JPH01244341A - Light absorbing type ozone concentration measuring device - Google Patents

Light absorbing type ozone concentration measuring device

Info

Publication number
JPH01244341A
JPH01244341A JP7112888A JP7112888A JPH01244341A JP H01244341 A JPH01244341 A JP H01244341A JP 7112888 A JP7112888 A JP 7112888A JP 7112888 A JP7112888 A JP 7112888A JP H01244341 A JPH01244341 A JP H01244341A
Authority
JP
Japan
Prior art keywords
light
ozone
photodetector
sample
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7112888A
Other languages
Japanese (ja)
Inventor
Masatoshi Okikura
沖倉 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKI ELECTRON KK
Original Assignee
SEKI ELECTRON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKI ELECTRON KK filed Critical SEKI ELECTRON KK
Priority to JP7112888A priority Critical patent/JPH01244341A/en
Publication of JPH01244341A publication Critical patent/JPH01244341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the concentration of ozone in a sample highly accurately, by subtracting the output of a second photodetector for detecting the concentration of interfering substance from the output of a first photodetector for detecting the concentration of ozone+interfering substance. CONSTITUTION:An ozonolysis device 3 removes interfering substance other than ozone in a sample which is supplied through a sample introducing port 2. A three-way solenoid valve 4 switches the sample through the ozonolysis device 3 and the sample that does not pass through the device and supplies the sample into a light absorbing cell 5. A first photodetector 10 detects the light, whose wavelength is 253.7nm among the light rays from a low voltage mercury lamp 1. A second photodetector 9 detects the light of 184.9nm in wavelength. A computing means 13 receives the output signals from said photodetectors 9 and 10 when said sample is made to pass the ozonolysis device 3 and when the sample is not made to pass. Then, the concentration of the interfering substance is subtracted from the concentration of ozone+interfering substance, and the concentration of the ozone is computed by Lambert Beer's law.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はオゾンによる上水、下水、し尿処理場での脱臭
脱色や 医療、食品産業での殺菌、化学薬品工場での酸
化処理や廃水処理を行う場合での気相中および液相中で
のオゾン濃度を自動的に正確、且つ連続的に測定する光
吸収式オゾン濃度測定器に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention is applicable to ozone for deodorizing and decolorizing water, sewage, and human waste treatment plants, sterilization in the medical and food industries, and oxidation treatment and wastewater treatment in chemical factories. The present invention relates to a light absorption type ozone concentration measuring device that automatically, accurately and continuously measures the ozone concentration in the gas phase and liquid phase when carrying out such operations.

(従来の技術) 第3図に従来の光吸収式オゾン濃度測定器の構成を示す
(Prior Art) FIG. 3 shows the configuration of a conventional optical absorption type ozone concentration measuring device.

1は低圧水銀ランプでその発する光は波長が184.9
mm、 253.7mm、 435.8 0m、546
.1mmの輝線スペクトラムである。
1 is a low-pressure mercury lamp and the light it emits has a wavelength of 184.9
mm, 253.7mm, 435.80m, 546
.. This is a 1 mm emission line spectrum.

20はフィルタで上記の輝線スペクトラムのうち253
.7mmの光だけを通過させる。8′は分光ミラーで2
53.7mmの光を半分透過し、半分反射する。5は内
部を流体試料が通過しており、分光ミラー8′からの光
が光学窓6、試料、光学窓7を通過するように配置され
た光吸収セルである。
20 is a filter that filters 253 of the above bright line spectra.
.. Only 7mm light is allowed to pass through. 8' is a spectroscopic mirror 2
Half of the 53.7mm light is transmitted and half of it is reflected. Reference numeral 5 denotes a light absorption cell through which a fluid sample passes, and which is arranged so that light from a spectroscopic mirror 8' passes through an optical window 6, the sample, and an optical window 7.

10および10′は波長が253.7mmの光を検出し
て電流信号に変換する光検出器である。
10 and 10' are photodetectors that detect light with a wavelength of 253.7 mm and convert it into a current signal.

2は試料導入口、3は試料中のオゾンを分解してオゾン
の含まれない試料を生成して送出するオゾン分解器、4
は光吸収セルへ送り込む試料を、オゾン分解器3を通過
させた試料にするか通過させない試料にするかを選択す
る3方電磁弁である。
2 is a sample inlet; 3 is an ozone decomposer that decomposes ozone in the sample to produce a sample containing no ozone; and 4
is a three-way solenoid valve that selects whether the sample sent to the light absorption cell is a sample that has passed through the ozone decomposer 3 or a sample that has not passed through the ozone decomposer 3.

