JPH0894608A - Intake water quality control device - Google Patents

Intake water quality control device

Info

Publication number
JPH0894608A
JPH0894608A JP22938894A JP22938894A JPH0894608A JP H0894608 A JPH0894608 A JP H0894608A JP 22938894 A JP22938894 A JP 22938894A JP 22938894 A JP22938894 A JP 22938894A JP H0894608 A JPH0894608 A JP H0894608A
Authority
JP
Japan
Prior art keywords
water
intake
water quality
flow path
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22938894A
Other languages
Japanese (ja)
Other versions
JP3475513B2 (en
Inventor
Tetsufumi Watanabe
哲文 渡辺
Keiichi Tsukitari
圭一 月足
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP22938894A priority Critical patent/JP3475513B2/en
Publication of JPH0894608A publication Critical patent/JPH0894608A/en
Application granted granted Critical
Publication of JP3475513B2 publication Critical patent/JP3475513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide an intake water quality control device capable of quickly obtaining test results, facilitating attaining a water quality standard and controlling well. CONSTITUTION: For source water for inspection which is sampled in an intake facility 50, the water quality is measured with a water quality monitor 60, the water quality is operation-processed with an operation processor 72, and according to the operation result, the intake path is switched with a path switcher 80 to select the point of intake.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水質監視装置に係り、
特に河川水,湖沼水等の取水水質管理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality monitoring device,
Particularly, it relates to a water quality control device for water intake such as river water and lake water.

【0002】[0002]

【従来の技術】一般に、水道水源として河川水,湖沼
水,地下水が用いられる。これら、水道水源から取水施
設で取水された水道原水は貯留池を介して浄水施設へ送
られるか、または直接浄水場へ送られる。
2. Description of the Related Art Generally, river water, lake water, and ground water are used as a tap water source. Raw water from the tap water source, which is taken by the water intake facility, is sent to the water purification facility via the storage pond or directly to the water purification plant.

【0003】河川を水源とする場合、湖沼やダム湖と比
較して水質変動が大きく、有害物質が混入する可能性が
高い。河川の水質は工場排水、都市下水、家庭排水、畜
産排水や農薬、肥料等の人為的汚濁に左右されるほか、
気象条件や地質に由来して変化する。
When a river is used as a water source, the water quality changes greatly compared to lakes and dam lakes, and there is a high possibility that harmful substances will be mixed. The water quality of rivers is influenced by man-made pollution such as factory effluent, urban sewage, domestic effluent, livestock effluent, agricultural chemicals and fertilizers.
It changes due to weather conditions and geology.

【0004】現在、水源水質の管理は河川等から取水
後、貯留池がある場合は貯留池の水質(pH、導電率、
水温、濁度等の水質項目)を自動監視するか、浄水場の
職員が採水して手分析を行っている。直接浄水場へ送ら
れる場合は着水井の水質自動監視か、定期的に職員が採
水し手分析を行っている。しかしながら現在の水源水質
監視では、近年問題となっている発ガン性物質であるト
リハロメタン(水道水水質基準規制対象物)の基になる
フミン質、フルボ酸等の色度成分である溶存性有機物の
監視を行っていない。そのため、多くの浄水場で行って
いる。水中のアンモニアや除マンガンのために前塩素注
入操作により塩素と溶存性の有機物が反応しトリハロメ
タンを生成する。さらに染色排水等の化学合成された色
水が混入した場合、通常の浄水処理操作では処理が困難
であるため、最悪貯水池等の水道原水を廃棄しなければ
ならない。
At present, the water quality of the water source is controlled after the water is taken from a river or the like, and if there is a storage pond, the water quality (pH, conductivity,
Water quality, such as water temperature and turbidity, etc.) is automatically monitored, or water treatment staff collect water for manual analysis. When the water is directly sent to the water treatment plant, the water quality of the landing well is automatically monitored, or the staff regularly collects water and conducts manual analysis. However, in the current monitoring of water source water quality, humic substances, which are the basis of trihalomethane (subject to regulation of tap water quality standard), which is a carcinogen that has become a problem in recent years, and dissolved organic substances that are chromatic components such as fulvic acid Not monitoring. Therefore, many water purification plants do it. The chlorine and the dissolved organic matter react with each other by the pre-chlorine injection operation to remove ammonia and manganese in the water and generate trihalomethane. Further, when chemically synthesized color water such as dyeing wastewater is mixed, it is difficult to treat it by a normal water purification treatment operation, and therefore the raw water of a tap water such as a reservoir must be discarded at worst.

【0005】また河川では、前記したように水質変動が
大きいために、水道原水として不適な水質である場合で
も取水計画に従って行い浄水処理施設に多大な負担をか
ける。従って、水道水源における取水は河川等の水深方
向で良好な水質を選択して取水を行うだけでなく、良好
な水質の取水地点の選択を行う必要がある。
Further, in the river, since the water quality varies greatly as described above, even if the water quality is unsuitable as raw water for the tap water, the water treatment plan is performed according to the water intake plan and a great burden is imposed on the water purification facility. Therefore, it is necessary not only to select water with good water quality in the depth direction of rivers, but also to select water intake points with good water quality.

【0006】また、ダム湖では、季節的な温度成層現象
が生じ、深度によって水質に著しく変化することがあ
る。ダム上流部には崩壊地が多く、かつ粒子が微細であ
る場合、洪水時に流入した濁水が、水の密度に応じて層
を形成する。取水口のある層に濁水層が発生すると、濁
水を連続的に処理しなければならなくなり、大変不利を
まねく。そこで取水口の高さを何段が複数にし、濁水層
をはずして取水する工夫がなされている。選択取水は、
導水された水に対する水質監視結果や水質試験結果をも
とに行われる。
In the dam lake, seasonal thermal stratification phenomenon occurs, and the water quality may change remarkably depending on the depth. If there are many landslides and the particles are fine in the upstream part of the dam, the turbid water that flows in during the flood will form a layer according to the density of the water. If a turbid water layer occurs in a layer with an intake, the turbid water must be treated continuously, which is very disadvantageous. Therefore, the height of the water intake is set to multiple levels and the turbid water layer is removed to take in water. Selective water intake
It is conducted based on the results of water quality monitoring and water quality test for the introduced water.

【0007】[0007]

【発明が解決しようとする課題】選択取水は、操作員の
目視、水質計器による水質監視結果や水質試験結果をも
とに行われる。水質計器の採水点(設置場所)は取水口
の上流が望ましいが、多くの場合は沈砂池、着水井とい
った施設の最上流が用いられる。すでに取水した水の監
視結果をもとに選択取水を行う場合、ダム湖の温度成層
の状況をうまく把握することができず、最良の取水口を
選択することは難しい。また、水質計器を用いた連続測
定が不可能な鉄、マンガンなどといった底泥からの溶出
に原因するものは、水質試験結果をもとに取水口の選択
を行わねばならず、試験結果がでるまでの遅れ時間があ
る。
The selective water intake is performed based on the operator's visual inspection, the result of water quality monitoring by a water quality meter, and the result of water quality test. The water sampling point (installation site) of the water quality meter is preferably upstream of the intake, but in most cases, the uppermost stream of the facility such as a sand basin or landing well is used. When selective intake is performed based on the monitoring results of water that has already been taken, it is difficult to grasp the condition of thermal stratification in the dam lake, and it is difficult to select the best intake. In addition, iron, manganese, etc. that cause elution from bottom mud, which cannot be continuously measured using a water quality meter, must select the intake port based on the water quality test results, and the test results can be obtained. There is a delay until.

【0008】さらに、従来の取水管理方式では次のよう
な問題点があった。
Further, the conventional water intake management system has the following problems.

【0009】(1)水源水質の紫外線吸収(UV)、色
度を測定していないために、水源の有機物濃度をリアル
タイムに把握できない。従って、浄水処理における前塩
素注入操作により塩素と有機物が反応し発ガン性物質で
あるトリハロメタン生成が増加し、水質基準の達成が困
難となる。
(1) Since the ultraviolet absorption (UV) and chromaticity of the water source water quality are not measured, the concentration of organic substances in the water source cannot be grasped in real time. Therefore, chlorine and organic substances react with each other by the pre-chlorine injection operation in water purification treatment, and the production of trihalomethane, which is a carcinogen, increases, making it difficult to achieve the water quality standard.

【0010】(2)河川等に染色排水などの化学合成着
色水が混入した場合、着色水を取水し貯留池や着水井に
流れ込み浄水処理施設に負担を与えたり、最悪貯留池の
水を廃棄しなければならない。
(2) When chemically synthesized colored water such as dyeing wastewater is mixed in a river or the like, the colored water is taken and flows into a storage pond or a landing well to impose a burden on the water treatment facility, or the water in the worst reservoir is discarded. Must.

