JP3475513B2 - Intake water quality control device - Google Patents

Intake water quality control device

Info

Publication number
JP3475513B2
JP3475513B2 JP22938894A JP22938894A JP3475513B2 JP 3475513 B2 JP3475513 B2 JP 3475513B2 JP 22938894 A JP22938894 A JP 22938894A JP 22938894 A JP22938894 A JP 22938894A JP 3475513 B2 JP3475513 B2 JP 3475513B2
Authority
JP
Japan
Prior art keywords
water
water quality
measurement
flow path
turbidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22938894A
Other languages
Japanese (ja)
Other versions
JPH0894608A (en
Inventor
哲文 渡辺
圭一 月足
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to JP22938894A priority Critical patent/JP3475513B2/en
Publication of JPH0894608A publication Critical patent/JPH0894608A/en
Application granted granted Critical
Publication of JP3475513B2 publication Critical patent/JP3475513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、水質監視装置に係り、
特に河川水,湖沼水等の取水水質管理装置に関する。 【0002】 【従来の技術】一般に、水道水源として河川水,湖沼
水,地下水が用いられる。これら、水道水源から取水施
設で取水された水道原水は貯留池を介して浄水施設へ送
られるか、または直接浄水場へ送られる。 【0003】河川を水源とする場合、湖沼やダム湖と比
較して水質変動が大きく、有害物質が混入する可能性が
高い。河川の水質は工場排水、都市下水、家庭排水、畜
産排水や農薬、肥料等の人為的汚濁に左右されるほか、
気象条件や地質に由来して変化する。 【0004】現在、水源水質の管理は河川等から取水
後、貯留池がある場合は貯留池の水質(pH、導電率、
水温、濁度等の水質項目)を自動監視するか、浄水場の
職員が採水して手分析を行っている。直接浄水場へ送ら
れる場合は着水井の水質自動監視か、定期的に職員が採
水し手分析を行っている。しかしながら現在の水源水質
監視では、近年問題となっている発ガン性物質であるト
リハロメタン(水道水水質基準規制対象物)の基になる
フミン質、フルボ酸等の色度成分である溶存性有機物の
監視を行っていない。そのため、多くの浄水場で行って
いる。水中のアンモニアや除マンガンのために前塩素注
入操作により塩素と溶存性の有機物が反応しトリハロメ
タンを生成する。さらに染色排水等の化学合成された色
水が混入した場合、通常の浄水処理操作では処理が困難
であるため、最悪貯水池等の水道原水を廃棄しなければ
ならない。 【0005】また河川では、前記したように水質変動が
大きいために、水道原水として不適な水質である場合で
も取水計画に従って行い浄水処理施設に多大な負担をか
ける。従って、水道水源における取水は河川等の水深方
向で良好な水質を選択して取水を行うだけでなく、良好
な水質の取水地点の選択を行う必要がある。 【0006】また、ダム湖では、季節的な温度成層現象
が生じ、深度によって水質に著しく変化することがあ
る。ダム上流部には崩壊地が多く、かつ粒子が微細であ
る場合、洪水時に流入した濁水が、水の密度に応じて層
を形成する。取水口のある層に濁水層が発生すると、濁
水を連続的に処理しなければならなくなり、大変不利を
まねく。そこで取水口の高さを何段が複数にし、濁水層
をはずして取水する工夫がなされている。選択取水は、
導水された水に対する水質監視結果や水質試験結果をも
とに行われる。 【0007】 【発明が解決しようとする課題】選択取水は、操作員の
目視、水質計器による水質監視結果や水質試験結果をも
とに行われる。水質計器の採水点(設置場所)は取水口
の上流が望ましいが、多くの場合は沈砂池、着水井とい
った施設の最上流が用いられる。すでに取水した水の監
視結果をもとに選択取水を行う場合、ダム湖の温度成層
の状況をうまく把握することができず、最良の取水口を
選択することは難しい。また、水質計器を用いた連続測
定が不可能な鉄、マンガンなどといった底泥からの溶出
に原因するものは、水質試験結果をもとに取水口の選択
を行わねばならず、試験結果がでるまでの遅れ時間があ
る。 【0008】さらに、従来の取水管理方式では次のよう
な問題点があった。 【0009】(1)水源水質の紫外線吸収(UV)、色
度を測定していないために、水源の有機物濃度をリアル
タイムに把握できない。従って、浄水処理における前塩
素注入操作により塩素と有機物が反応し発ガン性物質で
あるトリハロメタン生成が増加し、水質基準の達成が困
難となる。 【0010】(2)河川等に染色排水などの化学合成着
色水が混入した場合、着色水を取水し貯留池や着水井に
流れ込み浄水処理施設に負担を与えたり、最悪貯留池の
水を廃棄しなければならない。 【0011】(3)河川等からの取水操作は取水量だけ
で管理し、取水地点の水質を考慮した取水地点選択を行
っていないので、良好な取水点を選択できず、信頼性に
欠けていた。 【0012】本発明は上述の問題点に鑑みてなされたも
ので、その目的は、試験結果を速く得ることができ水質
基準の達成が容易にして良好な管理が可能な取水水質管
理装置を提供することを特徴とする。 【0013】 【課題を解決するための手段】水源の水を取水する取水
施設と、該取水施設に採取された水源水を検水として水
質を計測する水質モニタと、前記取水施設の下流側流路
に配設された流路切換器と、前記水質モニタ検水データ
を基に演算処理し演算処理結果を基に前記流路切換器を
制御して前記取水施設に採取された水源水の流路を切り
換えさせる管理施設からなり、前記取水施設における水
質モニタは、測定系流路を介して導入された検水の濁
度,色度,紫外線吸収を含む測定項目を測定するための
濁色度計と、この濁色度計に流入した検水より少なくと
も紫外線吸収値を検出する計測処理部とを有し、この計
測処理部は前記濁色度計の前記測定セル部内の検水に光
を照射してサンプル光信号としてUV,VISを得ると
共に検水照射光以外の光によりリファレンス光信号とし
てのUV,VISを得る光学系と、前記光学系によって
得られたUV信号もしくは濁度補正信号UV−VISと
トリハロメタン量の相関関係から推定されたトリハロメ
タン量を含む検水中の含有物を演算処理して出力する演
算器とで構成し且つ、前記濁色度計に薬液タンクより
薬液を供給して洗浄するための薬液洗浄系流路と前記
濁色度計に洗浄水を供給して洗浄するための水流洗浄系
流路と高圧フラッシュ洗浄系とを備えたことを特徴とす
。 【0014】 【0015】 【0016】 【0017】 【発明の実施の形態】以下に本発明の実施形態を図1〜
を参照しながら説明する。 【0018】図1は本発明の第1実施例による取水管理
装置の概略構成を示すもので、同図において、50は水
流管40を通して河川や湖沼などの水源から取水するた
めの取水施設、60は取水施設に設けられた水質モニタ
で、pH,水温,導電率,色度,濁度,紫外線吸収(U
V),溶存酸素(DO)を連続測定する。70は管理施
設で、制御装置(DDC)71や演算処理装置(CP
U)72を備えている。80は管理施設70の制御装置
からの流路切換信号に応じて流路を切り換える流路切換
器、90は貯水池である。 【0019】図1の取水管理装置において、取水施設5
0は水源から取水し、水質モニタ60で水質の検査を行
い水質信号S1を管理施設70の制御装置71に導く。
制御装置71は水質信号S1をもとに制御信号を演算処
理部72に導く。演算制御部72は制御信号をもとに演
算処理して制御装置71に演算信号を導き、制御装置7
1は演算信号をもとに流路切換信号S2を流路切換器8
0に出力し、該流路切換器80に水源水の流路を貯水池
90か排水へ切り換える。 【0020】図は水質モニタの一例を示すもので、同
図において1は圧力調整弁、2aは圧力調整弁1にその
下流段において接続された第1の三方切換電磁弁、3a
は第1の三方切換電磁弁2aに連設された流量調整弁で
あって、これらの圧力調整弁1,第1の三方切換電磁弁
2aおよび第1の流量調整弁3aによって測定系流路A
が形成される。また、図において3bは第1の三方切
換弁2aに連結された第2の流量調整弁、4a,4bは
配管洗浄用ろ過器4a,4bであって、これらによって
水流洗浄系流路Bが形成される。さらに、圧力調整弁1
の下流段と第1の三方切換電磁弁2a間と後述する濁色
度計10との間に電磁弁7を介設して高圧フラッシュ洗
浄系路Cが形成されている。さらにまた、6は流量計、
2bは流量計6の下流段と濁色度計10間に連結された
第2の三方切換電磁弁、8は薬液タンク、9は薬液等の
洗浄剤を注入するための洗浄剤注入ポンプであって、こ
れらの第2の三方切換電磁弁2b,薬液タンク8および
薬液注入ポンプ9によって薬液洗浄系流路Dが形成され
ている。30はUVとVISに関する基準信号RとUV
とVISに関するサンプル信号を入力とする計測処理部
である。 【0021】図は濁色度計10の測定セル部と計測処
理部30の概略構成を示すもので、筒体11は水平面に
対して所定の角度θをもって配設されており、筒体11
の一方の端部側面には検水流入口12が設けられ、他方
の端部側面には検水流出口13が設けられている。筒体
11の一方の開口端部には測定窓14aが設けられ、他
方の開口端部には測定窓14bが設けられている。 【0022】また、図に示すように、測定窓14aの
近傍には筒体11の軸線上に位置した発光部である低圧
水銀灯31が配設されており、測定窓14aと低圧水銀
灯31間には光分離スリッタ32が設けられている。光
分離スリッタ32による分離光線の光路上には第1の受
光部である光電変換素子33aが配設されており、測定
窓14bの近傍には筒体11の軸線上に位置した第2の
受光部である光電変換素子33bが配設されている。3
4は光電変換素子33aの出力信号と光電変換素子33
bの出力信号を入力として増幅する増幅器、35は増幅
器34の出力信号を入力として所定の演算処理する演算
処理器であって、低圧水銀灯31,光分離スリッタ3
2,光電変換素子33a,33b,増幅器34および演
算処理器35によって計測処理部30が構成される。 【0023】上記構成の水質モニタ装置において、濁色
度計の洗浄にあたって、薬液タンク8から薬液注入ポン
プ9により塩酸薬液(濃度2%程度)を、三方切換電磁
弁2bを介して濁色度計10の測定セル内に満たして、
一定時間測定セル内に塩酸を重点反応させる。これによ
り測定セル内壁に付着した生物スライム,全鉄マンガン
等が剥離される。 【0024】薬液処理した後に高圧フラッシュ洗浄経路
Cを通して高圧流を濁色度計10の測定セル部に通流
し、測定セル部を洗浄するとともに、水流洗浄系流路B
で洗浄した後に測定系流路Aを通して検水を濁色度計1
0の測定セル部に導く。 【0025】すなわち、薬液中に汚れ成分を乱流水流で
水流洗浄を一定時間実施する。これで薬液洗浄を終了
し、検水流入を開始する。この一連の薬液洗浄操作は、
に示す制御システムによって行われるもので、シー
ケンサ21とタッチパネル22を用いて、濁色度計,電
磁弁,ポンプ等の被制御機器部23における電磁弁の開
閉,薬液ポンプのオン/オフ等を全自動で実行する。 【0026】濁色度計の洗浄において、水流洗浄の流量
を1(リットル/分)で行え、測定セル内に1.88秒
滞留し、平均速度5.3cm/秒で流れ、そのレイノズ
ル数が0.106と乱流に近い流れを測定セル内で実現
できる。これにより十分な洗浄効果が得られる。 【0027】この洗浄操作の設定流量、薬液滞留時間、
薬液密度および洗浄時間はシーケンサとタッチパネルに
より、検水の汚れ程度に応じて自由に設定変更可能であ
り、次のような種々の効果が得られる。 【0028】(1)薬液洗浄(Hc12%程度)により
ワイパー洗浄では落ちにくい全マンガン、全鉄系の付着
色度成分を効果的に落とすことができる。 【0029】(2)乱流状態を実現する水流洗浄により