17は試料を光吸収セル5に吸引通過させるための吸引
ポンプ、16は流量調整用のニードルバルブ、15は流
量計である。11.11′は光検出器10および同10
′の電流信号を電圧信号に変換するとともに必要なレベ
ル迄増幅する電流電圧変換増幅器、12.12’は電流
電圧変換増幅器11および同11’のアナログ信号出力
をデジタル信号に変換するA/D変換器である。13は
光検出器10からのデータからランベルト・ベールの法
則に基づいてオゾン濃度を計算するマイクロコンピュー
タ、14は算出された濃度の表示器である。
17 is a suction pump for suctioning and passing the sample through the light absorption cell 5; 16 is a needle valve for adjusting the flow rate; and 15 is a flow meter. 11.11' is photodetector 10 and photodetector 10
12.12' is a current-voltage conversion amplifier that converts the current signal into a voltage signal and amplifies it to the required level; 12.12' is a current-voltage conversion amplifier 11 and an A/D converter that converts the analog signal output of 11' into a digital signal. It is a vessel. 13 is a microcomputer that calculates the ozone concentration based on the Beer-Lambert law from the data from the photodetector 10, and 14 is a display for the calculated concentration.

このオゾン濃度測定器は、オゾンが波長254nmを中
心とする2 00 nm〜300nmの光を吸収する性
質があることに着眼し、低圧水銀ランプの発する光のう
ちオゾンによく吸収される波長253.7mmの光を利
用してオゾンの濃度を測定するものである。
This ozone concentration measuring device focuses on the fact that ozone has the property of absorbing light with a wavelength of 200 nm to 300 nm, with a wavelength of 254 nm at its center, and uses wavelengths of 253. The ozone concentration is measured using 7mm light.

以下、濃度測定動作を説明する。まず、オゾン分解器3
を通してオゾンを除去した試料を光吸収セル5に通過さ
せる。低圧水銀ランプ1の光はフィルタ20で253.
7nn+だけが通過し、分光ミラー8′で直進通過する
ものと反射するものの2方に分かれる。直進した光は光
学窓6を通り光吸収セル5中の試料中を通り光学窓7を
経て光検出器10に到達する。光検出器10は光の強度
に応じた強さの電流信号を出力する。
The concentration measurement operation will be explained below. First, ozone decomposer 3
The sample from which ozone has been removed is passed through the light absorption cell 5. The light from the low-pressure mercury lamp 1 is filtered through a filter 20 at 253.
Only 7nn+ passes through, and is divided into two by the spectroscopic mirror 8': one that passes straight through and the other that is reflected. The straight light passes through the optical window 6, passes through the sample in the light absorption cell 5, passes through the optical window 7, and reaches the photodetector 10. The photodetector 10 outputs a current signal whose intensity corresponds to the intensity of light.

分光ミラー8′で反射された光は光検出器10′で検出
される。この検出データは試料をオゾン分解器3を経由
させているときと経由させないで供給している時との間
における低圧水銀ランプ1の光量変動を補正するために
用いられる。
The light reflected by the spectroscopic mirror 8' is detected by a photodetector 10'. This detection data is used to correct variations in the light intensity of the low-pressure mercury lamp 1 between when the sample is supplied through the ozone decomposer 3 and when it is supplied without passing through the ozone decomposer 3.

今、試料をオゾン分解器3を経由させた場合即ちオゾン
を含まない状態で光吸収セル5を通過させた場合の光検
出器10の出力値をI。、同じく光検出器10′の出力
値をI′oとし、次に試料をオゾン分解器3を経由させ
ないで即ちオゾンを含んだ状態で光吸収セル5を通過さ
せた場合の光検出器10の出力値をIX、同じく光検出
器10′の出力値をI′8とする。低圧水銀ランプ1の
光量変動により光検出器10′の出力値がT′oから■
′8に変動したとすると、オゾン分解器3を通していな
いときの光検出器10の出力値工。を変動前に換算する
と I8・工L ■′8 となる。
Now, the output value of the photodetector 10 when the sample is passed through the ozone decomposer 3, that is, when it is passed through the light absorption cell 5 without containing ozone, is I. Similarly, the output value of the photodetector 10' is I'o, and then the sample is passed through the light absorption cell 5 without passing through the ozone decomposer 3, that is, in a state containing ozone. It is assumed that the output value is IX and the output value of the photodetector 10' is I'8. Due to fluctuations in the light intensity of the low-pressure mercury lamp 1, the output value of the photodetector 10' changes from T'o to ■
'8, the output value of the photodetector 10 when not passing through the ozone decomposer 3. When converted before fluctuation, it becomes I8・ENGL■'8.

これにランベルト・ベールの法則を適用するとオゾンの
濃度Cは =吉log朽I:、    −−−−−一用)αニオシ
ン吸収係数 t:光吸収セルの長さ で求められる。
Applying the Beer-Lambert law to this, the ozone concentration C is determined by = log decay I:, ------1) α niosine absorption coefficient t: length of the light absorption cell.

そこで光検出器10および同10′の電流出力をそれぞ
れ電流電圧変換増幅器11および同11′で必要なレベ
ルの電圧信号に変換し、次いでA/D変換器12および
同12′でデジタル信号に変換したうえでマイクロコン
ピュータ13へ入力し式(1)の計算を行わせてオゾン
濃度を算出し、その温度を表示器14に表示させている
Therefore, the current outputs of the photodetectors 10 and 10' are converted into voltage signals of the required level by current-voltage conversion amplifiers 11 and 11', respectively, and then converted into digital signals by A/D converters 12 and 12'. Then, the ozone concentration is calculated by inputting it into the microcomputer 13 and calculating the formula (1), and the temperature is displayed on the display 14.