【0011】(3)河川等からの取水操作は取水量だけ
で管理し、取水地点の水質を考慮した取水地点選択を行
っていないので、良好な取水点を選択できず、信頼性に
欠けていた。
(3) Since the operation of water intake from rivers etc. is controlled only by the amount of water intake and no water intake point is selected in consideration of the water quality at the water intake point, a good water intake point cannot be selected, resulting in lack of reliability. It was

【0012】本発明は上述の問題点に鑑みてなされたも
ので、その目的は、試験結果を速く得ることができ水質
基準の達成が容易にして良好な管理が可能な取水水質管
理装置を提供することを特徴とする。
The present invention has been made in view of the above problems, and an object thereof is to provide an intake water quality control device capable of obtaining test results quickly, facilitating achievement of water quality standards, and performing good control. It is characterized by doing.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の取水水質管理装置は、水源の水を取水する
取水施設と、該取水施設に採取された水源水を検水とし
て水質を計測する水質モニタと、前記取水施設の下流側
流路に配設された流路切換器と、前記水質モニタ検水デ
ータを基に演算処理し演算処理結果を基に前記流路切換
器を制御して前記取水施設に採取された水源水の流路を
切り換えさせる管理施設からなり、前記水質をモニタ
を、検水を通流させるための測定セル部と、前記測定セ
ル部内の検水に光を照射してサンプル光信号を得るとと
もに検水照射光以外の光によりリファレンス光信号を得
る光学系と、前記光学系によって得られたサンプル光信
号とリファレンス光信号をもとに演算処理して前記検水
中の含有物の推定値を算出する計測処理部、によって構
成したことを特徴とする。
In order to achieve the above object, an intake water quality control device of the present invention is provided with an intake facility for taking in water from a water source, and a water quality sampled from the source water collected in the intake facility. A water quality monitor for measuring the water quality, a flow path switching device arranged in a downstream flow path of the water intake facility, and a flow path switching device based on the calculation processing result based on the water quality monitor water detection data. It consists of a management facility that controls and switches the flow path of the water source water sampled to the water intake facility, and monitors the water quality by a measurement cell unit for passing a sample water and a sample water in the measurement cell unit. An optical system that obtains a sample optical signal by irradiating light and obtains a reference optical signal by light other than the sample irradiation light, and performs arithmetic processing based on the sample optical signal and the reference optical signal obtained by the optical system. Estimated value of inclusions in the test water Calculated for measurement processing unit, characterized by being constituted by.

【0014】また、本発明の取水水質管理装置は、水源
水を採取する取水施設と、該取水施設に採取された水を
検出とする水質モニタからなり、前記取水施設の取水口
上流部に前記取水施設に取水された水源水の深度を異に
して複数の水質モニタ用採水口を設け、前記複数の採水
口のうちいずれか一つの同一の採水口を流通する水源水
を検水して水質を計測することを特徴とする。
The intake water quality control device of the present invention comprises an intake facility for collecting water source water and a water quality monitor for detecting the water collected in the intake facility. A plurality of water quality monitor water intakes are provided at different depths of water taken into the water intake facility, and the water quality is measured by measuring the water source water flowing through any one of the plurality of water intakes. Is characterized by measuring.

【0015】[0015]

【作用】請求項1〜4の取水水質管理装置では、水質モ
ニタを用いて取水地点の選択を行うとともに、水源水質
の監視を行い、設定上限値を越える場合、流水流路を切
り換え排水する。
In the intake water quality control device according to the first to fourth aspects, the intake point is selected using the water quality monitor, the water source water quality is monitored, and when the set upper limit value is exceeded, the flowing water flow path is switched and drained.

【0016】請求項6〜8の取水水質管理装置では、選
択取水設備において、各々の取水口上流部に採水口を設
置し深度方向の水質状態を把握する。
In the intake water quality control device according to claims 6 to 8, in the selective intake facility, a water intake port is installed upstream of each intake port to grasp the water quality state in the depth direction.

【0017】[0017]

【実施例】以下に本発明の実施例を図1〜図7を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0018】図1は本発明の第1実施例による取水管理
装置の概略構成を示すもので、同図において、50は水
流管40を通して河川や湖沼などの水源から取水するた
めの取水施設、60は取水施設に設けられた水質モニタ
で、pH,水温,導電率,色度,濁度,紫外線吸収(U
V),溶存酸素(DO)を連続測定する。70は管理施
設で、制御装置(DDC)71や演算処理装置(CP
U)72を備えている。80は管理施設70の制御装置
からの流路切換信号に応じて流路を切り換える流路切換
器、90は貯水池である。
FIG. 1 shows a schematic structure of a water intake control device according to a first embodiment of the present invention. In FIG. 1, 50 is a water intake facility for taking water from a water source such as a river or lake through a water flow pipe 40, and 60. Is a water quality monitor installed at the water intake facility, which measures pH, water temperature, conductivity, chromaticity, turbidity, ultraviolet absorption (U
V), dissolved oxygen (DO) is continuously measured. Reference numeral 70 denotes a management facility, which includes a control device (DDC) 71 and a processing unit (CP).
U) 72. Reference numeral 80 is a flow path switching device that switches the flow paths in accordance with a flow path switching signal from the control device of the management facility 70, and 90 is a reservoir.

【0019】図1の取水管理装置において、取水施設5
0は水源から取水し、水質モニタ60で水質の検査を行
い水質信号S1を管理施設70の制御装置71に導く。
制御装置71は水質信号S1をもとに制御信号を演算処
理部72に導く。演算制御部72は制御信号をもとに演
算処理して制御装置71に演算信号を導き、制御装置7
1は演算信号をもとに流路切換信号S2を流路切換器8
0に出力し、該流路切換器80に水源水の流路を貯水池
90か排水へ切り換える。
In the water intake management device of FIG. 1, the water intake facility 5
0 takes water from the water source, inspects the water quality with the water quality monitor 60, and guides the water quality signal S1 to the control device 71 of the management facility 70.
The control device 71 guides a control signal to the arithmetic processing unit 72 based on the water quality signal S1. The arithmetic control unit 72 performs arithmetic processing based on the control signal and guides the arithmetic signal to the control device 71,
1 is a flow path switching signal S2 based on the calculation signal.
0, and the flow path switch 80 switches the flow path of the water source water to the reservoir 90 or drainage.

【0020】図4は水質モニタの一例を示すもので、同
図において1は圧力調整弁、2aは圧力調整弁1にその
下流段において接続された第1の三方切換電磁弁、3a
は第1の三方切換電磁弁2aに連設された流量調整弁で
あって、これらの圧力調整弁1,第1の三方切換電磁弁
2aおよび第1の流量調整弁3aによって測定系流路A
が形成される。また、図4において3bは第1の三方切
換弁2aに連結された第2の流量調整弁、4a,4bは
配管洗浄用ろ過器4a,4bであって、これらによって
水流洗浄系流路Bが形成される。さらに、圧力調整弁1
の下流段と第1の三方切換電磁弁2a間と後述する濁色
度計10との間に電磁弁7を介設して高圧フラッシュ洗
浄系路Cが形成されている。さらにまた、6は流量計、
2bは流量計6の下流段と濁色度計10間に連結された
第2の三方切換電磁弁、8は薬液タンク、9は薬液等の
洗浄剤を注入するための洗浄剤注入ポンプである薬液を
注入するポンプであって、これらの第2の三方切換電磁
弁2b,薬液タンク8および薬液注入ポンプ9によって
薬液洗浄系流路Dが形成されている。30はUVとVI
Sに関する基準信号RとUVとVISに関するサンプル
信号を入力とする計測処理部である。
FIG. 4 shows an example of a water quality monitor. In FIG. 4, 1 is a pressure regulating valve, 2a is a first three-way switching solenoid valve connected to the pressure regulating valve 1 at its downstream stage, 3a.
Is a flow rate adjusting valve connected to the first three-way switching solenoid valve 2a, and the pressure adjusting valve 1, the first three-way switching solenoid valve 2a, and the first flow rate adjusting valve 3a are used to measure the measurement system flow path A.
Is formed. Further, in FIG. 4, 3b is a second flow rate adjusting valve connected to the first three-way switching valve 2a, and 4a and 4b are pipe cleaning filters 4a and 4b. It is formed. Furthermore, the pressure regulating valve 1
A high pressure flush cleaning system path C is formed by interposing a solenoid valve 7 between the downstream stage of the first three-way switching solenoid valve 2a and a turbidity meter 10 described later. Furthermore, 6 is a flow meter,
Reference numeral 2b is a second three-way switching solenoid valve connected between the downstream stage of the flow meter 6 and the turbidity meter 10, 8 is a chemical liquid tank, and 9 is a cleaning agent injection pump for injecting a cleaning agent such as a chemical solution. A pump for injecting a chemical liquid, and a chemical liquid cleaning system flow path D is formed by these second three-way switching electromagnetic valve 2b, chemical liquid tank 8 and chemical liquid injection pump 9. 30 is UV and VI
The measurement processing unit receives the reference signal R for S and the sample signal for UV and VIS.

