JP2003305454A - Intake water quality controller - Google Patents

Intake water quality controller

Info

Publication number
JP2003305454A
JP2003305454A JP2003037707A JP2003037707A JP2003305454A JP 2003305454 A JP2003305454 A JP 2003305454A JP 2003037707 A JP2003037707 A JP 2003037707A JP 2003037707 A JP2003037707 A JP 2003037707A JP 2003305454 A JP2003305454 A JP 2003305454A
Authority
JP
Japan
Prior art keywords
water
water quality
intake
flow path
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037707A
Other languages
Japanese (ja)
Inventor
Tetsufumi Watanabe
哲文 渡辺
Keiichi Tsukitari
圭一 月足
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2003037707A priority Critical patent/JP2003305454A/en
Publication of JP2003305454A publication Critical patent/JP2003305454A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake water quality controller which can obtain an experimental result immediately, easily achieves the water quality standard and enables satisfactory control. <P>SOLUTION: Intake plants are disposed respectively on the upstream and the downstream of a water source, test water taken out at each intake plant is sent to each water quality monitor, water quality is measured there, the water quality is arithmetically processed by an operation processor and the changeover of a flow passage of the intake water by the use of a flow passage changer or the selection of water intake point is performed in accordance with the result of the arithmetic operation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水質監視装置に係り、
特に河川水,湖沼水等の取水水質管理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality monitoring device,
Particularly, it relates to a water quality control device for water intake such as river water and lake water.

【0002】[0002]

【従来の技術】一般に、水道水源として河川水,湖沼
水,地下水が用いられる。これら、水道水源から取水施
設で取水された水道原水は貯留池を介して浄水施設へ送
られるか、または直接浄水場へ送られる。
2. Description of the Related Art Generally, river water, lake water, and ground water are used as a tap water source. Raw water from the tap water source, which is taken by the water intake facility, is sent to the water purification facility via the storage pond or directly to the water purification plant.

【0003】河川を水源とする場合、湖沼やダム湖と比
較して水質変動が大きく、有害物質が混入する可能性が
高い。河川の水質は工場排水、都市下水、家庭排水、畜
産排水や農薬、肥料等の人為的汚濁に左右されるほか、
気象条件や地質に由来して変化する。
When a river is used as a water source, the water quality changes greatly compared to lakes and dam lakes, and there is a high possibility that harmful substances will be mixed. The water quality of rivers is influenced by man-made pollution such as factory effluent, urban sewage, domestic effluent, livestock effluent, agricultural chemicals and fertilizers.
It changes due to weather conditions and geology.

【0004】現在、水源水質の管理は河川等から取水
後、貯留池がある場合は貯留池の水質(pH、導電率、
水温、濁度等の水質項目)を自動監視するか、浄水場の
職員が採水して手分析を行っている。直接浄水場へ送ら
れる場合は着水井の水質自動監視か、定期的に職員が採
水し手分析を行っている。しかしながら現在の水源水質
監視では、近年問題となっている発ガン性物質であるト
リハロメタン(水道水水質基準規制対象物)の基になる
フミン質、フルボ酸等の色度成分である溶存性有機物の
監視を行っていない。そのため、多くの浄水場で行って
いる。水中のアンモニアや除マンガンのために前塩素注
入操作により塩素と溶存性の有機物が反応しトリハロメ
タンを生成する。さらに染色排水等の化学合成された色
水が混入した場合、通常の浄水処理操作では処理が困難
であるため、最悪貯水池等の水道原水を廃棄しなければ
ならない。
At present, the water quality of the water source is controlled after the water is taken from a river or the like, and if there is a storage pond, the water quality (pH, conductivity,
Water quality, such as water temperature and turbidity, etc.) is automatically monitored, or water treatment staff collect water for manual analysis. When the water is directly sent to the water treatment plant, the water quality of the landing well is automatically monitored, or the staff regularly collects water and conducts manual analysis. However, in the current monitoring of water source water quality, humic substances, which are the basis of trihalomethane (subject to regulation of tap water quality standard), which is a carcinogen that has become a problem in recent years, and dissolved organic substances that are chromatic components such as fulvic acid Not monitoring. Therefore, many water purification plants do it. The chlorine and the dissolved organic matter react with each other by the pre-chlorine injection operation to remove ammonia and manganese in the water and generate trihalomethane. Further, when chemically synthesized color water such as dyeing wastewater is mixed, it is difficult to treat it by a normal water purification treatment operation, and therefore the raw water of a tap water such as a reservoir must be discarded at worst.

【0005】また河川では、前記したように水質変動が
大きいために、水道原水として不適な水質である場合で
も取水計画に従って行い浄水処理施設に多大な負担をか
ける。従って、水道水源における取水は河川等の水深方
向で良好な水質を選択して取水を行うだけでなく、良好
な水質の取水地点の選択を行う必要がある。
Further, in the river, since the water quality varies greatly as described above, even if the water quality is unsuitable as raw water for the tap water, the water treatment plan is performed according to the water intake plan and a great burden is imposed on the water purification facility. Therefore, it is necessary not only to select water with good water quality in the depth direction of rivers, but also to select water intake points with good water quality.

【0006】また、ダム湖では、季節的な温度成層現象
が生じ、深度によって水質に著しく変化することがあ
る。ダム上流部には崩壊地が多く、かつ粒子が微細であ
る場合、洪水時に流入した濁水が、水の密度に応じて層
を形成する。取水口のある層に濁水層が発生すると、濁
水を連続的に処理しなければならなくなり、大変不利を
まねく。そこで取水口の高さを何段が複数にし、濁水層
をはずして取水する工夫がなされている。選択取水は、
導水された水に対する水質監視結果や水質試験結果をも
とに行われる。
In the dam lake, seasonal thermal stratification phenomenon occurs, and the water quality may change remarkably depending on the depth. If there are many landslides and the particles are fine in the upstream part of the dam, the turbid water that flows in during the flood will form a layer according to the density of the water. If a turbid water layer occurs in a layer with an intake, the turbid water must be treated continuously, which is very disadvantageous. Therefore, the height of the water intake is set to multiple levels and the turbid water layer is removed to take in water. Selective water intake
It is conducted based on the results of water quality monitoring and water quality test for the introduced water.

【0007】特許文献1には、取水塔に水深方向に複数
の水質検出センサを設け、各センサから検出されたデー
タのうち、予め設定された最適データに最も近いセンサ
のゲートより取水することが開示されている。
In Patent Document 1, a plurality of water quality detection sensors are provided in a water depth direction in a water intake tower, and water is taken from a gate of a sensor closest to preset optimum data among data detected by the sensors. It is disclosed.

【0008】特許文献2には、COD.BOD.TOC
等の有機物指標を測定するために紫外光や近赤外光によ
る試料中の懸濁物質の減衰係数から、その懸濁物質の濃
度、有機物指標を測定することが記載されている。
In Patent Document 2, COD. BOD. TOC
It is described that the concentration of the suspended substance and the organic substance index are measured from the attenuation coefficient of the suspended substance in the sample by ultraviolet light or near infrared light in order to measure the organic substance index such as.

【0009】特許文献3には、水質特性を光学的に測定
する水質計器の測定管内壁を所定のストロークで往復運
動させて汚れをかき落とすことが記載されている。
Patent Document 3 describes that the inner wall of the measuring pipe of the water quality measuring instrument for optically measuring the water quality characteristic is reciprocated with a predetermined stroke to scrape off the dirt.

