N980−0.6481N1040−0.0000N1080−0.
0000N1110−0.0000N1150−0.0000N1200−0.0000N
1255+0.7546N13002=−0.0737N980−0.3986N1040+0.8435N1080−0.
0000N1110−0.0000N1150−0.0000N1200−0.0000N
l255−0.3524N13003=−0.2710N980−0.2053N1040−0.2097N1080+0.
8917N1110−0.0000N1150−0.0000N1200−0.0000N
1255−0.2130N13004= 0.8544N980−0.3235N1040−0.1460N1080+0.
1122N1110−0.3244N1150−0.0000N1200−0.0000N
1255−0.1621N13005=−0.0999N980−0.2529N1040−0.2247N1080−0.
1965N1110+0.1375N1150+0.8745N1200−0.0000N
1255−0.2308N13006=−0.0228N980−0.2479N1040−0.2093N1080−0.
1648N1110+0.3323N1150−0.2743N1200+0.7967N
1255−0.2160N1300
Y i (i = 1 to 6) obtained from actual values are described below. Y 1 = (-0.1022, -0.6481, 0.0000, 0.0000, 0.0000, 0.0
000, 0.0000, 0.7546) Y 2 = (-0.0737, -0.3986, 0.8435, 0.0000, 0.0000, 0.0
000, 0.0000, -0.3524) Y 3 = (-0.2710, -0.2053, -0.2097, 0.8917, 0.0000, 0.0
000, 0.0000, -0.2130) Y 4 = (0.8544, -0.3235, -0.1460, 0.1122, -0.3244, 0.0
000, 0.0000, -0.1621) Y 5 = (- 0.0999, -0.2529, -0.2247, -0.1965, 0.1375, 0.8
745, 0.0000, -0.2308) Y 6 = (- 0.0228, -0.2479, -0.2093, -0.1648, 0.3323, -0.2
743, 0.7967, -0.2160) therefore, J 1 = -0.1022N 980 -0.6481N 1040 -0.0000N 1080 -0.
0000N 1110 -0.0000N 1150 -0.0000N 1200 -0.0000N
1255 + 0.7546N 1300 J 2 = -0.0737N 980 -0.3986N 1040 + 0.8435N 1080 -0.
0000N 1110 -0.0000N 1150 -0.0000N 1200 -0.0000N
l255 -0.3524N 1300 J 3 = -0.2710N 980 -0.2053N 1040 -0.2097N 1080 +0.
8917N 1110 -0.0000N 1150 -0.0000N 1200 -0.0000N
1255 -0.2130N 1300 J 4 = 0.8544N 980 -0.3235N 1040 -0.1460N 1080 +0.
1122N 1110 -0.3244N 1150 -0.0000N 1200 -0.0000N
1255 -0.1621N 1300 J 5 = -0.0999N 980 -0.2529N 1040 -0.2247N 1080 -0.
1965N 1110 + 0.1375N 1150 + 0.8745N 1200 -0.0000N
1255 -0.2308N 1300 J 6 = -0.0228N 980 -0.2479N 1040 -0.2093N 1080 -0.
1648N 1110 + 0.3323N 1150 -0.2743N 1200 + 0.7967N
1255 -0.2160N 1300

【0027】以上で得られたK1、K2とJ1〜J6につい
て、KとJのデータのS/Nを一致させておく。 Mi=Ki/SU (ここに、i=1〜2) Ni=Ji/SN (ここに、i=1〜6) ここに、SUは、あらかじめ実験で求めておいた紫外線
分光部の誤差の標準偏差量であり、SNは、あらかじめ
実験で求めておいた近赤外線分光部の誤差の標準偏差量
である。
With respect to K 1 , K 2 and J 1 to J 6 obtained above, the S / N of the data of K and J is made to match. M i = K i / S U (where i = 1 to 2) N i = J i / S N (where i = 1 to 6) Here, S U was obtained in advance by experiments. S N is the standard deviation of the error of the ultraviolet spectroscopic unit, and S N is the standard deviation of the error of the near-infrared spectroscopic unit obtained in advance by experiments.

【0028】以上で得られたMi,Niを用いて、次のア
ンモニアと過酸化水素の濃度換算式を最小2乗法回帰演
算で求める。 アンモニア濃度=Σpii+Σqjj 過酸化水素濃度=Σrii+Σsjj (ここにi=1〜2, j=1〜6) pi, qj, ri, sj は、濃度換算式のパラメータであ
り、最小2乗法回帰演算で求められる。こうして、Mi
とNiを用いて、アンモニア濃度と過酸化水素濃度が求
められた。
Using the M i and N i obtained as described above, the following equation for converting the concentration of ammonia and hydrogen peroxide is obtained by a least squares regression calculation. Ammonia concentration = Σp i M i + Σq j N j Hydrogen peroxide concentration = Σr i M i + Σs j N j (where i = 1 to 2, j = 1 to 6) p i , q j , r i , s j Is a parameter of a concentration conversion formula, which is obtained by a least squares regression calculation. Thus, M i
Using N i and, the ammonia concentration and hydrogen peroxide concentration determined.