【0021】図5は濁色度計10の測定セル部と計測処
理部30の概略構成を示すもので、筒体11は水平面に
対して所定の角度θをもって配設されており、筒体11
の一方の端部側面には検水流入口12が設けられ、他方
の端部側面には検水流出口13が設けられている。筒体
11の一方の開口端部には測定窓14aが設けられ、他
方の開口端部には測定窓14bが設けられている。
FIG. 5 shows a schematic structure of the measurement cell section and the measurement processing section 30 of the turbidity meter 10. The cylinder 11 is arranged at a predetermined angle θ with respect to the horizontal plane.
A sample water inlet 12 is provided on one end side surface, and a sample water outlet 13 is provided on the other end side surface. A measurement window 14a is provided at one opening end of the cylindrical body 11, and a measurement window 14b is provided at the other opening end.

【0022】また、図5に示すように、測定窓14aの
近傍には筒体11の軸線上に位置した発光部である低圧
水銀灯15が配設されており、測定窓14aと低圧水銀
灯15間には光分離スリッタ32が設けられている。光
分離スリッタ32による分離光線の光路上には第1の受
光部である光電変換素子33aが配設されており、測定
窓14bの近傍には筒体11の軸線上に位置した第2の
受光部である光電変換素子33bが配設されている。3
4は光電変換素子33aの出力信号と光電変換素子33
bの出力信号を入力として増幅する増幅器、35は増幅
器34の出力信号を入力として所定の演算処理する演算
処理器であって、低圧水銀灯31,光分離スリッタ3
2,光電変換素子33a,33b,増幅器34および演
算処理器35によって計測処理部30が構成される。
Further, as shown in FIG. 5, a low pressure mercury lamp 15 as a light emitting portion located on the axis of the cylindrical body 11 is disposed near the measurement window 14a, and the low pressure mercury lamp 15 is provided between the measurement window 14a and the low pressure mercury lamp 15. Is provided with a light separation slitter 32. A photoelectric conversion element 33a, which is a first light receiving portion, is arranged on the optical path of the separated light beam by the light separation slitter 32, and a second light receiving portion located on the axis of the cylinder 11 is provided in the vicinity of the measurement window 14b. A photoelectric conversion element 33b, which is a unit, is arranged. Three
4 is the output signal of the photoelectric conversion element 33a and the photoelectric conversion element 33.
An amplifier for amplifying the output signal of b as an input, 35 is an arithmetic processing unit for performing a predetermined arithmetic processing by using the output signal of the amplifier 34 as an input, and includes a low pressure mercury lamp 31, an optical separation slitter 3
2, the measurement processing unit 30 is configured by the photoelectric conversion elements 33a and 33b, the amplifier 34, and the arithmetic processing unit 35.

【0023】上記構成の水質モニタ装置において、濁色
度計の洗浄にあたって、薬液タンク8から薬液注入ポン
プ9により塩酸薬液(濃度2%程度)を、三方切換電磁
弁2bを介して濁色度計10の測定セル内に満たして、
一定時間測定セル内に塩酸を重点反応させる。これによ
り測定セル内壁に付着した生物スライム,全鉄マンガン
等が剥離される。
In the water quality monitor having the above structure, when cleaning the turbidity meter, the hydrochloric acid chemical solution (concentration about 2%) is supplied from the chemical solution tank 8 by the chemical solution injection pump 9 through the three-way switching solenoid valve 2b. Fill in 10 measuring cells,
Predominantly react hydrochloric acid in the measuring cell for a certain period of time. As a result, biological slime, total iron manganese, etc. attached to the inner wall of the measurement cell are peeled off.

【0024】薬液処理した後に高圧フラッシュ洗浄経路
Cを通して高圧流を濁色度計10の測定セル部に通流
し、測定セル部を洗浄するとともに、水流洗浄系流路B
で洗浄した後に測定系流路Aを通して検水を濁色度計1
0の測定セル部に導く。
After the chemical treatment, a high-pressure flow is passed through the high-pressure flush cleaning path C to the measurement cell section of the turbidity meter 10 to wash the measurement cell section and a water-flow cleaning system flow path B
After washing with water, the test water is passed through the measuring system flow path A and the turbidity meter 1
Lead to 0 measurement cell section.

【0025】すなわち、薬液中に汚れ成分を乱流水流で
水流洗浄を一定時間実施する。これで薬液洗浄を終了
し、検水流入を開始する。この一連の薬液洗浄操作は、
図6に示す制御システムによって行われるもので、シー
ケンサ21とタッチパネル22を用いて、濁色度計,電
磁弁,ポンプ等の被制御機器部23における電磁弁の開
閉,薬液ポンプのオン/オフ等を全自動で実行する。
That is, the dirty components in the chemical solution are washed with a turbulent water stream for a certain period of time. This completes the chemical cleaning and starts the inflow of test water. This series of chemical cleaning operations
This is performed by the control system shown in FIG. 6, using the sequencer 21 and the touch panel 22 to open and close the solenoid valve in the controlled device section 23 such as the turbidity meter, the solenoid valve, and the pump, turn on / off the chemical pump, etc. Is executed automatically.

【0026】濁色度計の洗浄において、水流洗浄の流量
を1(リットル/分)で行え、測定セル内に1.88秒
滞留し、平均速度5.3cm/秒で流れ、そのレイノズ
ル数が0.106と乱流に近い流れを測定セル内で実現
できる。これにより十分な洗浄効果が得られる。
In the washing of the turbidity meter, the flow rate of water washing can be 1 (liter / min), the sample stays in the measuring cell for 1.88 seconds and flows at an average velocity of 5.3 cm / sec. A turbulent flow of 0.106 can be realized in the measuring cell. As a result, a sufficient cleaning effect can be obtained.

【0027】この洗浄操作の設定流量、薬液滞留時間、
薬液密度および洗浄時間はシーケンサとタッチパネルに
より、検水の汚れ程度に応じて自由に設定変更可能であ
り、次のような種々の効果が得られる。
The set flow rate of this cleaning operation, the chemical solution retention time,
The chemical solution density and the cleaning time can be freely changed by the sequencer and the touch panel according to the degree of contamination of the test water, and the following various effects can be obtained.

【0028】(1)薬液洗浄(Hc12%程度)により
ワイパー洗浄では落ちにくい全マンガン、全鉄系の付着
色度成分を効果的に落とすことができる。
(1) By cleaning with a chemical solution (about 12% Hc), it is possible to effectively remove all manganese and all iron-based adhering chromaticity components that are difficult to remove by wiper cleaning.

【0029】(2)乱流状態を実現する水流洗浄により
滞留薬液中に溶出した汚れ(濁質成分,色度成分,生物
スライム)を効果的に測定セル外に排除できる。
(2) Dirt (turbid component, chromaticity component, biological slime) eluted in the stagnant chemical liquid can be effectively removed from the measurement cell by washing with a water stream which realizes a turbulent flow state.

【0030】(3)一連の薬液洗浄操作は、制御装置
(シーケンサ)、タッチパネルを用いて、電磁弁,ポン
プ等の制御機器を自動運転ができるので、自動洗浄が可
能である。
(3) In a series of chemical cleaning operations, the control device (sequencer) and the touch panel can be used to automatically operate the control devices such as the solenoid valve and the pump, so that automatic cleaning is possible.

【0031】(4)薬液洗浄操作パラメータ(水流洗浄
流量設定,薬液滞留時間,洗浄時間等)をタッチパネル
式のグラフィックディスプレイで簡単に設定変更でき、
洗浄操作をグラフィックモニタできる。
(4) The chemical cleaning operation parameters (water flow cleaning flow rate setting, chemical retention time, cleaning time, etc.) can be easily set and changed on the touch panel type graphic display,
The cleaning operation can be graphically monitored.

【0032】(5)保守間隔が大幅(3ケ月以上)に延
びて、維持管理費用が節減できる。
(5) Maintenance intervals can be significantly extended (3 months or more), and maintenance costs can be reduced.