【0010】[0010]

【特許文献】1.実開昭58−90219号公報 2.特公昭60−38654号公報 3.実開昭57−135948号公報[Patent Document] 1. Japanese Utility Model Publication No. 58-90219 2. Japanese Examined Patent Publication No. 60-38654 3. Japanese Utility Model Publication No. 57-135948

【0011】[0011]

【発明が解決しようとする課題】選択取水は、操作員の
目視、水質計器による水質監視結果や水質試験結果をも
とに行われる。水質計器の採水点(設置場所)は取水口
の上流が望ましいが、多くの場合は沈砂池、着水井とい
った施設の最上流が用いられる。すでに取水した水の監
視結果をもとに選択取水を行う場合、ダム湖の温度成層
の状況をうまく把握することができず、最良の取水口を
選択することは難しい。また、水質計器を用いた連続測
定が不可能な鉄、マンガンなどといった底泥からの溶出
に原因するものは、水質試験結果をもとに取水口の選択
を行わねばならず、試験結果がでるまでの遅れ時間があ
る。
The selective water intake is performed based on the operator's visual inspection, the result of water quality monitoring by a water quality meter, and the result of water quality test. The water sampling point (installation site) of the water quality meter is preferably upstream of the intake, but in most cases, the uppermost stream of the facility such as a sand basin or landing well is used. When selective intake is performed based on the monitoring results of water that has already been taken, it is difficult to grasp the condition of thermal stratification in the dam lake, and it is difficult to select the best intake. In addition, iron, manganese, etc. that cause elution from bottom mud, which cannot be continuously measured using a water quality meter, must select the intake port based on the water quality test results, and the test results can be obtained. There is a delay until.

【0012】さらに、従来の取水管理方式では次のよう
な問題点があった。 (1)水源水質の紫外線吸収(UV)、色度を測定して
いないために、水源の有機物濃度をリアルタイムに把握
できない。従って、浄水処理における前塩素注入操作に
より塩素と有機物が反応し発ガン性物質であるトリハロ
メタン生成が増加し、水質基準の達成が困難となる。 (2)河川等に染色排水などの化学合成着色水が混入し
た場合、着色水を取水し貯留池や着水井に流れ込み浄水
処理施設に負担を与えたり、最悪貯留池の水を廃棄しな
ければならない。 (3)河川等からの取水操作は取水量だけで管理し、取
水地点の水質を考慮した取水地点選択を行っていないの
で、良好な取水点を選択できず、信頼性に欠けていた。
Further, the conventional water intake management system has the following problems. (1) Since the ultraviolet absorption (UV) and chromaticity of the water source water quality are not measured, the concentration of organic matter in the water source cannot be grasped in real time. Therefore, chlorine and organic substances react with each other by the pre-chlorine injection operation in water purification treatment, and the production of trihalomethane, which is a carcinogen, increases, making it difficult to achieve the water quality standard. (2) When chemically synthesized coloring water such as dyeing wastewater is mixed in rivers, the coloring water is taken and flows into a storage pond or landing well to impose a burden on the water treatment facility, or at worst the water in the storage pond should be discarded. I won't. (3) Water intake operations from rivers, etc. are managed only by the amount of water intake, and no water intake point is selected considering the water quality at the water intake point, so a good water intake point could not be selected, and reliability was lacking.

【0013】本発明は上述の問題点に鑑みてなされたも
ので、その目的は、試験結果を速く得ることができ水質
基準の達成が容易にして良好な管理が可能な取水水質管
理装置を提供することを特徴とする。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide an intake water quality control device capable of obtaining test results quickly, facilitating achievement of water quality standards, and performing good control. It is characterized by doing.

【0014】[0014]

【課題を解決するための手段】本発明の第1は、水源の
上流側に設置され水源水を採取する第1の取水施設と、
該第1の取水施設に採取された水源水を検水として計測
する第1の水質モニタと、前記第1の取水施設の下流側
流路に配設された第1の流路切換器と、前記水源の下流
側に設置され水源水を採取する第2の取水施設と、該第
2の取水施設に採取された水源水を検水として計測する
第2の水質モニタと、前記第2の取水施設の下流側流路
に配設された第2の流路切換器と、前記第1の水質モニ
タの検水データと第2の水質モニタの検水データを基に
演算処理し演算結果を基に前記第1の流路切換器と第2
の流路切換器とを制御する流路切換制御手段によって構
成したことを特徴としたものである。
The first aspect of the present invention is to install a first water intake facility installed upstream of a water source for collecting water source water.
A first water quality monitor that measures the water source water collected in the first water intake facility as a sample water; a first flow path switcher disposed in a downstream side flow path of the first water intake facility; A second water intake facility installed downstream of the water source for collecting the water source water, a second water quality monitor for measuring the water source water collected by the second water intake facility as a test water, and the second water intake A second flow path switching device arranged in the downstream side flow path of the facility, an arithmetic processing based on the water detection data of the first water quality monitor and the water detection data of the second water quality monitor, and based on the operation result. To the first flow path switching device and the second
And a flow path switching control means for controlling the flow path switching device.

【0015】本発明の第2は、前記取水水質管理装置
は、前記流路切換制御手段によって行う手段を有するこ
とを特徴としたものである。
A second aspect of the present invention is characterized in that the water intake quality control device has means for performing the flow path switching control means.

【0016】本発明の第3は、前記第1の水質モニタの
検水データ又は第2の水質モニタの検水データが設定値
を越える場合、前記流路切換手段により流路を切り換え
て排水する手段を有することを特徴としたものである。
In a third aspect of the present invention, when the water measurement data of the first water quality monitor or the water measurement data of the second water quality monitor exceeds a set value, the flow passage switching means switches the flow passages for draining. It is characterized by having means.

【0017】本発明の第4は、前記各水質をモニタは、
測定系流路を介して導入された検水の濁度,色度,紫外
線吸収を含む測定項目を測定するための濁色度計と、こ
の濁色度計に流入した検水より少なくとも紫外線吸収値
を検出する計測処理部とを有し、この計測処理部は前記
濁色度計の前記測定セル部内の検水に光を照射してサン
プル光信号を得るとともに検水照射光以外の光によりリ
ファレンス光信号を得る光学系と、前記光学系によって
得られたサンプル光信号とリファレンス光信号をもとに
演算処理する演算器を有して前記検水中の含有物の推定
値を算出するよう構成し、且つ、前記濁色度計に薬液タ
ンクより薬液を供給して洗浄するための薬液洗浄系流路
と、前記濁色度計に洗浄水を供給して洗浄するための水
流洗浄系流路とで構成したことを特徴としたものであ
る。
A fourth aspect of the present invention is that the water quality monitor is
A turbidimeter for measuring measurement items including turbidity, chromaticity, and UV absorption of the test water introduced through the measurement system flow path, and at least UV absorption from the test water flowing into the turbidity meter. And a measurement processing unit that detects a value, and the measurement processing unit irradiates the sample water in the measurement cell section of the turbidity meter with light to obtain a sample optical signal, and uses light other than the sample irradiation light. An optical system that obtains a reference light signal, and a calculator that performs calculation processing based on the sample light signal and the reference light signal obtained by the optical system, and is configured to calculate an estimated value of the inclusions in the test water. And a chemical liquid cleaning system flow path for supplying a chemical liquid from the chemical liquid tank to the turbidity meter for cleaning, and a water flow cleaning system flow path for supplying cleaning water to the turbidity color meter for cleaning. It is characterized by being composed of and.

【0018】本発明の第5は、前記各水質モニタにおい
て、前記濁色度計の測定セル部が水平方向に対して所定
角度だけ傾斜して配設された筒体からなり、前記光学系
が、前記筒体の軸線上に配置された発光部と、この発光
部と前記筒体との間に配置された光分離スプリッタから
なり、前記計測処理部が、前記光分離スプリッタにより
分離された光を受光して光電変換信号を出力する第1の
光電変換素子と、前記光分離スプリッタを通して前記筒
体内の検水を通して照射された光を受光して光電変換信
号を出力する第2の光電変換素子と、これらの第1と第
2の光電変換素子の光電変換信号をもとに演算処理する
演算器によって構成したことを特徴としたものである。
In a fifth aspect of the present invention, in each of the water quality monitors, the measuring cell portion of the turbidity meter comprises a cylindrical body which is arranged at a predetermined angle with respect to the horizontal direction, and the optical system comprises , A light emitting section arranged on the axis of the cylindrical body, and a light separating splitter arranged between the light emitting section and the cylindrical body, wherein the measurement processing section is the light separated by the light separating splitter. A first photoelectric conversion element that receives the light and outputs a photoelectric conversion signal, and a second photoelectric conversion element that receives the light emitted through the sample water in the cylinder through the light separation splitter and outputs a photoelectric conversion signal. And a computing unit for computing based on the photoelectric conversion signals of the first and second photoelectric conversion elements.

