JPH10160668A - Method and device for measuring nitric acid concentration by continuous flow analysis method - Google Patents

Method and device for measuring nitric acid concentration by continuous flow analysis method

Info

Publication number
JPH10160668A
JPH10160668A JP33483796A JP33483796A JPH10160668A JP H10160668 A JPH10160668 A JP H10160668A JP 33483796 A JP33483796 A JP 33483796A JP 33483796 A JP33483796 A JP 33483796A JP H10160668 A JPH10160668 A JP H10160668A
Authority
JP
Japan
Prior art keywords
nitric acid
measurement
acid concentration
measuring
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33483796A
Other languages
Japanese (ja)
Inventor
Yasumasa Sayama
恭正 佐山
Minoru Takeya
実 竹谷
Yutaka Hayashibe
豊 林部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP33483796A priority Critical patent/JPH10160668A/en
Publication of JPH10160668A publication Critical patent/JPH10160668A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly and accurately measure the concentration of not only a high-concentration nitric acid solution but also a low-concentration nitric acid solution by using measurement light including a plurality of wavelengths with an absorption region for a nitric acid ion and selecting the wavelength of measurement light according to the nitric acid concentration of a sample liquid and measuring absorbance. SOLUTION: A target sample liquid is selected by a switching valve 12 and the sample loop of an injection valve 11 is filled with the sample liquid by a suction pump 14. Then, the injection valve 11 is opened, the sample liquid is fed to a pipeline 40 and is fed to a measurement part 30 via a dilution part 20 by a carrier liquid that flows in the pipeline 40, and the absorbance is measured. When the nitric acid concentration level of the sample liquid is known in advance, the wavelength of the measurement light is selected according to the nitric acid concentration level and an absorbance is measured by the measurement light with a proper wavelength. Concretely speaking, light with a wavelength of 280nm-330mm has an absorption liquid for nitric acid ion so that it is used for measurement. The wavelength of the measurement light is selected after measuring the nitric acid concentration level of the sample liquid in advance by preliminary measurement when the level of the nitric acid concentration is known.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続流れ分析にお
いて、濃度に応じて波長を選択し最適な測定波長を用い
ることにより、試料液中の硝酸濃度を正確に測定する硝
酸濃度の測定方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a nitric acid concentration in a continuous flow analysis by accurately selecting a nitric acid concentration in a sample solution by selecting a wavelength according to the concentration and using an optimum measuring wavelength. Regarding the device.

【0002】窒素酸化物などを含む気体から環境汚染の
原因となる有害物質を除去するために設けられている脱
硝設備においては、液中の硝酸濃度の管理が不可欠であ
る。例えば、写真処理や造幣の分野において行われる銀
溶解工程では、金属銀を溶解する際に発生した窒素酸化
物を酸溶液に吸収処理しているが、この吸収処理では吸
収液中の正確な硝酸濃度の管理が重要である。本発明は
このような硝酸濃度測定に有用である。
[0002] In a denitration facility provided for removing harmful substances that cause environmental pollution from a gas containing nitrogen oxides and the like, it is essential to control the concentration of nitric acid in the liquid. For example, in the silver dissolution process performed in the fields of photographic processing and mint, nitrogen oxides generated when metal silver is dissolved are absorbed in an acid solution. Concentration control is important. The present invention is useful for such a nitric acid concentration measurement.

【0003】[0003]

【従来の技術】硝酸濃度の測定方法として、比重による
測定、超音波による測定、吸光光度計による測定などが
従来知られている。このうち、(1)比重測定法は試料液
の比重を測定して硝酸濃度に換算する方法であるが、試
料液温度による測定誤差が大きい問題がある。また濃度
差による比重の変化が小さいので検出感度が低く、正確
な濃度測定ができない。(2)超音波測定法は試料液の密
度から濃度を換算する方法であり、定量できる範囲が限
られており、10M以上の濃度は測定できない。(3)吸光
度法やこれに基づく微分分光光度法は、井水、河川水、
水道水などの淡水系表面水の測定に適用され、微量(ppm
レベル)の窒素酸化物イオンの定量に用いられている。
工程液のような高濃度の溶液に適用するには一万倍上の
希釈操作が必要であり、希釈操作の誤差が問題になる。
この他に、連続流れ分析による窒素酸化物イオンの定量
例が報告されているが、井水、雨水などへの適用例であ
り、工程液のような高硝酸濃度の溶液を対象としたもの
ではない。
2. Description of the Related Art As a method for measuring the concentration of nitric acid, conventionally, a measurement using a specific gravity, a measurement using an ultrasonic wave, a measurement using an absorptiometer, and the like are known. Among these methods, (1) the specific gravity measurement method is a method of measuring the specific gravity of a sample solution and converting it into a nitric acid concentration, but has a problem that a measurement error due to the temperature of the sample solution is large. Further, since the change in specific gravity due to the density difference is small, the detection sensitivity is low, and accurate density measurement cannot be performed. (2) The ultrasonic measurement method is a method of converting a concentration from the density of a sample liquid, and the range that can be quantified is limited, and a concentration of 10 M or more cannot be measured. (3) Absorbance method and differential spectrophotometry based on it are well water, river water,
Applicable to measurement of freshwater surface water such as tap water.
Level) of nitrogen oxide ions.
In order to apply to a highly concentrated solution such as a process solution, a dilution operation by 10,000 times is necessary, and an error in the dilution operation becomes a problem.
In addition, examples of quantification of nitrogen oxide ions by continuous flow analysis have been reported, but this is an example of application to well water, rainwater, etc., and is not intended for solutions with a high nitric acid concentration such as process liquids. Absent.