【0029】ここでは、MiとNiの8個のデータをその
まま、濃度換算式で使用したが、これらのデータ間に誤
差の相関がある場合は、この段階でもう一度変換する。
紫外分光部と近赤外線分光部との共通の光学素子の変動
などは、この段階でその誤差を取り除く。具体的には、
図2の紫外線の光源である重水素ランプ62の光束と、
近赤外線の光源であるハロゲンタングステンランプ61
の光束を、同一光束にするダイクロイックミラー63の
光学特性変動とか、紫外線と近赤外線が同一光束として
通過するセル66に関する特性変化(セル長、セルの窓
板の汚れ)などである。ここでは、セル66の窓板の汚
れに関して、除去した例を示す。 (M1, M2, N1, N2, N3, N4, N5, N6)で表すと、
V=(1.22, 1.31, 1.01, 1.00, 1.15, 1.01, 1.00, 1.0
1) で表されたならば、この方向に直交する空間の基底
ベクトルZを求める。 V・Zi=0 Zi・Zj=0 Zi・Zi=1 (ここに、i=1〜7、j=1〜7、i
≠j)
Here, the eight data of M i and N i are used as they are in the density conversion formula, but if there is an error correlation between these data, they are converted again at this stage.
At this stage, for example, the error of the common optical element of the ultraviolet spectroscopy unit and the near-infrared spectroscopy unit is eliminated. In particular,
A luminous flux of a deuterium lamp 62, which is a light source of ultraviolet light in FIG. 2,
Halogen tungsten lamp 61 as a near infrared light source
Of the dichroic mirror 63 that makes the same light beam the same light beam, or a change in characteristics of the cell 66 through which ultraviolet light and near-infrared light pass as the same light beam (cell length, stain on the cell window plate). Here, an example is shown in which dirt on the window plate of the cell 66 has been removed. (M 1 , M 2 , N 1 , N 2 , N 3 , N 4 , N 5 , N 6 )
V = (1.22, 1.31, 1.01, 1.00, 1.15, 1.01, 1.00, 1.0
1), a base vector Z in a space orthogonal to this direction is obtained. V · Z i = 0 Z i · Z j = 0 Z i · Z i = 1 (where i = 1 to 7, j = 1 to 7, i
≠ j)

【0030】実際の値より求めたZi(i=1〜7)を以
下に記す。 Z1=(-0.6377, 0.0000, 0.0000, 0.0000, 0.0000, 0.0
000, 0.0000, 0.7703) Z2=( 0.4909,-0.7706, 0.0000, 0.0000, 0.0000, 0.0
000, 0.0000, 0.4064) Z3=(-0.2618,-0.2811, 0.8975, 0.0000, 0.0000, 0.0
000, 0.0000,-0.2167) Z4=(-0.2132,-0.2289,-0.1765, 0.9164, 0.0000, 0.0
000, 0.0000,-0.1765) Z5=(-0.2041,-0.2192,-0.1690,-0.1673, 0.9084, 0.0
000, 0.0000,-0.1690) Z6=(-0.1529,-0.1641,-0.1266,-0.1253,-0.1441, 0.9
387, 0.0000,-0.1266) Z7=(-0.1345,-0.1444,-0.1113,-0.1102,-0.1267,-0.1
113, 0.9464,-0.1113) したがって、 U1=−0.6377M1−0.0000M2−0.0000N1−0.0000N2
−0.0000N3−0.0000N4−0.0000N5+0.7703N62=+0.4909M1−0.7706M2−0.0000N1−0.0000N2
−0.0000N3−0.0000N4−0.0000N5+0.4064N63=−0.2618M1−0.2811M2 + 0.8975N1+0.0000N2
−0.0000N3−0.0000N4−0.0000N5−0.2167N64=−0.2132M1−0.2289M2−0.1765N1+0.9164N2
−0.0000N3−0.0000N4−0.0000N5−0.1765N65=−0.2041M1−0.2192M2−0.1690N1−0.1673N2
+0.9084N3−0.0000N4−0.0000N5−0.1690N66=−0.1529M1−0.1641M2−0.1266N1−0.1253N2
−0.1441N3+0.9387N4−0.0000N5−0.1266N67=−0.1345M1−0.1444M2−0.1113N1−0.1102N2
−0.1267N3−0.1113N4+0.9464N5−0.1113N6 上式によりUi が求まり、濃度換算式が次式になる。こ
こで、パラメータpi,riは最小2乗演算式より求め
る。 アンモニア濃度=Σpii 過酸化水素濃度=Σrii (ここにi=1〜7)
Z i (i = 1 to 7) obtained from the actual values are described below. Z 1 = (-0.6377, 0.0000, 0.0000, 0.0000, 0.0000, 0.0
000, 0.0000, 0.7703) Z 2 = (0.4909, -0.7706, 0.0000, 0.0000, 0.0000, 0.0
000, 0.0000, 0.4064) Z 3 = (- 0.2618, -0.2811, 0.8975, 0.0000, 0.0000, 0.0
000, 0.0000, -0.2167) Z 4 = (- 0.2132, -0.2289, -0.1765, 0.9164, 0.0000, 0.0
000, 0.0000, -0.1765) Z 5 = (- 0.2041, -0.2192, -0.1690, -0.1673, 0.9084, 0.0
000, 0.0000, -0.1690) Z 6 = (- 0.1529, -0.1641, -0.1266, -0.1253, -0.1441, 0.9
387, 0.0000, -0.1266) Z 7 = (- 0.1345, -0.1444, -0.1113, -0.1102, -0.1267, -0.1
113, 0.9464, -0.1113) therefore, U 1 = -0.6377M 1 -0.0000M 2 -0.0000N 1 -0.0000N 2
−0.0000N 3 −0.0000N 4 −0.0000N 5 + 0.7703N 6 U 2 = + 0.4909M 1 −0.7706M 2 −0.0000N 1 −0.0000N 2
−0.0000N 3 −0.0000N 4 −0.0000N 5 + 0.4064N 6 U 3 = −0.2618M 1 −0.2811M 2 + 0.8975N 1 + 0.0000N 2
−0.0000N 3 −0.0000N 4 −0.0000N 5 −0.2167N 6 U 4 = −0.2132M 1 −0.2289M 2 −0.1765N 1 + 0.9164N 2
−0.0000N 3 −0.0000N 4 −0.0000N 5 −0.1765N 6 U 5 = −0.2041M 1 −0.2192M 2 −0.1690N 1 −0.1673N 2
+ 0.9084N 3 -0.0000N 4 -0.0000N 5 -0.1690N 6 U 6 = -0.1529M 1 -0.1641M 2 -0.1266N 1 -0.1253N 2
−0.1441N 3 + 0.9387N 4 −0.0000N 5 −0.1266N 6 U 7 = −0.1345M 1 −0.1444M 2 −0.1113N 1 −0.1102N 2
−0.1267N 3 −0.1113N 4 + 0.9464N 5 −0.1113N 6 U i is obtained by the above equation, and the density conversion equation is as follows. Here, the parameters p i and r i are obtained by a least squares operation expression. Ammonia concentration = Σp i U i hydrogen peroxide concentration = Σr i U i (here i = 1 to 7)