【0019】本発明の第6は、前記各水質モニタは、さ
らに、前記測定セル部内に薬液洗浄剤を注入して所定時
間滞留させ、前記測定セル内の汚れ成分を剥離させる薬
液洗浄剤系路と、前記測定セル内の剥離された汚れ成分
を洗浄流出させる高圧フラッシュ流経路と、該高圧フラ
ッシュ流経路からの乱流水によって洗浄された前記測定
セル内に検査すべき検水を注入させる測定系流路を有す
ることを特徴としたものである。
In a sixth aspect of the present invention, each of the water quality monitors further comprises a chemical cleaning agent system passage for injecting a chemical cleaning agent into the measuring cell portion and allowing it to stay for a predetermined time to remove dirt components in the measuring cell. And a high pressure flush flow path for washing out the separated dirt components in the measurement cell, and a measurement system for injecting test water to be inspected into the measurement cell washed by the turbulent water from the high pressure flush flow path. It is characterized by having a flow path.

【0020】本発明の第7は、前記薬液洗浄経路は、塩
酸液を貯蔵する薬液タンクと、該薬液タンクの塩酸液を
前記測定セルに注入する薬液注入ポンプによって構成
し、前記測定系流路は検水を前記測定セル部に通流させ
る電磁弁と、該電磁弁と前記測定セル部間に配設された
流量調整弁によって構成したことを特徴としたものであ
る。
In a seventh aspect of the present invention, the chemical cleaning route is constituted by a chemical tank for storing a hydrochloric acid solution and a chemical solution injection pump for injecting the hydrochloric acid solution in the chemical solution tank into the measurement cell, and the measurement system flow path. Is characterized by being constituted by an electromagnetic valve for allowing the test water to flow through the measurement cell section and a flow rate adjusting valve arranged between the electromagnetic valve and the measurement cell section.

【0021】本発明の第8は、前記各水質モニタの測定
項目は、濁度,色度,溶存酸素,pH,導電率,紫外線
吸光度及び水質であることを特徴としたものである。
An eighth aspect of the present invention is characterized in that the measurement items of each water quality monitor are turbidity, chromaticity, dissolved oxygen, pH, conductivity, ultraviolet absorption and water quality.

【0022】[0022]

【発明の実施の形態】図1は本発明の実施形態を示す取
水水質管理装置のブロック図を示したもので、同図にお
いて50a,50bは第1及び第2の取水施設で、それ
ぞれは水流管40a,40bを通して河川や湖沼などの
水源110から取水する。60a,60bは第1及び第
2の取水施設に設けられて、pH,水温,導電率,色
度,濁度,紫外線吸収(UV),溶存酸素(DO)を連
続測定する。
1 is a block diagram of an intake water quality control device showing an embodiment of the present invention. In FIG. 1, reference numerals 50a and 50b denote first and second intake facilities, respectively. Water is taken from a water source 110 such as a river or lake through the pipes 40a and 40b. 60a and 60b are provided in the first and second water intake facilities, and continuously measure pH, water temperature, conductivity, chromaticity, turbidity, ultraviolet absorption (UV), and dissolved oxygen (DO).

【0023】80a,80bは第1及び第2の流路切換
器、90a,90bは第1及び第2の貯水池、100は
浄水処理施設であって管理施設70を備えており、管理
施設70は制御装置と演算処理装置を備えている。
Reference numerals 80a and 80b are first and second flow path switching devices, 90a and 90b are first and second reservoirs, and 100 is a water purification treatment facility having a management facility 70, and the management facility 70 is It is provided with a control device and an arithmetic processing unit.

【0024】第1の取水施設50aは、河川などの水源
110の上流側に配設され、第1の流路切換器80a、
第1の貯水池90aを通して浄水処理施設100に取水
を供給する。第2の取水施設50bは、水源110の下
流側に配設されて第2の流路切換器80b,第2の貯水
池90bを通して浄水処理施設100に取水を供給す
る。
The first water intake facility 50a is disposed upstream of the water source 110 such as a river, and the first flow path switch 80a,
Water is supplied to the water purification treatment facility 100 through the first reservoir 90a. The second water intake facility 50b is disposed on the downstream side of the water source 110 and supplies the water intake to the water purification facility 100 through the second flow path switching unit 80b and the second reservoir 90b.

【0025】図2は水質モニタの一例を示すもので、同
図において1は圧力調整弁、2aは圧力調整弁1にその
下流段において接続された第1の三方切換電磁弁、3a
は第1の三方切換電磁弁2aに連設された流量調整弁で
あって、これらの圧力調整弁1,第1の三方切換電磁弁
2aおよび第1の流量調整弁3aによって測定系流路A
が形成される。
FIG. 2 shows an example of a water quality monitor. In FIG. 2, 1 is a pressure regulating valve, 2a is a first three-way switching solenoid valve connected to the pressure regulating valve 1 at its downstream stage, 3a.
Is a flow rate adjusting valve connected to the first three-way switching solenoid valve 2a, and the pressure adjusting valve 1, the first three-way switching solenoid valve 2a, and the first flow rate adjusting valve 3a are used to measure the measurement system flow path A.
Is formed.

【0026】また、図2において3bは第1の三方切換
弁2aに連結された第2の流量調整弁、4a,4bは配
管洗浄用ろ過器4a,4bであって、これらによって水
流洗浄系流路Bが形成される。さらに、圧力調整弁1の
下流段と第1の三方切換電磁弁2a間と後述する濁色度
計10との間に電磁弁7を介設して高圧フラッシュ洗浄
系路Cが形成されている。さらにまた、6は流量計、2
bは流量計6の下流段と濁色度計10間に連結された第
2の三方切換電磁弁、8は薬液タンク、9は薬液等の洗
浄剤を注入するための洗浄剤注入ポンプであって、これ
らの第2の三方切換電磁弁2b,薬液タンク8および薬
液注入ポンプ9によって薬液洗浄系流路Dが形成されて
いる。
Further, in FIG. 2, 3b is a second flow rate adjusting valve connected to the first three-way switching valve 2a, and 4a and 4b are pipe cleaning filters 4a and 4b. Path B is formed. Further, an electromagnetic valve 7 is provided between a downstream stage of the pressure adjusting valve 1 and the first three-way switching electromagnetic valve 2a and a turbidity meter 10 described later to form a high pressure flush cleaning system path C. . Furthermore, 6 is a flow meter, 2
b is a second three-way switching solenoid valve connected between the downstream stage of the flow meter 6 and the turbidity meter 10, 8 is a chemical liquid tank, and 9 is a cleaning agent injection pump for injecting a cleaning agent such as a chemical solution. The second three-way switching solenoid valve 2b, the chemical liquid tank 8 and the chemical liquid injection pump 9 form a chemical liquid cleaning system flow path D.

【0027】30はUVとVISに関する基準信号Rと
UVとVISに関するサンプル信号を入力とする計測処
理部である。 図3は濁色度計10の測定セル部と計測
処理部30の概略構成を示すもので、筒体11は水平面
に対して所定の角度θをもって配設されており、筒体1
1の一方の端部側面には検水流入口12が設けられ、他
方の端部側面には検水流出口13が設けられている。筒
体11の一方の開口端部には測定窓14aが設けられ、
他方の開口端部には測定窓14bが設けられている。
Reference numeral 30 is a measurement processing unit which receives the reference signal R relating to UV and VIS and the sample signal relating to UV and VIS. FIG. 3 shows a schematic configuration of the measurement cell section of the turbidity meter 10 and the measurement processing section 30. The cylinder 11 is arranged at a predetermined angle θ with respect to the horizontal plane.
A sample water inlet 12 is provided on one side surface of one end, and a sample water outlet 13 is provided on the other side surface of the end. A measurement window 14a is provided at one opening end of the cylindrical body 11,
A measurement window 14b is provided at the other opening end.

