JPH08297119A - Method and device for measuring ultraviolet-ray absorbance of process - Google Patents

Method and device for measuring ultraviolet-ray absorbance of process

Info

Publication number
JPH08297119A
JPH08297119A JP10282295A JP10282295A JPH08297119A JP H08297119 A JPH08297119 A JP H08297119A JP 10282295 A JP10282295 A JP 10282295A JP 10282295 A JP10282295 A JP 10282295A JP H08297119 A JPH08297119 A JP H08297119A
Authority
JP
Japan
Prior art keywords
ozone
water
derived
ultraviolet
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10282295A
Other languages
Japanese (ja)
Inventor
Tetsufumi Watanabe
哲文 渡辺
Hiroshi Shimazaki
弘志 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10282295A priority Critical patent/JPH08297119A/en
Publication of JPH08297119A publication Critical patent/JPH08297119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To provide an ultraviolet-ray absorbance measuring method for process and its device capable of accurately and continuously measuring the ultraviolet- ray absorbance derived from the absorption of an organic matter even when dissolved ozone exists in the ozone-processed water. CONSTITUTION: The water to be processed is ozone-processed in this process. The ozone-processed water is fed to the first measuring cell 12 as sample water, the light passing through the sample water from a light source is received by a light receiver, and the sum of the ultraviolet-ray absorbance derived from an organic matter and the ultraviolet-ray absorbance derived from dissolved ozone is measured by a converter/calculation section. The sample water finished with measurement is fed to an aeration tank 14 kept at the decompression state, the dissolved ozone is extracted as ozone gas by the diffusion of air, the de-ozone processed water is fed to the second measuring cell 13, and the ultraviolet-ray absorbance derived from only the organic matter is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオゾン処理及び活性炭処
理に代表される上水の高度浄水処理において、オゾン処
理の前後における水中に含有される有機物濃度と溶存オ
ゾン濃度を同時に測定するようにしたプロセス用の紫外
線吸光度測定方法及び装置に関するものである。
BACKGROUND OF THE INVENTION The present invention is designed to measure the concentration of organic substances and the concentration of dissolved ozone in water before and after ozone treatment in the advanced water purification treatment of tap water represented by ozone treatment and activated carbon treatment. The present invention relates to a method and an apparatus for measuring ultraviolet absorbance for a process.

【0002】[0002]

【従来の技術】一般に河川などから取水した原水を浄化
するには、凝集沈殿池で原水中に凝集剤を注入,混合
し、撹拌及び滞留処理により原水中の懸濁物質(砂,粘
土,藻類等の有機物等)を凝集して沈澱,分離する。こ
のプロセスでは殺藻処理や鉄,マンガンなどの色度成分
の除去を目的とした塩素処理が組み込まれている。
2. Description of the Related Art Generally, in order to purify raw water taken from a river or the like, a flocculant is injected into a raw water in a flocculation sedimentation tank, mixed, and stirred and retained to treat suspended substances (sand, clay, algae) in the raw water. Organic substances such as) are aggregated to precipitate and separate. This process incorporates chlorine treatment for the purpose of algicidal treatment and removal of chromaticity components such as iron and manganese.

【0003】特に大都市近郊においては河川の汚濁が著
しいため、アンモニアや、発ガン性物質のTHM(トリ
ハロメタン)の前駆物質であるフミン質を含む色度成分
の含有率が高く、塩素処理により塩素とアンモニアが反
応してクロラミンを生成し、必要以上の塩素を消費して
しまう結果、塩素注入率が高くなってTHMが増大す
る。
Particularly in the suburbs of large cities, rivers are significantly polluted, so that the content of chromaticity components including ammonia and humic substances, which are precursors of the carcinogenic substance THM (trihalomethane), is high. And ammonia react with each other to produce chloramine and consume more chlorine than necessary. As a result, the chlorine injection rate increases and THM increases.

【0004】このような背景から、近年上述した物質の
除去を目的として高度浄水処理システムを浄水プロセス
に組み込む方式が行われるようになってきた。この高度
浄水処理方法には、オゾン処理や生物活性炭処理があ
り、例えば塩素処理の代替としてオゾン処理塔によりオ
ゾン処理を行い、更に活性炭処理塔もしくは生物濾過塔
により色度成分などを除去し、砂濾過池等で濾過した後
に塩素処理を行い、浄水池に送水する。特に生物活性炭
処理の前にオゾン処理を行うことにより、負荷変動に対
する許容度や活性炭の寿命の向上をはかることができ
る。
From such a background, in recent years, a method of incorporating an advanced water purification treatment system into a water purification process has been performed for the purpose of removing the above-mentioned substances. This advanced water purification method includes ozone treatment and biological activated carbon treatment.For example, ozone treatment is performed by an ozone treatment tower as an alternative to chlorine treatment, and chromaticity components are removed by an activated carbon treatment tower or biological filtration tower to remove sand. After filtering in a filtration pond, etc., chlorine treatment is performed and the water is sent to the water purification pond. In particular, by performing the ozone treatment before the biological activated carbon treatment, it is possible to improve the tolerance for load fluctuation and the life of the activated carbon.

【0005】他方で1993年12月に新水道水質基準
が制定され、規制値の強化及び規制項目の増加が実施さ
れた。この規制項目の中には上記した現在の浄水処理施
設では除去が困難な物質、例えば揮発性有機塩素化合物
とか農薬、カビ臭物質が含まれている。そこで近時は大
都市近郊の浄水場を中心としてオゾン処理及び活性炭処
理に代表される高度浄水処理が上記新水道水質基準に対
応する施設として検討されている。
On the other hand, a new water quality standard for tap water was established in December 1993, and the regulation value was strengthened and the regulation items were increased. This regulation item includes substances that are difficult to remove in the above-mentioned current water treatment facilities, such as volatile organic chlorine compounds, pesticides, and musty odor substances. Therefore, recently, highly purified water treatment represented by ozone treatment and activated carbon treatment, mainly in water purification plants near large cities, is being considered as a facility that meets the above new water quality standards.

【0006】上記オゾン処理及び活性炭処理は、水中の
溶存性の微量有機物質の除去を目的としているため、水
量だけでなく水質の制御が必要である。そのため紫外線
吸光光度計(以下UV計と略称する)のようなプロセス
用の水質計測器を設置しなければならない。
Since the above ozone treatment and activated carbon treatment are intended to remove dissolved trace organic substances in water, it is necessary to control not only the amount of water but also the quality of water. Therefore, a process water quality measuring instrument such as an ultraviolet absorptiometer (hereinafter abbreviated as UV meter) must be installed.