【0033】(6)薬液洗浄と定期的な濁色度計の自動
ゼロ点校正の組み合わせにより保守間隔の大幅延長が可
能となった。
(6) The maintenance interval can be greatly extended by the combination of chemical cleaning and periodic zero-point calibration of the turbidity meter.

【0034】(7)ワイパ洗浄やジェット水流洗浄単独
より本洗浄の方が洗浄効果が高い。
(7) The main cleaning has a higher cleaning effect than the wiper cleaning or the jet water stream cleaning alone.

【0035】(8)ワイパ洗浄の回転部が洗浄方式には
ないため、故障の原因が少なくなる。
(8) Since the rotating part of the wiper cleaning does not exist in the cleaning system, the cause of failure is reduced.

【0036】上述の水質モニタの最も特徴とするところ
は、図5に示すように測定処理部を設けたことである。
図7に示すように、浄配水のUV信号(25mmの吸光
度)がトリハロメタン量と相関が高結果が得られたの
で、UV信号を応用したトリハロメタン量推定機能を有
する低濃度UV計を提供するものである。
The most characteristic feature of the above water quality monitor is that it is provided with a measurement processing unit as shown in FIG.
As shown in FIG. 7, the UV signal (absorbance at 25 mm) of the purified water has a high correlation with the amount of trihalomethane, so a low-concentration UV meter having a function of estimating the amount of trihalomethane using the UV signal is provided. Is.

【0037】すなわち、図5に示すように、検水が一定
傾斜を有する測定部をフローセル形式で測定セル長10
0mmを通過し、UV信号(254mmの吸光度(Ab
is))とVIS信号(546mmの吸光度(Ab
s))の各信号を計測し、UV信号又はUV−VIS信
号(濁度補正信号)から総トリハロメタン量(TTH
M:クロロホルムCHCl3+CHCl2Br+CHCl
Br2+グロモホルムCHBr3の合計量)を推定すると
ともに、UV信号,VIS信号をそれぞれ出力する。光
源としての低圧水銀灯31(254mmと546mm波
長出力)から出た光は測定セルに入る前に光分離スリッ
タ32によりリファレンス光(UV,VISそれぞれ)
に分けられ、測定セル通過後のサンプル光(UV,VI
Sそれぞれ)が測定される。リファレンス光は光電変換
素子33aにより光電変換され増幅器34に入力される
とともに、サンプル光は光電変換素子33bによって光
電変換され増幅器34に入力される。増幅器34に入力
されたリファレンス光とサンプル光に基づく各信号は増
幅され演算器35にに入力される。演算器35はこれら
の信号をもとに演算処理して各UV値,VIS値,TT
HM推定値を出力する。
That is, as shown in FIG. 5, the measuring unit having a constant inclination of the sample water is measured in a flow cell format with a measuring cell length of 10 mm.
UV signal (absorbance at 254 mm (Ab
is)) and VIS signal (absorbance at 546 mm (Ab
s)) is measured, and the total trihalomethane amount (TTH) is measured from the UV signal or the UV-VIS signal (turbidity correction signal).
M: Chloroform CHCl 3 + CHCl 2 Br + CHCl
The total amount of Br 2 + gromoform CHBr 3 ) is estimated and the UV signal and the VIS signal are output respectively. The light emitted from the low-pressure mercury lamp 31 (254 mm and 546 mm wavelength output) as a light source is a reference light (UV and VIS respectively) by the light separation slitter 32 before entering the measurement cell.
Sample light after passing through the measuring cell (UV, VI
S respectively) is measured. The reference light is photoelectrically converted by the photoelectric conversion element 33 a and input to the amplifier 34, and the sample light is photoelectrically converted by the photoelectric conversion element 33 b and input to the amplifier 34. Each signal based on the reference light and the sample light input to the amplifier 34 is amplified and input to the calculator 35. The arithmetic unit 35 performs arithmetic processing on the basis of these signals to perform each UV value, VIS value, TT
Output the HM estimate.

【0038】本例の水質モニタによれば次のような効果
が得られる。
According to the water quality monitor of this example, the following effects can be obtained.

【0039】(1)UV信号と濁度信号を連続測定し、
UV信号又は濁度補正UV信号とトリハロメタン量の相
関式からトリハロメタン量が連続推定できる。
(1) Continuous measurement of UV signal and turbidity signal,
The amount of trihalomethane can be continuously estimated from the correlation equation between the UV signal or the turbidity-corrected UV signal and the amount of trihalomethane.

【0040】(2)同時に、UV信号から有機物量(例
えば過マンガン酸カリウム溶変量等)の推定が可能とな
り、おいしい水の管理ができる。
(2) At the same time, it becomes possible to estimate the amount of organic substances (for example, the amount of potassium permanganate dissolved or the like) from the UV signal, and it is possible to manage delicious water.

【0041】(3)自動ゼロ点校正機能と薬液洗浄機能
を有しているため保守周期が長期化(3カ月以上)でき
る。
(3) Since it has an automatic zero point calibration function and a chemical cleaning function, the maintenance cycle can be extended (3 months or more).

【0042】(4)一連の自動ゼロ点校正と薬液洗浄操
作は、制御装置(シーケンサ)とタッチパネルで行い、
自動運転できる。
(4) A series of automatic zero point calibration and chemical cleaning operation are performed by the controller (sequencer) and touch panel.
Can drive automatically.

【0043】(5)測定セルがフローセル形式をとり、
測定セルが100mmと長いため低濃度UV値の測定が
可能である。
(5) The measuring cell has a flow cell format,
Since the measuring cell is as long as 100 mm, it is possible to measure a low concentration UV value.

【0044】(6)リファレンス光信号(UV,VI
S)を、測定セル入光前に分離しているので、低圧水銀
灯が出力変動をしても、その影響をうけない。
(6) Reference optical signal (UV, VI
Since S) is separated before entering the measuring cell, even if the low-pressure mercury lamp changes its output, it is not affected by it.

【0045】なお、実例では発光部(光源)として低圧
水銀灯を用いたが、これに限定されるものではなく、上
述の条件を満たすものであれば発光ダイオード又は電球
などであってもよい。
Although the low-pressure mercury lamp is used as the light emitting portion (light source) in the example, the invention is not limited to this, and may be a light emitting diode or a light bulb as long as the above-mentioned conditions are satisfied.

【0046】図2は本発明の第2実施例による取水管理
装置を示すもので、同図において50aは第1の取水施
設で第1の水質モニタ60aを備えている。80aは第
1の流路切換器、90aは第1の貯水池、100は浄水
処理施設であって管理施設70を備えており、管理施設
70は制御装置と演算処理装置を備えている。50bは
第2の取水施設、80bは第2の流路切換器、90bは
第2の貯水池である。
FIG. 2 shows a water intake control device according to a second embodiment of the present invention. In FIG. 2, 50a is a first water intake facility provided with a first water quality monitor 60a. Reference numeral 80a is a first flow path switching device, 90a is a first reservoir, 100 is a water purification treatment facility and is provided with a management facility 70, and the management facility 70 is provided with a control device and an arithmetic processing device. 50b is a second intake facility, 80b is a second flow path switching device, and 90b is a second reservoir.

【0047】第1の取水施設50aは、河川などの水源
110の上流側に配設され、第1の流路切換器80a、
第1の貯水池90aを通して浄水処理施設100に取水
を供給する。第2の取水施設50bは水源110の下流
側に配設され、第2の流路切換器80b,第2の貯水池
90bを通して浄水処理施設100に取水を供給する。
The first water intake facility 50a is disposed upstream of the water source 110 such as a river, and the first flow path switch 80a,
Water is supplied to the water purification treatment facility 100 through the first reservoir 90a. The second water intake facility 50b is arranged on the downstream side of the water source 110, and supplies the water intake to the water purification treatment facility 100 through the second flow path switch 80b and the second reservoir 90b.

【0048】図2の取水管理装置において、取水施設5
0a,50bの水質モニタ60a,60bにより、取水
された水道原水の水質を常時モニタリングし、その水質
信号を常時管理塔に送る。送られてきた水質信号から水
質を判断し、汚濁水が取水され異常値が示されれば流路
切り替え装置を作動させ、流路を貯水池方向へ切り替
え、汚濁水が貯水池等に流入される前に排水する。ここ
で、水質異常値にあらかじめ設定しておき、水質の優先
順序はUV、色度>濁度>導電率>pHの順で行う。ま
た、流路の切り替えは、開水路であれば堰で、管路であ
れば三方バルブ等で行う。
In the water intake management device of FIG. 2, the water intake facility 5
The water quality monitors 60a and 60b of 0a and 50b constantly monitor the water quality of the tap water taken and send the water quality signal to the control tower at all times. Before judging the quality of water from the sent water quality signal, if polluted water is taken in and an abnormal value is indicated, the flow path switching device is activated, the flow path is switched to the reservoir direction, and before the polluted water flows into the reservoir etc. Drain to. Here, the abnormal water quality value is set in advance, and the priority order of the water quality is UV, chromaticity>turbidity>conductivity> pH. Switching of the flow path is performed by a weir for an open water channel and a three-way valve or the like for a pipeline.