【0004】[0004]

【発明の解決課題】本発明は、従来の測定法における上
記問題を解決したものであって、銀溶解工程から発生す
る窒素酸化物を除去するための脱硝設備に使用する硝酸
吸収液のような高濃度の硝酸溶液はもとより、低濃度の
硝酸溶液に対しても迅速に正確な濃度測定を行うことが
できる硝酸濃度の測定方法とその装置を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional measuring method, and is intended to solve such a problem as a nitric acid absorbing solution used in a denitration facility for removing nitrogen oxides generated from a silver dissolving step. An object of the present invention is to provide a method and an apparatus for measuring the concentration of nitric acid which can quickly and accurately measure the concentration of a nitric acid solution of a low concentration as well as a high concentration of a nitric acid solution.

【0005】[0005]

【課題の解決手段】すなわち、本発明は、(1)管路を通
じて試料液を流しながら試料液の調整と吸光度の測定を
行う連続流れ分析法に基づき、試料液の吸光度から硝酸
濃度を測定する方法において、硝酸イオンに対して吸収
域を有する複数の波長を含む測定光を用い、試料液の硝
酸濃度に応じて測定光の波長を選択して吸光度の測定を
行うことを特徴とする硝酸濃度の測定方法である。
The present invention (1) measures the nitric acid concentration from the absorbance of a sample solution based on a continuous flow analysis method in which the sample solution is adjusted and the absorbance is measured while flowing the sample solution through a pipe line. In the method, using a measurement light including a plurality of wavelengths having an absorption range for nitrate ions, measuring the absorbance by selecting a wavelength of the measurement light according to the nitric acid concentration of the sample solution. Is a measuring method.

【0006】本発明の上記測定方法は、(2)高硝酸濃度
の試料液に対しては330nm側の波長の測定光を用い、
低硝酸濃度の試料液に対しては280nm側の波長の測定
光を用いる方法、(3)予備測定によって試料液の硝酸濃
度レベルを先ず測定し、その硝酸濃度レベルに基づいて
測定光の波長を選択し、この波長の測定光により本測定
を行う方法、(4)予備測定において、硝酸濃度が測定可
能域内の10M以上の試料液に対しては330nm側の測
定光を用い、10M未満の試料液に対しては280nm側
の測定光を用いて本測定を行う方法、(5)予備測定にお
いて、硝酸濃度が測定可能域を外れる試料液を希釈して
測定可能域にした後に硝酸濃度を測定する方法、(6)硝
酸濃度が測定可能域の試料液を希釈し、280nm側の測
定光を用いて硝酸濃度を測定する方法を含む。
The above-mentioned measuring method of the present invention comprises the following steps: (2) using a measuring light having a wavelength of 330 nm for a sample solution having a high nitric acid concentration;
A method using a measurement light having a wavelength of 280 nm for a sample solution having a low nitric acid concentration. (3) The nitric acid concentration level of the sample solution is first measured by preliminary measurement, and the wavelength of the measuring light is determined based on the nitric acid concentration level. (4) In the pre-measurement, using a measurement light on the 330 nm side for a sample solution with a nitric acid concentration of 10 M or more within the measurable range, using a sample light of less than 10 M (5) In preliminary measurement, dilute a sample solution whose nitric acid concentration is out of the measurable range to make the measurable range, and then measure the nitric acid concentration. And (6) a method of diluting a sample solution in a measurable range of nitric acid concentration and measuring nitric acid concentration using measuring light on the 280 nm side.

【0007】また本発明は、(7)試料液の導入部、導入
された試料液の希釈部、希釈された試料液の硝酸イオン
による吸光度を測定する測定部、これら各部を直列に結
ぶ管路によって連続流れ分析の測定系が形成されてお
り、上記測定部には硝酸イオンに対して吸収域を有する
複数の波長を含む測定光を有し、硝酸濃度に応じて測定
光の波長が選択できる分光光度計が設けられていること
を特徴とする硝酸濃度測定装置である。
The present invention also provides (7) a sample liquid introduction section, a diluted section of the introduced sample liquid, a measurement section for measuring the absorbance of the diluted sample liquid due to nitrate ions, and a pipeline connecting these sections in series. Thus, a measurement system for continuous flow analysis is formed, and the measurement section has measurement light including a plurality of wavelengths having an absorption range for nitrate ions, and the wavelength of the measurement light can be selected according to the nitric acid concentration. This is a nitric acid concentration measuring device provided with a spectrophotometer.