滞留薬液中に溶出した汚れ(濁質成分,色度成分,生物
スライム)を効果的に測定セル外に排除できる。 【0030】(3)一連の薬液洗浄操作は、制御装置
(シーケンサ)、タッチパネルを用いて、電磁弁,ポン
プ等の制御機器を自動運転ができるので、自動洗浄が可
能である。 【0031】(4)薬液洗浄操作パラメータ(水流洗浄
流量設定,薬液滞留時間,洗浄時間等)をタッチパネル
式のグラフィックディスプレイで簡単に設定変更でき、
洗浄操作をグラフィックモニタできる。 【0032】(5)保守間隔が大幅(3ケ月以上)に延
びて、維持管理費用が節減できる。 【0033】(6)薬液洗浄と定期的な濁色度計の自動
ゼロ点校正の組み合わせにより保守間隔の大幅延長が可
能となった。 【0034】(7)ワイパ洗浄やジェット水流洗浄単独
より本洗浄の方が洗浄効果が高い。 【0035】(8)ワイパ洗浄の回転部が洗浄方式には
ないため、故障の原因が少なくなる。 【0036】上述の水質モニタの最も特徴とするところ
は、図に示すように測定処理部を設けたことである。
に示すように、浄配水のUV信号(254nmの吸
光度)がトリハロメタン量と相関が高結果が得られたの
で、UV信号を応用したトリハロメタン量推定機能を有
する低濃度UV計を提供するものである。 【0037】すなわち、図に示すように、検水が一定
傾斜を有する測定部をフローセル形式で測定セル長10
0mmを通過し、UV信号(254mの吸光度(Ab
is))とVIS信号(546mの吸光度(Ab
s))の各信号を計測し、UV信号又はUV−VIS信
号(濁度補正信号)から総トリハロメタン量(TTH
M:クロロホルムCHCl3+CHCl2Br+CHCl
Br2+グロモホルムCHBr3の合計量)を推定すると
ともに、UV信号,VIS信号をそれぞれ出力する。光
源としての低圧水銀灯31(254mと546m波
長出力)から出た光は測定セルに入る前に光分離スリッ
タ32によりリファレンス光(UV,VISそれぞれ)
に分けられ、測定セル通過後のサンプル光(UV,VI
Sそれぞれ)が測定される。リファレンス光は光電変換
素子33aにより光電変換され増幅器34に入力される
とともに、サンプル光は光電変換素子33bによって光
電変換され増幅器34に入力される。増幅器34に入力
されたリファレンス光とサンプル光に基づく各信号は増
幅され演算器35にに入力される。演算器35はこれら
の信号をもとに演算処理して各UV値,VIS値,TT
HM推定値を出力する。 【0038】本例の水質モニタによれば次のような効果
が得られる。 【0039】(1)UV信号と濁度信号を連続測定し、
UV信号又は濁度補正UV信号とトリハロメタン量の相
関式からトリハロメタン量が連続推定できる。 【0040】(2)同時に、UV信号から有機物量(例
えば過マンガン酸カリウム溶変量等)の推定が可能とな
り、おいしい水の管理ができる。 【0041】(3)自動ゼロ点校正機能と薬液洗浄機能
を有しているため保守周期が長期化(3カ月以上)で
、且つ、センサ部分の着脱が容易で、洗浄交換が簡単
となる等メンテナンスが容易である。 【0042】(4)一連の自動ゼロ点校正と薬液洗浄操
作は、制御装置(シーケンサ)とタッチパネルで行い、
自動運転できると共に、24時間オンラインで水質デー
タを自動測定、遠隔監視できる。また、自動ゼロ点校正
(濁度計,色度計)、自己診断機能を備えており、保守
頻度を低減できる。また、水質モニタの測定項目として
は、濁度,色度,溶存酸素,pH,導電率,UV,水温
の7項目を自動測定し出力する。更には、フラットディ
スプレイの監視パネルを用いることにより、計測・盤内
環境の監視および保守設定値の変更が容易にでき、ま
た、電気制御関係機器を全て電気制御室に集中配置し、
水質計測関係の配管・検出部の水質計測室と完全に分離
したことで、電気制御関係機器の腐食が防止でき、電気
制御室には、除湿器を設けることで、水質計測室の結露
を防止している。また、盤外壁を2重板構造とし、外板
内面に断熱材を取り付け、電気制御室,水質計測室とも
にファンとヒータを設置することにより、盤内温度の調
節を可能にした。 【0043】(5)測定セルがフローセル形式をとり、
測定セルが100mmと長いため低濃度UV値の測定が
可能である。 【0044】(6)リファレンス光信号(UV,VI
S)を、測定セル入光前に分離しているので、低圧水銀
灯が出力変動をしても、その影響をうけない。 【0045】なお、実例では発光部(光源)として低圧
水銀灯を用いたが、これに限定されるものではなく、上
述の条件を満たすものであれば発光ダイオード又は電球
などであってもよい。 【0046】 【0047】 【0048】 【0049】 【0050】 【0051】また、上述の実施形態にる処理装置によれ
ば、水質モニタを用いて取水地点の選択を行うととも
に、水源水質の監視を行い、設定値上限を越える場合は
流路を切り換えて排水するものであるから、次のような
効果が得られる。 【0052】(1)工場排水や染色排水等の汚濁化を取
水しても浄水処理施設に負荷を与えない。 【0053】(2)突発的な汚濁水に対応し易い。 【0054】(3)有機物等の常時モニタリングを行っ
ており、良好な水質の取水点を選択できる。 【0055】(4)トリハロメタン等の消毒副生成物の
抑制効果が高い。 【0056】 【0057】 【0058】水源水質モニタの主な仕様を表1に示す。
水源水質モニタの水質測定項目と範囲を表2に示す。測
定原理と校正方法を表3に示す。主な改良点は、測定項
目から残留塩素と水圧の項目を削除し、既存の溶存酸素
計を追加した点、濁度,色度,導電率,紫外線吸光度,
水温の各項目の測定範囲を変更した点である。 【0059】 【表1】 【0060】 【表2】 【0061】 【表3】【0062】 【0063】 【0064】 【0065】 【0066】 【0067】 【0068】 【0069】 【0070】 【0071】 【0072】 【0073】 【0074】 【0075】 【0076】 【0077】 【0078】 【0079】 【0080】 【0081】 【0082】 【0083】 【0084】 【0085】 【0086】 【発明の効果】本発明は、上述の如くであって、取水水
質管理装置では、水質モニタを用いて取水地点の選択を
行うとともに、水源水質の監視を行い、設定上限値を越
える場合、流水流路を切り換え排水するものである。従
って、本発明によれば、試験結果を早く得ることができ
水質基準の達成が容易にして良好な管理が可能な取水水
質管理装置を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality monitoring device,
In particular, the present invention relates to a water quality management device for river water, lake water, and the like. [0002] Generally, river water, lake water, and groundwater are used as tap water sources. Raw tap water taken from a tap water source at a water intake facility is sent to a water purification facility via a reservoir or directly to a water purification plant. [0003] When a river is used as a water source, the water quality fluctuates greatly as compared with lakes and marshes and dam lakes, and there is a high possibility that harmful substances are mixed. The water quality of rivers is affected by man-made pollution such as industrial wastewater, municipal wastewater, domestic wastewater, livestock wastewater, pesticides, and fertilizers.
It changes depending on weather conditions and geology. [0004] At present, the water quality of the water source is managed after water is taken from a river or the like, and if there is a reservoir, the water quality (pH, conductivity,
Water quality items such as water temperature and turbidity are automatically monitored, or water purification plant staff collects water for manual analysis. When the water is sent directly to the water treatment plant, the water quality of the landing well is automatically monitored, or the staff regularly collects water and analyzes it manually. However, current monitoring of water quality at the water source indicates that dissolved organic matter, which is a chromaticity component of humic substances and fulvic acid, which are the bases of trihalomethane (a subject of tap water quality regulations) which is a carcinogen, which has recently become a problem. No monitoring. For that reason, it is used at many water purification plants. Chlorine and dissolved organic matter react by pre-chlorine injection operation to produce trihalomethane for ammonia and manganese removal in water. Furthermore, when chemically synthesized color water such as dyeing wastewater is mixed in, it is difficult to perform the treatment by a normal water purification treatment operation. In the worst case, raw tap water in a reservoir or the like must be discarded. [0005] In a river, as described above, since the water quality fluctuates greatly, even if the water quality is unsuitable as the raw water for the tap water, the water intake is performed according to a water intake plan, and a heavy burden is imposed on the water purification treatment facility. Therefore, it is necessary not only to select good water quality in the depth direction of a river or the like for water intake at a tap water source, but also to select a water intake point with good water quality. [0006] In a dam lake, seasonal thermal stratification occurs, and the water quality may significantly change depending on the depth. If there are many collapsed areas and the particles are fine in the upstream part of the dam, the turbid water flowing in during the flood will form a layer according to the density of the water. If a turbid water layer is formed in a layer with an intake, turbid water must be continuously treated, which is very disadvantageous. In order to avoid this problem, the height of the water intake has been changed to several levels, and the turbid water layer has been removed to take water. Selective withdrawal is