【0028】また、図3に示すように、測定窓14aの
近傍には筒体11の軸線上に位置した発光部である低圧
水銀灯31が配設されており、測定窓14aと低圧水銀
灯31間には光分離スリッタ32が設けられている。光
分離スリッタ32による分離光線の光路上には第1の受
光部である光電変換素子33aが配設されており、測定
窓14bの近傍には筒体11の軸線上に位置した第2の
受光部である光電変換素子33bが配設されている。3
4は光電変換素子33aの出力信号と光電変換素子33
bの出力信号を入力として増幅する増幅器、35は増幅
器34の出力信号を入力として所定の演算処理する演算
処理器であって、低圧水銀灯31,光分離スリッタ3
2,光電変換素子33a,33b,増幅器34および演
算処理器35によって計測処理部30が構成される。
Further, as shown in FIG. 3, a low-pressure mercury lamp 31 which is a light emitting portion located on the axis of the cylindrical body 11 is arranged in the vicinity of the measurement window 14a, and between the measurement window 14a and the low-pressure mercury lamp 31. Is provided with a light separation slitter 32. A photoelectric conversion element 33a, which is a first light receiving portion, is arranged on the optical path of the separated light beam by the light separation slitter 32, and a second light receiving portion located on the axis of the cylinder 11 is provided in the vicinity of the measurement window 14b. A photoelectric conversion element 33b, which is a unit, is arranged. Three
4 is the output signal of the photoelectric conversion element 33a and the photoelectric conversion element 33.
An amplifier for amplifying the output signal of b as an input, 35 is an arithmetic processing unit for performing a predetermined arithmetic processing by using the output signal of the amplifier 34 as an input, and includes a low pressure mercury lamp 31, an optical separation slitter 3
2, the measurement processing unit 30 is configured by the photoelectric conversion elements 33a and 33b, the amplifier 34, and the arithmetic processing unit 35.

【0029】上記構成の水質モニタ装置において、濁色
度計の洗浄にあたって、薬液タンク8から薬液注入ポン
プ9により塩酸薬液(濃度2%程度)を、三方切換電磁
弁2bを介して濁色度計10の測定セル内に満たして、
一定時間測定セル内に塩酸を重点反応させる。これによ
り測定セル内壁に付着した生物スライム,全鉄マンガン
等が剥離される。
In the water quality monitoring device having the above structure, when cleaning the turbidity meter, the hydrochloric acid chemical solution (concentration about 2%) is supplied from the chemical solution tank 8 by the chemical solution injection pump 9 through the three-way switching solenoid valve 2b. Fill in 10 measuring cells,
Predominantly react hydrochloric acid in the measuring cell for a certain period of time. As a result, biological slime, total iron manganese, etc. attached to the inner wall of the measurement cell are peeled off.

【0030】薬液処理した後に高圧フラッシュ洗浄経路
Cを通して高圧流を濁色度計10の測定セル部に通流
し、測定セル部を洗浄するとともに、水流洗浄系流路B
で洗浄した後に測定系流路Aを通して検水を濁色度計1
0の測定セル部に導く。
After the chemical treatment, a high-pressure flow is passed through the high-pressure flush cleaning path C to the measuring cell section of the turbidity meter 10 to wash the measuring cell section and a water-flow cleaning system flow path B
After washing with water, the test water is passed through the measuring system flow path A and the turbidity meter 1
Lead to 0 measurement cell section.

【0031】すなわち、薬液中に汚れ成分を乱流水流で
水流洗浄を一定時間実施する。これで薬液洗浄を終了
し、検水流入を開始する。この一連の薬液洗浄操作は、
図4に示す制御システムによって行われるもので、シー
ケンサ21とタッチパネル22を用いて、濁色度計,電
磁弁,ポンプ等の被制御機器部23における電磁弁の開
閉,薬液ポンプのオン/オフ等を全自動で実行する。
That is, the dirt components in the chemical solution are washed with a turbulent water stream for a certain period of time. This completes the chemical cleaning and starts the inflow of test water. This series of chemical cleaning operations
This is performed by the control system shown in FIG. 4, using the sequencer 21 and the touch panel 22 to open and close the solenoid valve in the controlled device section 23 such as the turbidity meter, the solenoid valve, and the pump, turn on / off the chemical pump, etc. Is executed automatically.

【0032】濁色度計の洗浄において、水流洗浄の流量
を1(リットル/分)で行え、測定セル内に1.88秒
滞留し、平均速度5.3cm/秒で流れ、そのレイノズ
ル数が0.106と乱流に近い流れを測定セル内で実現
できる。これにより十分な洗浄効果が得られる。
In the washing of the turbidity meter, the flow rate of water washing can be set to 1 (liter / min), the sample stays in the measuring cell for 1.88 seconds and flows at an average velocity of 5.3 cm / sec. A turbulent flow of 0.106 can be realized in the measuring cell. As a result, a sufficient cleaning effect can be obtained.

【0033】この洗浄操作の設定流量、薬液滞留時間、
薬液密度および洗浄時間はシーケンサとタッチパネルに
より、検水の汚れ程度に応じて自由に設定変更可能であ
り、次のような種々の効果が得られる。 (1)薬液洗浄(Hc12%程度)によりワイパー洗浄
では落ちにくい全マンガン、全鉄系の付着色度成分を効
果的に落とすことができる。 (2)乱流状態を実現する水流洗浄により滞留薬液中に
溶出した汚れ(濁質成分,色度成分,生物スライム)を
効果的に測定セル外に排除できる。 (3)一連の薬液洗浄操作は、制御装置(シーケン
サ)、タッチパネルを用いて、電磁弁,ポンプ等の制御
機器を自動運転ができるので、自動洗浄が可能である。 (4)薬液洗浄操作パラメータ(水流洗浄流量設定,薬
液滞留時間,洗浄時間等)をタッチパネル式のグラフィ
ックディスプレイで簡単に設定変更でき、洗浄操作をグ
ラフィックモニタできる。 (5)保守間隔が大幅(3ケ月以上)に延びて、維持管
理費用が節減できる。 (6)薬液洗浄と定期的な濁色度計の自動ゼロ点校正の
組み合わせにより保守間隔の大幅延長が可能となった。 (7)ワイパ洗浄やジェット水流洗浄単独より本洗浄の
方が洗浄効果が高い。 (8)ワイパ洗浄の回転部が洗浄方式にはないため、故
障の原因が少なくなる。
The set flow rate of this cleaning operation, the chemical solution retention time,
The chemical solution density and the cleaning time can be freely changed by the sequencer and the touch panel according to the degree of contamination of the test water, and the following various effects can be obtained. (1) By cleaning with a chemical solution (about 12% Hc), it is possible to effectively remove the adhered chromaticity components of total manganese and total iron, which are difficult to remove by wiper cleaning. (2) Dirt (turbid component, chromaticity component, biological slime) eluted in the stagnant chemical liquid can be effectively removed from the measurement cell by washing with a water stream that realizes a turbulent flow state. (3) In a series of chemical liquid cleaning operations, a control device (sequencer) and a touch panel can be used to automatically operate control devices such as a solenoid valve and a pump, so that automatic cleaning is possible. (4) The chemical cleaning operation parameters (water flow cleaning flow rate setting, chemical retention time, cleaning time, etc.) can be easily changed on the touch panel graphic display, and the cleaning operation can be monitored graphically. (5) Maintenance intervals can be significantly extended (more than 3 months), and maintenance costs can be reduced. (6) The maintenance interval can be significantly extended by combining chemical cleaning and periodic zero-point calibration of the turbidity meter. (7) The main cleaning is more effective than the wiper cleaning or the jet water cleaning alone. (8) Since the rotating part of the wiper cleaning does not exist in the cleaning method, the cause of failure is reduced.

【0034】上述の水質モニタの最も特徴とするところ
は、図3に示すように測定処理部30を設けたことであ
る。図5に示すように、浄配水のUV信号(254nm
の吸光度)がトリハロメタン量と相関が高結果が得られ
たので、UV信号を応用したトリハロメタン量推定機能
を有する低濃度UV計を提供するものである。
The most characteristic feature of the above water quality monitor is that it is provided with a measurement processing section 30 as shown in FIG. As shown in FIG. 5, the UV signal of purified water (254 nm
Since a high correlation was obtained between the absorbance of (3) and the amount of trihalomethane, a low-concentration UV meter having a function of estimating the amount of trihalomethane by applying a UV signal is provided.