【0007】このような溶存性の微量有機物質の連続計
測用として使用されているUV計は、連続流通形吸光光
度法を測定原理としている。この測定原理は、無機物の
紫外線吸光度は250nm以上の波長ではほとんど認め
られないが、有機物は254nm程度の波長でもある程
度の吸収を示すことを利用しており、従って254nm
以上の波長での吸収はほとんど有機物に基づいている。
The UV meter used for the continuous measurement of such dissolved trace organic substances has a continuous flow absorption spectrophotometry as a measurement principle. The principle of this measurement is that the UV absorption of inorganic substances is hardly recognized at wavelengths of 250 nm or more, but the organic substances show some absorption even at wavelengths of about 254 nm.
Absorption at these wavelengths is mostly organic.

【0008】E260における吸収物質が有機物である
トリハロメタン生成能とか全有機ハロゲン化合物生成能
等と相関関係があり、従ってUV計が有機物指標のプロ
セス用計測器として用いられる。上記の波長254nm
は、C=Cで表わされる二重結合を有する生物分解性の
低い有機物量の目安となる指標ともなっている。
The absorbing substance in E260 has a correlation with the ability to generate trihalomethane which is an organic substance, the ability to generate all organic halogen compounds, etc. Therefore, a UV meter is used as a measuring instrument for the process of an organic substance index. Above wavelength 254nm
Is also an index that serves as a guide for the amount of low biodegradable organic matter having a double bond represented by C = C.

【0009】上記254nm付近の波長では、有機物の
みならず溶存オゾンによる吸収があり、従ってオゾン処
理施設でUV計を使用する場合には、オゾン処理水の紫
外線吸光度は「有機物+溶存オゾン」の値が表示される
ことになる。従ってオゾン処理に基づいて水質制御を行
うには、UV計の測定値を「有機物」と「溶存オゾン」
に分別することが必要である。
At the above wavelength of about 254 nm, not only organic matter but also dissolved ozone is absorbed. Therefore, when a UV meter is used in an ozone treatment facility, the ultraviolet absorbance of ozone-treated water is the value of "organic matter + dissolved ozone". Will be displayed. Therefore, in order to control the water quality based on ozone treatment, the measured values of the UV meter should be “organic matter” and “dissolved ozone”.
It is necessary to separate into

【0010】尚、一般に紫外線吸光度(UV)とは、紫
外線の波長領域である200〜400nmの範囲で光が
物質に吸収されることを利用した分析方法であり、通常
は波長が254nmにおける吸光度(E260)と、波
長が370nmにおける吸光度(E370)を用いて実
施される。E260は過マンガン酸カリウム消費量(m
g/l)との相関が高く、E370は色度との相関が高
いことが知られている。
Generally, the ultraviolet absorbance (UV) is an analytical method utilizing the fact that light is absorbed by a substance in the range of 200 to 400 nm, which is the wavelength range of ultraviolet rays, and usually the absorbance at a wavelength of 254 nm ( E260) and the absorbance at wavelength 370 nm (E370). E260 is potassium permanganate consumption (m
It is known that E370 has a high correlation with g / l) and E370 has a high correlation with chromaticity.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記の高
度浄水処理システムに用いられるオゾン処理水に紫外線
吸光光度計による測定を適用する際の問題点は、オゾン
の最大吸収帯が波長254nmにあることであり、その
ためUV計で測定する検水中にオゾンが溶存オゾンとし
て存在している場合には、UV計の指示値は有機物の吸
収に由来する波長254nmでの紫外線吸収に、溶存オ
ゾンに由来する吸収分が加わってしまうことになり、測
定値が高めになってしまうという難点があった。
However, a problem in applying the measurement by the ultraviolet absorptiometer to the ozone-treated water used in the above-mentioned advanced water treatment system is that the maximum absorption band of ozone is at the wavelength of 254 nm. Therefore, when ozone is present as dissolved ozone in the test water measured with a UV meter, the reading on the UV meter depends on the absorption of ultraviolet rays at a wavelength of 254 nm, which is derived from the absorption of organic matter, and the absorption derived from dissolved ozone. However, there is a problem in that the measured value becomes high because the minute is added.

【0012】即ち、オゾン処理水中に溶存オゾンがある
場合には、有機物の吸収に基づく紫外線吸光度の正確な
測定を行うことが出来ない。他方で水中のオゾンは分解
及び気相への気散速度が非常に速いことから、オゾン処
理後のオゾン処理水を一旦貯留放置して、溶存オゾンが
消失した時点でUV計による測定を実施することも可能
であるが、この方法は測定までに余分な時間を要するた
め、オゾン処理用原水の水質変動とか、オゾン処理条件
変化に対するオゾン処理水の水質変化に対して迅速な対
応が出来ず、正確な測定値が得られないという問題点が
ある。
That is, when the ozone-treated water contains dissolved ozone, it is impossible to accurately measure the ultraviolet absorbance based on the absorption of organic substances. On the other hand, since ozone in water decomposes and diffuses into the gas phase very fast, the ozone-treated water after ozone treatment is temporarily stored and left, and when the dissolved ozone disappears, measurement by a UV meter is performed. It is also possible, but this method requires extra time before measurement, so it is not possible to quickly respond to changes in the water quality of the raw water for ozonation or changes in the water quality of ozonated water due to changes in ozonation conditions, There is a problem that an accurate measured value cannot be obtained.

【0013】特にオゾン処理の前後で有機物に由来する
UV値が変化することを利用して、この値によりオゾン
処理条件の管理とか制御を実施することが可能であると
考えられるので、オゾン処理前後での有機物に基づくU
V値を正確に測定することができる装置の実現が望まれ
ている現状にある。
In particular, it is considered that it is possible to manage or control the ozone treatment conditions based on the fact that the UV value derived from organic substances changes before and after the ozone treatment. Based on organic matter in U
At present, it is desired to realize an apparatus capable of accurately measuring the V value.

【0014】本発明は上記の問題点に鑑み、オゾン処理
水中に溶存オゾンが存在していても、簡易な前処理を実
施することによって有機物の吸収に由来する紫外線吸光
度を正確且つ連続的に測定できるプロセス用の紫外線吸
光度測定方法及び装置を提供することを目的とするもの
である。
In view of the above problems, the present invention accurately and continuously measures the ultraviolet absorbance derived from the absorption of organic matter by performing a simple pretreatment even if dissolved ozone is present in the ozone-treated water. It is an object of the present invention to provide an ultraviolet absorption measuring method and apparatus for a process capable of performing the same.