【0049】水源上流に位置する水質監視装置60aで
得られた水質で異常値が示された場合、水量と水深より
汚濁水が下流に位置する取水施設50bに到達するまで
の時間を計算し、その時間で取水施設50bの取水を一
旦停止させる。取水施設50bが取水停止している間
に、取水施設50aの水質が許容範囲に戻れば、再度取
水を開始させる。その後同様に、取水施設50bの水質
が良くなれば、取水を再開する。
When an abnormal value is shown in the water quality obtained by the water quality monitoring device 60a located upstream of the water source, the time taken for the contaminated water to reach the intake facility 50b located downstream is calculated based on the water amount and depth. At that time, the water intake of the water intake facility 50b is temporarily stopped. If the water quality of the water intake facility 50a returns to the allowable range while the water intake facility 50b is stopped, the water intake is restarted. After that, similarly, when the water quality of the water intake facility 50b is improved, the water intake is restarted.

【0050】汚濁状況が長く続き、取水施設50a,5
0bとも取水が再開出来ない場合、貯水池40a,40
bまたは処理施設内の貯水量および配水池の貯水量で対
応できる間は、それらの貯水量で対応する。貯水量で対
応できない場合、取水施設,50a,50bの水質を比
較しながら、良好な水質の方を取水していく。また、取
水地点においては採水口を水源水質モニタを用いて選択
する選択取水方法で行うとより効果的となる。
Contamination continues for a long time and water intake facilities 50a, 5
Reservoir 40a, 40
b) While the water storage capacity in the treatment facility or in the treatment facility can be used, those water storage volumes will be used. If the amount of stored water cannot be handled, the water quality of the water intake facility, 50a, 50b is compared, and the water with better water quality is taken. In addition, at the intake point, it will be more effective if a selective intake method is used in which the intake is selected using a water quality monitor.

【0051】上述の第1実施例と第2実施例による処理
装置によれば、水質モニタを用いて取水地点の選択を行
うとともに、水源水質の監視を行い、設定値上限を越え
る場合は流路を切り換えて排水するものであるから、次
のような効果が得られる。
According to the treatment apparatuses of the first and second embodiments, the water quality monitor is used to select the intake point and the water quality of the water source is monitored. The following effects can be obtained because the water is drained by switching between the two.

【0052】(1)工場排水や染色排水等の汚濁化を取
水しても浄水処理施設に負荷を与えない。
(1) Even if polluted water such as factory wastewater and dye wastewater is taken in, no load is applied to the water purification treatment facility.

【0053】(2)突発的な汚濁水に対応し易い。(2) It is easy to deal with sudden polluted water.

【0054】(3)有機物等の常時モニタリングを行っ
ており、良好な水質の取水点を選択できる。
(3) Since organic substances are constantly monitored, it is possible to select an intake point with good water quality.

【0055】(4)トリハロメタン等の消毒副生成物の
抑制効果が高い。
(4) The effect of suppressing disinfection by-products such as trihalomethane is high.

【0056】図3は、本発明の第3実施例による取水水
質管理装置を示すもので、本実施例では、取水施設50
は取水槽71と、この取水槽71に配設された取水塔7
2からなり、取水塔71には水質モニタ60が設けられ
ている。
FIG. 3 shows an intake water quality control device according to a third embodiment of the present invention. In this embodiment, the intake facility 50 is used.
Is the water intake tank 71 and the water intake tower 7 disposed in the water intake tank 71.
The intake tower 71 is provided with a water quality monitor 60.

【0057】すなわち、取水塔72に水源水質モニタ6
0と採水ポンプ61を、各取水点の上流部に水源水質モ
ニタ用の採水口62a〜62cを設置する。各採水口の
水を採水し、採水ポンプで水源水質モニタに導水し、各
種水質の連続測定を行い、測定データを管理課へ送信す
る。これにより取水口付近の水質を管理棟で監視するこ
とが可能となり、水源の水質管理、取水口の選択に役立
てることができる。採水には、採水口を固定する方式
と、短時間に採水口を自動的に変更する方式の2方式が
ある。前者は同一取水口における水質の経時変化を連続
的に把握でき、後者は取水塔における深度方向の水質状
態が把握できる。本実施例の水質モニタには、図5〜図
7に示す排水水質モニタ局を基本に、取水水質に合わせ
改良したものを用いる。
That is, the water source water quality monitor 6 is installed in the water intake tower 72.
0 and a water sampling pump 61, and water sampling ports 62a to 62c for monitoring the water source water quality are installed upstream of each water intake point. Water from each water sampling port is sampled, and the water is pumped to a water source water quality monitor to continuously measure various water quality, and the measurement data is sent to the management section. This makes it possible to monitor the water quality near the intake in the management building, which can be useful for water quality management of the water source and selection of the intake. For water sampling, there are two methods: a method of fixing the water sampling port and a method of automatically changing the water sampling port in a short time. The former can continuously grasp the change in water quality at the same intake, and the latter can grasp the water quality in the depth direction of the intake tower. The water quality monitor of this embodiment is based on the drainage water quality monitoring station shown in FIGS. 5 to 7, and is improved according to the intake water quality.

【0058】水源水質モニタの主な仕様を表1に示す。
水源水質モニタの水質測定項目と範囲を表2に示す。測
定原理と校正方法を表3に示す。主な改良点は、測定項
目から残留塩素と水圧の項目を削除し、既存の溶存酸素
計を追加した点、濁度,色度,導電率,紫外線吸光度,
水温の各項目の測定範囲を変更した点である。
Table 1 shows the main specifications of the water source water quality monitor.
Table 2 shows the water quality measurement items and ranges of the water source water quality monitor. Table 3 shows the measurement principle and calibration method. The main improvements are the deletion of residual chlorine and water pressure items from the measurement items, and the addition of an existing dissolved oxygen meter, turbidity, chromaticity, conductivity, UV absorbance,
This is the point that the measurement range of each item of water temperature was changed.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【表3】 [Table 3]

【0062】第3実施例の取水水質監視装置によれば、
次のような作用効果が得られる。
According to the intake water quality monitoring device of the third embodiment,
The following effects can be obtained.

【0063】(1)濁度,色度,溶存酸素,pH,導電
率,UV,水温の7項目を自動測定し、出力する。
(1) Seven items of turbidity, chromaticity, dissolved oxygen, pH, conductivity, UV and water temperature are automatically measured and output.

【0064】(2)センサ部の脱着が容易で、洗浄交換
が簡単などメンテナンスが容易である。
(2) The sensor part is easily attached and detached, and cleaning and replacement are easy, so maintenance is easy.

【0065】(3)24時間オンラインで水質データを
自動測定、遠隔監視できる。
(3) Water quality data can be automatically measured and monitored remotely 24 hours online.

【0066】(4)フラットディスプレイの監視パネル
を用いることにより、計測・盤内環境の監視および保守
設定値の変更が容易にできる。
(4) By using the monitor panel of the flat display, it is possible to easily monitor the measurement / inside environment and change the maintenance set value.

【0067】(5)自動ゼロ点校正(濁度計,色度
計)、自己診断機能を備えており、保守頻度を低減でき
る。
(5) Equipped with automatic zero point calibration (turbidity meter, colorimeter) and self-diagnosis function, maintenance frequency can be reduced.

【0068】(6)電気制御関係機器を全て電気制御室
に集中配置し、水質計測関係の配管・検出部の水質計測
室と完全に分離したことで、電気制御関係機器の腐食が
防止できる。
(6) By arranging all the electrical control-related equipment in the electrical control room in a centralized manner and completely separating it from the water quality measurement room of the piping / detection section for water quality measurement, corrosion of the electrical control related equipment can be prevented.

【0069】(7)除湿器を設けることで、水質計測室
の結露を防止している。
(7) A dehumidifier is provided to prevent dew condensation in the water quality measuring chamber.

【0070】(8)盤外壁を2重板構造とし、外板内面
に断熱材を取り付け、電気制御室,水質計測室ともにフ
ァンとヒータを設置することにより、盤内温度の調節を
可能にした。
(8) The outer wall of the board has a double plate structure, a heat insulating material is attached to the inner surface of the outer board, and a fan and a heater are installed in both the electric control room and the water quality measuring room, so that the temperature inside the board can be adjusted. .