【0031】(測定例3)フッ酸とオゾンの混合水溶液
を、この方法で測定した測定例を示す。この混合液は、
半導体製造ラインにおいて、シリコンウエハの洗浄、エ
ッチングに用いている。液の特性として、フッ酸はシリ
コンを溶かし込むため、その濃度が徐徐に減少して、オ
ゾンは不安定で数十分で分解していく。この混合比はシ
リコンウエハへの処理能力と密接に関係していて、オン
ラインでその両方の濃度を精度良く測定することが望ま
れている。装置の構成は図1とほぼ同じである。洗浄槽
2からの液をポンプ4により吸引して、分光器のセル6
6に導入する。セル66の材質はサファイアであり、1
5℃に温度を調整している。結露しないように、セル6
6の周りは乾燥材で除湿している。分光器の構造は、図
2と同じである。使用する波長も測定例1と同じであ
る。
(Measurement Example 3) A measurement example in which a mixed aqueous solution of hydrofluoric acid and ozone was measured by this method is shown. This mixture
In semiconductor manufacturing lines, it is used for cleaning and etching of silicon wafers. As a characteristic of the liquid, since hydrofluoric acid dissolves silicon, its concentration gradually decreases, and ozone is unstable and decomposes in tens of minutes. This mixing ratio is closely related to the throughput of silicon wafers, and it is desired to accurately measure the concentrations of both on-line. The configuration of the device is almost the same as that of FIG. The liquid from the cleaning tank 2 is sucked by the pump 4 and the liquid
Introduce to 6. The material of the cell 66 is sapphire.
The temperature is adjusted to 5 ° C. Cell 6 to prevent condensation
The area around 6 is dehumidified with a desiccant. The structure of the spectroscope is the same as in FIG. The wavelength used is the same as that in the measurement example 1.

【0032】図9と図10は、それぞれ、オゾンとフッ
酸の紫外線スペクトルを記す。また、図11は、純水の
紫外線スペクトルを示す。オゾンは、260nm付近をピ
ークとする吸収がある。フッ酸は230nm以下で水と比
較して吸収量が幾分減少する。また、図12は、フッ酸
の近赤外線スペクトルを示す。水を基準にしているの
で、水との差スペクトルである。オゾンは近赤外線スペ
クトルでは目立った変化はない。
FIGS. 9 and 10 show the ultraviolet spectra of ozone and hydrofluoric acid, respectively. FIG. 11 shows an ultraviolet spectrum of pure water. Ozone has absorption with a peak near 260 nm. Hydrofluoric acid has a slightly reduced absorption below 230 nm compared to water. FIG. 12 shows a near-infrared spectrum of hydrofluoric acid. Since it is based on water, it is a difference spectrum with water. Ozone has no noticeable change in the near infrared spectrum.