【0015】[0015]

【課題を解決するための手段】本発明は上記の目的を達
成するために、請求項1により、被処理水をオゾン処理
することにより、水中の溶存性の微量有機物質を除去す
るようにしたプロセスにおいて、上記オゾン処理を実施
した後の被処理水を検水として採取して、この検水を第
1の測定セル内に流入し、光源から該検水中を通過した
光を受光器に受信して変換器・計算部で有機物に由来す
る紫外線吸光度と溶存オゾンに由来する紫外線吸光度と
の総和を計測し、上記計測が終了した検水を減圧状態下
に保持した曝気槽に流入して空気の放散により溶存オゾ
ンをオゾンガスとして引き抜き、この脱オゾン処理水を
第2の測定セル内に流入し、光源から該検水中を通過し
た光を受光器に受信して変換器・計算部で有機物に由来
する紫外線吸光度だけを計測するようにしたプロセス用
の紫外線吸光度測定方法を提供する。
In order to achieve the above-mentioned object, the present invention is directed to the treatment of water to be treated with ozone according to claim 1 so as to remove dissolved trace organic substances in water. In the process, the water to be treated after performing the ozone treatment is collected as test water, the test water flows into the first measuring cell, and the light passing through the test water from the light source is received by the light receiver. Then, the converter / calculator measures the total of the UV absorbance derived from organic substances and the UV absorbance derived from dissolved ozone, and the sample water after the above measurement is flown into the aeration tank which is kept under a reduced pressure and air Dissolved ozone is extracted as ozone gas by the emission of water, the de-ozonized water flows into the second measurement cell, and the light passing through the test water from the light source is received by the light receiver and converted into organic matter by the converter / calculator. Derived UV absorbance Only provides UV absorbance measurement method for processes to be measured.

【0016】上記曝気槽に付設された引抜用ポンプによ
るオゾンガスの引抜量を、曝気槽内に送り込まれる空気
量よりも大きくなるように設定したことにより、曝気槽
内を減圧状態に保持している。
By setting the extraction amount of ozone gas by the extraction pump attached to the aeration tank to be larger than the amount of air sent into the aeration tank, the inside of the aeration tank is kept in a depressurized state. .

【0017】請求項3により、上記オゾン処理を実施す
る前の被処理水を検水として採取して、この検水を第1
の測定セル内に流入し、光源から該検水中を通過した光
を受光器に受信して変換器・計算部で有機物に由来する
紫外線吸光度を計測するようにした紫外線吸光度測定方
法を提供する。
According to claim 3, the water to be treated before the ozone treatment is sampled as a sample water, and the sample water is the first sample water.
The method for measuring the absorbance of ultraviolet light, wherein the light that has flowed into the measuring cell and passed through the test water from the light source is received by the light receiver and the ultraviolet light absorbance derived from the organic matter is measured by the converter / calculator.

【0018】更に請求項4により、溶存オゾンを含有す
る検水が流入する第1の測定セルと、該第1の測定セル
から排出された検水に減圧状態下で空気を放散して溶存
オゾンをオゾンガスとして引き抜く曝気槽と、該曝気槽
からの脱オゾン水が流入する第2の測定セルと、前記第
1及び第2の測定セルに、光源から各測定セル中を通過
した光に基づいて有機物に由来する紫外線吸光度と溶存
オゾンに由来する紫外線吸光度との総和と、有機物に由
来する紫外線吸光度だけを計測する変換器・計算部とを
具備して成るプロセス用の紫外線吸光度測定装置の構成
にしてある。
Further, according to claim 4, the first measuring cell into which the test water containing the dissolved ozone flows, and the test water discharged from the first measuring cell, in which air is diffused under reduced pressure, to dissolve the dissolved ozone. Based on the light passing through each measurement cell from the light source to the aeration tank for drawing out ozone as ozone gas, the second measurement cell into which de-ozoned water from the aeration tank flows, and the first and second measurement cells. In the configuration of the ultraviolet absorption measuring device for the process, which comprises a total of the ultraviolet absorption derived from the organic matter and the ultraviolet absorption derived from the dissolved ozone, and a converter / calculation unit for measuring only the ultraviolet absorption derived from the organic matter. There is.

【0019】[0019]

【作用】かかるプロセス用の紫外線吸光度測定方法及び
装置によれば、検水がオゾン処理水である場合には、該
検水が第1の測定セル内に流入してUV測定原理に基づ
いて紫外線吸光度が計測され、変換器・計算部から有機
物に由来する紫外線吸光度と溶存オゾンに由来する紫外
線吸光度との総和として出力された後、この検水が減圧
状態下に保持した曝気槽に流入して空気の放散により溶
存オゾンがオゾンガスとして引き抜かれ、得られた脱オ
ゾン処理水が第2の測定セル内に流入して再びUV測定
原理に基づいて紫外線吸光度が計測され、変換器・計算
部から脱オゾン処理水の有機物に由来する紫外線吸光度
が出力される。
According to the ultraviolet absorption measuring method and apparatus for such a process, when the sample water is ozone-treated water, the sample water flows into the first measuring cell and the ultraviolet ray is detected based on the UV measuring principle. The absorbance was measured and output from the converter / calculator as the sum of the ultraviolet absorbance derived from organic substances and the ultraviolet absorbance derived from dissolved ozone, and this sample water then flowed into the aeration tank kept under reduced pressure. Dissolved ozone is extracted as ozone gas due to air diffusion, and the resulting de-ozonized water flows into the second measurement cell and UV absorbance is measured again based on the UV measurement principle, and the ozone is removed from the converter / calculation unit. The UV absorbance derived from the organic matter of the ozone-treated water is output.

【0020】従って第1の測定セルと第2の測定セルと
の各測定値の差を取ると、溶存オゾンに由来する紫外線
吸光度が得られる。又、オゾン処理前の検水が第1の測
定セルに流入した場合には、この第1の測定セルによっ
て計測された紫外線吸光度はそのまま有機物に由来する
紫外線吸光度となる。
Therefore, by taking the difference between the respective measured values of the first measuring cell and the second measuring cell, the ultraviolet absorbance derived from dissolved ozone can be obtained. When the test water before ozone treatment flows into the first measurement cell, the UV absorbance measured by the first measurement cell becomes the UV absorbance derived from the organic substance as it is.