(発明が解決しようとする課題) しかしながら上記従来のオゾン濃度測定器には次のよう
な問題がある。
(Problems to be Solved by the Invention) However, the conventional ozone concentration measuring device described above has the following problems.

上記濃度測定器で用いている波長253.7nmの光を
吸収するのはオゾンだけではなく、塩素、2酸化硫黄、
2酸化窒素、ごみ粉塵、有機浮遊物等(これらを妨害物
質と総称する)も253.7nm光を吸収する。加えて
、これら妨害物質はオゾン分解器3を通すとそれぞれの
物質に応じて分解、吸着、ろ過等が行われてその結果こ
れら妨害物質を含まない試料として送り出される。従っ
て、試料中のオゾンに対してと同様の処理・作用が行わ
れ、マイクロコンピュータ13で算出される濃度値はオ
ゾンのみの濃度ではなく妨害物質の濃度が加算されたも
のとなりオゾン濃度測定器としては測定の正確度が低く
なるという問題がある。
It is not only ozone that absorbs the light with a wavelength of 253.7 nm used in the above concentration measuring device, but also chlorine, sulfur dioxide,
Nitrogen dioxide, dust particles, organic suspended matter, etc. (collectively referred to as interfering substances) also absorb 253.7 nm light. In addition, when these interfering substances pass through the ozone decomposer 3, decomposition, adsorption, filtration, etc. are performed depending on each substance, and as a result, a sample free of these interfering substances is sent out. Therefore, the same processing and action as for ozone in the sample is performed, and the concentration value calculated by the microcomputer 13 is not only the concentration of ozone but also the concentration of interfering substances, so it can be used as an ozone concentration measuring device. has the problem of low measurement accuracy.

本発明の目的は、上記従来技術の問題点に鑑みて、低圧
水銀ランプの発する輝線スペクトル中、253.7nm
光の他、オゾンには吸収されないが妨害物質には吸収さ
れる184.9no光、435.8nIII光、546
.1om光を利用して妨害物質の濃度を同時に求め、2
53.7nm光を使って求めた濃度から妨害物質の濃度
を差し引くことによってオゾン濃度を正確に求めること
のできるオゾン濃度測定器を提供することにある。
In view of the problems of the prior art described above, an object of the present invention is to
In addition to light, there are 184.9no light, 435.8nIII light, and 546no light that are not absorbed by ozone but are absorbed by interfering substances.
.. Simultaneously determine the concentration of interfering substances using 1om light, and
An object of the present invention is to provide an ozone concentration measuring device that can accurately determine ozone concentration by subtracting the concentration of interfering substances from the concentration determined using 53.7 nm light.

(課題を解決するための手段) 本発明は上記の目的を達成するために次の手段構成を有
する。
(Means for Solving the Problems) The present invention has the following means configuration to achieve the above object.

即ち、本発明の光吸収式オゾン濃度測定器は、流入する
流体試料中のオゾン、塩素、2酸化硫黄、2酸化窒素、
有機浮遊物、ごみ粉塵等の物質(オゾン以外を妨害物質
と総称する)をそれぞれに応じて分解あるいは吸着ある
いはろ過することによりこれらの物質を含まない流体試
料として送出するオゾン分解器と; 低圧水銀ランプと
; 流体試料を通過させながら該試料に低圧水銀ランプ
の発する光を受けて吸収、透過させる光吸収セルと: 
オゾン分解器を通過させた流体試料と通過させない流体
試料とを切り替えて光吸収セルへ供給する手段と; 光
吸収セルからの透過光のうち波長が253.7nmの光
を検出する第1の光検出器と; 光吸収セルからの透過
光のうち波長が184.9nmの光を検出する第2の光
検出器と;第1の光検出器と第2の光検出器とから、流
体試料をオゾン分解器に通したときの出力信号と通さな
いときの出力信号を受けて、ランベルト・ベールの法則
により、(オゾン士妨害物質)の濃度から妨害物質の濃
度を差し引いたオゾン濃度を算出する計算手段と; を
具備することを特徴とするものである。また他の構成と
しては上記の光吸収式オゾン濃度測定器において、波長
が184.9nmの光を検出する第2の光検出器に代え
て波長が435.8nmの光および波長が546.1n
iの光を検出する第2の光検出器を備えた光吸収式オゾ
ン濃度測定器である。
That is, the optical absorption type ozone concentration measuring device of the present invention detects ozone, chlorine, sulfur dioxide, nitrogen dioxide, and
An ozone decomposer that decomposes, adsorbs, or filters substances such as organic suspended matter and dust particles (other than ozone is collectively referred to as interfering substances) and sends out a fluid sample that does not contain these substances; and low-pressure mercury. A lamp; A light absorption cell that receives, absorbs, and transmits light emitted from a low-pressure mercury lamp into the sample while passing the fluid sample through the sample.
means for switching between a fluid sample that has passed through the ozone decomposer and a fluid sample that has not passed through the ozone decomposer and supplying the same to the light absorption cell; and a first light that detects light having a wavelength of 253.7 nm among the transmitted light from the light absorption cell; a detector; a second photodetector that detects light having a wavelength of 184.9 nm among the transmitted light from the light absorption cell; a fluid sample from the first photodetector and the second photodetector; A calculation that calculates the ozone concentration by subtracting the concentration of the interfering substance from the concentration of the ozonator interfering substance using the Beer-Lambert law based on the output signal when the ozone decomposer is passed and the output signal when the ozone decomposer is not passed. It is characterized by comprising means and; Another configuration is that in the above optical absorption type ozone concentration measuring device, instead of the second photodetector that detects light with a wavelength of 184.9 nm, the second photodetector detects light with a wavelength of 435.8 nm and the second photodetector with a wavelength of 546.1 nm.
This is a light absorption type ozone concentration measuring device equipped with a second photodetector that detects light of i.