【0033】セル中に基準サンプルとして、水を入れて
おき、その透過強度をまず測定する。その各波長での強
度値Wλとして、14個のデータW220, W230, W260
〜W1300をメモリに格納する。次にセル中に測定すべき
サンプルを入れ測定し、その強度値をSλとする。次
に、吸光度Aλを求める。 Aλ=−LOG10(Sλ/Wλ) 得られたAλを紫外領域と近赤外領域に分ける。紫外領
域のAλをUλと表し、近赤外領域のAλをNλと表
す。
Water is placed in a cell as a reference sample, and its transmission intensity is measured first. As the intensity value W λ at each wavelength, 14 data W 220 , W 230 , W 260
WW 1300 is stored in the memory. Next, a sample to be measured is placed in the cell, and measurement is performed, and the intensity value is defined as . Next, the absorbance is determined. A λ = -LOG 10 (S λ / W λ) obtained divide the A λ in the ultraviolet region and the near-infrared region. The A lambda in the ultraviolet region represented as U lambda, expressed as the A lambda in the near-infrared region N lambda.

【0034】次に、複数の紫外線吸光度データを、紫外
線分光に関係する装置変動に影響されないように変換す
る。紫外領域の重水素ランプ強度変動とシリコンフォト
ダイオードセンサの感度変動を含めた各波長の変動比C
λを、(C220, C230, C260,C280, C300, C330)と
記せば、この例では以下のようになった。この変動は外
乱要因として装置設置温度が考えられるので、このデー
タを取得する場合は、装置を恒温槽に入れて、設定温度
を変化させれば、その前後での吸光度変化率が以下の値
になる。 (1.2, 1.1, 1.05, 1.04, 1.04, 1.00) 紫外領域を測定するのは主にオゾンの濃度を測定するた
めである。オゾンの吸収ピークと、その両端の波長とし
て、230nm, 260nm, 300nmを採用する。220, 280,330nm
の3波長は、測定はするが、以下の演算には使用しな
い。残りの変動比CIだけを次のように書き出す。 (1.1, 1.05, 1.04) オゾンによる吸光度変化を最大限に取得して、なおかつ
装置変動を除去できるように、3つの吸光度からひとつ
のパラメータを求める。オゾンの単位濃度あたりの吸光
度変化率を上記変動率と同じく括弧形式で表せば、以下
のようになる。 (0.12, 0.30, 0.01) この2つの括弧で表したデータを3次元のベクトルと見
なすことができる。 A=(0.12, 0.30, 0.01) B=(1.1, 1.05, 1.04) とすれば、Bベクトルに直交していて、Aベクトルの方
向になるべく近い方向へ射影する変換で得られるデータ
が求めるパラメータである。それをX=(x1, x2,
3)とすれば、次式より求めることができる。図3か
ら、X=A−qBと表して、X・B=0になるようなq
を求めれば良い。まとめれば、 X=A−((A・B)/(B・B))B である。具体的な値を代入すれば、 X=(-0.02824, 0.15850, -0.1302) すなわち K=−0.02824U220+0.15850U280−0.1302U330 と変換すれば、Bベクトルの変化に影響されないように
変換できる。
Next, a plurality of ultraviolet absorbance data are converted so as not to be affected by apparatus fluctuations related to ultraviolet spectroscopy. Fluctuation ratio C of each wavelength including deuterium lamp intensity fluctuation in ultraviolet region and sensitivity fluctuation of silicon photodiode sensor
If λ is described as (C 220 , C 230 , C 260 , C 280 , C 300 , C 330 ), the following is obtained in this example. This fluctuation can be caused by the temperature of the equipment installed as a disturbance factor.To obtain this data, put the equipment in a constant temperature bath and change the set temperature. Become. (1.2, 1.1, 1.05, 1.04, 1.04, 1.00) The measurement in the ultraviolet region is mainly for measuring the concentration of ozone. 230 nm, 260 nm, and 300 nm are adopted as the ozone absorption peak and the wavelengths at both ends thereof. 220, 280,330nm
The three wavelengths are measured but not used in the following calculations. Write out only the remaining variation ratio C I as follows: (1.1, 1.05, 1.04) One parameter is obtained from the three absorbances so that the change in absorbance due to ozone can be obtained to the maximum and the fluctuation of the apparatus can be removed. If the rate of change in absorbance per unit concentration of ozone is expressed in parenthesis as in the above rate of change, the following is obtained. (0.12, 0.30, 0.01) The data represented by these two parentheses can be regarded as a three-dimensional vector. A = (0.12, 0.30, 0.01) B = (1.1, 1.05, 1.04) If B = (1.1, 1.05, 1.04), it is a parameter required to obtain data obtained by a transformation orthogonal to the B vector and projected in a direction as close as possible to the direction of the A vector. is there. X = (x 1 , x 2 ,
x 3 ), it can be obtained from the following equation. From FIG. 3, by expressing X = A−qB, q such that X · B = 0 is obtained.
Should be obtained. In summary, X = A-((AB) / (BB)) B. Substituting specific values, X = (- 0.02824, 0.15850 , -0.1302) i.e. if converted K = -0.02824U 220 + 0.15850U 280 -0.1302U 330, so as not to be affected by changes in B vector conversion it can.