【0021】従って本実施例によれば、オゾン処理水中
での溶存オゾンの影響をなくして、有機物の吸収に由来
する紫外線吸光度と、溶存オゾンに由来する紫外線吸光
度とを精度良く測定することができる。
Therefore, according to the present embodiment, the influence of dissolved ozone in the ozone-treated water can be eliminated, and the ultraviolet absorbance derived from the absorption of organic substances and the ultraviolet absorbance derived from dissolved ozone can be accurately measured. .

【0022】[0022]

【実施例】以下、図面に基づいて本発明にかかるプロセ
ス用の紫外線吸光度測定方法及び装置の具体的な実施例
を説明する。図1の概要図は検水がオゾン処理水の場合
を想定しており、図中の1は被処理水槽、2は被処理水
の流量計、3はオゾン処理塔、4はオゾン発生機、5は
注入オゾンの流量計、6はオゾン処理水の流量計、7は
オゾン処理塔3内の底壁近傍に配置された散気管であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the ultraviolet absorption measuring method and apparatus for the process according to the present invention will be described below with reference to the drawings. The schematic diagram of FIG. 1 assumes that the test water is ozone-treated water. In the figure, 1 is a treated water tank, 2 is a flowmeter of treated water, 3 is an ozone treatment tower, 4 is an ozone generator, Reference numeral 5 is a flow meter of injected ozone, 6 is a flow meter of ozone-treated water, and 7 is a diffuser pipe arranged in the vicinity of the bottom wall of the ozone treatment tower 3.

【0023】8は紫外線吸光度測定装置を全体的に示し
ており、9はオゾン処理水の採水ポンプ、10は水温
計、11は薬液タンク、12は第1の測定セル、13は
第2の測定セル、14は曝気槽、15は曝気量調整弁、
16は曝気槽14の底壁近傍に配置された散気管、17
は曝気用ポンプ、18はオゾンガス引抜用ポンプ、19
はオゾンガス引抜用調整弁、20は活性炭フィルタであ
る。
Reference numeral 8 is an ultraviolet absorption measuring apparatus as a whole, 9 is a pump for collecting ozone-treated water, 10 is a water temperature gauge, 11 is a chemical solution tank, 12 is a first measuring cell, and 13 is a second measuring cell. A measurement cell, 14 is an aeration tank, 15 is an aeration amount control valve,
16 is an air diffuser disposed near the bottom wall of the aeration tank 14, 17
Is an aeration pump, 18 is an ozone gas extraction pump, 19
Is an ozone gas extraction adjusting valve, and 20 is an activated carbon filter.

【0024】かかる実施例の基本的作用は以下の通りで
ある。先ずオゾン処理を実施した後の被処理水を検水と
した操作例を説明する。即ち、被処理水槽1に貯留され
た被処理水は流量計2を介してオゾン処理塔3の上方か
ら流入する。同時にオゾン発生機4を起動することによ
って得られるオゾンガスが流量計5を介してオゾン処理
塔3内の底壁近傍に配置された散気管7から被処理水中
に対向流として放散され、所望とするオゾン処理が行わ
れてから管路23及び流量計6を介してオゾン処理水2
1が流出する。オゾン処理塔3内に残留するオゾンガス
は、該オゾン処理塔3の上壁部から導出されて排オゾン
処理施設22内に送り込まれ、無害化処理されてから放
出される。
The basic operation of this embodiment is as follows. First, an operation example in which the water to be treated after the ozone treatment is used as the test water will be described. That is, the treated water stored in the treated water tank 1 flows in from above the ozone treatment tower 3 via the flow meter 2. At the same time, the ozone gas obtained by activating the ozone generator 4 is diffused through the flow meter 5 from the air diffusing pipe 7 arranged near the bottom wall in the ozone treatment tower 3 into the water to be treated as a countercurrent flow, which is desired. After the ozone treatment is performed, the ozone-treated water 2 is passed through the conduit 23 and the flow meter 6.
1 flows out. The ozone gas remaining in the ozone processing tower 3 is led out from the upper wall portion of the ozone processing tower 3, fed into the exhaust ozone processing facility 22, detoxified, and then discharged.

【0025】このオゾン処理水21の一部は検水として
採水ポンプ9により採水され、この検水は水温計10を
通ってから第1の測定セル12に流入し、詳細は後述す
る測定原理に基づいて検水の紫外線吸光度(UV)、可
視光吸光度(VIS)及び濁度補正信号(UV−VI
S)が計測される。
A part of the ozone-treated water 21 is sampled by the water sampling pump 9 as sample water, and the sample water passes through the water temperature gauge 10 and then flows into the first measuring cell 12, which will be described in detail later. Based on the principle, the ultraviolet absorbance (UV), visible light absorbance (VIS) and turbidity correction signal (UV-VI)
S) is measured.

【0026】この検水は第1の測定セル12から曝気槽
14に流入し、曝気用ポンプ17の駆動に伴って曝気量
調整弁15を介して送り込まれる空気が曝気槽14の底
壁近傍に配置された散気管16から放散される。この曝
気によって検水中に含まれている溶存オゾンがガス化し
て、引抜用ポンプ18の駆動によって曝気槽14の上壁
部から引き抜かれ、オゾンガス引抜用調整弁19を介し
て活性炭フィルタ20内に導入され、無害化されてから
大気中に放出される。
This test water flows from the first measuring cell 12 into the aeration tank 14, and the air sent through the aeration amount adjusting valve 15 with the driving of the aeration pump 17 is near the bottom wall of the aeration tank 14. The air is diffused from the air diffuser 16 arranged. Dissolved ozone contained in the test water is gasified by this aeration, and is extracted from the upper wall of the aeration tank 14 by driving the extraction pump 18 and introduced into the activated carbon filter 20 through the ozone gas extraction adjustment valve 19. It is detoxified and released into the atmosphere.

【0027】本実施例では、引抜用ポンプ18によるオ
ゾンガスの引抜量が曝気槽14内の曝気量、即ち曝気用
ポンプ17の駆動に伴って曝気槽14内に送り込まれる
空気量よりも大きくなるように設定されていて、これに
伴って曝気槽14内が減圧状態となり、効率的な脱オゾ
ン処理を実施することができる。
In this embodiment, the extraction amount of ozone gas by the extraction pump 18 is larger than the aeration amount inside the aeration tank 14, that is, the amount of air sent into the aeration tank 14 when the aeration pump 17 is driven. Is set, and along with this, the inside of the aeration tank 14 is in a depressurized state, and efficient deozone treatment can be performed.