It will be conducted based on the results of water quality monitoring and water quality tests on the water that has been introduced. [0007] The selective water intake is performed based on the visual observation of the operator, the result of monitoring the water quality by the water quality meter and the result of the water quality test. The sampling point (installation location) of the water quality meter is desirably upstream of the intake, but in most cases, the highest stream of a facility such as a sand basin or a landing well is used. When selective water intake is performed based on the monitoring results of water that has already been taken, it is difficult to grasp the state of thermal stratification in the dam lake, and it is difficult to select the best intake. In addition, for those that cannot be continuously measured using a water quality meter, such as iron and manganese, which cause elution from the bottom mud, the water intake must be selected based on the water quality test results, and the test results are obtained. There is a delay time until. Furthermore, the conventional water intake management system has the following problems. (1) Since the ultraviolet absorption (UV) and chromaticity of the water source are not measured, the organic matter concentration of the water source cannot be grasped in real time. Therefore, chlorine and an organic substance react by the pre-chlorine injection operation in the water purification treatment, and the production of trihalomethane, which is a carcinogenic substance, increases, making it difficult to achieve water quality standards. (2) When chemically synthesized colored water such as dyeing wastewater is mixed into a river or the like, the colored water is taken out, flows into a reservoir or a landing well, and places a burden on a water treatment facility, or in the worst case, the water in the reservoir is discarded. Must. (3) Since the water intake operation from a river or the like is controlled only by the water intake amount and the water intake point is not selected in consideration of the water quality of the water intake point, a good water intake point cannot be selected and lacks reliability. Was. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to provide a water intake water quality management device capable of obtaining test results quickly, facilitating achievement of water quality standards, and performing good management. It is characterized by doing. Means for Solving the Problems Water intake for taking water from a water source
Facility and water source water collected at the water intake facility as water samples.
A water quality monitor for measuring the quality and a downstream flow path of the intake facility
And the water quality monitor water sampling data
And based on the result of the arithmetic processing, the flow path switcher is operated.
Control and cut off the flow path of the water source water collected at the intake facility.
Management facility to replace the water in the intake facility.
The quality monitor measures the turbidity of the sample introduced through the measurement channel.
For measuring items including degree, chromaticity, and ultraviolet absorption
A turbidimeter and less than the water sample flowing into this turbidimeter
Also has a measurement processing unit for detecting the ultraviolet absorption value.
The measurement processing unit is used for measuring water in the measurement cell unit of the turbidimeter.
To obtain UV and VIS as sample optical signals
Both are used as reference light signals by light other than water irradiation light.
Optical system for obtaining all UV and VIS, and the above optical system
With the obtained UV signal or turbidity correction signal UV-VIS
Trihalome estimated from correlation of trihalomethane amount
A function to calculate and output the contents of the test water including the amount of
And a liquid crystal tank for the turbidity meter.
A chemical cleaning system flow path for cleaning by supplying a chemical solution, the
Water washing system for washing by supplying washing water to the turbidity meter
Characterized by having a flow path and a high-pressure flash cleaning system
You . [0014] [0015] [0016] [0017] Embodiments of the present invention DETAILED DESCRIPTION OF THE INVENTION The following Figure 1
Referring to Figure 5 will be described. FIG. 1 shows a schematic configuration of a water intake management apparatus according to a first embodiment of the present invention. In FIG. 1, reference numeral 50 denotes an intake facility for taking water from a water source such as a river or a lake through a water pipe 40; Is a water quality monitor installed in the water intake facility, and measures pH, water temperature, conductivity, chromaticity, turbidity, and ultraviolet absorption (U
V), dissolved oxygen (DO) is continuously measured. Reference numeral 70 denotes a management facility, which includes a control device (DDC) 71 and an arithmetic processing device (CP).