【0035】次に、複数の近赤外線吸光度データを、近
赤外線分光に関係する装置変動に影響されないように変
換する。近赤外線領域のデータに関して、近赤外領域の
スペクトルは主にフッ酸の濃度を測定するためである。
それによる吸光度変化を最大限に取得して、なおかつ装
置変動とサンプルの温度変動を除去できるように、8つ
の吸光度からひとつのパラメータを求める。フッ酸の濃
度1wt%あたりの吸光度変化率を測定例1と同じく括弧
形式で表せば、以下のようになる。 (-0.00065, 0.00055, -0.00175, -0.00027, 0.00175,
0.00114, 0.00062,0.00033)後の計算は、測定例1と同
じである。 J=−0.30577N980−0.40249N1040−0.24703N1080
0.08442N1110+0.39903N1150+0.57953N1200−0.290
21N1255−0.31154N1300 と変換すれば、装置変動とサンプルの温度変動に影響さ
れないように変換できる。
Next, a plurality of near-infrared absorbance data are converted so as not to be affected by apparatus fluctuations related to near-infrared spectroscopy. Regarding the data in the near infrared region, the spectrum in the near infrared region is mainly for measuring the concentration of hydrofluoric acid.
One parameter is obtained from the eight absorbances so that the change in absorbance due to the change is obtained to the maximum and the fluctuation in the apparatus and the fluctuation in the temperature of the sample can be removed. If the rate of change in absorbance per 1 wt% of hydrofluoric acid is expressed in parentheses as in Measurement Example 1, the results are as follows. (-0.00065, 0.00055, -0.00175, -0.00027, 0.00175,
(0.00114, 0.00062, 0.00033) The subsequent calculations are the same as in Measurement Example 1. J = -0.30577N 980 -0.40249N 1040 -0.24703N 1080 -
0.08442N 1110 + 0.39903N 1150 + 0.57953N 1200 -0.290
If converted 21N 1255 -0.31154N 1300, can be converted so as not to be affected by temperature fluctuations in the device change and the sample.

【0036】次に、JとKの2つの値を用いて、オゾン
とフッ酸の両方の濃度を精度良く測定する。JとKのデ
ータのS/Nを回帰演算する前に一致させておく。 M=K/SU N=J/SN ここに、SUは、あらかじめ実験で求めておいた紫外線
分光部の誤差の標準偏差量であり、SNは、あらかじめ
実験で求めておいた近赤外線分光部の誤差の標準偏差量
である。
Next, using the two values of J and K, the concentrations of both ozone and hydrofluoric acid are accurately measured. The S / N of the data of J and K should be matched before regression calculation. Here M = K / S U N = J / S N, S U is the standard deviation of the error in the ultraviolet spectral portion that has been determined in advance experimentally, S N is near that had been determined in advance experimentally This is the standard deviation of the error of the infrared spectroscopy unit.

【0037】次に、変換されたデータを説明変数とし
て、サンプルの知りたい特性値、例えば濃度データを求
める重回帰式を求める。図6と図8に相当する局面式
は、次式で表された。 オゾン濃度=0.2651N+3.6389M−34.3107N2+0.1011
2−1.5671MN フッ酸濃度=99.101N+0.2341M+12.4511N2−2.7895
2−1.3474MN この2つの曲面が、検量線式であり、未知の濃度のオゾ
ンとフッ酸の混合液を測定して、N値とM値を求めて、
この式に代入すれば、オゾンの濃度とフッ酸の濃度を精
度よく求めることができる。
Next, using the converted data as an explanatory variable, a multiple regression equation for obtaining a characteristic value desired for the sample, for example, density data is obtained. The phase equations corresponding to FIGS. 6 and 8 were expressed by the following equations. Ozone concentration = 0.2651N + 3.6389M-34.3107N 2 +0.1011
M 2 -1.5671MN Hydrofluoric acid concentration = 99.101N + 0.2341M + 12.4511N 2 -2.7895
M 2 −1.3474MN These two curved surfaces are of a calibration curve type, and a mixture of ozone and hydrofluoric acid of unknown concentration is measured to obtain N and M values.
By substituting into this equation, the concentration of ozone and the concentration of hydrofluoric acid can be accurately obtained.