【0035】すなわち、図5に示すように、検水が一定
傾斜を有する測定部をフローセル形式で測定セル長10
0mmを通過し、UV信号(254mmの吸光度(Ab
is))とVIS信号(546nmの吸光度(Ab
s))の各信号を計測し、UV信号又はUV−VIS信
号(濁度補正信号)から総トリハロメタン量(TTH
M:クロロホルムCHCl3+CHCl2Br+CHCl
Br2+グロモホルムCHBr3の合計量)を推定すると
ともに、UV信号,VIS信号をそれぞれ出力する。
That is, as shown in FIG. 5, the measuring unit having a constant inclination of the sample water is measured in a flow cell format with a measuring cell length of 10
UV signal (absorbance at 254 mm (Ab
is)) and VIS signal (absorbance at 546 nm (Ab
s)) is measured, and the total trihalomethane amount (TTH) is measured from the UV signal or the UV-VIS signal (turbidity correction signal).
M: Chloroform CHCl 3 + CHCl 2 Br + CHCl
The total amount of Br 2 + gromoform CHBr 3 ) is estimated and the UV signal and the VIS signal are output respectively.

【0036】光源としての低圧水銀灯31(254nm
と546nm波長出力)から出た光は測定セルに入る前
に光分離スリッタ32によりリファレンス光(UV,V
ISそれぞれ)に分けられ、測定セル通過後のサンプル
光(UV,VISそれぞれ)が測定される。リファレン
ス光は光電変換素子33aにより光電変換され増幅器3
4に入力されるとともに、サンプル光は光電変換素子3
3bによって光電変換され増幅器34に入力される。増
幅器34に入力されたリファレンス光とサンプル光に基
づく各信号は増幅され演算器35にに入力される。演算
器35はこれらの信号をもとに演算処理して各UV値,
VIS値,TTHM推定値を出力する。
Low-pressure mercury lamp 31 (254 nm) as a light source
And the light emitted from the 546 nm wavelength output) are transmitted to the reference light (UV, V) by the light separation slitter 32 before entering the measurement cell.
IS)) and sample light (UV, VIS) after passing through the measurement cell is measured. The reference light is photoelectrically converted by the photoelectric conversion element 33a and the amplifier 3
4, and the sample light is input to the photoelectric conversion element 3
It is photoelectrically converted by 3b and input to the amplifier 34. Each signal based on the reference light and the sample light input to the amplifier 34 is amplified and input to the calculator 35. The arithmetic unit 35 performs arithmetic processing based on these signals to obtain UV values,
Output the VIS value and TTHM estimated value.

【0037】本発明に使用される水質モニタによれば次
のような効果が得られる。 (1)UV信号と濁度信号を連続測定し、UV信号又は
濁度補正UV信号とトリハロメタン量の相関式からトリ
ハロメタン量が連続推定できる。 (2)同時に、UV信号から有機物量(例えば過マンガ
ン酸カリウム溶変量等)の推定が可能となり、おいしい
水の管理ができる。 (3)自動ゼロ点校正機能と薬液洗浄機能を有している
ため保守周期が長期化(3カ月以上)できる。 (4)一連の自動ゼロ点校正と薬液洗浄操作は、制御装
置(シーケンサ)とタッチパネルで行い、自動運転でき
る。 (5)測定セルがフローセル形式をとり、測定セルが1
00mmと長いため低濃度UV値の測定が可能である。 (6)リファレンス光信号(UV,VIS)を、測定セ
ル入光前に分離しているので、低圧水銀灯が出力変動を
しても、その影響をうけない。
According to the water quality monitor used in the present invention, the following effects can be obtained. (1) The UV signal and the turbidity signal are continuously measured, and the trihalomethane amount can be continuously estimated from the correlation formula of the UV signal or the turbidity-corrected UV signal and the trihalomethane amount. (2) At the same time, it is possible to estimate the amount of organic substances (for example, the amount of potassium permanganate dissolved or the like) from the UV signal, and it is possible to manage delicious water. (3) Maintenance cycle can be extended (3 months or more) because it has an automatic zero point calibration function and a chemical cleaning function. (4) A series of automatic zero point calibrations and chemical cleaning operations are performed by the control device (sequencer) and touch panel, and automatic operation is possible. (5) The measurement cell has a flow cell format, and the measurement cell is 1
Since it is as long as 00 mm, it is possible to measure a low concentration UV value. (6) Since the reference light signals (UV, VIS) are separated before the light enters the measurement cell, even if the output of the low pressure mercury lamp fluctuates, it is not affected.

【0038】なお、実例では発光部(光源)として低圧
水銀灯を用いたが、これに限定されるものではなく、上
述の条件を満たすものであれば発光ダイオード又は電球
などであってもよい。
Although the low pressure mercury lamp is used as the light emitting portion (light source) in the example, the invention is not limited to this, and may be a light emitting diode or a light bulb as long as it satisfies the above conditions.

【0039】次に図1で示す本発明の取水管理装置の動
作を説明する。第1の取水施設50aは、河川などの水
源110の上流側に配設され、第1の流路切換器80
a、第1の貯水池90aを通して浄水処理施設100に
取水を供給する。第2の取水施設50bは水源110の
下流側に配設され、第2の流路切換器80b,第2の貯
水池90bを通して浄水処理施設100に取水を供給す
る。
Next, the operation of the water intake control device of the present invention shown in FIG. 1 will be described. The first water intake facility 50a is disposed upstream of the water source 110 such as a river, and has a first flow path switching unit 80.
Water is supplied to the water purification treatment facility 100 through the first reservoir 90a. The second water intake facility 50b is arranged on the downstream side of the water source 110, and supplies the water intake to the water purification treatment facility 100 through the second flow path switch 80b and the second reservoir 90b.

【0040】取水施設50a,50bの水質モニタ60
a,60bにより、取水された水道原水の水質を常時モ
ニタリングし、その水質信号を常時管理塔に送る。送ら
れてきた水質信号から水質を判断し、汚濁水が取水され
異常値が示されれば流路切り替え装置を作動させ、流路
を貯水池方向へ切り替え、汚濁水が貯水池等に流入され
る前に排水する。ここで、水質異常値にあらかじめ設定
しておき、水質の優先順序はUV、色度>濁度>導電率
>pHの順で行う。また、流路の切り替えは、開水路で
あれば堰で、管路であれば三方バルブ等で行う。
Water quality monitor 60 of water intake facility 50a, 50b
With a and 60b, the water quality of the raw water taken in is constantly monitored, and the water quality signal is constantly sent to the management tower. Before judging the quality of water from the sent water quality signal, if polluted water is taken in and an abnormal value is indicated, the flow path switching device is activated, the flow path is switched to the reservoir direction, and before the polluted water flows into the reservoir etc. Drain to. Here, the abnormal water quality value is set in advance, and the priority order of the water quality is UV, chromaticity>turbidity>conductivity> pH. Switching of the flow path is performed by a weir for an open water channel and a three-way valve or the like for a pipeline.

【0041】水源上流に位置する水質監視装置60aで
得られた水質で異常値が示された場合、水量と水深より
汚濁水が下流に位置する取水施設50bに到達するまで
の時間を計算し、その時間で取水施設50bの取水を一
旦停止させる。取水施設50bが取水停止している間
に、取水施設50aの水質が許容範囲に戻れば、再度取
水を開始させる。その後同様に、取水施設50bの水質
が良くなれば、取水を再開する。
When the water quality obtained by the water quality monitoring device 60a located upstream of the water source shows an abnormal value, the time taken for the contaminated water to reach the intake facility 50b located downstream is calculated from the water amount and depth. At that time, the water intake of the water intake facility 50b is temporarily stopped. If the water quality of the water intake facility 50a returns to the allowable range while the water intake facility 50b is stopped, the water intake is restarted. After that, similarly, when the water quality of the water intake facility 50b is improved, the water intake is restarted.