【0008】本発明の上記測定装置は、(8)複数の試料
液を保持して測定系の上記管路に選択的に導入する選択
供給手段が上記試料液導入部に設けられている装置、
(9)測定系の上記管路に介設された注入バルブ、該注入
バルブに接続した切替バルブ、該切替バルブに連通した
複数の試料液保持部、試料液を測定系の管路に導く吸引
ポンプ、およびこれらを結ぶ注入管路によって上記選択
供給手段が形成されている装置を含む。
(8) An apparatus according to the present invention, wherein (8) a selective liquid supply means for holding a plurality of sample liquids and selectively introducing the sample liquids into the conduit of the measurement system is provided in the sample liquid introduction section.
(9) An injection valve interposed in the above-mentioned conduit of the measurement system, a switching valve connected to the injection valve, a plurality of sample liquid holding portions connected to the switching valve, and suction for guiding the sample liquid to the conduit of the measurement system. It includes a pump and an apparatus in which the above-mentioned selective supply means is formed by an injection line connecting them.

【0009】さらに本発明の測定装置は、(10)試料液
の導入部と測定部の間に沈澱分離部が介設されている装
置、(11)測定系管路に介設された切替バルブ、該切替
バルブの試料液流入側に設けられた沈澱剤添加管路およ
び沈澱剤と試料液を混合するための混合コイル部、該切
替バルブに装着された濾過ループ、該切替バルブに連通
した洗浄管路によって沈澱分離部が形成されており、切
替バルブによって濾過ループの接続が測定系管路または
洗浄管路に切り替えられる装置、(12)試料液導入部の
選択供給手段、希釈部、沈澱分離部および測定部が中央
制御装置に接続されており、試料液の導入から吸光度の
測定に至る一連の操作が中央制御装置によって自動制御
され、該中央制御装置に記録されている吸光度の検量線
データに基づいて試料液の硝酸濃度が自動的に測定され
る装置を含む。
Further, the measuring device of the present invention comprises (10) a device in which a sedimentation / separation unit is provided between the sample liquid introduction part and the measuring unit, and (11) a switching valve provided in the measuring system pipe. A precipitant addition pipe line provided on the sample liquid inflow side of the switching valve, a mixing coil section for mixing the precipitant with the sample liquid, a filtration loop attached to the switching valve, and a washing connected to the switching valve. An apparatus in which a sedimentation separation section is formed by a pipe line, and the connection of a filtration loop is switched to a measurement system pipe line or a washing pipe line by a switching valve. (12) Selective supply means of a sample liquid introduction section, a dilution section, a sedimentation separation section Section and the measuring section are connected to the central controller, a series of operations from the introduction of the sample solution to the measurement of the absorbance are automatically controlled by the central controller, and the calibration curve data of the absorbance recorded in the central controller Try based on Include devices nitric acid concentration of the solution is measured automatically.

【0010】[0010]

【発明の実施態様】(I)測定装置 本発明に係る測定装置の一例を図1に示す。該測定装置
は試料液の導入部10と試料液の硝酸イオンによる吸光
度を測定する測定部30を有し、好ましくは導入部10
と測定部30との間に試料液の希釈部20が設けられお
り、各部を順に直列に結ぶ管路40を備え、これらによ
って連続流れ分析の測定系が形成されている。
(I) Measuring Apparatus FIG. 1 shows an example of a measuring apparatus according to the present invention. The measuring apparatus has a sample liquid inlet 10 and a measuring unit 30 for measuring the absorbance of the sample liquid due to nitrate ions.
A sample liquid diluting section 20 is provided between the sample section and the measuring section 30, and a pipe line 40 connecting the respective sections in series in order is provided, thereby forming a measuring system for continuous flow analysis.

【0011】該管路40の始端には、キャリアー液(水)
を流すためのポンプ42と脱気装置41が設けられてお
り、これらを経てキャリアー液の供給源(図示省略)が接
続している。キャリアー液は脱気装置41によって気泡
が除去されるので、液中の気泡による測定誤差が殆ど生
じない。なお、該管路40の終端には管内の流圧を調整
する背圧調整コイル43が設けられている。
At the beginning of the conduit 40, a carrier liquid (water)
A pump 42 and a degassing device 41 for flowing the carrier liquid are provided, and a supply source (not shown) of the carrier liquid is connected through these. Since bubbles are removed from the carrier liquid by the deaerator 41, measurement errors due to bubbles in the liquid hardly occur. A back pressure adjusting coil 43 for adjusting the flow pressure in the pipe is provided at the end of the pipe 40.

【0012】試料液の導入部10には上記管路40に介
設した注入バルブ11が設けられている。該注入バルブ
11は試料液を管路40に導入する部分であり、6方バ
ルブ等が用いられる。6方バルブは管路40に連通する
管部と、試料液を保持する管部(ループ)、洗浄液が流れ
る管部を有し、管路40に対するこれら管部の接続を切
り替えることにより試料液が管路40に導入される。
The sample liquid inlet 10 is provided with an injection valve 11 interposed in the pipe 40. The injection valve 11 is a part for introducing the sample liquid into the conduit 40, and a six-way valve or the like is used. The 6-way valve has a pipe communicating with the pipe 40, a pipe (loop) for holding the sample liquid, and a pipe through which the washing liquid flows. By switching the connection of these pipes to the pipe 40, the sample liquid is supplied. It is introduced into conduit 40.

【0013】上記導入部10には、好ましくは、複数の
試料液を保持して測定系の上記管路40に選択的に導入
する選択供給手段が設けられている。図示した装置例で
は、選択供給手段は、注入バルブ(6方バルブ)11に接
続した切替バルブ12、該切替バルブ12に連通した複
数の試料液保持部13、試料液を吸引して測定系の管路
に導入する吸引ポンプ14およびこれらを結ぶ注入管路
15によって形成されている。注入管路15の排出端に
はポンプ16を介して洗浄液管路17が接続している。
The introduction section 10 is preferably provided with a selective supply means for holding a plurality of sample liquids and selectively introducing the sample liquids into the conduit 40 of the measurement system. In the illustrated apparatus example, the selective supply means includes a switching valve 12 connected to an injection valve (six-way valve) 11, a plurality of sample liquid holding units 13 connected to the switching valve 12, a sample liquid suction unit, and a measuring system. It is formed by a suction pump 14 to be introduced into the pipeline and an injection pipeline 15 connecting them. A cleaning liquid line 17 is connected to a discharge end of the injection line 15 via a pump 16.

【0014】図示した装置例では、切替バルブ12とし
て4方バルブが用いられ、4種類の試料液を保持した管
路13a〜13dが切替バルブ12の各々の開口に接続
されている。切替バルブ12は管路15を通じて注入バ
ルブ11の試料液保持部(サンプルループ)に接続してお
り、管路15に対する該バルブ12の接続を切り替える
ことにより各試料液が選択される。また、これらの試料
液に流圧を与えて管路40に導く手段として吸引ポンプ
14が注入バルブ11の後方(排出側)に設けられてい
る。バルブ12の切替により選択された試料液は吸引ポ
ンプ14により管路15を通じて吸引され、上記サンプ
ルループに充填される。この試料液は注入バルブ11の
開閉により管路40に送り込まれる。この注入バルブ1
1による管路40との接続時間を調整して試料液の導入
量を正確に制御することができる。
In the illustrated apparatus example, a four-way valve is used as the switching valve 12, and pipe lines 13 a to 13 d holding four kinds of sample liquids are connected to respective openings of the switching valve 12. The switching valve 12 is connected to the sample liquid holding section (sample loop) of the injection valve 11 through the pipe 15, and each sample liquid is selected by switching the connection of the valve 12 to the pipe 15. In addition, a suction pump 14 is provided at the back (discharge side) of the injection valve 11 as a means for applying a fluid pressure to these sample liquids and guiding them to the conduit 40. The sample liquid selected by switching the valve 12 is sucked by the suction pump 14 through the pipe 15 and filled in the sample loop. This sample liquid is sent into the conduit 40 by opening and closing the injection valve 11. This injection valve 1
By adjusting the connection time with the pipe line 40 according to 1, the amount of sample liquid introduced can be accurately controlled.

【0015】注入管路15にはポンプ16を介して洗浄
液管路17が接続されており、試料液を吸引して管路4
0に導入した後に、ポンプ16を通じて洗浄液を管路1
5に送り込む。この時、溶液を逆流して流すことができ
る吸引ポンプ14を用い、洗浄液を注入バルブ11およ
び切替バルブ12に導いて管路を洗浄するのが好まし
い。
A washing liquid pipe line 17 is connected to the injection pipe line 15 via a pump 16, and sucks the sample liquid to be connected to the pipe line 4.
After the cleaning liquid has been introduced into the pipe 1
Send to 5. At this time, it is preferable to use a suction pump 14 that can reversely flow the solution and guide the cleaning liquid to the injection valve 11 and the switching valve 12 to clean the pipeline.

【0016】管路40に導入された試料液は該管路40
を流れるキャリアー液(水)によって希釈部20を経て測
定部30に送られる。該希釈部20は管路40をコイル
状に形成した部分であり、試料液はこの部分を流れる間
にキャリアー液によって希釈される。試料液の導入量を
変えることにより希釈率を調整することができる。測定
部30には試料液の硝酸イオン濃度による吸光度を測定
する分光光度計が設けられている。この分光光度計には
硝酸イオンに対して吸収域を有する複数の波長を測定光
とし、硝酸イオン濃度に応じて測定光の波長が選択でき
るものが用いられる。具体的には、少なくとも280nm
から330nmの波長域において測定波長を変更できる分
光光度計が用いられる。このような複数の波長を含む測
定光としてはD2ランプなどによる上記波長域の連続光
を利用できるが、複数の光源を用いるものでも良い。
The sample liquid introduced into the pipe 40 is
Is sent to the measuring unit 30 via the diluting unit 20 by the carrier liquid (water) flowing therethrough. The diluting section 20 is a section in which the pipe 40 is formed in a coil shape, and the sample liquid is diluted by the carrier liquid while flowing through this section. The dilution rate can be adjusted by changing the amount of the sample solution introduced. The measuring section 30 is provided with a spectrophotometer for measuring the absorbance according to the nitrate ion concentration of the sample solution. The spectrophotometer uses a plurality of wavelengths having an absorption range for nitrate ions as measurement light, and the wavelength of the measurement light can be selected according to the nitrate ion concentration. Specifically, at least 280 nm
A spectrophotometer capable of changing the measurement wavelength in a wavelength range from to 330 nm is used. As such measurement light including a plurality of wavelengths, continuous light in the above wavelength range by a D2 lamp or the like can be used, but a plurality of light sources may be used.

【0017】さらに、本発明の測定装置は試料液の導入
部と測定部の間に沈澱分離部が介設されているものを含
む。測定試料液に塩素イオン等が含まれていると、硝酸
イオンの測定波長領域(280〜330nm)に塩素イオンの吸収
が観察されて硝酸イオン濃度測定の妨げとなる。そこ
で、塩素イオン等を沈澱して除去するために沈澱分離部
が設けられる。沈澱分離部の一例を図1、2に示す。沈
澱分離部60は導入部10と測定部30との間、希釈部
20が設けられている場合には希釈部20と測定部30
に間に設けられる。
Further, the measuring apparatus of the present invention includes an apparatus in which a sedimentation / separation section is provided between the sample liquid introduction section and the measurement section. If the measurement sample solution contains chloride ions, etc., absorption of chloride ions is observed in the measurement wavelength region (280 to 330 nm) of nitrate ions, which hinders measurement of nitrate ion concentration. Therefore, a precipitation separation section is provided to precipitate and remove chloride ions and the like. One example of the precipitation separation section is shown in FIGS. The sedimentation / separation unit 60 is provided between the introduction unit 10 and the measurement unit 30, and when the dilution unit 20 is provided, the dilution unit 20 and the measurement unit 30 are provided.
Is provided in between.

【0018】図2に示す沈澱分離部60は、測定系管路
40に介設された切替バルブ61、該切替バルブ61の
試料液流入側に設けられた沈澱剤添加管路62および沈
澱剤と試料液を混合するための混合コイル部63、該切
替バルブ61に装着された濾過ループ64、該切替バル
ブ61に連通した洗浄管路65によって形成されてい
る。沈澱剤は管路62を通じて測定系管路40を流れる
試料液に添加され、混合コイル部63に導かれる。混合
コイル部63は管路をコイル状に形成した部分であり、
ここを流れる間に沈澱剤と試料液が混合し、塩素イオン
等による沈澱が生成する。この沈澱を含む試料液は切替
バルブ61の濾過ループ64に導かれる。濾過ループ6
4の内部にはその中央部に沈澱を分離する濾材が充填さ
れている。
A sedimentation separation section 60 shown in FIG. 2 includes a switching valve 61 provided in the measurement system pipe 40, a precipitant addition pipe 62 provided on the sample liquid inflow side of the switching valve 61, and a precipitant. It is formed by a mixing coil unit 63 for mixing the sample liquid, a filtration loop 64 attached to the switching valve 61, and a washing conduit 65 communicating with the switching valve 61. The precipitant is added to the sample liquid flowing through the measuring system line 40 through the line 62 and guided to the mixing coil unit 63. The mixing coil portion 63 is a portion in which the conduit is formed in a coil shape,
The precipitant and the sample solution are mixed during the flow, and a precipitate is formed due to chloride ions and the like. The sample liquid containing the precipitate is guided to the filtration loop 64 of the switching valve 61. Filtration loop 6
The inside of 4 is filled with a filter medium for separating the precipitate in the center.

【0019】図2の例は、切替バルブ61として自動六
方バルブを用いたものでり、該バルブ61には通孔61
a〜61fが設けられており、通孔61aには希釈部側
(入口側)の測定系管路40が接続し、61fには測定部
側(出口側)の測定系管路40が接続している。通孔61
bと61eは濾過ループ64によって連通されており、
また通孔61cと61dには洗浄管路65が接続してい
る。測定状態のときには、通孔61aと61b、通孔6
1eと61fが各々連通しおり、沈澱が生じた試料液は
入口側の管路40から濾過ループ64に導かれ、ここを
通過する間に沈澱が濾過され、出口側の管路40を通じ
て測定部30に送られる。一方、洗浄状態のときは、バ
ルブ61を回転することにより通孔61aと61bの接
続および通孔61eと61fの接続を解除して通孔61
bと61cおよび通孔61dと61eとを各々連通さ
せ、管路65から濾過ループ64に洗浄液を導入して沈
澱を溶脱させ、出口側の管路65を通じて外部に排出す
る。
FIG. 2 shows an example in which an automatic hexagonal valve is used as the switching valve 61.
a to 61f are provided.
The measuring system pipeline 40 on the (entrance side) is connected to the measuring system pipeline 40 on the measuring unit side (exit side). Through hole 61
b and 61e are connected by a filtration loop 64;
A cleaning conduit 65 is connected to the through holes 61c and 61d. In the measurement state, the through holes 61a and 61b, the through hole 6
1e and 61f are in communication with each other, and the sample liquid in which the precipitate has formed is led to the filtration loop 64 from the inlet line 40, the precipitate is filtered while passing therethrough, and the measuring unit 30 is passed through the outlet line 40. Sent to On the other hand, in the cleaning state, the connection between the through holes 61a and 61b and the connection between the through holes 61e and 61f are released by rotating the valve 61 so that the through hole 61
b and 61c and the through-holes 61d and 61e are communicated with each other, and the washing liquid is introduced from the pipe 65 into the filtration loop 64 to elute the precipitate, and is discharged outside through the outlet pipe 65.

【0020】以上の各部分は、好ましくは中央制御装置
50によって制御し、自動的に作動させると良い。該制
御装置50には各ポンプの流量および動作、注入バルブ
や切替バルブおよび光度計の動作を管理するプログラ
ム、吸光度から硝酸濃度を導く検量線データなどを組み
込むことにより、一連の濃度測定を自動的に行うことが
できる。
The above components are preferably controlled by a central control unit 50 and automatically operated. The controller 50 incorporates a program for managing the flow rate and operation of each pump, the operation of the injection valve and the switching valve and the photometer, and calibration curve data for deriving the nitrate concentration from the absorbance, thereby automatically performing a series of concentration measurements. Can be done.

【0021】(II)測定方法 本発明の測定方法は、管路を通じて試料液を流しながら
試料液の調整と吸光度の測定を行う連続流れ分析法に基
づき、硝酸イオンに対して吸収域を有する複数の波長の
測定光を用い、試料液の硝酸濃度に応じて測定光の波長
を選択して吸光度を測定し、この吸光度から硝酸濃度を
測定する方法である。
(II) Measuring Method The measuring method of the present invention is based on a continuous flow analysis method in which a sample solution is adjusted and an absorbance is measured while flowing the sample solution through a pipe, and a plurality of samples having an absorption region for nitrate ions are provided. Is a method of measuring the absorbance by selecting the wavelength of the measurement light in accordance with the nitric acid concentration of the sample solution using the measuring light having the wavelength, and measuring the nitric acid concentration from the absorbance.

【0022】図1に示す測定系において、切替バルブ1
2により目的の試料液を選択し、吸引ポンプ14によっ
て該試料液を注入バルブ11のサンプルループに充填す
る。次いで、注入バルブ11を開き、試料液を管路40
に送り出し、管路40を流れるキャリアー液によって希
釈部20を経て測定部30に送り、その吸光度を測定す
る。
In the measuring system shown in FIG.
The target sample solution is selected by 2 and the sample solution is filled into the sample loop of the injection valve 11 by the suction pump 14. Next, the injection valve 11 is opened and the sample solution is
To the measuring unit 30 via the diluting unit 20 with the carrier liquid flowing through the conduit 40, and the absorbance thereof is measured.

【0023】この場合、予め試料液の硝酸濃度レベルが
判明しているときには、この硝酸濃度のレベルに応じて
測定光の波長を選択し、適切な波長の測定光を用いて吸
光度を測定する。具体的には、280nm〜330nmの波
長の光は硝酸イオンに対して吸収域を有するので硝酸イ
オンによる吸光度の測定に用いることができる。この場
合、硝酸の吸収スペクトルによる単位濃度あたりの吸光
度(検出感度ないしモル吸光係数)は短波長側ほど高い
ので、試料液の硝酸濃度が低い場合には280nm付近の
検出感度が高い波長が適する。一方、硝酸濃度が高い試
料液に短波長側の波長を用いると吸光度の検量線の勾配
が大きいため読みとり誤差が大きくなり易いので、この
場合には検量線の勾配が相対的に小さい長波長側(33
0nm側)の波長が適する。
In this case, when the nitric acid concentration level of the sample solution is known in advance, the wavelength of the measuring light is selected according to the level of the nitric acid concentration, and the absorbance is measured using the measuring light having an appropriate wavelength. Specifically, light having a wavelength of 280 nm to 330 nm has an absorption range for nitrate ions, and thus can be used for measuring absorbance due to nitrate ions. In this case, since the absorbance per unit concentration (detection sensitivity or molar extinction coefficient) based on the absorption spectrum of nitric acid is higher on the shorter wavelength side, when the nitric acid concentration of the sample solution is lower, a wavelength having a higher detection sensitivity around 280 nm is suitable. On the other hand, if the wavelength on the short wavelength side is used for a sample solution having a high nitric acid concentration, the gradient of the calibration curve of absorbance is large, so that a reading error tends to be large. In this case, the gradient of the calibration curve is relatively small. (33
(0 nm side) is suitable.

【0024】通常、波長の選択は硝酸濃度10Mを基準
にすると良い。硝酸イオンの検出に用いる分光光度計は
一般に吸光度(Absorbance)を−0.5から3Abs.(Abs.
は任意単位)の範囲で測定するので、この測定範囲内に
吸光度が収まるように試料注入量および測定波長を調節
する必要がある。通常用いられている分光光度計では硝
酸濃度が10Mまでであれば試料の注入量を変更せずに
測定波長を長波長側に変更するだけで試料の硝酸濃度を
測定することができる。硝酸濃度が10Mを上回る場合
には測定波長を長波長側に変更すると共に試料注入量を
調整する必要がある。試料注入量を調整しないと一般の
分光光度計では測定可能域(-0.5〜3Abs.の吸光度)で
の測定ができない。なお、測定可能な範囲は使用する分
光光度計によって異なるので、測定波長を切り替える基
準硝酸濃度は測定系に用いられている分光光度計に応じ
て定めれば良い。
Usually, the wavelength is preferably selected based on a nitric acid concentration of 10M. Spectrophotometers used for detecting nitrate ions generally have an absorbance of -0.5 to 3 Abs. (Abs.
(Arbitrary unit), the sample injection amount and the measurement wavelength must be adjusted so that the absorbance falls within this measurement range. With a commonly used spectrophotometer, if the nitric acid concentration is up to 10M, the nitric acid concentration of the sample can be measured only by changing the measurement wavelength to the longer wavelength side without changing the injection amount of the sample. When the nitric acid concentration exceeds 10 M, it is necessary to change the measurement wavelength to the longer wavelength side and to adjust the sample injection amount. Unless the sample injection amount is adjusted, measurement in a measurable range (absorbance of -0.5 to 3 Abs.) Cannot be performed with a general spectrophotometer. Since the measurable range differs depending on the spectrophotometer used, the reference nitric acid concentration for switching the measurement wavelength may be determined according to the spectrophotometer used in the measurement system.

【0025】試料液の硝酸濃度のレベルが不明の場合に
は、予備測定によって試料液の硝酸濃度のレベルを先ず
測定し、その硝酸濃度のレベルに基づいて測定光の波長
を選択し、この波長の測定光により本測定を行えば良
い。例えば、予備測定における硝酸濃度が10M以上の
試料液に対しては330nm側の測定光を用い、10M未
満の試料液に対しては280nm側の測定光を用いて本測
定を行う。
When the level of the nitric acid concentration of the sample solution is unknown, the level of the nitric acid concentration of the sample solution is first measured by preliminary measurement, and the wavelength of the measuring light is selected based on the level of the nitric acid concentration. The main measurement may be performed using the measurement light. For example, the main measurement is performed using the measurement light on the 330 nm side for a sample solution having a nitric acid concentration of 10 M or more in the preliminary measurement, and using the measurement light on the 280 nm side for a sample solution having a nitric acid concentration of less than 10 M.

【0026】また、試料液の硝酸濃度が測定可能域を外
れるものは、さらに試料液を希釈した後に波長を選択し
て硝酸濃度を測定する。すなわち、試料液の硝酸濃度に
よっては測定した吸光度が適正な範囲を外れる場合があ
る。この時には適正範囲になるように、試料注入時のキ
ャリアー液の流量(Xμl/sec)と注入バルブの開閉時間
(Ysec)を調整して試料液の注入量(X・Yμl)を制御す
る。例えば、試料液の硝酸濃度が14M以上のものは3
30nm波長の測定光によっても測定誤差が大きいので、
試料液の注入量を減少して希釈率を高め、14M未満の
濃度レベルに整えた後に、この濃度レベルに応じた波長
を選択して吸光度を測定する。また、硝酸濃度のレベル
が測定可能域の場合にも試料液の希釈率を高め、感度の
高い短波長側(280nm側)の測定光によって吸光度を測
定することにより、精度の高い測定結果が得られるもの
もある。
If the nitric acid concentration of the sample solution is out of the measurable range, the sample solution is further diluted and the wavelength is selected to measure the nitric acid concentration. That is, depending on the nitric acid concentration of the sample solution, the measured absorbance may be out of an appropriate range. At this time, the flow rate (Xμl / sec) of the carrier liquid at the time of sample injection and the opening and closing time of the injection valve are set so that they are within the appropriate range.
(Ysec) is adjusted to control the injection amount (X · Yμl) of the sample solution. For example, when the nitric acid concentration of the sample solution is 14M or more, 3
Since the measurement error is large even with the measurement light of 30 nm wavelength,
After decreasing the injection amount of the sample solution to increase the dilution rate and adjusting the concentration to a concentration level of less than 14M, the wavelength according to the concentration level is selected and the absorbance is measured. Even when the nitric acid concentration level is within the measurable range, the dilution ratio of the sample solution is increased, and the absorbance is measured using the highly sensitive short-wavelength side (280 nm side) measurement light to obtain highly accurate measurement results. Some are done.