【0038】上述の実施形態では、透過強度の測定につ
いて説明した。しかし、反射強度の測定についても同様
に測定とデータ処理を行えばよい。なお、特開平4−2
49748号公報に記載された濃度測定法も、過酸化水
素とアンモニアの混合液の濃度を測定する点では、以上
に説明した測定法と同じである。しかし、紫外線測定部
と赤外線測定部がそれぞれ独立であり、測定セルはそれ
ぞれに設けられる。この測定法では、以下の問題があ
る。 (1)得られる濃度換算式が、パラメータとしてのアン
モニア濃度値αと紫外吸光度値βで区切られているた
め、その境界で求める値に段差が生じたり、滑らかに変
化しなかったりする。 (2)パラメータα,βに従い、濃度換算式が変わるた
め、データ処理のアルゴリズムが複雑になる。 (3)近赤外線分光部と紫外線分光部では、光源、セン
サなど、装置を構成している部品が異なるため、近赤外
吸光度と紫外吸光度を同列のデ-タ(説明変数)と扱うに
は無理がある。具体的には、データのS/N、強度、装
置から起因する変動量、サンプルから起因する変動量が
異なる。これに対し、本発明では、紫外線と近赤外線に
ついて共通のセルを用いて測定をする。また、上述の問
題は生じない。
In the above embodiment, the measurement of the transmission intensity has been described. However, measurement and data processing may be similarly performed for the measurement of the reflection intensity. Note that Japanese Patent Laid-Open No. 4-2
The concentration measuring method described in Japanese Patent No. 49748 is also the same as the above-described measuring method in that the concentration of a mixed solution of hydrogen peroxide and ammonia is measured. However, the ultraviolet ray measuring section and the infrared ray measuring section are independent of each other, and the measuring cells are provided respectively. This measurement method has the following problems. (1) Since the obtained concentration conversion formula is divided by the ammonia concentration value α and the ultraviolet absorbance value β as parameters, the value obtained at the boundary may have a step or may not change smoothly. (2) Since the density conversion equation changes according to the parameters α and β, the data processing algorithm becomes complicated. (3) Since the components that make up the device, such as the light source and the sensor, are different between the near-infrared spectroscopy unit and the ultraviolet spectroscopy unit, it is necessary to treat near-infrared absorbance and ultraviolet absorbance as the same data (explanatory variables). There is impossible. Specifically, the S / N of the data, the intensity, the variation due to the device, and the variation due to the sample are different. On the other hand, in the present invention, measurement is performed using ultraviolet light and near infrared light using a common cell. Further, the above problem does not occur.

【0039】[0039]

【発明の効果】セルの同一測定対象点にてサンプルの透
過強度を紫外線分光過程と近赤外線分光過程により測定
し、近赤外線分光過程と紫外線分光過程について、それ
ぞれ独立の変動要因の影響をデータから除去し、好まし
くはさらに紫外線分光過程と近赤外線分光過程の両方に
共通の変動要因の影響をデータから除去する。これによ
り、紫外線吸光度データと近赤外線吸光度データからサ
ンプルの特性値(たとえば液体の濃度)を正確に求める
ことができる。
According to the present invention, the transmission intensity of a sample is measured at the same measurement target point of the cell by an ultraviolet spectroscopic process and a near-infrared spectroscopic process. And preferably further remove from the data the effects of variables common to both the ultraviolet and near-infrared spectroscopy processes. Thereby, the characteristic value (for example, the concentration of the liquid) of the sample can be accurately obtained from the ultraviolet light absorbance data and the near infrared light absorbance data.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 薬液濃度測定装置の構成を示す図FIG. 1 is a diagram showing a configuration of a chemical solution concentration measuring device.

【図2】 薬液濃度測定装置における分光器の構造を図
式的に示す図
FIG. 2 is a diagram schematically showing a structure of a spectroscope in a chemical solution concentration measuring device.

【図3】 A,B,Xの関係を示す図FIG. 3 is a diagram showing a relationship among A, B, and X;

【図4】 D,E,F,Gの関係を示す図FIG. 4 is a diagram showing a relationship among D, E, F, and G;

【図5】 アンモニアと過酸化水素の各種混合液のデー
タをNをX軸に、MをY軸にとりプロットした散布図
FIG. 5 is a scatter plot in which data of various mixed solutions of ammonia and hydrogen peroxide are plotted with N on the X axis and M on the Y axis.

【図6】 アンモニアのデータの曲面図FIG. 6 is a curved surface diagram of ammonia data.

【図7】 アンモニアと過酸化水素の各種混合液のデー
タをNをX軸に、MをY軸にとりプロットした散布図
FIG. 7 is a scatter plot in which data of various mixed solutions of ammonia and hydrogen peroxide are plotted with N on the X axis and M on the Y axis.

【図8】 過酸化水素のデータの曲面図FIG. 8 is a curved surface diagram of hydrogen peroxide data.