(作 用) 以下、上記手段構成を有する本発明の光吸収式オゾン濃
度測定器の作用を説明する。
(Function) Hereinafter, the function of the light absorption type ozone concentration measuring device of the present invention having the above-mentioned configuration will be explained.

今、試料流体中に、オゾンの他に塩素、2酸化硫黄、2
酸化窒素等の妨害物質が混入しているものとする。これ
らの妨害物質はオゾンと同様に253.7n■光を吸収
するとともに、オゾンには吸収されない184.9am
光をも吸収する。
Now, in addition to ozone, the sample fluid contains chlorine, sulfur dioxide,
It is assumed that interfering substances such as nitrogen oxide are mixed in. These interfering substances absorb 253.7n light like ozone, and 184.9am light, which is not absorbed by ozone.
It also absorbs light.

即ち、184.9nm光は妨害物質にだけ吸収される。That is, 184.9 nm light is absorbed only by interfering substances.

従って、184.9nm光を利用すると妨害物質のみの
濃度を知ることができる。
Therefore, by using 184.9 nm light, the concentration of only interfering substances can be determined.

253.7nmの利用では(オゾン+妨害物質)の濃度
が知れるのでこの濃度から妨害物質のみの濃度を差し引
くことにより正確なオゾン濃度を知ることができる。
By using 253.7 nm, the concentration of (ozone + interfering substances) is known, and by subtracting the concentration of only interfering substances from this concentration, the accurate ozone concentration can be determined.

本発明測定器においては低圧水銀ランプの発する光はフ
ィルタを通さずに光吸収セルに当てている。従って、輝
線スペクトラムの184.9nm光、253.7nm光
、435.8+Il+光、546.1nm光が総て光吸
収セルに当てられている。
In the measuring device of the present invention, light emitted from a low-pressure mercury lamp is applied to a light absorption cell without passing through a filter. Therefore, 184.9 nm light, 253.7 nm light, 435.8+Il+ light, and 546.1 nm light of the bright line spectrum are all applied to the light absorption cell.

一方光吸収セルを透過した光を検出する第1の光検出器
は253.7nm光のみを検出し、第2の光検出器は1
84.9nm光のみを検出する。そこで、試料流体をオ
ゾン分解器を通したとき即ちオゾンも妨害物質も含まな
い状態にして光吸収セルを通過させなときの第1の光検
出器の出力値を1゜、第2の光検出器の出力値をI′O
とし、試料流体をオゾン分解器に通さないで光吸収セル
を通過させたときの第1の光検出器の出力値を■8、第
2の光検出器の出力値をI′8とすると、(オゾン+妨
害物質)の濃度C1はランベルト・ベールの法則によα
:吸収係数 t:光吸収セルの長さ となる。
On the other hand, the first photodetector that detects the light transmitted through the light absorption cell detects only 253.7 nm light, and the second photodetector detects only 253.7 nm light.
Detects only 84.9 nm light. Therefore, the output value of the first photodetector when the sample fluid is passed through the ozone decomposer, that is, when it does not contain ozone or interfering substances and does not pass through the light absorption cell, is 1°, and the output value of the second photodetector is 1°. The output value of the device is I′O
If the output value of the first photodetector is ■8 and the output value of the second photodetector is I'8 when the sample fluid is passed through the light absorption cell without passing through the ozonolyzer, then The concentration C1 of (ozone + interfering substances) is α according to the Beer-Lambert law.
: Absorption coefficient t: Length of light absorption cell.

また、妨害物質のみの濃度C2は c2=去log朽    −・・−・・−−m−−−・
−・(3)となる、なお、I′oと工′8の比は1に非
常に近いのでαは式(2)と同じとした。従って、オゾ
ン濃度Cは、 C=C,−C2 =去(l og+Ll og仔) =古log朽仔   −−−−−・−(4)となる。
Also, the concentration C2 of only the interfering substance is c2=log decay −・・−・・−−m−−・
-・(3). Since the ratio of I'o and E'8 is very close to 1, α is set to be the same as in equation (2). Therefore, the ozone concentration C is as follows: C=C, -C2 = log + L log = old log - (4).