U) 72. Reference numeral 80 denotes a flow path switching device that switches a flow path in response to a flow path switching signal from a control device of the management facility 70, and reference numeral 90 denotes a reservoir. In the water intake management device shown in FIG.
Numeral 0 takes water from a water source, inspects water quality with a water quality monitor 60, and guides a water quality signal S1 to a control device 71 of a management facility 70.
The control device 71 guides a control signal to the arithmetic processing unit 72 based on the water quality signal S1. The arithmetic control unit 72 performs arithmetic processing based on the control signal, guides the arithmetic signal to the control device 71, and
Reference numeral 1 denotes a flow path switching device 8 which outputs a flow path switching signal S2 based on a calculation signal.
0, and the flow path switching device 80 switches the flow path of the water source water from the reservoir 90 to the drainage water. FIG. 2 shows an example of the water quality monitor. In FIG. 2 , reference numeral 1 denotes a pressure regulating valve, 2a denotes a first three-way switching solenoid valve connected to the pressure regulating valve 1 at a downstream stage thereof, 3a
Is a flow control valve connected to the first three-way switching solenoid valve 2a, and the measurement system flow path A is controlled by the pressure control valve 1, the first three-way switching solenoid valve 2a, and the first flow control valve 3a.
Is formed. In FIG. 2 , reference numeral 3b denotes a second flow control valve connected to the first three-way switching valve 2a, and reference numerals 4a, 4b denote pipe cleaning filters 4a, 4b, which are used to form the flow channel B for the water flow cleaning system. It is formed. Further, the pressure regulating valve 1
A high-pressure flash cleaning system C is formed between the downstream stage of the first and third three-way switching electromagnetic valves 2a and the turbidimeter 10 described later with an electromagnetic valve 7 interposed therebetween. Furthermore, 6 is a flow meter,
Reference numeral 2b denotes a second three-way switching solenoid valve connected between the downstream stage of the flow meter 6 and the turbidimeter 10, reference numeral 8 denotes a chemical tank, and reference numeral 9 denotes a detergent injection pump for injecting a detergent such as a chemical. The second three-way switching solenoid valve 2b, the chemical tank 8, and the chemical injection pump 9 form a chemical cleaning system flow path D. 30 is a reference signal R and UV for UV and VIS
And a measurement processing unit which receives sample signals related to VIS. FIG. 3 shows a schematic configuration of the measurement cell section and the measurement processing section 30 of the turbidimeter 10. The cylinder 11 is disposed at a predetermined angle θ with respect to the horizontal plane.
A sample inlet 12 is provided on one side of the end of the sample, and a sample outlet 13 is provided on the other side of the end. A measurement window 14a is provided at one open end of the cylindrical body 11, and a measurement window 14b is provided at the other open end. As shown in FIG. 3 , a low-pressure mercury lamp 31, which is a light-emitting portion, is disposed near the measurement window 14a on the axis of the cylinder 11, and is disposed between the measurement window 14a and the low-pressure mercury lamp 31. Is provided with a light separation slitter 32. A photoelectric conversion element 33a, which is a first light receiving unit, is disposed on the optical path of the light beam separated by the light separating slitter 32, and a second light receiving unit located on the axis of the cylinder 11 near the measurement window 14b. A photoelectric conversion element 33b, which is a unit, is provided. 3
4 is an output signal of the photoelectric conversion element 33a and the photoelectric conversion element 33
b is an amplifier for amplifying the output signal of b, and 35 is an arithmetic processing unit for performing predetermined arithmetic processing by using the output signal of the amplifier 34 as an input.
2. The measurement processing unit 30 includes the photoelectric conversion elements 33a and 33b, the amplifier 34, and the arithmetic processing unit 35. In the water quality monitoring device having the above-described structure, when the turbidimeter is washed, a hydrochloric acid chemical (about 2% concentration) is supplied from the chemical tank 8 by the chemical injection pump 9 through the three-way switching solenoid valve 2b. Fill in 10 measuring cells,
Hydrochloric acid is allowed to react in the measurement cell for a certain period of time. Thereby, biological slime, total iron manganese, and the like attached to the inner wall of the measurement cell are peeled off. After the chemical treatment, the high-pressure flow is passed through the high-pressure flush cleaning path C to the measurement cell section of the turbidimeter 10, thereby cleaning the measurement cell section and the flow path B
After washing with turbidity meter 1
It is led to the zero measuring cell section. That is, the washing is carried out for a certain period of time with a turbulent water flow of the dirt component in the chemical solution. This ends the chemical cleaning and starts the flow of the sample. This series of chemical cleaning operations