【0071】以上は水質モニタ本体に関する作用,効果
である。
The above is the operation and effect relating to the water quality monitor main body.

【0072】以下は第3実施例の特有の作用,効果であ
る。
The following are actions and effects peculiar to the third embodiment.

【0073】(9)取水塔の取水口に採水口を設置する
ことで、取水しなくても原水水質を測定できる。
(9) By installing a water intake at the intake of the intake tower, the raw water quality can be measured without water intake.

【0074】(10)採水口を固定し、水質測定するこ
とにより、同一取水口の水質の経時変化を連続的に把握
できる。
(10) By fixing the water intake port and measuring the water quality, it is possible to continuously grasp the change over time in the water quality at the same water intake port.

【0075】(11)選択取水塔の取水口に採水口を設
置し、採水口を自動変更し、水質を測定することによ
り、深度方向の水質状態が把握できる。
(11) A water intake is installed at the intake of the selective intake tower, the water intake is automatically changed, and the water quality is measured, whereby the water quality in the depth direction can be grasped.

【0076】(12)(10),(11)より、最良の
取水口が選択できる。取水口選択に際して、各水質項目
が果す役割を次に示す。
(12) The best water intake can be selected from (10) and (11). The role of each water quality item in selecting the intake is shown below.

【0077】(12a)各取水口の水温の連続測定によ
り、ダム湖取水口付近の温度成層状況の把握が可能とな
り、取水口選択の管理に役立つ。
(12a) By continuously measuring the water temperature at each intake, it becomes possible to grasp the temperature stratification condition near the dam lake intake, which is useful for managing the intake selection.

【0078】(12b)各取水口のDOの連続測定によ
り、夏の成層期における底層の嫌気状態の把握が可能と
なり、底泥からの鉄、マンガンなどの溶出の推定が可能
となる。水質試験結果を待たずに、鉄,マンガンなどの
少ない取水口を選択できる。
(12b) By continuously measuring the DO at each intake, it is possible to grasp the anaerobic state of the bottom layer during the summer stratification period, and to estimate the elution of iron, manganese, etc. from the bottom mud. You can select an intake with less iron, manganese, etc. without waiting for the results of the water quality test.

【0079】(12c)導電率の連続測定により、底泥
の溶出、水の循環の状況が推定できる。
(12c) The state of elution of bottom mud and circulation of water can be estimated by continuous measurement of conductivity.

【0080】(12d)pHの連続測定により、pHの
垂直分布状況の把握が可能となり、浄水処理上支承を来
さないpH域の取水口を選択できる。従って浄水工程に
おいてアルカリ剤の削減が可能となる。(循環期には、
成層期に下部に集積していた栄養塩類が巻き上げられ、
植物プランクトンが増加し、日中と夜間のpHの差が著
しくなる。) (12e)濁度の連続測定により、濁質の少ない取水口
の選択が可能となり、浄水処理の濁質負荷の低減が可能
となる。
(12d) It is possible to grasp the vertical distribution of pH by continuous measurement of pH, and it is possible to select a water intake in the pH range that does not interfere with the purification process. Therefore, the alkaline agent can be reduced in the water purification process. (During the circulation period,
The nutrient salts accumulated at the bottom in the stratification period are rolled up,
Phytoplankton increases and the pH difference between daytime and nighttime becomes significant. (12e) The continuous measurement of turbidity makes it possible to select an intake with less turbidity and reduce the turbidity load of water purification treatment.

【0081】(12f)色度の連続測定により、既存の
浄水処理で除去されにくい色度成分の少ない取水口の選
択が可能となる。
(12f) By continuous measurement of chromaticity, it becomes possible to select an intake port with less chromaticity component which is difficult to be removed by existing water purification treatment.

【0082】(12g)UVの連続測定により、有機物
の連続推定が可能となり、有機物の少ない取水口の選択
が可能となる。
(12 g) Continuous measurement of UV makes it possible to continuously estimate organic matter, and it is possible to select a water intake port with a small amount of organic matter.

【0083】要約すると、 (A)選択取水設備において、各の取水口上流部に水源
水質モニタの採取水口を設置すること。
In summary, (A) In the selective intake facility, install a sampling water inlet of the water source water quality monitor in the upstream portion of each intake.

【0084】(B)取水採水モニタの運用法として、採
水口を固定して、同一採水口の水質変化を連続的に把握
する方式と、採水口を定期的に自動変更して深度方向の
水質状態を把握する方式であること。
(B) As a method of operating the intake water sampling monitor, a method of fixing the sampling port and continuously grasping a change in water quality of the same sampling port, and a method of automatically changing the sampling port automatically in the depth direction It should be a method to grasp the water quality condition.

【0085】(C)水源水質モニタとして、排水水質モ
ニタ局を改良した仕様のものを用いること(水源水質モ
ニタは配水水質モニタ局を一部改良したもので、パッケ
ージングは配水水質モニタと同じである。従って、上記
(1)〜(12)の作用と効果をそのまま受け継いだ形
としている)。
(C) As the water source water quality monitor, use the one having an improved specification of the drainage water quality monitor station (the water source water quality monitor is a partial improvement of the distribution water quality monitor station, and the packaging is the same as the distribution water quality monitor). Therefore, the operation and effects of the above (1) to (12) are directly inherited.

【0086】[0086]

【発明の効果】本発明は、上述の如くであって、取水水
質管理装置では、水質モニタを用いて取水地点の選択を
行うとともに、水源水質の監視を行い、設定上限値を越
える場合、流水流路を切り換え排水するものである。ま
た、本発明は選択取水設備において、各々の取水口上流
部に採水口を設置し深度方向の水質状態を把握するもの
である。
The present invention is as described above, and in the intake water quality control device, the intake point is selected using the water quality monitor, and the water source water quality is monitored. The flow path is switched and drained. In addition, the present invention provides a water intake in the depth direction by installing a water intake upstream of each intake in the selective intake facility.

【0087】従って、本発明によれば、試験結果を早く
得ることができ水質基準の達成が容易にして良好な管理
が可能な取水水質管理装置を提供することができる。
Therefore, according to the present invention, it is possible to provide an intake water quality control device capable of obtaining test results quickly, easily achieving the water quality standard, and capable of good control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による取水水質管理装置の
ブロック図。
FIG. 1 is a block diagram of an intake water quality control device according to a first embodiment of the present invention.

【図2】本発明の第2実施例による取水水質管理装置の
ブロック図。
FIG. 2 is a block diagram of an intake water quality control device according to a second embodiment of the present invention.

【図3】本発明の第3実施例による取水水質管理装置の
ブロック図。
FIG. 3 is a block diagram of an intake water quality control device according to a third embodiment of the present invention.

【図4】本発明の実施例による水質モニタの要部の構成
ブロック図。
FIG. 4 is a configuration block diagram of a main part of a water quality monitor according to an embodiment of the present invention.

【図5】本発明の実施例による水質モニタの要部の構成
図。
FIG. 5 is a configuration diagram of a main part of a water quality monitor according to an embodiment of the present invention.

【図6】本発明の実施例による水質モニタの制御に用い
る制御システムのブロック図。
FIG. 6 is a block diagram of a control system used for controlling the water quality monitor according to the embodiment of the present invention.

【図7】浄水、配水のUV値とTHM(トリハロメタ
ン)の関係を示す特性図。
FIG. 7 is a characteristic diagram showing a relationship between UV values of purified water and distribution water and THM (trihalomethane).