【図9】 オゾンの紫外線スペクトルFIG. 9 UV spectrum of ozone

【図10】 フッ酸(HF30%)の紫外線スペクトルFIG. 10 Ultraviolet spectrum of hydrofluoric acid (HF 30%)

【図11】 純水の紫外線スペクトルFIG. 11 Ultraviolet spectrum of pure water

【図12】 フッ酸の近赤外線スペクトルFIG. 12: Near infrared spectrum of hydrofluoric acid

【符号の説明】[Explanation of symbols]

2 分光器 61 ハロゲンランプ、 62 重水
素ランプ、 63ダイクロイックミラー、 66
セル、 67 センサ。
2 Spectrometer 61 Halogen lamp, 62 Deuterium lamp, 63 Dichroic mirror, 66
Cell, 67 sensors.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 サンプルの透過強度または反射強度を紫
外線分光過程と近赤外線分光過程により測定する分光測
定装置において、 既知特性値のサンプルの吸光度データを紫外線と近赤外
線の複数波長で測定し、 測定により得られた複数波長の紫外線吸光度データを、
紫外線分光に関係する装置変動に影響されないように変
換し、 測定により得られた複数波長の近赤外線吸光度データ
を、近赤外線分光に関係する装置変動に影響されないよ
うに変換し、 変換された紫外線と近赤外線のデータを説明変数とし
て、サンプルの特性値を得るための重回帰式を求めるこ
とを特徴とする紫外線と近赤外線を使用した分光測定方
法。
1. A spectrometer for measuring the transmission intensity or reflection intensity of a sample by an ultraviolet spectroscopic process and a near-infrared spectroscopic process, wherein the absorbance data of the sample having a known characteristic value is measured at a plurality of wavelengths of ultraviolet and near-infrared. UV absorbance data of multiple wavelengths obtained by
Converted so as not to be affected by device fluctuations related to ultraviolet spectroscopy, and converted near-infrared absorbance data of multiple wavelengths obtained by measurement so as not to be affected by device fluctuations related to near-infrared spectroscopy. A spectral measurement method using ultraviolet light and near infrared light, wherein a multiple regression equation for obtaining a characteristic value of a sample is obtained using near infrared data as an explanatory variable.
【請求項2】 装置変動に影響されないように変換され
た前記の紫外線のデータと近赤外線のデータについて、
さらに、紫外線のデータと近赤外線のデータの分散を一
致するように変換し、分散が一致された紫外線と近赤外
線のデータを重回帰式の説明変数とすることを特徴とす
る請求項1に記載された分光測定方法。
2. The data of the ultraviolet rays and the data of near-infrared rays which are converted so as not to be affected by device fluctuations.
2. The method according to claim 1, further comprising: converting the variance of the ultraviolet data and the near-infrared data so as to be identical, and using the ultraviolet and near-infrared data whose variances are identical as explanatory variables of the multiple regression equation. Spectrometry method.
【請求項3】 装置変動に影響されないように変換され
た前記の紫外線のデータと近赤外線のデータについて、
さらに、紫外線分光過程と近赤外線分光過程の両方に共
通の変動要因に影響されないようにデータを変換し、共
通の変動要因に影響されないように変換された紫外線と
近赤外線のデータを重回帰式の説明変数とすることを特
徴とする請求項1に記載された分光測定方法。
3. The data of the ultraviolet ray and the data of near-infrared ray which are converted so as not to be affected by apparatus fluctuation,
Furthermore, the data is converted so that it is not affected by the common fluctuation factors in both the ultraviolet spectroscopy process and the near-infrared spectroscopy process, and the converted ultraviolet and near-infrared data are converted so as not to be affected by the common fluctuation factors. The method according to claim 1, wherein the method is an explanatory variable.
【請求項4】 データの分散を一致するように変換され
た前記の紫外線のデータと近赤外線のデータについて、
さらに、紫外線分光過程と近赤外線分光過程の両方に共
通の変動要因に影響されないようにデータを変換し、共
通の変動要因に影響されないように変換された紫外線と
近赤外線のデータを重回帰式の説明変数とすることを特
徴とする請求項2に記載された分光測定方法。
4. The ultraviolet data and the near-infrared data, which are converted so as to match the variance of the data,
Furthermore, the data is converted so that it is not affected by the common fluctuation factors in both the ultraviolet spectroscopy process and the near-infrared spectroscopy process, and the converted ultraviolet and near-infrared data are converted so as not to be affected by the common fluctuation factors. 3. The method according to claim 2, wherein the method is an explanatory variable.
【請求項5】 前記の特性値が液体の濃度であることを
特徴とする請求項1〜4のいずれかの請求項に記載され
た分光測定方法。
5. The spectrometry method according to claim 1, wherein the characteristic value is a concentration of a liquid.
JP30210098A 1998-10-23 1998-10-23 Spectroscopic measurement method using ultraviolet rays and near infrared rays Expired - Fee Related JP4167765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30210098A JP4167765B2 (en) 1998-10-23 1998-10-23 Spectroscopic measurement method using ultraviolet rays and near infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30210098A JP4167765B2 (en) 1998-10-23 1998-10-23 Spectroscopic measurement method using ultraviolet rays and near infrared rays