The control system shown in FIG. 4 is used to open and close an electromagnetic valve in a controlled device section 23 such as a turbidity meter, an electromagnetic valve, and a pump, and to turn on / off a chemical pump using a sequencer 21 and a touch panel 22. Is executed automatically. In the washing of the turbidimeter, the flow rate of the water washing can be set at 1 (liter / minute), the sample stays in the measuring cell for 1.88 seconds, flows at an average speed of 5.3 cm / sec, and the number of Reynolds nozzles is reduced. A turbulent flow of 0.106 can be realized in the measuring cell. Thereby, a sufficient cleaning effect can be obtained. The set flow rate of this washing operation, the chemical solution residence time,
The chemical solution density and the cleaning time can be freely changed by the sequencer and the touch panel in accordance with the degree of contamination of the sample, and the following various effects can be obtained. (1) By cleaning with a chemical solution (about 12% of Hc), it is possible to effectively remove all manganese and all iron-based attached chromaticity components which are difficult to remove by wiper cleaning. (2) Dirt (suspension components, chromaticity components, biological slime) eluted in the retained drug solution can be effectively removed from the measurement cell by the water washing that realizes a turbulent state. (3) In a series of chemical cleaning operations, control devices such as a solenoid valve and a pump can be automatically operated using a control device (sequencer) and a touch panel, so that automatic cleaning is possible. (4) The chemical cleaning operation parameters (flow cleaning flow setting, chemical residence time, cleaning time, etc.) can be easily changed on a touch panel type graphic display.
The cleaning operation can be monitored graphically. (5) The maintenance interval is greatly extended (three months or more), and the maintenance cost can be reduced. (6) The maintenance interval can be greatly extended by the combination of the chemical cleaning and the periodic automatic zero point calibration of the turbidimeter. (7) The main cleaning has a higher cleaning effect than the wiper cleaning or the jet water cleaning alone. (8) Since the rotating section for wiper cleaning is not provided in the cleaning method, the cause of failure is reduced. [0036] It is an most characteristic of the water quality monitor described above, by providing the measurement processing unit as shown in FIG.
As shown in FIG. 5, Kiyoshi since distribution of the UV signal (absorbance of 25 4n m) correlates with trihalomethane weight high result is obtained, providing a low density UV meter with a trihalomethane amount estimating function that applies UV signal Is what you do. That is, as shown in FIG. 3 , a measuring part having a constant water sample has a measuring cell length of 10 in a flow cell format.
Passes through 0 mm, UV signal (absorbance 254 n m (Ab
is)) and the VIS signal (absorbance of 546 n m (Ab
s)), and the total amount of trihalomethane (TTH) was determined from the UV signal or UV-VIS signal (turbidity correction signal).
M: chloroform CHCl 3 + CHCl 2 Br + CHCl
With estimates the Br total amount of 2 + Guromohorumu CHBr 3), and outputs the UV signal, VIS signals, respectively. Reference light by the light separating slitter 32 before the light emitted from the low-pressure mercury lamp 31 (254 n m and 546 n m wavelength output) as a light source is entering the measurement cell (UV, VIS, respectively)
And sample light after passing through the measurement cell (UV, VI
S respectively) are measured. The reference light is photoelectrically converted by the photoelectric conversion element 33a and input to the amplifier 34, and the sample light is photoelectrically converted by the photoelectric conversion element 33b and input to the amplifier 34. Each signal based on the reference light and the sample light input to the amplifier 34 is amplified and input to the calculator 35. The arithmetic unit 35 performs arithmetic processing based on these signals, and performs processing for each UV value, VIS value, TT
Output the HM estimate. According to the water quality monitor of this embodiment, the following effects can be obtained. (1) UV signal and turbidity signal are measured continuously,
The trihalomethane amount can be continuously estimated from the correlation equation between the UV signal or the turbidity corrected UV signal and the trihalomethane amount. (2) At the same time, the amount of organic substances (for example, potassium permanganate dissolution) can be estimated from the UV signal, and delicious water can be managed. (3) Since it has an automatic zero-point calibration function and a chemical cleaning function, the maintenance cycle can be lengthened (three months or more) , and the sensor can be easily attached and detached, and cleaning and replacement can be performed. Easy
And maintenance is easy . (4) A series of automatic zero-point calibration and chemical cleaning operations are performed using a control device (sequencer) and a touch panel.
Autonomous driving and 24 hours online water quality
Data can be automatically measured and monitored remotely. Also, automatic zero point calibration
(Turbidity meter, chromaticity meter), self-diagnosis function, maintenance
Frequency can be reduced. In addition, as a measurement item of the water quality monitor
Are turbidity, chromaticity, dissolved oxygen, pH, conductivity, UV, water temperature
7 items are automatically measured and output. Furthermore, flat day
By using a spray monitoring panel, measurement and
Environment monitoring and maintenance setting values can be changed easily.