【0042】汚濁状況が長く続き、取水施設50a,5
0bとも取水が再開出来ない場合、貯水池40a,40
bまたは処理施設内の貯水量および配水池の貯水量で対
応できる間は、それらの貯水量で対応する。貯水量で対
応できない場合、取水施設,50a,50bの水質を比
較しながら、良好な水質の方を取水していく。また、取
水地点においては採水口を水源水質モニタを用いて選択
する選択取水方法で行うとより効果的となる。
Contamination continues for a long time, and water intake facilities 50a, 5
Reservoir 40a, 40
b) While the water storage capacity in the treatment facility or in the treatment facility can be used, those water storage volumes will be used. If the amount of stored water cannot be handled, the water quality of the water intake facility, 50a, 50b is compared, and the water with better water quality is taken. In addition, at the intake point, it will be more effective if a selective intake method is used in which the intake is selected using a water quality monitor.

【0043】表1は水源水質モニタの主な仕様を示した
ものである。また、水源水質モニタの水質測定項目と範
囲を表2に示し、測定原理と校正方法を表3に示す。主
な改良点は、測定項目から残留塩素と水圧の項目を削除
し、既存の溶存酸素計を追加した点、濁度,色度,導電
率,紫外線吸光度,水温の各項目の測定範囲を変更した
点である。
Table 1 shows the main specifications of the water source water quality monitor. Table 2 shows the water quality measurement items and ranges of the water source water quality monitor, and Table 3 shows the measurement principle and calibration method. The main improvements are the deletion of residual chlorine and water pressure items from the measurement items, the addition of an existing dissolved oxygen meter, and the change of the measurement range for each item of turbidity, chromaticity, conductivity, UV absorbance, and water temperature. That is the point.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】上述の処理装置によれば、水質モニタを用
いて取水地点の選択を行うとともに、水源水質の監視を
行い、設定値上限を越える場合は流路を切り換えて排水
するものであるから、次のような効果が得られる。 (1)工場排水や染色排水等の汚濁化を取水しても浄水
処理施設に負荷を与えない。 (2)突発的な汚濁水に対応し易い。 (3)有機物等の常時モニタリングを行っており、良好
な水質の取水点を選択できる。 (4)トリハロメタン等の消毒副生成物の抑制効果が高
い。 (5)濁度,色度,溶存酸素,pH,導電率,UV,水
温の7項目を自動測定し、出力する。 (6)センサ部の脱着が容易で、洗浄交換が簡単などメ
ンテナンスが容易である。(7)24時間オンラインで
水質データを自動測定、遠隔監視できる。 (8)フラットディスプレイの監視パネルを用いること
により、計測・盤内環境の監視および保守設定値の変更
が容易にできる。 (9)自動ゼロ点校正(濁度計,色度計)、自己診断機
能を備えており、保守頻度を低減できる。 (10)電気制御関係機器を全て電気制御室に集中配置
し、水質計測関係の配管・検出部の水質計測室と完全に
分離したことで、電気制御関係機器の腐食が防止でき
る。 (11)除湿器を設けることで、水質計測室の結露を防
止している。 (12)盤外壁を2重板構造とし、外板内面に断熱材を
取り付け、電気制御室,水質計測室ともにファンとヒー
タを設置することにより、盤内温度の調節を可能にし
た。
According to the above-described processing apparatus, the water intake point is selected using the water quality monitor, the water source water quality is monitored, and when the set value upper limit is exceeded, the flow path is switched to drain the water. The following effects can be obtained. (1) Even if polluted water such as factory wastewater and dyeing wastewater is taken in, it does not burden the water purification facility. (2) It is easy to deal with sudden polluted water. (3) Since organic substances are constantly monitored, water intake points with good water quality can be selected. (4) Highly effective in suppressing disinfection by-products such as trihalomethane. (5) Seven items of turbidity, chromaticity, dissolved oxygen, pH, conductivity, UV and water temperature are automatically measured and output. (6) The sensor part is easily attached and detached, and cleaning and replacement are easy, so maintenance is easy. (7) Water quality data can be automatically measured and monitored remotely 24 hours online. (8) By using the monitoring panel of the flat display, it is possible to easily monitor the measurement and the environment inside the panel and change the maintenance setting value. (9) Equipped with automatic zero point calibration (turbidity meter, colorimeter) and self-diagnosis function, maintenance frequency can be reduced. (10) By arranging all the electrical control-related equipment in the electrical control room and completely separating it from the water quality measurement room of the piping / detection section related to water quality measurement, corrosion of the electrical control related equipment can be prevented. (11) A dehumidifier is provided to prevent dew condensation in the water quality measurement room. (12) The outer wall of the panel has a double plate structure, a heat insulating material is attached to the inner surface of the outer panel, and a fan and a heater are installed in both the electric control room and the water quality measuring room, so that the temperature inside the panel can be adjusted.

【0048】[0048]

【発明の効果】本発明は、上述の如くであって、取水水
質管理装置では、水質モニタを用いて取水地点の選択を
行うとともに、水源水質の監視を行い、設定上限値を越
える場合、流水流路を切り換え排水するものである。
The present invention is as described above, and in the intake water quality control device, the intake point is selected using the water quality monitor, and the water source water quality is monitored. The flow path is switched and drained.

【0049】従って、本発明によれば、試験結果を早く
得ることができ水質基準の達成が容易にして良好な管理
が可能な取水水質管理装置を提供することができる。
Therefore, according to the present invention, it is possible to provide an intake water quality control device capable of obtaining test results quickly, easily achieving the water quality standard, and capable of good control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による取水水質管理装置の
ブロック図。
FIG. 1 is a block diagram of an intake water quality control device according to a first embodiment of the present invention.

【図2】本発明の実施例による水質モニタの要部の構成
ブロック図。
FIG. 2 is a configuration block diagram of a main part of a water quality monitor according to an embodiment of the present invention.

【図3】本発明の実施例による水質モニタの要部の構成
図。
FIG. 3 is a configuration diagram of a main part of a water quality monitor according to an embodiment of the present invention.

【図4】本発明の実施例による水質モニタの制御に用い
る制御システムのブロック図。
FIG. 4 is a block diagram of a control system used for controlling the water quality monitor according to the embodiment of the present invention.

【図5】浄水、配水のUV値とTHM(トリハロメタ
ン)の関係を示す特性図。
FIG. 5 is a characteristic diagram showing a relationship between UV values of purified water and distribution water and THM (trihalomethane).

【符号の説明】[Explanation of symbols]

1…圧力調整弁 2a…第1の三方切換電磁弁 2b…第2の三方切換電磁弁 3a…第1の流量調整弁 3b…第2の流量調整弁 4a,4b…ろ過器 7…電磁弁 8…薬液タンク 9…薬液注入ポンプ 10…濁色度計 11…筒体 30…計測処理部 31…低圧水銀灯 32…光分離スプリッタ 33a,33b…光電変換素子 34…増幅器 35…演算器 A…測定系流路 B…水流洗浄系流路 C…高圧フラッシュ洗浄系流路 40,40a,40b…流路 50…取水施設 50a…第1の取水施設 50b…第2の取水施設 60…水質モニタ 60a…第1の水質モニタ 62a〜62…採水口 70…管理塔 80…流路切換器 80a…第1の流路切換器 80b…第2の流路切換器 110…水源 1 ... Pressure control valve 2a ... first three-way switching solenoid valve 2b ... second three-way switching solenoid valve 3a ... first flow rate adjusting valve 3b ... second flow rate adjusting valve 4a, 4b ... Filter 7 ... Solenoid valve 8 ... Chemical tank 9 ... Chemical injection pump 10 ... turbidity meter 11 ... Cylinder 30 ... Measurement processing unit 31 ... Low-pressure mercury lamp 32 ... Optical splitter 33a, 33b ... Photoelectric conversion element 34 ... Amplifier 35 ... arithmetic unit A ... Measuring system flow path B ... Water flow cleaning system flow path C ... High pressure flush cleaning system flow path 40, 40a, 40b ... flow path 50 ... Water intake facility 50a ... first water intake facility 50b ... Second intake facility 60 ... Water quality monitor 60a ... first water quality monitor 62a-62 ... Water sampling port 70 ... Management tower 80 ... Flow path switching device 80a ... first flow path switching device 80b ... Second flow path switching device 110 ... water source