式(4)の計算を計算手段が行いオゾン濃度を算出する
The calculation means calculates the ozone concentration by calculating the equation (4).

なお、IO1工′。検出時から1.、■′8検出時まで
に低圧水銀ランプの発光量に変動があっても式(4)中
のI’、/IXは変化しないので光量変動は濃度測定に
影響を与えない。
In addition, IO1 engineering'. 1 from the time of detection. , ■ Even if there is a change in the amount of light emitted from the low-pressure mercury lamp until the detection of 8, I' and /IX in equation (4) do not change, so the change in the amount of light does not affect the concentration measurement.

以上の説明は、253.7nm光と184.9nm光を
吸収する妨害物質が混在している場合について述べたが
、有機浮遊物やごみ粉塵のように253.7nm光の池
435.8nm光と546.1nm光を吸収する妨害物
質が含まれていると考えられるときには第2の光検出器
を435.8nm光と546.1nm光を検出するもの
に置換するだけで同様にオゾン濃度を測定できる。
The above explanation deals with the case where interfering substances that absorb 253.7nm light and 184.9nm light coexist. If it is thought that an interfering substance that absorbs 546.1 nm light is contained, ozone concentration can be measured in the same way by simply replacing the second photodetector with one that detects 435.8 nm light and 546.1 nm light. .

従って、第2の光検出器を、184.9nm光検出用の
光検出器と、435.8nm光および546.1++m
光検出用の光検出器の2種類具備しておき対象試料に応
じて適宜切替使用してもよい。
Therefore, the second photodetector is a photodetector for detecting 184.9nm light and a photodetector for detecting 435.8nm light and 546.1++m light.
Two types of photodetectors for photodetection may be provided and used appropriately depending on the target sample.

(実 施 例) 以下、本発明の光吸収式オゾン濃度測定器の実施例を図
面を参照して説明する。
(Example) Hereinafter, an example of the optical absorption type ozone concentration measuring device of the present invention will be described with reference to the drawings.

第1図は本発明の実施例測定器の構成を示す図である。FIG. 1 is a diagram showing the configuration of a measuring instrument according to an embodiment of the present invention.

なお、第3図中の番号と同一の番号を付しである構成要
素は同一名称同一機能のものであるのでその説明は省略
する。
Components with the same numbers as those in FIG. 3 have the same names and the same functions, so their explanations will be omitted.

第3図と異なる点は、低圧水銀ランプ1と光吸収セル5
の間に置かれていたフィルタ20、分光ミラー8′と光
検出器10′が除かれる一方、光吸収セル5と光検出器
10の間に分光ミラー8が設けられ、分光光を検出する
光検出器9が設けられていることである。
The difference from Fig. 3 is the low-pressure mercury lamp 1 and the light absorption cell 5.
The filter 20, the spectroscopic mirror 8', and the photodetector 10' placed between them are removed, while the spectroscopic mirror 8 is provided between the light absorption cell 5 and the photodetector 10, and the spectroscopic mirror 8 is installed between the light absorption cell 5 and the photodetector 10 to detect the spectroscopic light. A detector 9 is provided.

低圧水銀ランプ1からは184.9no+光、253.
7nm光、435.8nm光、546.1nm光のすべ
てが光吸収セル5へ照射される。光検出器10は第1の
光検出器であり透過光のうち253.7nm光を検出す
る。光検出器9は第2の光検出器であり184.9nm
光又は、435.80m光と546.1nm光を検出す
る。この光の選別は分光ミラー8に253.7nm光は
透過し他の光は反射するという通釈性を持たせてもよい
し、また、分光ミラー8は石英ガラスのような単なるハ
ーフミラ−として、光検出器10や同9に波長選択性の
あるものを用いてもよい、253.7nm光検出用とし
ては例えば浜松ホトニクス製R1384(検出波長範囲
185nm 〜320nm)があり、184.9nm光
検出用としては同社製R1187(検出波長範囲115
nm〜200nn+)があり、435.8nm光および
546.1++a+光検出用としては同社製R414(
検出波長範囲300 n+++〜650 or@)等が
ある。
Low pressure mercury lamp 1 gives 184.9no+ light, 253.
The light absorption cell 5 is irradiated with all of the 7 nm light, 435.8 nm light, and 546.1 nm light. The photodetector 10 is a first photodetector and detects 253.7 nm light among the transmitted light. Photodetector 9 is a second photodetector and has a wavelength of 184.9 nm.
Detects light or 435.80m light and 546.1nm light. This light selection can be done by giving the spectroscopic mirror 8 an interpretation that allows the 253.7 nm light to pass through and reflects other light, or by using the spectroscopic mirror 8 as a simple half mirror such as quartz glass. The photodetectors 10 and 9 may be wavelength-selective. For example, R1384 manufactured by Hamamatsu Photonics (detection wavelength range 185 nm to 320 nm) is used for detecting 253.7 nm light, and for detecting 184.9 nm light. The company's R1187 (detection wavelength range 115
nm to 200nn+), and the company's R414 (
The detection wavelength range is 300 n+++ to 650 or@), etc.

第2図は、第2の光検出器として、184.9nm光検
出用光検出器と、435.8nm光と546.1r+m
光検出用光検出器の2個を設けた例であり、第1図に対
して分光ミラー18と光検出器19が追加となっている
。そして測定対象に含まれている妨害物質に応じて適宜
切り替え使用する。
Figure 2 shows a photodetector for detecting 184.9nm light, a photodetector for detecting 435.8nm light, and a 546.1r+m photodetector as a second photodetector.
This is an example in which two photodetectors for photodetection are provided, and a spectroscopic mirror 18 and a photodetector 19 are added to those in FIG. Then, the method is switched and used as appropriate depending on the interfering substances contained in the measurement target.

(発明の効果) 以上説明したように、本発明の光吸収式オゾン濃度測定
器は、低圧水銀ランプの発する輝線スペクトル光には、
オゾンと妨害物質に吸収される253.7nm光の他に
妨害物質にだけ吸収される輝線スペクトル光があること
に着眼し、この輝線スペクトル光を利用して、従来の測
定器に較べなんら規模を大にすることなくまた構成を複
雑にすることなく、253.7nm光による測定と併行
して妨害物質の濃度測定を行い、(オゾン+妨害物質)
の濃度から差し引くことによりオゾン濃度を算出するよ
うにしているので、従来の測定器と同程度の規模、構成
で従来のオゾン濃度測定器よりもより一層正確なオゾン
濃度を測定することができるという利点がある。
(Effects of the Invention) As explained above, the light absorption type ozone concentration measuring device of the present invention has a bright line spectrum light emitted from a low pressure mercury lamp.
We focused on the fact that in addition to the 253.7 nm light that is absorbed by ozone and interfering substances, there is also bright line spectrum light that is absorbed only by interfering substances, and by using this bright line spectrum light, we are able to achieve a scale that is no larger than that of conventional measuring instruments. Without increasing the size or complicating the configuration, the concentration of interfering substances can be measured in parallel with measurement using 253.7 nm light (ozone + interfering substances).
Since the ozone concentration is calculated by subtracting the ozone concentration from the concentration of There are advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光吸収式オゾン濃度測定器の第1の実
施例の構成図、第2図は本発明の第2の実施例の構成図
、第3図は従来の光吸収式オゾン濃度測定器の構成図で
ある。 1・・・・・・低圧水銀ランプ、 2・・・・・・試料
導入口、3・・・・・・オゾン分解器、 4・・・・・
・3方電磁弁、5・・・・・・光吸収セル、 6,7・
・・・・・光学窓、8.8′・・・・・・分光ミラー、
 9,10.10’・・・・・・光検出器、  13・
・・・・・マイクロコンピュータ、14・・・・・・表
示器、 15・・・・・・流量計、 16・・・・・・
ニードルパルプ、 17・・・・・・吸引ポンプ、18
・・・・・・分光ミラー、 19・・・・・・光検出器
、20・・・・・・フィルタ。 代理人 弁理士  八 幡  義 博 事/図 弔2 図 /、?”−−−−−A/D裳挟蒋 /グー−−一一介尤ミラー
Fig. 1 is a block diagram of a first embodiment of a light absorption type ozone concentration meter of the present invention, Fig. 2 is a block diagram of a second embodiment of the present invention, and Fig. 3 is a block diagram of a conventional light absorption type ozone concentration meter. FIG. 2 is a configuration diagram of a concentration measuring device. 1...Low pressure mercury lamp, 2...Sample inlet, 3...Ozone decomposer, 4...
・3-way solenoid valve, 5...Light absorption cell, 6,7・
...Optical window, 8.8'... Spectroscopic mirror,
9,10.10'...Photodetector, 13.
...Microcomputer, 14...Display, 15...Flowmeter, 16...
Needle pulp, 17...Suction pump, 18
... Spectroscopic mirror, 19 ... Photodetector, 20 ... Filter. Agent: Patent Attorney Hiroshi Hachiman / Diagram 2 Diagram /,? ”-----A/D Chiang Jiang/Goo--Ichisukeyu Mirror

Claims (2)

【特許請求の範囲】[Claims] (1)流入する流体試料中のオゾン、塩素、2酸化硫黄
、2酸化窒素、有機浮遊物、ごみ粉塵等の物質(オゾン
以外を妨害物質と総称する)をそれぞれに応じて分解あ
るいは吸着あるいはろ過することによりこれらの物質を
含まない流体試料として送出するオゾン分解器と;低圧
水銀ランプと;流体試料を通過させながら該試料に低圧
水銀ランプの発する光を受けて吸収、透過させる光吸収
セルと;オゾン分解器を通過させた流体試料と通過させ
ない流体試料とを切り替えて光吸収セルへ供給する手段
と;光吸収セルからの透過光のうち波長が253.7n
mの光を検出する第1の光検出器と;光吸収セルからの
透過光のうち波長が184.9nmの光を検出する第2
の光検出器と;第1の光検出器と第2の光検出器とから
、流体試料をオゾン分解器に通したときの出力信号と通
さないときの出力信号を受けて、ランベルト・ベールの
法則により、(オゾン+妨害物質)の濃度から妨害物質
の濃度を差し引いたオゾン濃度を算出する計算手段と;
を具備することを特徴とする光吸収式オゾン濃度測定器
(1) Decompose, adsorb, or filter substances such as ozone, chlorine, sulfur dioxide, nitrogen dioxide, organic suspended matter, and dust particles (other than ozone are collectively referred to as interfering substances) in the inflowing fluid sample. an ozone decomposer that sends out a fluid sample that does not contain these substances; a low-pressure mercury lamp; and a light absorption cell that receives, absorbs, and transmits light emitted by the low-pressure mercury lamp into the sample while passing the fluid sample. ; a means for switching between a fluid sample that has passed through the ozone decomposer and a fluid sample that has not passed through the ozone decomposer and supplying the same to the light absorption cell;
a first photodetector that detects light with a wavelength of 184.9 nm; a second photodetector that detects light with a wavelength of 184.9 nm among the transmitted light from the light absorption cell;
a Lambert-Beer photodetector; receiving output signals when the fluid sample is passed through the ozonolyzer and output signals when the fluid sample is not passed from the first photodetector and the second photodetector; a calculation means for calculating the ozone concentration by subtracting the concentration of the interfering substance from the concentration of (ozone + interfering substance) according to a law;
A light absorption type ozone concentration measuring device characterized by comprising:
(2)請求項(1)記載の光吸収式オゾン濃度測定器に
おいて、波長が184.9nmの光を検出する第2の光
検出器に代えて波長が435.8nmの光および波長が
546.1nmの光を検出する第2の光検出器を備えた
光吸収式オゾン濃度測定器。
(2) In the light absorption type ozone concentration measuring device according to claim (1), the second photodetector detects light with a wavelength of 184.9 nm and the second photodetector detects light with a wavelength of 435.8 nm and wavelength of 546.9 nm. A light absorption type ozone concentration measuring device equipped with a second photodetector that detects 1 nm light.
JP7112888A 1988-03-25 1988-03-25 Light absorbing type ozone concentration measuring device Pending JPH01244341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7112888A JPH01244341A (en) 1988-03-25 1988-03-25 Light absorbing type ozone concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7112888A JPH01244341A (en) 1988-03-25 1988-03-25 Light absorbing type ozone concentration measuring device

Publications (1)

Publication Number Publication Date
JPH01244341A true JPH01244341A (en) 1989-09-28

Family

ID=13451625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7112888A Pending JPH01244341A (en) 1988-03-25 1988-03-25 Light absorbing type ozone concentration measuring device

Country Status (1)

Country Link
JP (1) JPH01244341A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416749A (en) * 1990-05-11 1992-01-21 Japan Steel Works Ltd:The Method and apparatus for measuring ozone concentration
JPH0418352U (en) * 1990-06-01 1992-02-17
JPH0478544U (en) * 1990-11-17 1992-07-08
JPH0757013A (en) * 1993-08-13 1995-03-03 Center For Polytical Pub Relations:The Voting terminal equipment
JP2000171394A (en) * 1998-12-01 2000-06-23 Tetra Laval Holdings & Finance Sa Method and device for determining substance concentration of sample in which disturbing material exist
JP2002139429A (en) * 2000-11-06 2002-05-17 Kurabo Ind Ltd Dissolved-ozone concentration measuring instrument
JP2006258491A (en) * 2005-03-15 2006-09-28 Kurabo Ind Ltd Device and method for measuring concentration of acid solution including peracetic acid
JP2007529012A (en) * 2004-03-12 2007-10-18 エムケイエス インストゥルメンツ, インコーポレイテッド Ozone concentration sensor
JP2008209125A (en) * 2007-02-23 2008-09-11 Tamura Teco:Kk Dissolved ozone densitometer and vegetables washing method
JP2008286531A (en) * 2007-05-15 2008-11-27 Nippon Soken Inc Fuel property detection apparatus
CN103674872A (en) * 2012-09-03 2014-03-26 仓敷纺织株式会社 Method and apparatus for measuring concentration of advanced-oxidation active species
JP2014235036A (en) * 2013-05-31 2014-12-15 理研計器株式会社 Method for measuring cf4 gas concentration, and device for measuring cf4 gas concentration
JP2015515624A (en) * 2012-03-27 2015-05-28 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Sensor configuration for measuring substance concentration