In addition, all the electric control related devices are centrally located in the electric control room,
Completely separated from the water quality measurement room in the water quality measurement piping / detection section
This prevents corrosion of electrical control-related equipment,
By installing a dehumidifier in the control room, dew condensation in the water quality measurement room
Has been prevented. In addition, the panel outer wall has a double plate structure,
Heat insulation is installed on the inner surface, and both the electrical control room and the water quality measurement room
By installing a fan and heater in the
Knots enabled . (5) The measuring cell takes a flow cell format,
Since the measurement cell is as long as 100 mm, measurement of a low concentration UV value is possible. (6) Reference light signal (UV, VI
Since S) is separated before the measurement cell enters the light, even if the output of the low-pressure mercury lamp fluctuates, it is not affected. In the actual example, a low-pressure mercury lamp is used as the light-emitting portion (light source). However, the present invention is not limited to this, and a light-emitting diode or a light bulb may be used as long as the above-mentioned conditions are satisfied. [0046] [0047] [0048] [0049] [0050] Further, according to the cook embodiments described above the processing device, performs the selection of the intake point using water monitors, monitoring of water sources quality When the set value exceeds the upper limit, the flow path is switched and the water is drained, so that the following effects can be obtained. (1) Even if polluted water such as factory wastewater or dyeing wastewater is taken, no load is applied to the water purification treatment facility. (2) It is easy to deal with sudden polluted water. (3) Organic substances and the like are constantly monitored, and a water intake point with good water quality can be selected. (4) The effect of suppressing disinfection by-products such as trihalomethane is high. Table 1 shows the main specifications of the water source water quality monitor.
Table 2 shows the water quality measurement items and ranges of the water source water quality monitor. Table 3 shows the measurement principle and calibration method. The main improvements were the removal of the residual chlorine and water pressure items from the measurement items and the addition of an existing dissolved oxygen meter, turbidity, chromaticity, conductivity, ultraviolet absorbance,
The point is that the measurement range of each item of water temperature was changed. [Table 1] [Table 2] [Table 3] ## EQU00001 ## ## EQU00001 ## ## EQU00001 ## ## EQU00001 ## ## EQU00001 ## The present invention is as described above. In the intake water quality management device, a water quality monitor is provided. In addition to selecting the water intake point, the quality of the water source is monitored, and when it exceeds the set upper limit, the flowing water channel is switched and drained . Therefore, according to the present invention, it is possible to provide a water intake water quality management device that can quickly obtain test results, easily achieve water quality standards, and perform good management.
【図面の簡単な説明】 【図1】本発明の第1実施例による取水水質管理装置の
ブロック図。 【図2】本発明の実施例による水質モニタの要部の構成
ブロック図。 【図3】本発明の実施例による水質モニタの要部の構成
。 【図4】本発明の実施例による水質モニタの制御に用い
る制御システムのブロック図。 【図5】浄水、配水のUV値とTHM(トリハロメタ
ン)の関係を示す特性図。 【符号の説明】 1…圧力調整弁 2a…第1の三方切換電磁弁 2b…第2の三方切換電磁弁 3a…第1の流量調整弁 3b…第2の流量調整弁 4a,4b…ろ過器 7…電磁弁 8…薬液タンク 9…薬液注入ポンプ 10…濁色度計 11…筒体 30…計測処理部 31…低圧水銀灯 32…光分離スプリッタ 33a,33b…光電変換素子 34…増幅器 35…演算器 A…測定系流路 B…水流洗浄系流路 C…高圧フラッシュ洗浄系流路 40…流路 50…取水施設 60…水質モニタ 71…制御装置 72…演算処理装置 80…流路切換器 110…水源
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an intake water quality management device according to a first embodiment of the present invention. FIG. 2 is a configuration of a main part of a water quality monitor according to an embodiment of the present invention .
Block diagram . FIG. 3 is a configuration of a main part of a water quality monitor according to an embodiment of the present invention .
FIG . FIG. 4 is used for controlling a water quality monitor according to an embodiment of the present invention .
FIG . FIG. 5: UV value of purified water and distribution water and THM (trihalometa)
FIG . [Description of Signs] 1 ... pressure regulating valve 2a ... first three-way switching solenoid valve 2b ... second three-way switching solenoid valve 3a ... first flow regulating valve 3b ... second flow regulating valve 4a, 4b ... filter 7 ... Electromagnetic valve 8 ... Chemical liquid tank 9 ... Chemical liquid infusion pump 10 ... Hydrochromic meter 11 ... Cylinder 30 ... Measurement processing unit 31 ... Low pressure mercury lamp 32 ... Light separation splitters 33a and 33b ... Photoelectric conversion element 34 ... Amplifier 35 ... Instrument A: Measurement system flow path B: Water flow cleaning system flow path C ... High pressure flash cleaning system flow path 40 ... Flow path 50 ... Water intake facility 60 ... Water quality monitor 71 ... Control unit 72 ... Arithmetic processing unit 80 ... Flow path switching unit 110 … Water source
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭58−90219(JP,U) 実開 昭57−135948(JP,U) 実開 平4−55556(JP,U) 特公 昭60−38654(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G01N 33/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Sho 58-90219 (JP, U) Japanese Utility Model Sho 57-135948 (JP, U) Japanese Utility Model Hei 4-55556 (JP, U) Japanese Patent Publication Sho 60- 38654 (JP, B1) (58) Field surveyed (Int. Cl. 7 , DB name) G01N 33/18