【0028】尚、採水ポンプと第1の測定セル12との
間に水温計10を配備した理由は、通常検水の水温が1
5℃以下のように低温であると、脱オゾンに要する曝気
時間が長くなってしまうため、水温計10によって検水
の水温が15℃以上であることを確認してから第1の測
定セル12に送り込むようにしている。
The reason why the water temperature gauge 10 is provided between the water sampling pump and the first measuring cell 12 is that the water temperature of the normal test water is 1.
If the temperature is as low as 5 ° C. or lower, the aeration time required for deozoneing becomes long. Therefore, after confirming that the water temperature of the sample water is 15 ° C. or more by the water temperature meter 10, the first measuring cell 12 I am sending it to.

【0029】このようにして曝気槽14で脱オゾン処理
された検水は、次段の第2の測定セル13に流入して、
検水の紫外線吸光度(UV)、可視光吸光度(VIS)
及び濁度補正信号(UV−VIS)が計測される。計測
後の検水は排水24として流出する。
The test water thus deozoned in the aeration tank 14 flows into the second measuring cell 13 in the next stage,
Ultraviolet absorbance (UV), visible light absorbance (VIS) of test water
And the turbidity correction signal (UV-VIS) is measured. The measured water after the measurement flows out as drainage 24.

【0030】上記第1の測定セル12の内壁部はオゾン
処理水21中の有機成分とかオゾンにより酸化された
鉄,マンガン等の付着によって汚染されやすいため、1
回の測定後に薬液タンク11内に貯留されている2〜5
%塩酸を用いて、図示していないワイパゴムの共働によ
って測定セル12の内壁部の洗浄作業を行う。
The inner wall portion of the first measuring cell 12 is easily contaminated by the organic components in the ozone-treated water 21 or the adhesion of iron, manganese, etc. oxidized by ozone.
2 to 5 stored in the chemical liquid tank 11 after the measurement of one time
Using% hydrochloric acid, the inner wall of the measuring cell 12 is cleaned by the cooperation of a wiper rubber (not shown).

【0031】図2により上記第1の測定セル12と第2
の測定セル13によるUV及びVIS測定原理を説明す
る。25は光源用電源部、26a,26bは一対の光源
ランプであり、この光源ランプ26a,26bに近接し
て前記第1の測定セル12と第2の測定セル13とが配
置されている。
Referring to FIG. 2, the first measuring cell 12 and the second measuring cell 12
The principle of UV and VIS measurement by the measuring cell 13 will be described. Reference numeral 25 is a light source power source unit, and 26a and 26b are a pair of light source lamps, and the first measurement cell 12 and the second measurement cell 13 are arranged close to the light source lamps 26a and 26b.

【0032】又、光源ランプ26a,26bと第1及び
第2の測定セル12,13との間には、光分離スプリッ
タ30a,30bが配置されていて、この光分離スプリ
ッタ30a,30bの光路上にはそれぞれ受光器31
a,31bが設けられ、この受光器31a,31bが参
照信号ライン32a,32bに接続されている。
Further, light separating splitters 30a and 30b are arranged between the light source lamps 26a and 26b and the first and second measuring cells 12 and 13, respectively, and on the optical paths of the light separating splitters 30a and 30b. Each has a light receiver 31
a and 31b are provided, and the light receivers 31a and 31b are connected to the reference signal lines 32a and 32b.

【0033】上記第1の測定セル12と第2の測定セル
13に付設された前記一対の光源ランプ26a,26b
と対向する位置に、一対の受光器27a,27bが配置
されており、この受光器27a,27bで受信した信号
は増幅器28a,28bを介して変換器・計算部29に
入力される。30はE260出力部、31は溶存オゾン
濃度出力部であり、各出力部30,31は図外の表示部
に連接されている。尚、前記参照信号ライン32a,3
2bの他端部は増幅器28a,28bに接続されてい
る。
The pair of light source lamps 26a, 26b attached to the first measuring cell 12 and the second measuring cell 13
A pair of optical receivers 27a and 27b are arranged at positions facing each other, and the signals received by the optical receivers 27a and 27b are input to the converter / calculator 29 via the amplifiers 28a and 28b. Reference numeral 30 is an E260 output unit, 31 is a dissolved ozone concentration output unit, and the output units 30 and 31 are connected to a display unit (not shown). Incidentally, the reference signal lines 32a, 3
The other end of 2b is connected to amplifiers 28a and 28b.

【0034】上記2個の光源ランプ26a,26bは低
圧水銀灯で構成され、光源ランプ26aの波長出力は2
54nm、光源ランプ26bの波長出力は546nmと
なっている。
The two light source lamps 26a and 26b are low pressure mercury lamps, and the wavelength output of the light source lamp 26a is 2
54 nm, and the wavelength output of the light source lamp 26b is 546 nm.

【0035】かかる構成によるUV及びVIS測定操作
と測定原理は以下の通りである。先ずオゾン処理水であ
る検水が検水流入口12aから第1の測定セル12内に
流入するのと同時に光源26aを点灯する。すると光源
26aから発した254nmの光は、第1の測定セル1
2を通過する前に光分離スプリッタ30aで分離されて
受光器31aで受信され、参照信号ライン32aを介し
て増幅器28aに入力される。
The UV and VIS measurement operation and the measurement principle by the above structure are as follows. First, the light source 26a is turned on at the same time when the test water that is ozone-treated water flows into the first measuring cell 12 through the test water inlet 12a. Then, the 254 nm light emitted from the light source 26a emits the first measurement cell 1
Before passing through 2, the light is split by the light splitting splitter 30a, received by the light receiver 31a, and input to the amplifier 28a via the reference signal line 32a.

【0036】第1の測定セル12内の検水中を通過した
光は受光器27aに受信され、信号が増幅器28aで増
幅されてから変換器・計算部29に送り込まれ、公知の
紫外線吸光度測定原理に基づいて紫外線吸光度(UV)
と可視光吸光度(VIS)及び濁度補正信号(UV−V
IS)が計測されて、E260出力部30から図外の表
示部に出力される。
The light that has passed through the test water in the first measuring cell 12 is received by the light receiver 27a, the signal is amplified by the amplifier 28a, and then sent to the converter / calculator 29, which is a known principle of ultraviolet absorbance measurement. UV absorbance based on
And visible light absorbance (VIS) and turbidity correction signal (UV-V
IS) is measured and output from the E260 output unit 30 to a display unit (not shown).

【0037】この第1の測定セル12で測定されたオゾ
ン処理水のE260は、下記の(1)式で表わされる。
E260 of the ozone-treated water measured by the first measuring cell 12 is expressed by the following equation (1).

【0038】 オゾン処理水(E260)=E260organic+E260do3・・・・(1) ここでE260organic:有機物に由来するE260値 E260do3 :溶存オゾンに由来するE260値 従って計測されたオゾン処理水(E260)は、有機物
に由来する紫外線吸光度E260organicと溶存オゾン
に由来する紫外線吸光度E260do3との総和である。
尚、光分離スプリッタ30aで分離されて受光器31a
で受信された光は検水中を通過していないため、この光
が参照信号ライン32aを介して増幅器28aに入力さ
れることにより、上記測定値の基準値もしくは補正値と
して利用される。
Ozone-treated water (E260) = E260 organic + E260do 3 (1) where E260 organic : E260 value derived from organic matter E260do 3 : E260 value derived from dissolved ozone Therefore, the ozone-treated water measured ( E260) is the sum of the ultraviolet absorbance E260do 3 derived from ultraviolet absorbance E260 organic dissolved ozone derived from organic matter.
In addition, the light receiver 31a is separated by the light splitting splitter 30a.
Since the light received at 2 has not passed through the test water, this light is input to the amplifier 28a via the reference signal line 32a and is used as a reference value or a correction value for the above measurement value.

【0039】次に検水は図1に示す曝気槽14によって
脱オゾン処理されてから検水流入口13aから第2の測
定セル13内に流入して同様な計測操作が実施される。
即ち、光源26bから発した546nmの光が第2の測
定セル13を通過する前に光分離スプリッタ30bで分
離されて受光器31bで受信され、参照信号ライン32
bを介して増幅器28bに入力される。第2の測定セル
13内を通過した光は受光器27bに受信され、信号が
増幅器28bで増幅されてから変換器・計算部29に送
り込まれ、下記の(2)式によって脱オゾン処理水のE
260がE260出力部30から出力される。 脱オゾン処理水(E260)=E260organic・・・・・・・・・・・・・・・(2) 従って第2の測定セル13で計測されたE260は、脱
オゾン処理水中の有機物に由来するE260となる。そ
こで第1の測定セル12と第2の測定セル13との各測
定値の差を取ると、下記の(3)式のように溶存オゾン
に由来するE260が得られる。
Next, the sample water is deozoned by the aeration tank 14 shown in FIG. 1 and then flows into the second measuring cell 13 from the sample water inlet 13a to perform the same measurement operation.
That is, the light of 546 nm emitted from the light source 26b is separated by the light separation splitter 30b before passing through the second measurement cell 13, and is received by the light receiver 31b.
It is input to the amplifier 28b via b. The light passing through the inside of the second measuring cell 13 is received by the light receiver 27b, the signal is amplified by the amplifier 28b, and then sent to the converter / calculation unit 29, and the deozoneized water is subjected to the equation (2) below. E
260 is output from the E260 output unit 30. De-Ozone-treated water (E260) = E260 organic ... (2) Therefore, E260 measured by the second measuring cell 13 is derived from organic substances in the de-Ozone-treated water. It becomes E260. Then, when the difference between the respective measured values of the first measurement cell 12 and the second measurement cell 13 is taken, E260 derived from dissolved ozone is obtained as in the following formula (3).

【0040】 オゾン処理水(E260)−脱オゾン処理水(E260)=E260do3 ・・・・・・・・・・・・・・(3) この時に変換器・計算部29では、UV信号及びUV−
VIS信号が用いられ、溶存オゾン濃度が演算によって
求められ、溶存オゾン濃度出力部31から出力される。
尚、測定の終了した検水は第2の測定セル13の排水口
13bから排水される。
Ozone-treated water (E260) -de-ozone-treated water (E260) = E260do 3 ... (3) At this time, in the converter / calculation unit 29, the UV signal and UV-
The dissolved ozone concentration is calculated by using the VIS signal, and is output from the dissolved ozone concentration output unit 31.
The measured water for which measurement has been completed is drained from the drain port 13b of the second measurement cell 13.

【0041】次に検水がオゾン処理前である場合の操作
例を説明する。即ち、図1に示す被処理水槽1内に貯留
された液を図外の採水ポンプを用いて採水して、これを
オゾン処理塔3を通さずに直ちに紫外線吸光度測定装置
8内の第1の測定セル12に導いて、前記した操作方法
に基づいて検水の紫外線吸光度(UV)、可視光吸光度
(VIS)及び濁度補正信号(UV−VIS)を計測す
れば良い。この場合には第2の測定セル13は使用しな
くてもE260organic、即ち、有機物に由来するE2
60値を求めることができる。
Next, an operation example when the test water is before ozone treatment will be described. That is, the liquid stored in the to-be-treated water tank 1 shown in FIG. 1 is sampled by using a water sampling pump (not shown), and the liquid is immediately passed through the ozone absorption tower 3 without passing through the ozone treatment tower 3. It is only necessary to lead to the measuring cell 12 of No. 1 and measure the ultraviolet absorption (UV), visible light absorption (VIS) and turbidity correction signal (UV-VIS) of the sample water based on the above-mentioned operating method. In this case, even if the second measuring cell 13 is not used, E260 organic , that is, E2 derived from an organic substance is used.
Sixty values can be determined.

【0042】このようにして得られた変換器・計算部2
9の出力信号はオゾン処理状態の監視とオゾン注入量の
制御用データ等に利用される。
The converter / calculator 2 thus obtained
The output signal 9 is used for monitoring the ozone treatment state and controlling ozone injection amount data.

【0043】図2は溶存オゾン濃度(mg/l)と光路
長20mmでのE260との相関図であり、両者が良好
な直線関係にあることが判明した。
FIG. 2 is a correlation diagram of the dissolved ozone concentration (mg / l) and E260 at an optical path length of 20 mm, and it was found that both have a good linear relationship.

【0044】以上説明した本実施例にかかる紫外線吸光
度測定装置によれば、オゾン処理水とオゾン未処理水の
何れの検水であっても、有機物に由来するE260と溶
存オゾン濃度とが同時に測定することが可能である。
又、各測定セル12,13のセル長を選択することによ
って低濃度から高濃度の有機物を含む検水を測定するこ
とができる。
According to the ultraviolet absorption measuring apparatus according to the present embodiment described above, the E260 derived from organic matter and the dissolved ozone concentration are simultaneously measured regardless of whether the ozone-treated water or the ozone-untreated water is detected. It is possible to
Further, by selecting the cell length of each of the measuring cells 12 and 13, it is possible to measure the test water containing low to high concentrations of organic substances.

【0045】[0045]

【発明の効果】以上詳細に説明したように、本発明によ
れば検水がオゾン処理水である場合には、第1の測定セ
ルによって有機物に由来する紫外線吸光度と溶存オゾン
に由来する紫外線吸光度との総和として求められ、次段
の減圧下に保持された曝気槽によってオゾンガスが引き
抜かれてから第2の測定セルによって脱オゾン処理水の
有機物に由来する紫外線吸光度を求められ、且つ第1の
測定セルと第2の測定セルとの各測定値の差から変換器
・計算部で溶存オゾンに由来する紫外線吸光度が求めら
れる。又、検水がオゾン処理前である場合には、第1の
測定セルによって計測された紫外線吸光度がそのまま有
機物に由来する紫外線吸光度となる。
As described in detail above, according to the present invention, when the test water is ozone-treated water, the ultraviolet absorbance derived from the organic matter and the ultraviolet absorbance derived from the dissolved ozone are measured by the first measuring cell. Is calculated as the sum of the following, and after the ozone gas is drawn out by the aeration tank held under the reduced pressure in the next stage, the second measurement cell is used to obtain the ultraviolet absorbance derived from the organic matter of the deozonated water, and From the difference between the measured values of the measurement cell and the second measurement cell, the ultraviolet absorbance derived from the dissolved ozone is obtained by the converter / calculation unit. When the test water is before ozone treatment, the UV absorbance measured by the first measuring cell is the UV absorbance derived from the organic substance as it is.

【0046】従って本実施例によれば、オゾン処理水中
での溶存オゾンの影響をなくして該オゾン処理水中の有
機物の吸収に由来する紫外線吸光度と溶存オゾンに由来
する紫外線吸光度とを精度良く測定することが可能とな
り、オゾン処理用原水の水質変動とかオゾン処理条件変
化に対する水質変化に対して迅速な対応が可能となって
得られた測定値によってオゾン処理条件の管理とか制御
を精度高く実施することができる。
Therefore, according to this embodiment, the influence of dissolved ozone in the ozone-treated water is eliminated, and the ultraviolet absorbance derived from the absorption of organic matter in the ozone-treated water and the ultraviolet absorbance derived from the dissolved ozone are accurately measured. It is possible to quickly respond to changes in the water quality of raw water for ozone treatment and changes in water quality due to changes in ozone treatment conditions, and accurately manage and control ozone treatment conditions based on the obtained measurement values. You can

【0047】特に本発明では、オゾン処理水中に溶存オ
ゾンが存在していても、減圧下に保持された曝気槽での
オゾン引抜き処理を実施することによって有機物の吸収
に由来する紫外線吸光度を正確且つ連続的に測定可能な
紫外線吸光度測定方法と装置を提供することができる。
In particular, in the present invention, even if dissolved ozone is present in the ozone-treated water, the ozone absorptive treatment is carried out in the aeration tank kept under reduced pressure, whereby the ultraviolet absorbance derived from the absorption of the organic matter is accurately and accurately obtained. It is possible to provide an ultraviolet absorbance measuring method and apparatus capable of continuously measuring.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例にかかるプロセス用の紫外線吸光度測
定装置を全体的に示す概要図。
FIG. 1 is a schematic view showing an overall ultraviolet absorption measuring apparatus for a process according to this embodiment.

【図2】本実施例における紫外線吸光度測定原理を示す
概要図。
FIG. 2 is a schematic diagram showing the principle of ultraviolet absorbance measurement in this example.

【図3】溶存オゾン濃度と光路長20mmでの紫外線吸
光度(E260)との相関関係を示すグラフ。
FIG. 3 is a graph showing a correlation between dissolved ozone concentration and ultraviolet absorbance (E260) at an optical path length of 20 mm.

【符号の説明】[Explanation of symbols]

1…被処理水槽 2,5,6…流量計 3…オゾン処理塔 4…オゾン発生機 7,16…散気管 8…紫外線吸光度測定装置 9…採水ポンプ 10…水温計 11…薬液タンク 12…第1の測定セル 13…第2の測定セル 14…曝気槽 15…曝気量調整弁 17…曝気用ポンプ 18…オゾンガス引抜用ポンプ 20…活性炭フィルタ 25…光源用電源部 26a,26b…光源ランプ 27a,27b…受光器 28a,28b…増幅器 29…変換器・計算部 30a,30b…光分離スプリッタ 31a,31b…受光器 32a,32b…参照信号ライン 1 ... Water tank to be treated 2, 5, 6 ... Flowmeter 3 ... Ozone treatment tower 4 ... Ozone generator 7, 16 ... Diffuser tube 8 ... Ultraviolet absorption measuring device 9 ... Water sampling pump 10 ... Water thermometer 11 ... Chemical solution tank 12 ... 1st measurement cell 13 ... 2nd measurement cell 14 ... Aeration tank 15 ... Aeration amount control valve 17 ... Aeration pump 18 ... Ozone gas extraction pump 20 ... Activated carbon filter 25 ... Light source power supply part 26a, 26b ... Light source lamp 27a , 27b ... Photoreceivers 28a, 28b ... Amplifier 29 ... Converter / calculator 30a, 30b ... Optical separation splitter 31a, 31b ... Photoreceiver 32a, 32b ... Reference signal line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理水をオゾン処理することにより、
水中の溶存性の微量有機物質を除去するようにしたプロ
セスにおいて、 上記オゾン処理を実施した後の被処理水を検水として採
取して、この検水を第1の測定セル内に流入し、光源か
ら該検水中を通過した光を受光器に受信して変換器・計
算部で有機物に由来する紫外線吸光度と溶存オゾンに由
来する紫外線吸光度との総和を計測し、上記計測が終了
した検水を減圧状態下に保持した曝気槽に流入して空気
の放散により溶存オゾンをオゾンガスとして引き抜き、
この脱オゾン処理水を第2の測定セル内に流入し、光源
から該検水中を通過した光を受光器に受信して変換器・
計算部で有機物に由来する紫外線吸光度だけを計測する
ことを特徴とするプロセス用の紫外線吸光度測定方法。
1. By treating the water to be treated with ozone,
In the process for removing dissolved trace organic substances in water, the treated water after the ozone treatment is taken as test water, and the test water flows into the first measurement cell, The light that has passed through the test water from the light source is received by the light receiver, and the total sum of the UV absorbance derived from the organic matter and the UV absorbance derived from the dissolved ozone is measured in the converter / calculation unit, and the measurement is completed. Flows into an aeration tank that is kept under reduced pressure, and the dissolved ozone is extracted as ozone gas by the air diffusion,
The deozone-treated water flows into the second measuring cell, and the light passing through the test water from the light source is received by the light receiving device and the converter
An ultraviolet absorption measuring method for a process, characterized in that the calculating unit measures only the ultraviolet absorption derived from an organic substance.
【請求項2】 上記曝気槽に付設された引抜用ポンプに
よるオゾンガスの引抜量を、曝気槽内に送り込まれる空
気量よりも大きくなるように設定したことにより、曝気
槽内を減圧状態に保持するようにした請求項1記載のプ
ロセス用の紫外線吸光度測定方法。
2. A depressurized state is maintained inside the aeration tank by setting the amount of ozone gas drawn by the drawing pump attached to the aeration tank to be larger than the amount of air sent into the aeration tank. An ultraviolet absorption measuring method for a process according to claim 1, which is configured as described above.
【請求項3】 被処理水をオゾン処理することにより、
水中の溶存性の微量有機物質を除去するようにしたプロ
セスにおいて、 上記オゾン処理を実施する前の被処理水を検水として採
取して、この検水を第1の測定セル内に流入し、光源か
ら該検水中を通過した光を受光器に受信して変換器・計
算部で有機物に由来する紫外線吸光度を計測することを
特徴とするプロセス用の紫外線吸光度測定方法。
3. By treating the water to be treated with ozone,
In the process for removing dissolved trace organic substances in water, the untreated water before the ozone treatment is sampled as test water, and the test water flows into the first measurement cell, An ultraviolet absorption measuring method for a process, characterized in that the light passing through the test water from a light source is received by a light receiver, and the ultraviolet absorption derived from an organic substance is measured by a converter / calculator.
【請求項4】 溶存オゾンを含有する検水が流入する第
1の測定セルと、該第1の測定セルから排出された検水
に減圧状態下で空気を放散して溶存オゾンをオゾンガス
として引き抜く曝気槽と、該曝気槽からの脱オゾン水が
流入する第2の測定セルと、前記第1及び第2の測定セ
ルに、光源から各測定セル中を通過した光に基づいて有
機物に由来する紫外線吸光度と溶存オゾンに由来する紫
外線吸光度との総和と、有機物に由来する紫外線吸光度
だけを計測する変換器・計算部とを具備して成ることを
特徴とするプロセス用の紫外線吸光度測定装置。
4. A first measuring cell into which a test water containing dissolved ozone flows and a test water discharged from the first measuring cell, in which air is diffused under reduced pressure to extract the dissolved ozone as ozone gas. The aeration tank, the second measurement cell into which the de-ozoned water from the aeration tank flows, and the first and second measurement cells are derived from organic matter based on the light passing through each measurement cell from the light source. An ultraviolet absorption measuring apparatus for a process, comprising: a converter / calculation unit for measuring only the total of the ultraviolet absorption derived from dissolved ozone and the ultraviolet absorption derived from dissolved ozone.
JP10282295A 1995-04-27 1995-04-27 Method and device for measuring ultraviolet-ray absorbance of process Pending JPH08297119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10282295A JPH08297119A (en) 1995-04-27 1995-04-27 Method and device for measuring ultraviolet-ray absorbance of process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10282295A JPH08297119A (en) 1995-04-27 1995-04-27 Method and device for measuring ultraviolet-ray absorbance of process

Publications (1)

Publication Number Publication Date
JPH08297119A true JPH08297119A (en) 1996-11-12

Family

ID=14337723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10282295A Pending JPH08297119A (en) 1995-04-27 1995-04-27 Method and device for measuring ultraviolet-ray absorbance of process

Country Status (1)

Country Link
JP (1) JPH08297119A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139429A (en) * 2000-11-06 2002-05-17 Kurabo Ind Ltd Dissolved-ozone concentration measuring instrument
CN114354588A (en) * 2021-12-07 2022-04-15 浙江工业大学 Total nitrogen online detection method based on advanced oxidation technology and dual-environment digestion scheme

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139429A (en) * 2000-11-06 2002-05-17 Kurabo Ind Ltd Dissolved-ozone concentration measuring instrument
JP4634596B2 (en) * 2000-11-06 2011-02-16 倉敷紡績株式会社 Dissolved ozone concentration measuring device
CN114354588A (en) * 2021-12-07 2022-04-15 浙江工业大学 Total nitrogen online detection method based on advanced oxidation technology and dual-environment digestion scheme

Similar Documents

Publication Publication Date Title
KR100828669B1 (en) Method and apparatus for treating wastewater
JP3475513B2 (en) Intake water quality control device
JPH08297119A (en) Method and device for measuring ultraviolet-ray absorbance of process
JPH08136526A (en) Continuous measuring apparatus for concentration of dissolved ozone
JP3223726B2 (en) Method and apparatus for measuring ultraviolet absorbance for process
JP4334404B2 (en) Water treatment method and water treatment system
JP4660211B2 (en) Water treatment control system and water treatment control method
JPH1054829A (en) Apparatus for measuring concentration of liquid phase ozone of ozone-process water and detecting apparatus for permanganate ion
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JPH08304383A (en) Ultraviolet radiation absorbance measuring method for process and its device
CN202865066U (en) Chemical oxygen demand (COD) on-line measuring device applied to sewage treatment
JP2953904B2 (en) Analyzer for silica component in water
JPH07167850A (en) Measuring device of absorbance of ultraviolet rays of ozone treatment liquid
JPH0493638A (en) Continuous measurement device of low density absorbance
JP2009236832A (en) Monitoring method and device for dissolved pollutant
JP3889294B2 (en) Water treatment system using a fluorescence analyzer
JPH0712720A (en) Underwater densitometer
JPS63191945A (en) Method and apparatus for quantitative determination of non-functional nitrogen
JP2003088882A (en) Method for water treatment
JPH0735741A (en) Bod measuring equipment
KR100320660B1 (en) Automatic Determination Method &Device for Chlorine Demand Quantity of Water Treatment Plant
JPH03229129A (en) Sample device for measuring water quality
JP7441066B2 (en) Pretreatment method, pretreatment device, urea concentration measurement method, urea concentration measurement device, ultrapure water production method, and ultrapure water production system
JPH07275874A (en) Ozone treatment apparatus
JPH0755698A (en) Measuring device for ultraviolet absorbance of ozonized water