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416749A (en) * 1990-05-11 1992-01-21 Japan Steel Works Ltd:The Method and apparatus for measuring ozone concentration
JPH0418352U (en) * 1990-06-01 1992-02-17
JPH0478544U (en) * 1990-11-17 1992-07-08
JPH0757013A (en) * 1993-08-13 1995-03-03 Center For Polytical Pub Relations:The Voting terminal equipment
JP2000171394A (en) * 1998-12-01 2000-06-23 Tetra Laval Holdings & Finance Sa Method and device for determining substance concentration of sample in which disturbing material exist
DE10023000A1 (en) * 1998-12-01 2002-01-31 Tetra Laval Holdings & Finance Contaminant concentration determination procedure in specimen, involves measuring concentration of contaminant in specimen based on adjusted intensity of light radiated from source
DE10023000C2 (en) * 1998-12-01 2002-08-01 Tetra Laval Holdings & Finance Method and arrangement for packaging a food in packages which are sterilized by a sterilizing medium
JP4634596B2 (en) * 2000-11-06 2011-02-16 倉敷紡績株式会社 Dissolved ozone concentration measuring device
JP2002139429A (en) * 2000-11-06 2002-05-17 Kurabo Ind Ltd Dissolved-ozone concentration measuring instrument
US8085401B2 (en) 2004-03-12 2011-12-27 Mks Instruments, Inc. Ozone concentration sensor
JP4928437B2 (en) * 2004-03-12 2012-05-09 エムケイエス インストゥルメンツ, インコーポレイテッド Ozone concentration sensor
US8339607B2 (en) 2004-03-12 2012-12-25 Mks Instruments, Inc. Ozone concentration sensor
JP2007529012A (en) * 2004-03-12 2007-10-18 エムケイエス インストゥルメンツ, インコーポレイテッド Ozone concentration sensor
JP4722513B2 (en) * 2005-03-15 2011-07-13 倉敷紡績株式会社 Apparatus and method for measuring the concentration of an acid solution containing peracetic acid
JP2006258491A (en) * 2005-03-15 2006-09-28 Kurabo Ind Ltd Device and method for measuring concentration of acid solution including peracetic acid
JP4722868B2 (en) * 2007-02-23 2011-07-13 株式会社タムラテコ How to wash vegetables
JP2008209125A (en) * 2007-02-23 2008-09-11 Tamura Teco:Kk Dissolved ozone densitometer and vegetables washing method
US8089629B2 (en) 2007-05-15 2012-01-03 Nippon Soken, Inc. Fuel property detection apparatus
JP2008286531A (en) * 2007-05-15 2008-11-27 Nippon Soken Inc Fuel property detection apparatus
JP2015515624A (en) * 2012-03-27 2015-05-28 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Sensor configuration for measuring substance concentration
US9625383B2 (en) 2012-03-27 2017-04-18 Tetra Laval Holdings & Finance S.A. Sensor arrangement for measuring the concentration of a substance
CN103674872A (en) * 2012-09-03 2014-03-26 仓敷纺织株式会社 Method and apparatus for measuring concentration of advanced-oxidation active species
JP2014235036A (en) * 2013-05-31 2014-12-15 理研計器株式会社 Method for measuring cf4 gas concentration, and device for measuring cf4 gas concentration

Similar Documents

Publication Publication Date Title
US8114676B2 (en) Carbon measurement in aqueous samples using oxidation at elevated temperatures and pressures
JPH01244341A (en) Light absorbing type ozone concentration measuring device
JPS587546A (en) Measuring device for subaqueous ozone
US5630987A (en) Method and apparatus for the measurement of pollutants in liquids
JPH0323858B2 (en)
US6834536B2 (en) Probe for measuring alcohol in liquids
JP3269196B2 (en) Analyzer for nitrogen compounds and phosphorus compounds in water
JP4048139B2 (en) Concentration measuring device
JPH0416749A (en) Method and apparatus for measuring ozone concentration
US3751167A (en) Method and apparatus for continuous monitoring of dissolved organics
YU38192A (en) GAS ANALYSIS PROCEDURE AND DEVICE
JP2882516B2 (en) Analysis of compounds in water
GB2059574A (en) Absorption cell gas monitor
JP2528111B2 (en) Ozone concentration measuring method and device
JPS6038654B2 (en) Suspended solids concentration and organic matter index measurement method in water and detection part of the measuring device
Fried et al. Laser photoacoustic detection of nitrogen dioxide in the gas-phase titration of nitric oxide with ozone
JP2945050B2 (en) Method for determining performance degradation of zero gas generator in ozone concentration measurement device
KR200230292Y1 (en) The Simultaneous Measuring Sensor of High and Low Concentration Ozone
JPS62228146A (en) Ultraviolet type organic substance measuring apparatus
JP4634596B2 (en) Dissolved ozone concentration measuring device
JPS62228145A (en) Ultraviolet type organic substance measuring apparatus
JP7454629B2 (en) Treatment unit including a measuring unit for measuring antibacterial active ingredients and method for measuring the content of antibacterial agents in treated water
JP3237400B2 (en) Analyzer for nitrogen compounds and phosphorus compounds in water
Vasilevski et al. Monitoring the dialysis liquid during hemodialysis from the extinction spectra in the UV region
JPH0749413Y2 (en) UV absorption type ozone meter