Claims (1)

  1. (57)【特許請求の範囲】 【請求項1】 水源の水を取水する取水施設と、該取水
    施設に採取された水源水を検水として水質を計測する水
    質モニタと、前記取水施設の下流側流路に配設された流
    路切換器と、前記水質モニタ検水データを基に演算処理
    し演算処理結果を基に前記流路切換器を制御して前記取
    水施設に採取された水源水の流路を切り換えさせる管理
    施設からなり、 前記取水施設における水質モニタは、測定系流路を介し
    て導入された検水の濁度,色度,紫外線吸収を含む測定
    項目を測定するための濁色度計と、この濁色度計に流入
    した検水より少なくとも紫外線吸収値を検出する計測処
    理部とを有し、この計測処理部は前記濁色度計の前記測
    定セル部内の検水に光を照射してサンプル光信号として
    UV,VISを得ると共に検水照射光以外の光によりリ
    ファレンス光信号としてのUV,VISを得る光学系
    と、前記光学系によって得られたUV信号もしくは濁度
    補正信号UV−VISとトリハロメタン量の相関関係か
    ら推定されたトリハロメタン量を含む検水中の含有物を
    演算処理して出力する演算器とで構成し、 且つ、前記濁色度計に薬液タンクより薬液を供給して洗
    浄するための薬液洗浄系流路と、 前記濁色度計に洗浄水を供給して洗浄するための水流洗
    浄系流路と高圧フラッシュ洗浄系とを備えたことを特徴
    とする取水水質監視装置。
    (57) [Claims] [Claim 1] A water intake facility for taking water from a water source, a water quality monitor for measuring water quality using water source water collected at the water intake facility as a sample, and a downstream of the water intake facility A flow path switch disposed in the side flow path, and water source water collected by the water intake facility by performing arithmetic processing based on the water quality monitor sampled data and controlling the flow path switch based on the result of the arithmetic processing The water quality monitor in the water intake facility is configured to measure turbidity, chromaticity, and turbidity for measuring measurement items including turbidity, chromaticity, and ultraviolet absorption introduced through the measurement system flow path. A chromaticity meter, and a measurement processing unit that detects at least an ultraviolet absorption value from the water sample that has flowed into the turbidity meter, and the measurement processing unit performs water measurement in the measurement cell unit of the turbidity meter. It is irradiated with light as a sample optical signal
    UV, UV as a reference light signal by the light other than the test water irradiating light to the co obtains a VIS, an optical system for obtaining the VIS, UV signal or turbidity obtained by the optical system
    Is there a correlation between the correction signal UV-VIS and the amount of trihalomethane?
    The content of the test water containing the trihalomethane amount estimated from
    A chemical operation unit configured to perform arithmetic processing and output ; and a chemical liquid cleaning system flow path for supplying a chemical liquid from the chemical liquid tank to the turbidity meter for cleaning, and supplying cleaning water to the turbidity meter. An intake water quality monitoring device, comprising: a water flow washing system flow path for washing by washing; and a high pressure flash washing system .
JP22938894A 1994-09-26 1994-09-26 Intake water quality control device Expired - Lifetime JP3475513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22938894A JP3475513B2 (en) 1994-09-26 1994-09-26 Intake water quality control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22938894A JP3475513B2 (en) 1994-09-26 1994-09-26 Intake water quality control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003037707A Division JP2003305454A (en) 2003-02-17 2003-02-17 Intake water quality controller