Publications (2)

Publication Number Publication Date
JP2000131228A true JP2000131228A (en) 2000-05-12
JP4167765B2 JP4167765B2 (en) 2008-10-22

Family

ID=17904939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30210098A Expired - Fee Related JP4167765B2 (en) 1998-10-23 1998-10-23 Spectroscopic measurement method using ultraviolet rays and near infrared rays

Country Status (1)

Country Link
JP (1) JP4167765B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294205A (en) * 2003-03-26 2004-10-21 Kurabo Ind Ltd Measuring method and measuring device of metal content in acid solution
JP2007024572A (en) * 2005-07-13 2007-02-01 Kurabo Ind Ltd Fatigue degree evaluation method of alkali aqueous solution
WO2010041608A1 (en) * 2008-10-06 2010-04-15 国立大学法人大阪大学 Liquid inspecting method and liquid inspecting device
WO2016167721A1 (en) * 2015-04-15 2016-10-20 Razer (Asia-Pacific) Pte. Ltd. Filtering devices and filtering methods
US20200316654A1 (en) * 2015-05-15 2020-10-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for processing substrate in semiconductor fabrication

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294205A (en) * 2003-03-26 2004-10-21 Kurabo Ind Ltd Measuring method and measuring device of metal content in acid solution
JP2007024572A (en) * 2005-07-13 2007-02-01 Kurabo Ind Ltd Fatigue degree evaluation method of alkali aqueous solution
JP4652161B2 (en) * 2005-07-13 2011-03-16 倉敷紡績株式会社 Fatigue evaluation method of alkaline aqueous solution
WO2010041608A1 (en) * 2008-10-06 2010-04-15 国立大学法人大阪大学 Liquid inspecting method and liquid inspecting device
JP2010091328A (en) * 2008-10-06 2010-04-22 Osaka Univ Liquid inspecting method and liquid inspecting device
CN102171550A (en) * 2008-10-06 2011-08-31 国立大学法人大阪大学 Liquid inspecting method and liquid inspecting device
US9377398B2 (en) 2008-10-06 2016-06-28 Osaka University Liquid inspecting method and liquid inspecting device
WO2016167721A1 (en) * 2015-04-15 2016-10-20 Razer (Asia-Pacific) Pte. Ltd. Filtering devices and filtering methods
CN107690598A (en) * 2015-04-15 2018-02-13 雷蛇(亚太)私人有限公司 Filter and filtering method
US10209515B2 (en) 2015-04-15 2019-02-19 Razer (Asia-Pacific) Pte. Ltd. Filtering devices and filtering methods
CN107690598B (en) * 2015-04-15 2020-03-27 雷蛇(亚太)私人有限公司 Filtering device and filtering method
US20200316654A1 (en) * 2015-05-15 2020-10-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for processing substrate in semiconductor fabrication

Also Published As

Publication number Publication date
JP4167765B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US5850623A (en) Method for standardizing raman spectrometers to obtain stable and transferable calibrations
EP0418799B1 (en) Quantitative determination method of chemicals for processing semiconductor and an apparatus thereof
US7351349B2 (en) Method and apparatus for real-time dynamic chemical analysis
US20070181795A1 (en) Method and apparatus for accurate calibration of a reflectometer by using a relative reflectance measurement
KR102662656B1 (en) Gas analysis methods and devices
JP4312294B2 (en) Isotopomer absorption spectroscopy analyzer and method
Xiang et al. Solid-state digital micro-mirror array spectrometer for Hadamard transform measurements of glucose and lactate in aqueous solutions
US20050122523A1 (en) Device and method of trace gas analysis using cavity ring-down spectroscopy
US20050062972A1 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
JP4167765B2 (en) Spectroscopic measurement method using ultraviolet rays and near infrared rays
JP3754581B2 (en) Analysis method for multi-component organic solutions
JPH03175341A (en) Method and apparatus for determining chemical agent for semiconductor process
US20130016343A1 (en) Referenced and stabilized optical measurement system
JP4048139B2 (en) Concentration measuring device
EP0768524A2 (en) Method for stabilizing the wavelength in a laser spectrometer system
KR101389556B1 (en) Apparatus and method for analyzing a composing solution in the semiconductor and the LCD process in real time by using the spectrometer of multiple channels type
JPH0414298B2 (en)
JP2003121352A (en) Measuring method for concentrating solution containing alkaline component and hydrogen peroxide
JP3212107B2 (en) Spectrometry
CN117147475B (en) Multi-target gas analysis method, system and readable medium for gas analyzer
JP4634596B2 (en) Dissolved ozone concentration measuring device
US20230194416A1 (en) Preparation method for preparing spectrometric determinations of at least one measurand in a target application
RU2805385C2 (en) Method for correcting amplitude changes in spectrometer
JP2023520836A (en) How to determine the optical path length through a cuvette
JP2002071557A (en) Method and apparatus for isotopomer absorption spectral analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees