JP2953904B2 - Analyzer for silica component in water - Google Patents
Analyzer for silica component in waterInfo
- Publication number
- JP2953904B2 JP2953904B2 JP7692693A JP7692693A JP2953904B2 JP 2953904 B2 JP2953904 B2 JP 2953904B2 JP 7692693 A JP7692693 A JP 7692693A JP 7692693 A JP7692693 A JP 7692693A JP 2953904 B2 JP2953904 B2 JP 2953904B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- sample
- reagent
- silica
- silica component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、水中のシリカ成分を測
定分析する装置、詳しくはイオン成分のみならず非イオ
ン成分を含む全シリカ分を連続的にあるいは間欠的に測
定することができる分析装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring and analyzing silica components in water, and more particularly to an analyzer capable of continuously or intermittently measuring the total silica content including not only ionic components but also non-ionic components. It concerns the device.
【0002】[0002]
【従来技術】純水製造装置、逆浸透膜装置、復水脱塩装
置等の運転を管理するために、従来から水中のシリカ成
分を測定するための種々の水中シリカ成分の測定分析装
置が用いられ、例えば純水製造装置においてはその処理
水中のシリカ濃度を測定し、処理水中の濃度が予め定め
た設定値を越えた場合に設備の運転上に必要な適当な対
応操作を行なうように利用されている。2. Description of the Related Art In order to control the operation of a pure water producing apparatus, a reverse osmosis membrane apparatus, a condensate desalination apparatus, etc., various conventional silica component measurement / analysis apparatuses for measuring silica components in water have been used. For example, in a pure water production system, the silica concentration in the treated water is measured, and when the concentration in the treated water exceeds a predetermined set value, the silica is used so as to perform an appropriate corresponding operation necessary for the operation of the equipment. Have been.
【0003】これらの装置における水中シリカ成分の測
定分析は、JIS K 0101に準拠した方法に基づ
くものであり、要するに、イオン状シリカがモリブデン
酸アンモニウム(モリブデン酸試薬)と反応して生成す
るヘテロポリ化合物の黄色の吸光度を測定してシリカを
定量するものである。また、生成したヘテロポリ化合物
を4−アミノ−3−ヒドロキシ−1−ナフタレンスルホ
ン酸で還元してモリブデン青に変え、その吸光度を測定
してシリカを定量する方法も知られている。[0003] The measurement and analysis of the silica component in water in these apparatuses is based on a method based on JIS K0101. In short, the heteropoly compound formed by the reaction of ionic silica with ammonium molybdate (molybdate reagent). The silica is quantified by measuring the yellow absorbance of the sample. There is also known a method in which the produced heteropoly compound is reduced with 4-amino-3-hydroxy-1-naphthalenesulfonic acid to convert it to molybdenum blue, and the absorbance is measured to quantify silica.
【0004】ところで、近時においては一般に超純水と
呼ばれるより清浄な高純度水を製造することとその管理
が求められている。これは、例えば半導体製造分野にお
いては純水により半導体を洗浄したウエハにシミが残る
ことがあって、これが製品歩留まりを低下させる一因と
なっているからである。このシミの原因の多くは水中の
シリカ成分に由来することが指摘されている。In recent years, there has been a demand for producing and managing cleaner high-purity water, which is generally called ultrapure water. This is because, for example, in the semiconductor manufacturing field, stains may remain on a wafer whose semiconductor has been washed with pure water, which is one of the causes of lowering the product yield. It has been pointed out that many of the causes of this stain are derived from silica components in water.
【0005】しかし上記のモリブデン酸試薬を用いた測
定方法によってはこのようなシミの原因となる全シリカ
成分を対象とした水質管理は出来ない。これは上述した
測定方法ではその原理から分かるようにイオン状のシリ
カ成分しか測定できず、水中に微量に存在する非イオン
状のシリカ成分(通常「コロイド状シリカ」)の定量が
出来ないからである。However, water quality cannot be controlled for all the silica components that cause such spots, depending on the measuring method using the molybdic acid reagent described above. This is because, as can be understood from the principle, only the ionic silica component can be measured by the above-mentioned measuring method, and the non-ionic silica component present in a trace amount in water (usually “colloidal silica”) cannot be quantified. is there.
【0006】一方、水中のコロイド状シリカ成分を定量
する方法としては、例えば試料を濾過(孔径0.45〜
1mm)し、濾液に炭酸ナトリウムを加えて煮沸し、非
イオン状シリカをイオン状とした後、モリブデン黄,青
で定量する方法が知られている(JIS K 010
1)。On the other hand, as a method for quantifying the colloidal silica component in water, for example, a sample is filtered (pore size 0.45 to 0.45).
1 mm), add sodium carbonate to the filtrate and boil to convert nonionic silica into an ionized form, and then quantify it with molybdenum yellow and blue (JIS K010).
1).
【0007】また全シリカ成分を定量する方法として
は、同じくJIS K 0101の重量法が知られてお
り、これは試料に塩酸と過塩素酸を加えて加熱し、過塩
素酸の白煙を発生させてシリカを脱水して不溶性とし、
水を加えて塩類を溶解した後シリカを濾別し、硫酸とフ
ッ化水素酸でシリカを揮散させてその減量からシリカを
定量する方法である。また試料に炭酸ナトリウムを加え
て蒸発乾固後融解してシリカをイオン状とした後、モリ
ブデン黄,青で定量する方法も知られている。As a method for quantifying the total silica component, a JIS K0101 gravimetric method is also known. This method involves adding hydrochloric acid and perchloric acid to a sample and heating the sample to generate white smoke of perchloric acid. And dehydrate the silica to make it insoluble,
After dissolving the salts by adding water, the silica is separated by filtration, the silica is volatilized with sulfuric acid and hydrofluoric acid, and the silica is quantified from the weight loss. It is also known to add sodium carbonate to a sample, evaporate it to dryness, melt it, convert the silica into ions, and quantify the sample with molybdenum yellow and blue.
【0008】しかしながら、これらのコロイド状シリカ
成分を測定する方法、あるいは全シリカ成分を測定する
方法は、いずれも加熱,煮沸という面倒で時間のかかる
操作が必要で、純水製造装置などにかかる測定のための
装置を組み込むことも不可能であった。しかし処理水を
取出して上記方法で実験室的に処理水中の全シリカ成分
の濃度を測定し、その測定結果により処理水の水質低下
が検出されても、実際に設備に必要な対応操作は相当な
時間の遅れの後に行なえるに過ぎず、実際には、実質的
にインラインの測定を行なうことができる上記のモリブ
デン酸試薬を用いたイオン状シリカ成分の測定のみで管
理を行なっているのが現状である。However, these methods of measuring the colloidal silica component or the method of measuring the total silica component require both troublesome and time-consuming operations such as heating and boiling, and the measurement requires a pure water production apparatus or the like. It was not possible to incorporate a device for this. However, even if the treated water is taken out and the concentration of all silica components in the treated water is measured in the laboratory by the above method, and the measurement result indicates that the quality of the treated water is low, the corresponding operations required for the equipment are considerable. Can be performed only after a long time delay, and in fact, the control is performed only by measuring the ionic silica component using the above molybdic acid reagent, which can perform substantially in-line measurement. It is the current situation.
【0009】[0009]
【発明が解決しようとする課題】本発明者は以上のよう
な従来技術の現状に鑑み、純水製造装置、逆浸透膜装
置、復水脱塩装置等の処理水中のコロイド状シリカ成
分、あるいは全シリカ成分を迅速にかつ簡易な方法で測
定できる方法を鋭意研究し、本発明をなすに至ったもの
である。SUMMARY OF THE INVENTION In view of the above-mentioned state of the art, the present inventor has proposed a colloidal silica component in treated water such as a pure water production device, a reverse osmosis membrane device, and a condensate desalination device. The present inventors have intensively studied a method capable of measuring all silica components quickly and with a simple method, and have accomplished the present invention.
【0010】すなわち本発明は、対象とする水中のイオ
ン状及び非イオン状の双方を含む全シリカ成分(あるい
はイオン状と非イオン状シリカ成分を別々に)を迅速に
かつ容易に測定することができる水中のシリカ成分の分
析装置を提供することを目的とする。That is, the present invention makes it possible to quickly and easily measure the total silica component (or separately the ionic and non-ionic silica components) in water of interest, including both ionic and non-ionic silica components. An object of the present invention is to provide a device for analyzing a silica component in water that can be obtained.
【0011】また本発明の別の目的は、種々の設備等の
処理水中の全シリカ成分をインラインで測定することが
できる簡易なシリカ成分の分析装置を提供するところに
ある。Another object of the present invention is to provide a simple silica component analyzer capable of in-line measuring all silica components in treated water of various facilities and the like.
【0012】また本発明の更に別の目的は、種々の設備
の処理水中の全シリカ成分を連続的に監視することがで
き、これにより、処理水中のシリカ成分の濃度が予め定
めた管理基準値を越えた場合に迅速に設備の対応操作を
行なえるようにして、処理水質の良好な管理を実現でき
るシリカ成分の分析装置提供するところにある。Still another object of the present invention is to continuously monitor the total silica component in the treated water of various facilities, whereby the concentration of the silica component in the treated water is controlled to a predetermined control reference value. It is an object of the present invention to provide a silica component analyzing apparatus capable of promptly performing a corresponding operation of the equipment when exceeding the limit, and realizing good management of treated water quality.
【0013】[0013]
【課題を解決するための手段及び作用】本発明者は上記
目的を実現するために種々研究を重ね、超純水中の無機
質微粒子の処理に関する従来例例えば、コロイド状物質
をオゾンのバブリングにより強制酸化して酸化固形微粒
子にして除去する提案("A Mechanistic Study of Ozon
e-Induced Paarticle Destabilization",JOURNAL AWWA,
1991)も検討したが、この方法では水中のコロイド状シ
リカをイオン化することはできない。また純水中に含ま
れる無機微粒子のイオン化については他に適当な従来技
術は知られていない。Means for Solving the Problems and Actions The present inventor has conducted various studies to achieve the above object, and has conducted conventional studies on the treatment of inorganic fine particles in ultrapure water. For example, forcing colloidal substances by bubbling ozone. Proposal to oxidize to oxidized solid particles and remove them ("A Mechanistic Study of Ozon
e-Induced Paarticle Destabilization ", JOURNAL AWWA,
1991), this method cannot ionize colloidal silica in water. No other suitable prior art is known for ionizing inorganic fine particles contained in pure water.
【0014】ところが強制酸化と紫外線照射を組合わせ
て処理すると、従来は全く予測されていなかったコロイ
ド状シリカのイオン化が起こることを本発明者は見出し
た。本発明はかかる知見に基づいてなされたものであ
る。すなわち本発明の水中のシリカ成分の分析装置の特
徴は、分析対象の水が通流する主配管から試料水を分流
させる試料採取管と、この試料採取管を通流する試料水
に含まれる非イオン状のシリカ成分をイオン化させるイ
オン化処理装置と、このイオン化処理装置を通った試料
水にモリブデン黄吸光光度法の測定に用いる試薬、又は
更にモリブデン青吸光光度法の測定に用いる試薬を注入
する試薬注入手段と、試薬注入後の試料水の黄色又は青
色の吸光度を検出するための光学手段とを備え、上記イ
オン化処理装置は、試料水に酸化剤を接触させる酸化剤
注入手段、及び紫外線を照射する紫外線照射手段を有す
るところにある。However, the inventor of the present invention has found that when treatment is carried out in combination with forced oxidation and ultraviolet irradiation, ionization of colloidal silica occurs, which has not been predicted at all. The present invention has been made based on such findings. That is, the characteristics of the apparatus for analyzing a silica component in water according to the present invention include a sampling pipe for diverting sample water from a main pipe through which water to be analyzed flows, and a non-water sample contained in the sample water flowing through the sampling pipe. An ionization apparatus for ionizing an ionic silica component, and a reagent for injecting a reagent used for measurement of molybdenum yellow absorption spectrophotometry or a reagent used for measurement of molybdenum blue absorption spectrophotometry into sample water passing through the ionization apparatus Injection means, optical means for detecting the yellow or blue absorbance of the sample water after reagent injection, the ionization treatment device, the oxidant injection means for bringing the oxidant into contact with the sample water, and irradiating ultraviolet rays The ultraviolet irradiation means.
【0015】上記構成におけるイオン化処理装置は、酸
化剤注入手段と紫外線照射手段が一つの装置として設け
られていてもよいが、順次の工程を形成するように別々
に設けることが構成上好ましい。酸化剤注入手段は、例
えばオゾンガス,塩素ガス等の酸化性ガス、あるいは次
亜塩素酸ナトリウム等の酸化性液体を試料採水管に直接
注入するか、あるいは槽に試料水を通しながらこの槽に
酸化剤を注入するように設けることができる。また紫外
線照射装置は、既存の紫外線照射装置を利用することも
できるが、好ましくは、紫外線発光灯の周囲に試料水を
通水させる形式の装置を用いることがよい。In the ionization treatment apparatus having the above structure, the oxidizing agent injecting means and the ultraviolet irradiation means may be provided as one apparatus, but it is preferable in terms of structure that they are separately provided so as to form sequential steps. The oxidizing agent injecting means is, for example, an oxidizing gas such as an ozone gas or a chlorine gas, or an oxidizing liquid such as sodium hypochlorite is directly injected into a sample sampling pipe, or an oxidizing gas is injected into the tank while passing the sample water through the tank. It can be provided to inject an agent. As the ultraviolet irradiation device, an existing ultraviolet irradiation device can be used, but it is preferable to use a device of a type in which the sample water flows around the ultraviolet light emitting lamp.
【0016】イオン化処理装置を通った試料水に試薬を
注入する試薬注入手段は、所要の試薬を注入する適宜の
装置を用いることができ、例えば特開昭57−2078
51号公報第1図あるいは第2図に示される装置を用い
ることができる。試薬は、モリブデン黄吸光光度法を実
施する場合には、モリブデン酸アンモニウム溶液の他、
硫酸、塩酸、シュウ酸等が用いられ、モリブデン青吸光
光度法を実施する場合には、モリブデン酸アンモニウム
がイオン状シリカと反応して生成したヘテロポリ化合物
をモリブデン青に変えるために、4−アミノ−3−ヒド
ロキシ−1−ナフタレンスルホン酸の他、塩酸、シュウ
酸等が用いられる。As the reagent injecting means for injecting the reagent into the sample water having passed through the ionization apparatus, an appropriate device for injecting a required reagent can be used.
The apparatus shown in FIG. 1 or FIG. 2 of JP-A-51 can be used. Reagents, when performing molybdenum yellow absorption spectrophotometry, in addition to ammonium molybdate solution,
When sulfuric acid, hydrochloric acid, oxalic acid, or the like is used and molybdenum blue absorption spectroscopy is carried out, 4-amino- In addition to 3-hydroxy-1-naphthalenesulfonic acid, hydrochloric acid, oxalic acid and the like are used.
【0017】そして黄色又は青色に呈色した試料水を適
宜の吸光度測定用の光学装置、例えば可視光線をフィル
ターに通過させて特定の波長とする方式のものや、特定
波長の光を発する発光ダイオード等の発光素子からなる
発光源と、光電管やホトトランジスタ等の受光素子から
なる受光部を、試料水を通す透明セルを挾んで対向させ
た光学装置を例示することができ、受光部で検出した光
量を検流計で表示するとか、コンピュータを用いて適当
な演算処理を行なってCRT等に表示するとかして水質
状態を監視することができ、更には、検出情報に基づい
て主配管を通流する処理水の処理設備の制御装置に、必
要な制御情報として送信することで、好ましい処理水質
の管理をすることが実現できる。An optical device for measuring the absorbance of the sample water colored yellow or blue, for example, a device for passing visible light through a filter to a specific wavelength, or a light emitting diode for emitting light of a specific wavelength An optical device in which a light-emitting source composed of a light-emitting element such as a photocell and a light-receiving part composed of a light-receiving element such as a phototube or a phototransistor are opposed to each other with a transparent cell through which sample water passes can be exemplified. The quality of the water can be monitored by displaying the amount of light with a galvanometer or by performing appropriate arithmetic processing using a computer and displaying it on a CRT or the like. By transmitting the necessary control information to the control device of the treated water treatment equipment, it is possible to realize preferable management of the treated water quality.
【0018】また、上記試料採取管は、イオン化処理装
置を通して試薬注入手段に試料を通流させる経路と、該
イオン化処理装置をバイパスして試薬注入手段に試料を
通流させる経路とを切換え可能に設ければ、イオン化処
理しない状態での試料水中に含まれるイオン状体のシリ
カ成分のみを測定分析することと、全シリカ分を測定分
析することとが任意に選択でき、これによってイオン状
シリカ成分と非イオン状シリカ成分の双方を正確に把握
することもできる。The sample collection tube can switch between a path for flowing the sample through the ionization apparatus to the reagent injecting means and a path for bypassing the ionization apparatus and flowing the sample to the reagent injecting means. If provided, it is possible to arbitrarily select between measuring and analyzing only the silica component of the ionic substance contained in the sample water in a state without ionization treatment and measuring and analyzing the total silica content. It is also possible to accurately grasp both the and the nonionic silica component.
【0019】[0019]
【実施例】以下本発明を図面に示す実施例に基づいて説
明する。 実施例1 図1において、1は、例えば純水製造装置の処理水が通
流する主配管であり、この主配管1から分岐された試料
採取管2を通して、分流された試料水が連続してオゾン
散気槽3の下部に送られる。このオゾン散気槽3は下部
からオゾンガス注入管4によりオゾンが注入され、排気
管5を介して排オゾンガスは排気される。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in the drawings. Example 1 In FIG. 1, reference numeral 1 denotes a main pipe through which treated water of, for example, a pure water production apparatus flows, and sample water diverted through a sampling pipe 2 branched from the main pipe 1 continuously. It is sent to the lower part of the ozone diffusion tank 3. Ozone is injected into the ozone diffusion tank 3 from below by an ozone gas injection pipe 4, and exhausted ozone gas is exhausted through an exhaust pipe 5.
【0020】オゾン散気槽3でオゾン散気された試料水
は、該オゾン散気槽3の上部から次ぎの貯槽6にの下部
に送られ、更に水中オゾンの脱気が行なわれた後、上部
から紫外線照射装置7に送られる。The sample water that has been ozone diffused in the ozone diffusion tank 3 is sent from the upper part of the ozone diffusion tank 3 to the lower part of the next storage tank 6, and after the deaeration of ozone in water is performed. It is sent to the ultraviolet irradiation device 7 from above.
【0021】この紫外線照射装置7は、紫外線発光灯を
内蔵した透明ガラス管8の周囲を試料水がその長尺方向
に沿って流れるように設けられており、これを流れる所
定時間の間、紫外線の照射を受ける。The ultraviolet irradiation device 7 is provided so that a sample water flows along a lengthwise direction of a transparent glass tube 8 having a built-in ultraviolet light-emitting lamp. Irradiated.
【0022】紫外線照射を受けた試料水は貯槽9を経
て、検出装置10に送られ、モリブデン黄吸光光度法に
よる測定、あるいはモリブデン青吸光光度法による測定
が行なわれる。The sample water which has been irradiated with the ultraviolet rays is sent to the detection device 10 through the storage tank 9, and the measurement is performed by the molybdenum yellow absorption photometry or the molybdenum blue absorption photometry.
【0023】図2はこの検出装置10のモリブデン黄吸
光光度法とモリブデン青吸光光度法による測定をいずれ
も行なうことができる装置構成一例を示したものであ
り、これは既知のものであるので、その構成を操作と共
に簡単に説明する。FIG. 2 shows an example of an apparatus configuration capable of performing both the measurement by the molybdenum yellow absorption spectrophotometer and the measurement by the molybdenum blue absorption spectrophotometer of the detection apparatus 10. This is a known apparatus. The configuration will be briefly described along with the operation.
【0024】まず、採取弁101を開いてまず所定量の
試料水を透明な材料で構成されている反応槽102にと
り、採取弁101を閉じる。次ぎに撹拌を行ないなが
ら、試薬である塩酸とモリブデン酸アンモニウムの混合
溶液を第1試薬貯槽103からポンプ104で反応槽1
02に注入して一定時間の反応を行なわせる。次いで、
シュウ酸溶液を第2試薬貯槽105からポンプ106で
反応槽102に注入し、同様に一定時間の反応を行なわ
せる。この後更に、一定量の亜硫酸ナトリウムと亜硫酸
水素ナトリウムと4−アミノ−3−ヒドロキシ−1−ナ
フタレンスルホン酸の混合液を第3試薬槽107からポ
ンプ108で反応槽102に注入し、一定時間の反応を
行なわせる。First, the sampling valve 101 is opened, a predetermined amount of sample water is first taken into a reaction tank 102 made of a transparent material, and the sampling valve 101 is closed. Next, while stirring, a mixed solution of hydrochloric acid and ammonium molybdate as a reagent is supplied from the first reagent storage tank 103 to the reaction tank 1 by a pump 104.
02 and allowed to react for a certain period of time. Then
The oxalic acid solution is injected into the reaction tank 102 from the second reagent storage tank 105 by the pump 106, and the reaction is similarly performed for a predetermined time. Thereafter, a certain amount of a mixture of sodium sulfite, sodium hydrogen sulfite, and 4-amino-3-hydroxy-1-naphthalenesulfonic acid is injected from the third reagent tank 107 into the reaction tank 102 by the pump 108, and the mixture is supplied for a certain time. Allow the reaction to take place.
【0025】以上の操作により、反応槽に取り入れられ
た試料水は、これに含まれているイオン状のシリカが反
応して青色の呈色を示し、その青色の濃さは、含有され
ているイオン状シリカ成分の量に比例する。これを、発
光源109の光を反応槽102に透過させて受光部11
0でこれを受光し、光電変換して検流計111で測定す
ることができる。この測定結果を、予め求めた検量線と
比較することで試料水中に含まれている全シリカの量を
求めることができる。By the above operation, the sample water taken into the reaction tank reacts with the ionic silica contained therein to give a blue color, and the blue color is contained. It is proportional to the amount of the ionic silica component. The light from the light emitting source 109 is transmitted through the reaction tank 102 to the light receiving unit 11.
At 0, the light is received, photoelectrically converted, and measured by the galvanometer 111. The amount of total silica contained in the sample water can be determined by comparing this measurement result with a previously determined calibration curve.
【0026】測定が終了した反応槽102内の試料水
は、排水弁112で排水し、次ぎの試料水の測定に備え
る。After the measurement, the sample water in the reaction tank 102 is drained by the drain valve 112 to prepare for the next sample water measurement.
【0027】以上の図1及び図2の装置を用いて、以下
のモリブデン黄色吸光光度法による分析試験を行なっ
た。また比較のためにJIS K 0101のモリブデ
ン黄色吸光光度法に規定された手順で全シリカの分析を
行ない、その結果を下記表1に示した。Using the above-described apparatus shown in FIGS. 1 and 2, an analysis test by the following molybdenum yellow absorption spectrophotometry was performed. For comparison, all silica was analyzed according to the procedure specified by the molybdenum yellow absorption spectrophotometer of JIS K0101, and the results are shown in Table 1 below.
【0028】なお、サンプル水としては工水A,B、市
水A,Bを用いて、容量100mlのオゾン散気槽3に
10ml/minとなるように通水し、イオン化処理装
置におけるオゾン注入にはオゾンマスター(笹倉社製オ
ゾン発生器)を用いて、溶解オゾン濃度5ppmとなる
ように散気し、また紫外線照射装置は、容量100ml
とし、内部に15Wの紫外線ランプを有するものを使用
した。As sample water, working waters A and B and city waters A and B were passed through an ozone diffusion tank 3 having a capacity of 100 ml at a flow rate of 10 ml / min, and ozone was injected into an ionization apparatus. Using an ozone master (ozone generator manufactured by Sakura Co., Ltd.), air was diffused to a dissolved ozone concentration of 5 ppm.
A lamp having a 15 W ultraviolet lamp inside was used.
【0029】[0029]
【表1】 [Table 1]
【0030】この結果から分かるように、本発明装置を
用いて測定した結果は、JIS法により分析した結果と
実質的に同一であり、本発明装置によって全シリカの分
析が可能であることが確認された。As can be seen from the results, the results measured using the apparatus of the present invention were substantially the same as the results analyzed by the JIS method, and it was confirmed that the analysis of all silica was possible with the apparatus of the present invention. Was done.
【0031】実施例2 図3に示す装置は、図1の装置に比べて、主配管1に分
岐接続された試料採取管2が、オゾン散気槽3,紫外線
照射装置8,及び貯槽6,9等からなるイオン化処理装
置を通して検出装置10に試料水を流す経路(以下主経
路という)と、バイパス路11を通して検出装置10に
試料水を流す経路とを有するように設けられている点で
異なっている。なお12,13はいずれか一方の経路か
ら試料水を流すように開閉を切換えるための切換弁であ
る。他の構成は図1と同様であるので説明は省略する。Embodiment 2 The apparatus shown in FIG. 3 is different from the apparatus shown in FIG. 1 in that a sampling pipe 2 branched and connected to a main pipe 1 is provided with an ozone diffusion tank 3, an ultraviolet irradiation device 8, and a storage tank 6, 9 is provided so as to have a path for flowing the sample water to the detection device 10 through the ionization processing device 9 (hereinafter referred to as a main path) and a path for flowing the sample water to the detection device 10 through the bypass path 11. ing. Reference numerals 12 and 13 denote switching valves for switching between opening and closing so that the sample water flows from one of the paths. Other configurations are the same as those in FIG.
【0032】この図3の装置を図2の装置に接続して、
超純水製造装置のイオン交換水、逆浸透膜装置の透過
水、この逆浸透膜装置の非透過側の濃縮水を夫々試料水
として試験を行なった。試験は、切換弁12,13を切
換えて、各試料水について夫々イオン化処理装置を通し
た場合(主経路を経由)と通さない場合(バイパス路を
経由)の両方について行ない、通水条件、イオン化処理
の条件等は実施例1と同じとした。The apparatus shown in FIG. 3 is connected to the apparatus shown in FIG.
Tests were performed using, as sample water, ion-exchanged water of the ultrapure water production apparatus, permeated water of the reverse osmosis membrane apparatus, and concentrated water on the non-permeate side of the reverse osmosis membrane apparatus. The test is performed by switching the switching valves 12 and 13 so that each sample water passes through the ionization apparatus (via the main path) and does not pass (via the bypass path). The processing conditions and the like were the same as in Example 1.
【0033】また比較のために、これらの各試料水につ
いて上記JIS K 0101のモリブデン黄色吸光光
度法に規定された手順で全シリカの分析を行ない、その
結果を下記表2に示した。For comparison, all of the sample waters were analyzed for total silica according to the procedure specified in the above-mentioned molybdenum yellow absorption spectrophotometer of JIS K0101. The results are shown in Table 2 below.
【0034】[0034]
【表2】 [Table 2]
【0035】以上の結果から、主経路を経由してイオン
化処理を行なった場合には、実施例1と同様にJIS法
と実質的に一致する全シリカの測定が行なえ、バイパス
路を経由してイオン化処理を行なわない場合には、従来
と同様に試料水中のコロイド状シリカ成分を除くイオン
状シリカ成分のみの測定が行なえることが分かり、これ
によってイオン状及び非イオン状の夫々のシリカ成分の
含有量を分析することができた。From the above results, when the ionization treatment was performed via the main path, the measurement of all silica substantially in accordance with the JIS method can be performed similarly to the first embodiment, and the measurement was performed via the bypass path. When the ionization treatment is not performed, it can be seen that the measurement of only the ionic silica component except the colloidal silica component in the sample water can be performed in the same manner as in the related art, and as a result, the ionic and nonionic silica components can be measured. The content could be analyzed.
【0036】なお、本発明は以上の実施例に限定される
ものではなく、例えば純水製造設備の処理水等を連続的
に測定分析することもできる。The present invention is not limited to the above-described embodiment. For example, it is also possible to continuously measure and analyze the treated water of a pure water production facility.
【0037】図4は、このために図1あるいは図3の装
置の検出装置10として用いることができる装置の一例
を示したものである。この検出装置では、試料水を採取
弁101からコイル状の反応配管120、暗箱121内
の透明セル122、放水管123に連続的に流しなが
ら、途中で第1試薬貯槽103、第2試薬貯槽105か
ら試薬を注入して反応配管120でモリブデン黄吸光光
度法の反応を行なわせ、これを透明セル122で光学的
に吸光度を測定するようにしたものであり、これによっ
て連続的な測定分析が実現できる。FIG. 4 shows an example of an apparatus which can be used as the detection apparatus 10 of the apparatus shown in FIG. 1 or 3 for this purpose. In this detection device, the sample water is continuously flowed from the sampling valve 101 to the coil-shaped reaction pipe 120, the transparent cell 122 in the dark box 121, and the water discharge pipe 123, and the first reagent storage tank 103 and the second reagent storage 105 are provided on the way. And a reaction of molybdenum yellow absorption spectroscopy is performed in the reaction pipe 120, and the absorbance is optically measured in the transparent cell 122, thereby realizing a continuous measurement analysis. it can.
【0038】[0038]
【発明の効果】本発明の水中シリカ成分の分析装置によ
れば、対象とする水中のイオン状及び非イオン状の双方
を含む全シリカ成分(あるいはイオン状と非イオン状シ
リカ成分を別々に)を迅速にかつ容易に測定することが
できるという効果がある。According to the apparatus for analyzing a silica component in water according to the present invention, the total silica component including both ionic and nonionic components in the target water (or separately the ionic and nonionic silica components) Can be measured quickly and easily.
【0039】また諸設備における水中の全シリカ成分を
インラインで容易に測定分析することができる効果があ
り、また、連続的な監視もできるため、処理水中のシリ
カ成分の濃度が予め定めた管理基準値を越えた場合に迅
速に設備の対応操作を行なえて、処理水質の良好な管理
を実現できるという効果がある。In addition, there is an effect that all the silica components in the water in the various facilities can be easily measured and analyzed in-line, and since continuous monitoring can be performed, the concentration of the silica component in the treated water is a predetermined control standard. When the value exceeds the value, there is an effect that the corresponding operation of the equipment can be promptly performed, and good management of the treated water quality can be realized.
【図1】本発明よりなる水中のシリカ成分を分析する装
置の構成概要一例をブロックで示した図、FIG. 1 is a block diagram showing an example of a configuration outline of an apparatus for analyzing a silica component in water according to the present invention,
【図2】本発明に用いる検出装置の構成概要の一例を示
した図、FIG. 2 is a diagram showing an example of a configuration outline of a detection device used in the present invention,
【図3】本発明よりなる水中のシリカ成分を分析する装
置の構成概要の他の例をブロックで示した図、FIG. 3 is a block diagram showing another example of a configuration outline of an apparatus for analyzing a silica component in water according to the present invention,
【図4】本発明に用いる検出装置の構成概要の他の例を
示した図である。FIG. 4 is a diagram showing another example of the configuration outline of the detection device used in the present invention.
1・・・主配管、2・・・試料採取管、3・・・オゾン
散気槽、4・・・オゾンガス注入管、5・・・排気管、
6,9・・・貯槽、7・・・紫外線照射装置、8・・・
透明ガラス管、10・・・検出装置、11・・・バイパ
ス路、12,13・・・切換弁、101・・・採取弁、
102・・・反応槽、103・・・第1試薬貯槽、10
5・・・第2試薬貯槽、107・・・第3試薬貯槽、1
09・・・発光源、110・・・受光部、20・・・検
流計。DESCRIPTION OF SYMBOLS 1 ... Main piping, 2 ... Sample collection pipe, 3 ... Ozone diffusion tank, 4 ... Ozone gas injection pipe, 5 ... Exhaust pipe,
6, 9 ... storage tank, 7 ... ultraviolet irradiation device, 8 ...
Transparent glass tube, 10 detection device, 11 bypass path, 12, 13 switching valve, 101 sampling valve,
102: reaction tank, 103: first reagent storage tank, 10
5 ... second reagent storage tank, 107 ... third reagent storage tank, 1
09: light emitting source, 110: light receiving unit, 20: galvanometer.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/77 G01N 21/78 G01N 31/00 G01N 33/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 21/77 G01N 21/78 G01N 31/00 G01N 33/18
Claims (3)
水を分流させる試料採取管と、この試料採取管を通流す
る試料水に含まれる非イオン状のシリカ成分をイオン化
させるイオン化処理装置と、このイオン化処理装置を通
った試料水にモリブデン黄吸光光度法の測定に用いる試
薬、又は更にモリブデン青吸光光度法の測定に用いる試
薬を注入する試薬注入手段と、試薬注入後の試料水の黄
色又は青色の吸光度を検出するための光学手段とを備
え、上記イオン化処理装置は、試料水に酸化剤を注入す
る酸化剤注入手段、及び試料水に紫外線を照射する紫外
線照射手段を有することを特徴とする水中のシリカ成分
の分析装置。1. A sampling pipe for dividing a sample water from a main pipe through which water to be analyzed flows, and an ionization treatment for ionizing a non-ionic silica component contained in the sample water flowing through the sampling pipe. An apparatus, a reagent injecting means for injecting a reagent used for the measurement of molybdenum yellow absorption spectrophotometry or a reagent used for the measurement of molybdenum blue absorption spectrophotometry into the sample water passed through the ionization treatment apparatus, and a sample water after the reagent injection. Optical means for detecting the yellow or blue absorbance of the sample, wherein the ionization apparatus has an oxidizing agent injection means for injecting an oxidizing agent into the sample water, and an ultraviolet irradiation means for irradiating the sample water with ultraviolet light An analyzer for analyzing a silica component in water.
ることを特徴とする水中のシリカ成分の分析装置。2. The analyzer according to claim 1, wherein the oxidizing agent is ozone.
は、イオン化処理装置を通して試薬注入手段に試料を通
流させる経路と、該イオン化処理装置をバイパスして試
薬注入手段に試料を通流させる経路とが、切換え可能に
設けられていることを特徴とする水中のシリカ成分の分
析装置。3. The sample collection tube according to claim 1, wherein the sample collection tube has a path for allowing the sample to flow through the ionization apparatus to the reagent injecting means, and allows the sample to flow to the reagent injection means by bypassing the ionization apparatus. An analyzer for analyzing a silica component in water, wherein a path is provided so as to be switchable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7692693A JP2953904B2 (en) | 1993-04-02 | 1993-04-02 | Analyzer for silica component in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7692693A JP2953904B2 (en) | 1993-04-02 | 1993-04-02 | Analyzer for silica component in water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06288923A JPH06288923A (en) | 1994-10-18 |
JP2953904B2 true JP2953904B2 (en) | 1999-09-27 |
Family
ID=13619329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7692693A Expired - Lifetime JP2953904B2 (en) | 1993-04-02 | 1993-04-02 | Analyzer for silica component in water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2953904B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101523190B1 (en) | 2014-05-26 | 2015-11-20 | 서울시립대학교 산학협력단 | Sulfur oxidation device and concentration measuring method using the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4586302B2 (en) * | 2001-05-28 | 2010-11-24 | 三浦工業株式会社 | Method for measuring dissolved oxygen concentration |
JP3353096B1 (en) * | 2001-09-27 | 2002-12-03 | スガ試験機株式会社 | Silica concentration automatic measurement device |
JP6174411B2 (en) * | 2013-07-29 | 2017-08-02 | 株式会社堀場製作所 | Water quality analyzer and water quality analysis method |
JP2023025395A (en) * | 2021-08-10 | 2023-02-22 | オルガノ株式会社 | Quality management system, object management system, and object management method |
-
1993
- 1993-04-02 JP JP7692693A patent/JP2953904B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101523190B1 (en) | 2014-05-26 | 2015-11-20 | 서울시립대학교 산학협력단 | Sulfur oxidation device and concentration measuring method using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH06288923A (en) | 1994-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009028165B4 (en) | Method and apparatus for the automated determination of the chemical oxygen demand of a liquid sample | |
US5902751A (en) | Method and apparatus for the measurement of dissolved carbon | |
EP0897538B1 (en) | Method and apparatus for the measurement of dissolved carbon in deionized water | |
KR101723883B1 (en) | Apparatus and method for measuring total organic carbon with integrated oxidation reactor | |
US3659100A (en) | System and method of air pollution monitoring utilizing chemiluminescence reactions | |
KR100728600B1 (en) | Organic analysis apparatus and method for pure/ultra pure water treatment system | |
JP2000266677A (en) | Analyzer for nitrogen compound, phosphorus compound and organic contaminant | |
JP2953904B2 (en) | Analyzer for silica component in water | |
JPH0323858B2 (en) | ||
JP3269196B2 (en) | Analyzer for nitrogen compounds and phosphorus compounds in water | |
US8618820B2 (en) | Method and device for measuring the purity of ultrapure water | |
US3941563A (en) | Method and apparatus for detecting hexavalent chromium | |
KR101754557B1 (en) | Absorptiometer of Automated Apparatus for Detecting Total Nitrogen and Total Phosphorus with Absorption Cell | |
KR100840181B1 (en) | Apparatus and method for automatic detecting total nitrogen and total phosphorus | |
JP2882516B2 (en) | Analysis of compounds in water | |
JP3484207B2 (en) | Organic pollutant measurement method using ultraviolet oxidation | |
JP3538957B2 (en) | Method and apparatus for analyzing three-state nitrogen in water | |
JPS5855839A (en) | Method of measuring amount of free available chlorine in water | |
JPH10160668A (en) | Method and device for measuring nitric acid concentration by continuous flow analysis method | |
JPH0493638A (en) | Continuous measurement device of low density absorbance | |
JP7367602B2 (en) | Quantification method | |
JP2000097852A (en) | Ammonia measuring device | |
JP3651821B2 (en) | Total nitrogen measuring device | |
JPH08136526A (en) | Continuous measuring apparatus for concentration of dissolved ozone | |
KR102235405B1 (en) | Apparatus and method for measurement of hydrogen peroxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080716 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100716 |