【符号の説明】[Explanation of symbols]

1…圧力調整弁 2a…第1の三方切換電磁弁 2b…第2の三方切換電磁弁 3a…第1の流量調整弁 3b…第2の流量調整弁 4a,4b…ろ過器 7…電磁弁 8…薬液タンク 9…薬液注入ポンプ 10…濁色度計 11…筒体 30…計測処理部 31…低圧水銀灯 32…光分離スプリッタ 33a,33b…光電変換素子 34…増幅器 35…演算器 A…測定系流路 B…水流洗浄系流路 C…高圧フラッシュ洗浄系流路 40,40a,40b…流路 50…取水施設 50a…第1の取水施設 50b…第2の取水施設 60…水質モニタ 60a…第1の水質モニタ 62a〜62…採水口 70…管理塔 71…制御装置 72…演算処理装置 73…取水塔 74a〜74c…取水口 80…流路切換器 80a…第1の流路切換器 80b…第2の流路切換器 110…水源 DESCRIPTION OF SYMBOLS 1 ... Pressure adjusting valve 2a ... 1st three-way switching solenoid valve 2b ... 2nd 3 way switching solenoid valve 3a ... 1st flow rate adjusting valve 3b ... 2nd flow rate adjusting valve 4a, 4b ... Filter 7 ... Solenoid valve 8 ... chemical solution tank 9 ... chemical solution injection pump 10 ... turbidity meter 11 ... cylindrical body 30 ... measurement processing section 31 ... low-pressure mercury lamp 32 ... optical separation splitter 33a, 33b ... photoelectric conversion element 34 ... amplifier 35 ... arithmetic unit A ... measurement system Flow path B ... Water flow cleaning system flow path C ... High pressure flush cleaning system flow path 40, 40a, 40b ... Flow path 50 ... Water intake facility 50a ... First water intake facility 50b ... Second water intake facility 60 ... Water quality monitor 60a ... 1 water quality monitor 62a-62 ... Water intake 70 ... Management tower 71 ... Control device 72 ... Arithmetic processing device 73 ... Water intake tower 74a-74c ... Water intake 80 ... Flow path switch 80a ... 1st flow path switch 80b ... Second flow path switching Bowl 110 ... water source

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 水源の水を取水する取水施設と、該取水
施設に採取された水源水を検水として水質を計測する水
質モニタと、前記取水施設の下流側流路に配設された流
路切換器と、前記水質モニタ検水データを基に演算処理
し演算処理結果を基に前記流路切換器を制御して前記取
水施設に採取された水源水の流路を切り換えさせる管理
施設からなり、 前記水質をモニタを、検水を通流させるための測定セル
部と、前記測定セル部内の検水に光を照射してサンプル
光信号を得るとともに検水照射光以外の光によりリファ
レンス光信号を得る光学系と、前記光学系によって得ら
れたサンプル光信号とリファレンス光信号をもとに演算
処理して前記検水中の含有物の推定値を算出する計測処
理部、によって構成したことを特徴とする、水質監視装
置。
1. A water intake facility for taking in water from a water source, a water quality monitor for measuring the water quality by using the water source water collected in the water intake facility as a water sample, and a flow disposed in a downstream side flow path of the water intake facility. From a path switching device and a management facility that performs a calculation process based on the water quality monitor water detection data and controls the flow path switching device based on the calculation processing result to switch the flow path of the water source water collected in the water intake facility. The monitor of the water quality, the measurement cell unit for flowing the test water, and the reference light by the light other than the test water irradiation light while irradiating the test water in the measurement cell unit with light to obtain a sample optical signal. An optical system that obtains a signal, and a measurement processing unit that calculates the estimated value of the inclusions in the test water by performing an arithmetic process based on the sample optical signal and the reference optical signal obtained by the optical system. Characteristic water quality monitoring device
【請求項2】 水源の上流側に設置され水源水を採取す
る第1の取水施設と、該第1の取水施設に採取された水
源水を検水として計測する第1の水質モニタと、前記第
1の取水施設の下流側流路に配設された第1の流路切換
器と、前記水源の下流側に設置され水源水を採取する第
2の取水施設と、該第2の取水施設に採取された水源水
を検水として計測する第2の水質モニタと、前記第2の
取水施設の下流側流路に配設された第2の流路切換器
と、前記第1の水質モニタの検水データと第2の水質モ
ニタの検水データを基に演算処理し演算結果を基に前記
第1の流路切換器と第2の流路切換器とを制御する流路
切換制御手段によって構成したことを特徴とする、取水
管理装置。
2. A first water intake facility installed upstream of the water source for collecting the water source water, and a first water quality monitor for measuring the water source water collected by the first water intake facility as a test water, A first flow path switching device arranged in a downstream side flow path of the first water intake facility, a second water intake facility installed downstream of the water source for collecting water source water, and the second water intake facility Second water quality monitor for measuring the water source water sampled in the water as a sample water, a second flow path switching device arranged in a downstream side flow path of the second water intake facility, and the first water quality monitor Flow path switching control means for performing arithmetic processing based on the measured water data of the second water quality monitor and the water measured data of the second water quality monitor and controlling the first flow path switcher and the second flow path switcher based on the calculation result. A water intake management device characterized by being configured by.
【請求項3】 請求項2の取水水質管理装置において、
前記流路切換制御手段によって取水地点の選択を行う手
段を有することを特徴とする取水水質管理装置。
3. The intake water quality control device according to claim 2,
An intake water quality control device having means for selecting an intake point by the flow path switching control means.
【請求項4】 請求項2の取水水質管理装置において、
前記第1の水質モニタの検水データ又は第2の水質モニ
タの検水データが設定値を越える場合、前記流路切換手
段により流路切り換え排水する手段を有することを特徴
とする取水水質管理装置。
4. The intake water quality control device according to claim 2,
An intake water quality control device having means for switching and draining the flow path by the flow path switching means when the test water data of the first water quality monitor or the water test data of the second water quality monitor exceeds a set value. .
【請求項5】 請求項2,3又は5の取水水質管理装置
において、 前記水質をモニタを、検水を通流させるための測定セル
部と、前記測定セル部内の検水に光を照射してサンプル
光信号を得るとともに検水照射光以外の光によりリファ
レンス光信号を得る光学系と、前記光学系によって得ら
れたサンプル光信号とリファレンス光信号をもとに演算
処理して前記検水中の含有物の推定値を算出する計測処
理部、によって構成したことを特徴とする、 取水水質管理装置。
5. The water intake water quality control device according to claim 2, 3 or 5, wherein the monitor monitors the water quality and irradiates the measuring cell section for allowing the sample water to flow therethrough and the measuring water in the measuring cell section with light. An optical system that obtains a sample optical signal and obtains a reference optical signal by light other than the test irradiation light, and a sample optical signal and a reference optical signal obtained by the optical system are subjected to arithmetic processing to obtain a sample optical signal. An intake water quality control device comprising a measurement processing unit that calculates an estimated value of inclusions.
【請求項6】 水源水を採取する取水施設と、該取水施
設に採取された水を検出とする水質モニタからなり、前
記取水施設の取水口上流部に前記取水施設に取水された
水源水の深度を異にして複数の水質モニタ用採水口を設
け、前記複数の採水口のうちいずれか一つの同一の採水
口を流通する水源水を検水として水質を計測することを
特徴とする取水水質管理装置。
6. An intake facility for collecting water source water, and a water quality monitor for detecting water collected in the intake facility, wherein the source water taken by the intake facility is located upstream of the intake port of the intake facility. Intake water quality characterized in that a plurality of water quality monitor water intakes are provided at different depths, and the water quality is measured by using the water source water flowing through any one of the plurality of water intakes as the water intake. Management device.
【請求項7】 水源水を採取する取水施設と、該取水施
設に採取された水を検出とする水質モニタからなり、前
記取水施設の取水口上流部に前記取水施設に取水された
水源水の深度を異にして複数の水質モニタ用採水口を設
け、前記複数の採水口を定期的に選択して深度方向の水
質状態を計測することを特徴とする取水水質管理装置。
7. A water intake facility for collecting water source water, and a water quality monitor for detecting water collected in the water intake facility. The water source water taken up by the water intake facility upstream of the water intake facility of the water intake facility. An intake water quality control device, characterized in that a plurality of water quality monitor water intake ports are provided at different depths and the water quality condition in the depth direction is measured by periodically selecting the plurality of water quality intake ports.
【請求項8】 請求項3,4,6又は7の取水水質管理
装置において、 前記水質をモニタを、検水を通流させるための測定セル
部と、前記測定セル部内の検水に光を照射してサンプル
光信号を得るとともに検水照射光以外の光によりリファ
レンス光信号を得る光学系と、前記光学系によって得ら
れたサンプル光信号とリファレンス光信号をもとに演算
処理して前記検水中の含有物の推定値を算出する計測処
理部、によって構成したことを特徴とする、 取水水質管理装置。
8. The intake water quality control device according to claim 3, 4, 6 or 7, wherein a light is supplied to the measurement cell part for allowing the monitor of the water quality to flow the sample water and the sample water in the measurement cell part. An optical system that obtains a sample optical signal by irradiation and a reference optical signal that is obtained by light other than the sample irradiation light; and an optical system that performs arithmetic processing based on the sample optical signal and the reference optical signal obtained by the optical system to perform the detection An intake water quality control device comprising a measurement processing unit that calculates an estimated value of inclusions in water.
【請求項9】 請求項1,5又は8の取水水質管理装置
において、前記測定セル部が水平方向に対して所定角度
だけ傾斜して配設された筒体からなり、 前記光学系が、前記筒体の軸線上に配置された発光部
と、この発光部と前記筒体との間に配置された光分離ス
プリッタからなり、 前記計測処理部が、前記光分離スプリッタにより分離さ
れた光を受光して光電変換信号を出力する第1の光電変
換素子と、前記光分離スプリッタを通して前記筒体内の
検水を通して照射された光を受光して光電変換信号を出
力する第2の光電変換素子と、これらの第1と第2の光
電変換素子の光電変換信号をもとに演算処理する演算
器、によって構成したことを特徴とする、取水水質管理
装置。
9. The intake water quality control device according to claim 1, 5 or 8, wherein the measurement cell portion is formed of a cylindrical body that is arranged at a predetermined angle with respect to the horizontal direction, and the optical system is the The light emitting unit is arranged on the axis of the cylinder, and the light separating splitter is arranged between the light emitting unit and the cylinder, and the measurement processing unit receives the light separated by the light separating splitter. A first photoelectric conversion element that outputs a photoelectric conversion signal, and a second photoelectric conversion element that receives the light emitted through the sample water in the cylinder through the light separation splitter and outputs a photoelectric conversion signal, An intake water quality control device comprising an arithmetic unit that performs arithmetic processing based on the photoelectric conversion signals of the first and second photoelectric conversion elements.
【請求項10】 請求項1,3,5又は8の取水水質管
理装置において、前記水質モニタが、さらに、 前記測定セル部内に薬液洗浄剤を注入して所定時間滞留
させ、前記測定セル内の汚れ成分を剥離させる薬液洗浄
剤系路と、 前記測定セル内の剥離された汚れ成分を洗浄流出させる
高圧フラッシュ流経路と、 該高圧フラッシュ流経路からの乱流水によって洗浄され
た前記測定セル内に検査すべき検水を注入させる測定系
流路を有することを特徴とする、取水水質管理装置。
10. The intake water quality control device according to claim 1, 3, 5 or 8, wherein the water quality monitor further injects a chemical cleaning agent into the measurement cell section and allows the cleaning agent to stay therein for a predetermined time, and A chemical cleaning agent system path for separating the dirt component, a high-pressure flush flow path for cleaning and discharging the separated dirt component in the measurement cell, and a measurement cell washed with turbulent water from the high-pressure flash flow path. An intake water quality control device having a measurement system flow path for injecting test water to be inspected.
【請求項11】 請求項10の取水水質管理装置におい
て、前記薬液洗浄経路を、塩酸液を貯蔵する薬液タンク
と、該薬液タンクの塩酸液を前記測定セルに注入する薬
液注入ポンプによって構成し、 前記測定系流路を検水を前記測定セル部に通流させる電
磁弁と、該電磁弁と前記測定セル部間に配設された流量
調整弁によって構成したことを特徴とする、 取水水質管理装置。
11. The water intake quality control device according to claim 10, wherein the chemical cleaning path is constituted by a chemical solution tank for storing a hydrochloric acid solution and a chemical solution injection pump for injecting the hydrochloric acid solution in the chemical solution tank into the measurement cell. A water intake water quality control, characterized in that the measurement system flow path is configured by an electromagnetic valve for allowing a test water to flow through the measurement cell section, and a flow rate adjustment valve arranged between the electromagnetic valve and the measurement cell section. apparatus.
JP22938894A 1994-09-26 1994-09-26 Intake water quality control device Expired - Lifetime JP3475513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22938894A JP3475513B2 (en) 1994-09-26 1994-09-26 Intake water quality control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22938894A JP3475513B2 (en) 1994-09-26 1994-09-26 Intake water quality control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003037707A Division JP2003305454A (en) 2003-02-17 2003-02-17 Intake water quality controller