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 21/33 G01N 21/33 33/18 33/18 A B C D Z 106 106A 106E 106Z Fターム(参考) 2G059 AA01 BB05 CC12 CC19 DD12 EE01 EE11 FF10 GG05 HH02 HH03 HH06 JJ22 KK03 MM01 NN07 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 21/33 G01N 21/33 33/18 33/18 A B C D Z 106 106A 106E 106Z F term (reference) ) 2G059 AA01 BB05 CC12 CC19 DD12 EE01 EE11 FF10 GG05 HH02 HH03 HH06 JJ22 KK03 MM01 NN07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水源の上流側に設置され水源水を採取す
る第1の取水施設と、該第1の取水施設に採取された水
源水を検水として計測する第1の水質モニタと、前記第
1の取水施設の下流側流路に配設された第1の流路切換
器と、前記水源の下流側に設置され水源水を採取する第
2の取水施設と、該第2の取水施設に採取された水源水
を検水として計測する第2の水質モニタと、前記第2の
取水施設の下流側流路に配設された第2の流路切換器
と、前記第1の水質モニタの検水データと第2の水質モ
ニタの検水データを基に演算処理し演算結果を基に前記
第1の流路切換器と第2の流路切換器とを制御する流路
切換制御手段によって構成したことを特徴とする取水水
質管理装置。
1. A first water intake facility installed upstream of the water source for collecting the water source water, and a first water quality monitor for measuring the water source water collected by the first water intake facility as a test water, A first flow path switching device arranged in a downstream side flow path of the first water intake facility, a second water intake facility installed downstream of the water source for collecting water source water, and the second water intake facility Second water quality monitor for measuring the water source water sampled in the water as a sample water, a second flow path switching device arranged in a downstream side flow path of the second water intake facility, and the first water quality monitor Flow path switching control means for performing arithmetic processing based on the measured water data of the second water quality monitor and the water measured data of the second water quality monitor and controlling the first flow path switcher and the second flow path switcher based on the calculation result. An intake water quality control device characterized by being configured by.
【請求項2】 前記取水水質管理装置は、前記流路切換
制御手段によって行う手段を有することを特徴とする請
求項1記載の取水水質管理装置。
2. The intake water quality control device according to claim 1, wherein the intake water quality control device includes means for performing the flow path switching control means.
【請求項3】 前記第1の水質モニタの検水データ又は
第2の水質モニタの検水データが設定値を越える場合、
前記流路切換手段により流路を切り換えて排水する手段
を有することを特徴とする請求項1又は2記載の取水水
質管理装置。
3. When the water detection data of the first water quality monitor or the water detection data of the second water quality monitor exceeds a set value,
The intake water quality control device according to claim 1 or 2, further comprising means for switching the flow path by the flow path switching means and discharging the water.
【請求項4】 前記各水質をモニタは、測定系流路を介
して導入された検水の濁度,色度,紫外線吸収を含む測
定項目を測定するための濁色度計と、この濁色度計に流
入した検水より少なくとも紫外線吸収値を検出する計測
処理部とを有し、この計測処理部は前記濁色度計の前記
測定セル部内の検水に光を照射してサンプル光信号を得
るとともに検水照射光以外の光によりリファレンス光信
号を得る光学系と、前記光学系によって得られたサンプ
ル光信号とリファレンス光信号をもとに演算処理する演
算器を有して前記検水中の含有物の推定値を算出するよ
う構成し、且つ、前記濁色度計に薬液タンクより薬液を
供給して洗浄するための薬液洗浄系流路と、前記濁色度
計に洗浄水を供給して洗浄するための水流洗浄系流路と
で構成したことを特徴とする請求項1乃至3取水水質管
理装置。
4. The water quality monitor is a turbidity meter for measuring measurement items including turbidity, chromaticity, and ultraviolet absorption of the test water introduced through a measurement system flow path, and the turbidity meter. It has a measurement processing unit that detects at least an ultraviolet absorption value from the test water that has flowed into the colorimeter, and the measurement processing unit irradiates the test water in the measurement cell unit of the turbidity meter with light to sample light. An optical system that obtains a signal and a reference light signal by light other than the test irradiation light, and a calculator that performs a calculation process based on the sample light signal and the reference light signal obtained by the optical system It is configured to calculate an estimated value of inclusions in water, and a chemical liquid cleaning system flow path for supplying chemical liquid to the turbidity meter from a chemical liquid tank for cleaning, and cleaning water to the turbidity meter. A special feature is that it is configured with a water flow cleaning system flow path for supplying and cleaning. The intake water quality control device according to claims 1 to 3.
【請求項5】 前記各水質モニタにおいて、前記濁色度
計の測定セル部が水平方向に対して所定角度だけ傾斜し
て配設された筒体からなり、前記光学系が、前記筒体の
軸線上に配置された発光部と、この発光部と前記筒体と
の間に配置された光分離スプリッタからなり、前記計測
処理部が、前記光分離スプリッタにより分離された光を
受光して光電変換信号を出力する第1の光電変換素子
と、前記光分離スプリッタを通して前記筒体内の検水を
通して照射された光を受光して光電変換信号を出力する
第2の光電変換素子と、これらの第1と第2の光電変換
素子の光電変換信号をもとに演算処理する演算器によっ
て構成したことを特徴とする請求項1乃至4取水水質管
理装置。
5. In each of the water quality monitors, a measuring cell section of the turbidity meter comprises a cylindrical body which is arranged at a predetermined angle with respect to a horizontal direction, and the optical system comprises the cylindrical body. The measurement processing unit receives the light separated by the light separation splitter and photoelectrically converts the light separation unit arranged on the axis line and the light separation splitter arranged between the light emission unit and the cylindrical body. A first photoelectric conversion element that outputs a conversion signal; a second photoelectric conversion element that receives the light emitted through the sample water in the cylinder through the light separation splitter and outputs a photoelectric conversion signal; The intake water quality control device according to any one of claims 1 to 4, wherein the intake water quality control device comprises an arithmetic unit that performs arithmetic processing based on photoelectric conversion signals of the first and second photoelectric conversion elements.
【請求項6】 前記各水質モニタは、さらに、前記測定
セル部内に薬液洗浄剤を注入して所定時間滞留させ、前
記測定セル内の汚れ成分を剥離させる薬液洗浄剤系路
と、前記測定セル内の剥離された汚れ成分を洗浄流出さ
せる高圧フラッシュ流経路と、該高圧フラッシュ流経路
からの乱流水によって洗浄された前記測定セル内に検査
すべき検水を注入させる測定系流路を有することを特徴
とする請求項1乃至5記載の取水水質管理装置。
6. Each of the water quality monitors further comprises a chemical cleaning agent system path for injecting a chemical cleaning agent into the measuring cell section and allowing it to stay for a predetermined time to remove dirt components in the measuring cell, and the measuring cell. And a measurement system flow path for injecting the test water to be inspected into the measurement cell washed by the turbulent water from the high pressure flush flow path. The intake water quality control device according to any one of claims 1 to 5.
【請求項7】 前記薬液洗浄経路は、塩酸液を貯蔵する
薬液タンクと、該薬液タンクの塩酸液を前記測定セルに
注入する薬液注入ポンプによって構成し、前記測定系流
路は検水を前記測定セル部に通流させる電磁弁と、該電
磁弁と前記測定セル部間に配設された流量調整弁によっ
て構成したことを特徴とする請求項1乃至6記載の取水
水質管理装置。
7. The chemical solution cleaning path comprises a chemical solution tank for storing a hydrochloric acid solution, and a chemical solution injection pump for injecting the hydrochloric acid solution in the chemical solution tank into the measurement cell, and the measurement system flow path is provided with the test water. The intake water quality control device according to any one of claims 1 to 6, wherein the intake water quality control device is configured by an electromagnetic valve that allows the measurement cell unit to flow, and a flow rate adjustment valve that is disposed between the electromagnetic valve and the measurement cell unit.
【請求項8】 前記各水質モニタの測定項目は、濁度,
色度,溶存酸素,pH,導電率,紫外線吸光度及び水質
であることを特徴とする請求項1乃至7記載の取水水質
管理装置。
8. The measurement item of each water quality monitor is turbidity,
The intake water quality control device according to any one of claims 1 to 7, wherein chromaticity, dissolved oxygen, pH, conductivity, ultraviolet absorbance and water quality.
JP2003037707A 2003-02-17 2003-02-17 Intake water quality controller Pending JP2003305454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037707A JP2003305454A (en) 2003-02-17 2003-02-17 Intake water quality controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037707A JP2003305454A (en) 2003-02-17 2003-02-17 Intake water quality controller