Publications (2)

Publication Number Publication Date
JPH0894608A JPH0894608A (en) 1996-04-12
JP3475513B2 true JP3475513B2 (en) 2003-12-08

Family

ID=16891418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22938894A Expired - Lifetime JP3475513B2 (en) 1994-09-26 1994-09-26 Intake water quality control device

Country Status (1)

Country Link
JP (1) JP3475513B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356635A (en) * 1999-06-15 2000-12-26 Meidensha Corp Concentration measuring method of chlorophyll a and device therefor
JP2004271297A (en) * 2003-03-07 2004-09-30 Seishin Engineering Kk Test water supplying device
US9200635B2 (en) 2012-04-05 2015-12-01 Gast Manufacturing, Inc. A Unit Of Idex Corporation Impeller and regenerative blower
JP6461706B2 (en) * 2015-05-14 2019-01-30 株式会社東芝 Water supply apparatus and water supply control method
KR102094766B1 (en) * 2017-09-19 2020-03-30 한국해양과학기술원 Seawater supply device that improves reliability of seawater inflow from occurrence of red tide and high temperature
KR102223505B1 (en) * 2020-04-27 2021-03-05 조태영 Water tank having system for measuring turbidity

Also Published As

Publication number Publication date
JPH0894608A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
JP2003305454A (en) Intake water quality controller
EP0576501B1 (en) Organic pollutant monitor
JP2008032691A (en) Water quality monitoring system and method
CN105865845B (en) A kind of water process on-line period analysis system
JP3475513B2 (en) Intake water quality control device
JP2005313022A (en) Raw water quality estimating device
KR102172981B1 (en) Smart sewage treatment Operation System
CN105548039A (en) On-line detection device and detection method for activated sludge denitrification rate
CN107857442A (en) A kind of Laboratory Waste Water Treatment equipment
GB2256043A (en) Organic pollutant monitor
JPH07209180A (en) Water quality monitor apparatus
WO2018179494A1 (en) Water quality measurement device
JP4744289B2 (en) Water quality measuring device
KR100299328B1 (en) Method and apparatus for measuring organic pollution of overflow water
JPH07181130A (en) Washer for turbidimeter
US5379791A (en) Dual-head flow controller and method
RU2365913C2 (en) Method of ozone level control and device to that effect
CN206345728U (en) A kind of safe water treatment facilities of efficiently meeting an urgent need of low energy consumption
CN212198804U (en) Water quality monitoring system waste liquid treatment device
DE2420327A1 (en) Recording disinfectant content of swimming-pool water - with transparent analyser determining transparency of water contained in it
KR102224538B1 (en) Water quality measuring device
CN213455585U (en) Water quality on-line automatic monitoring device
JPH08136526A (en) Continuous measuring apparatus for concentration of dissolved ozone
JP2002005863A (en) Method for measuring water pollution, its sensor and apparatus for reusing rainwater or the like
CN108069531A (en) A kind of safe water treatment facilities of efficiently meeting an urgent need of low energy consumption

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

EXPY Cancellation because of completion of term