Publications (2)

Publication Number Publication Date
JPH0894608A true JPH0894608A (en) 1996-04-12
JP3475513B2 JP3475513B2 (en) 2003-12-08

Family

ID=16891418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22938894A Expired - Lifetime JP3475513B2 (en) 1994-09-26 1994-09-26 Intake water quality control device

Country Status (1)

Country Link
JP (1) JP3475513B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356635A (en) * 1999-06-15 2000-12-26 Meidensha Corp Concentration measuring method of chlorophyll a and device therefor
JP2004271297A (en) * 2003-03-07 2004-09-30 Seishin Engineering Kk Test water supplying device
US9200635B2 (en) 2012-04-05 2015-12-01 Gast Manufacturing, Inc. A Unit Of Idex Corporation Impeller and regenerative blower
JP2016215086A (en) * 2015-05-14 2016-12-22 株式会社東芝 Water supply apparatus and water supply control method
KR20190032041A (en) * 2017-09-19 2019-03-27 한국해양과학기술원 Seawater supply device that improves reliability of seawater inflow from occurrence of red tide and high temperature
JP2020513204A (en) * 2017-02-03 2020-05-07 イクソム オペレーションズ ピーティーワイ エルティーディー System and method for selective collection of stored water
KR102223505B1 (en) * 2020-04-27 2021-03-05 조태영 Water tank having system for measuring turbidity
CN114019128A (en) * 2021-11-09 2022-02-08 山东省地质矿产勘查开发局八〇一水文地质工程地质大队 Underground water quality layered monitoring and sampling device
CN114878766A (en) * 2022-05-05 2022-08-09 上海铃恒环境科技有限公司 Water quality detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102641798B1 (en) * 2023-06-20 2024-02-28 (주) 디케이금속 Turbidimeter system for valve room, smart valve room equipped with it, and control method of the smart valve room

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356635A (en) * 1999-06-15 2000-12-26 Meidensha Corp Concentration measuring method of chlorophyll a and device therefor
JP2004271297A (en) * 2003-03-07 2004-09-30 Seishin Engineering Kk Test water supplying device
US9200635B2 (en) 2012-04-05 2015-12-01 Gast Manufacturing, Inc. A Unit Of Idex Corporation Impeller and regenerative blower
JP2016215086A (en) * 2015-05-14 2016-12-22 株式会社東芝 Water supply apparatus and water supply control method
JP2020513204A (en) * 2017-02-03 2020-05-07 イクソム オペレーションズ ピーティーワイ エルティーディー System and method for selective collection of stored water
KR20190032041A (en) * 2017-09-19 2019-03-27 한국해양과학기술원 Seawater supply device that improves reliability of seawater inflow from occurrence of red tide and high temperature
KR102223505B1 (en) * 2020-04-27 2021-03-05 조태영 Water tank having system for measuring turbidity
CN114019128A (en) * 2021-11-09 2022-02-08 山东省地质矿产勘查开发局八〇一水文地质工程地质大队 Underground water quality layered monitoring and sampling device
CN114878766A (en) * 2022-05-05 2022-08-09 上海铃恒环境科技有限公司 Water quality detector
CN114878766B (en) * 2022-05-05 2023-02-03 上海铃恒环境科技有限公司 Water quality detector

Also Published As

Publication number Publication date
JP3475513B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
KR102172981B1 (en) Smart sewage treatment Operation System
JP2003305454A (en) Intake water quality controller
CN107190842B (en) A kind of control method for shunting of accurately removing contamination for rainwater
KR20100021389A (en) Automatic cleaning device of automatic measure for the quality of water for monitoring water pollution
US20060108270A1 (en) Sewage treatment apparatus and method thereof
JP2008032691A (en) Water quality monitoring system and method
JPH0894608A (en) Intake water quality control device
CN105548039A (en) On-line detection device and detection method for activated sludge denitrification rate
KR102305950B1 (en) Aeration water quality measuring device for sewage and wastewater
CN105865845B (en) A kind of water process on-line period analysis system
KR101158052B1 (en) Processing system for reducing runoff pollution loads and processing method thereof
JP3920504B2 (en) UV sterilizer
KR200398164Y1 (en) Treatment apparatus of incipient rainwater
AU2008100542A4 (en) Household waste water screening & diversion method & apparatus capable of separating mostly polluted water from less polluted water using electrical conductivity as the screening method.
KR102361908B1 (en) Bench with water measuring panel
CN207436179U (en) A kind of shunting well with double flap gates and the drainage system including the shunting well
JP4744289B2 (en) Water quality measuring device
JPH07209180A (en) Water quality monitor apparatus
CN213455585U (en) Water quality on-line automatic monitoring device
KR20040021732A (en) Apparatus for storing and using as well as cleaning rainwater
JP4637560B2 (en) Sewer water quality monitoring device
US20060108294A1 (en) Sewer system
KR100299328B1 (en) Method and apparatus for measuring organic pollution of overflow water
JP3417113B2 (en) Filter pond washing control device and control method using chromaticity meter
JP3875545B2 (en) Sewerage equipment operation device and its operation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

EXPY Cancellation because of completion of term