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22938894A Division JP3475513B2 (en) 1994-09-26 1994-09-26 Intake water quality control device

Publications (1)

Publication Number Publication Date
JP2003305454A true JP2003305454A (en) 2003-10-28

Family

ID=29398106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037707A Pending JP2003305454A (en) 2003-02-17 2003-02-17 Intake water quality controller

Country Status (1)

Country Link
JP (1) JP2003305454A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146422A (en) * 2005-11-25 2007-06-14 Toshiba Corp Water intake system
JP2009517641A (en) * 2005-11-29 2009-04-30 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Method and apparatus for measuring the concentration of a substance in a solution
WO2009157057A1 (en) * 2008-06-24 2009-12-30 株式会社島津製作所 Ultraviolet absorbance measuring instrument
JP2013015450A (en) * 2011-07-05 2013-01-24 Shimadzu Corp Analysis device equipped with liquid crystal display device having touch panel
JP2015182069A (en) * 2014-03-26 2015-10-22 三浦工業株式会社 Remote management control system of clarifier
CN105181612A (en) * 2015-10-09 2015-12-23 谭森 Network system and method for monitoring quality of domestic drinking water
JP2015231606A (en) * 2014-06-10 2015-12-24 三浦工業株式会社 Remote management control system for reverse osmosis membrane separation device
JP2016161359A (en) * 2015-02-27 2016-09-05 紀本電子工業株式会社 Suspended particulate matter measuring apparatus using optical method
JP2016215086A (en) * 2015-05-14 2016-12-22 株式会社東芝 Water supply apparatus and water supply control method
WO2017030028A1 (en) * 2015-08-19 2017-02-23 住重環境エンジニアリング株式会社 Water-quality control device and water-quality control system
JP6109398B1 (en) * 2016-11-14 2017-04-05 日本電色工業株式会社 Sample water dilution apparatus and sample water dilution method
WO2020022311A1 (en) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Water treatment device
CN110794102A (en) * 2018-08-02 2020-02-14 青岛海尔洗衣机有限公司 Control method of water quality detection device
JP2020094962A (en) * 2018-12-14 2020-06-18 オルガノ株式会社 Water quality measurement system and maintenance method determination method
CN111693666A (en) * 2019-03-13 2020-09-22 青岛海尔洗衣机有限公司 Water quality detection device
WO2021065191A1 (en) * 2019-10-04 2021-04-08 三菱重工業株式会社 Pure water manufacturing management system and pure water manufacturing management method
CN117342690A (en) * 2023-12-06 2024-01-05 天津创业环保集团股份有限公司 Dynamic control method for sewage biological treatment and mobile detection platform
JP7438036B2 (en) 2020-06-23 2024-02-26 三菱電機株式会社 Data management system, data management method and data management program

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146422A (en) * 2005-11-25 2007-06-14 Toshiba Corp Water intake system
JP2009517641A (en) * 2005-11-29 2009-04-30 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Method and apparatus for measuring the concentration of a substance in a solution
WO2009157057A1 (en) * 2008-06-24 2009-12-30 株式会社島津製作所 Ultraviolet absorbance measuring instrument
JP5013000B2 (en) * 2008-06-24 2012-08-29 株式会社島津製作所 UV absorbance measuring device
JP2013015450A (en) * 2011-07-05 2013-01-24 Shimadzu Corp Analysis device equipped with liquid crystal display device having touch panel
JP2015182069A (en) * 2014-03-26 2015-10-22 三浦工業株式会社 Remote management control system of clarifier
JP2015231606A (en) * 2014-06-10 2015-12-24 三浦工業株式会社 Remote management control system for reverse osmosis membrane separation device
JP2016161359A (en) * 2015-02-27 2016-09-05 紀本電子工業株式会社 Suspended particulate matter measuring apparatus using optical method
JP2016215086A (en) * 2015-05-14 2016-12-22 株式会社東芝 Water supply apparatus and water supply control method
WO2017030028A1 (en) * 2015-08-19 2017-02-23 住重環境エンジニアリング株式会社 Water-quality control device and water-quality control system
CN105181612A (en) * 2015-10-09 2015-12-23 谭森 Network system and method for monitoring quality of domestic drinking water
JP2018080928A (en) * 2016-11-14 2018-05-24 日本電色工業株式会社 Water sample dilution device and water sample dilution method
JP6109398B1 (en) * 2016-11-14 2017-04-05 日本電色工業株式会社 Sample water dilution apparatus and sample water dilution method
WO2020022311A1 (en) * 2018-07-27 2020-01-30 パナソニックIpマネジメント株式会社 Water treatment device
CN110794102B (en) * 2018-08-02 2023-08-08 重庆海尔洗衣机有限公司 Control method of water quality detection device
CN110794102A (en) * 2018-08-02 2020-02-14 青岛海尔洗衣机有限公司 Control method of water quality detection device
JP2020094962A (en) * 2018-12-14 2020-06-18 オルガノ株式会社 Water quality measurement system and maintenance method determination method
JP7106438B2 (en) 2018-12-14 2022-07-26 オルガノ株式会社 Water quality measurement system and maintenance method determination method
CN111693666A (en) * 2019-03-13 2020-09-22 青岛海尔洗衣机有限公司 Water quality detection device
WO2021065191A1 (en) * 2019-10-04 2021-04-08 三菱重工業株式会社 Pure water manufacturing management system and pure water manufacturing management method
JP2021058832A (en) * 2019-10-04 2021-04-15 三菱重工業株式会社 Pure water manufacturing control system and pure water manufacturing management method
JP7139301B2 (en) 2019-10-04 2022-09-20 三菱重工業株式会社 Pure water production control system and pure water production control method
JP7438036B2 (en) 2020-06-23 2024-02-26 三菱電機株式会社 Data management system, data management method and data management program
CN117342690A (en) * 2023-12-06 2024-01-05 天津创业环保集团股份有限公司 Dynamic control method for sewage biological treatment and mobile detection platform
CN117342690B (en) * 2023-12-06 2024-03-22 天津创业环保集团股份有限公司 Dynamic control method for sewage biological treatment and mobile detection platform

Similar Documents

Publication Publication Date Title
JP2003305454A (en) Intake water quality controller
KR102172981B1 (en) Smart sewage treatment Operation System
EP0724718B1 (en) Apparatus for measuring characteristics of a liquid
CA2565394C (en) Portable water quality monitoring and treatment system
US20060108270A1 (en) Sewage treatment apparatus and method thereof
KR20100021389A (en) Automatic cleaning device of automatic measure for the quality of water for monitoring water pollution
JP3274541B2 (en) Water purification plant management support method and support system
WO2012010744A1 (en) Method and system for treating aqueous streams
WO2018179494A1 (en) Water quality measurement device
JP3475513B2 (en) Intake water quality control device
CN105865845B (en) A kind of water process on-line period analysis system
JP3920504B2 (en) UV sterilizer
KR101158052B1 (en) Processing system for reducing runoff pollution loads and processing method thereof
AU2008100542A4 (en) Household waste water screening &amp; diversion method &amp; apparatus capable of separating mostly polluted water from less polluted water using electrical conductivity as the screening method.
KR102361908B1 (en) Bench with water measuring panel
JP4744289B2 (en) Water quality measuring device
JPH07209180A (en) Water quality monitor apparatus
CN213455585U (en) Water quality on-line automatic monitoring device
US20060108294A1 (en) Sewer system
RU2792708C1 (en) Stationary device for automatic control of wastewater discharge of an industrial enterprise
JP4829045B2 (en) Operation support system for water treatment plant
US5379791A (en) Dual-head flow controller and method
JP3875545B2 (en) Sewerage equipment operation device and its operation method
Ruban et al. Self-monitoring of water quality in sewer systems using absorbance of ultraviolet and visible light
KR102576339B1 (en) Apparatus for measuring line parameter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071204

Free format text: JAPANESE INTERMEDIATE CODE: A02