【0027】塩素イオン等が含まれている試料液につい
ては、これが測定誤差になるので濾過分離部60を経由
させて塩素イオンを除去する。すなわち、管路40を流
れる試料液に管路62を通じて硫酸銀溶液などの沈澱剤
を添加する。この硫酸銀溶液を含む試料液は混合コイル
部63に導かれ、ここで液中の塩素イオンと硫酸銀との
反応が進み、塩化銀の沈澱を生じる。この沈澱を含む試
料液は濾過ループ64に導かれ、沈澱が濾過分離され
る。沈澱が除去された試料液は管路40を通じて測定部
30に導かれ、液中の硝酸イオンの吸光度が測定され
る。
For a sample solution containing chlorine ions and the like, this causes a measurement error, so that the chlorine ions are removed through the filtration / separation unit 60. That is, a precipitant such as a silver sulfate solution is added to the sample solution flowing through the pipe 40 through the pipe 62. The sample solution containing the silver sulfate solution is guided to the mixing coil unit 63, where the reaction between the chloride ions in the solution and silver sulfate proceeds, and silver chloride precipitates. The sample solution containing the precipitate is led to a filtration loop 64, and the precipitate is separated by filtration. The sample liquid from which the precipitate has been removed is led to the measuring section 30 through the conduit 40, and the absorbance of nitrate ions in the liquid is measured.

【0028】測定した吸光度から硝酸濃度を知るには検
量線を利用すれば良い。検量線は種々の濃度(0〜14M)の
硝酸イオン標準液を用い、これを実際に測定して得られ
た最大吸光度をもって当該濃度の吸光度とし、各濃度の
吸光度を結んだグラフとして作成される。なお、測定波
長の変更および試料注入量の変更を行なうためには、こ
れらの条件を考慮に入れた検量線を利用する。
To determine the nitric acid concentration from the measured absorbance, a calibration curve may be used. The calibration curve is prepared as a graph that uses the nitrate ion standard solution of various concentrations (0 to 14 M), the maximum absorbance obtained by actually measuring this as the absorbance of the concentration, and the absorbance of each concentration. . In order to change the measurement wavelength and the sample injection amount, a calibration curve taking these conditions into consideration is used.

【0029】具体的には、一例として次式によって得ら
れる検量線が用いられる。 X=(A−b)/a ・・・・(1) X:硝酸イオン濃度(M) A:測定吸光度(最大吸光度、Abs.) a:硝酸イオン濃度1Mあたりの検出感度(Abs./M) b:ブランク吸光度(硝酸濃度0Mを測定した場合の吸
光度、Abs.) ここで、検出感度aは測定波長および試料注入量により
変化する。そこで予め測定に用いる各測定波長の硝酸イ
オンに対する検出感度(Τλ:ある特定波長におけるモ
ル吸光系数、波長により設定)、および試料注入量V
(μl:キャリアー流量C(μl/sec)と試料注入時間t(s
ec)の積)と検出感度の関係K(K=V×f、f:試料注
入量を変化させた時の検出感度変化率)との関係から、
次式に基づいて実験的に検出感度aを求めておき、それ
ぞれ測定条件を変化させた場合に最適値を使用するよう
に設定する。 a=Τλ×K、すなわち、X=(A−b)/Τλ×K ・・・・(2)
Specifically, a calibration curve obtained by the following equation is used as an example. X = (A−b) / a (1) X: nitrate ion concentration (M) A: measured absorbance (maximum absorbance, Abs.) A: detection sensitivity per 1 M nitrate ion concentration (Abs./M) B) Blank absorbance (absorbance measured when nitric acid concentration is 0 M, Abs.) Here, detection sensitivity a changes depending on the measurement wavelength and the sample injection amount. Therefore, the detection sensitivity to nitrate ion at each measurement wavelength used in advance for measurement (Δλ: set by the molar absorption system number and wavelength at a specific wavelength) and the sample injection amount V
(Μl: carrier flow rate C (μl / sec) and sample injection time t (s
ec) and the relationship between detection sensitivity K (K = V × f, f: detection sensitivity change rate when the sample injection amount is changed)
The detection sensitivity a is experimentally obtained based on the following equation, and the setting is made so that the optimum value is used when the measurement conditions are changed. a = Τλ × K, that is, X = (A−b) / Τλ × K (2)

【0030】この式を検量線として利用することによ
り、例えば、280nmの波長を用い最大1Mまでの硝酸
濃度について検量線を作成すれば、測定波長および試料
注入量を変化させても測定条件の変更に伴う硝酸イオン
に対する検出感度変化を算出して硝酸イオン濃度を求め
ることができる。なお、この検量線データは測定装置の
中央制御装置に記憶させておくことにより、自動測定化
が可能である。
By using this equation as a calibration curve, for example, if a calibration curve is created for a nitric acid concentration up to 1 M using a wavelength of 280 nm, the measurement conditions can be changed even if the measurement wavelength and the sample injection amount are changed. , The change in detection sensitivity to nitrate ion accompanying the calculation can be used to determine the nitrate ion concentration. The calibration curve data can be automatically measured by storing it in the central control device of the measuring device.

【0031】[0031]

【実施例】以下に本発明の実施例を示す。測定装置とし
ては図1の測定系からなるものを用いた。測定系管路は
内径1mm、外径2mmのPTFE(ホ゜リテトラフルオロエチレン)製チューブ
を使用した。なお、背圧コイル43には内径0.5mm、
外径1.7mmのPTFEを使用した。また、必要に応じて希
釈部および沈殿分離部に導いて希釈および塩素イオンを
除去した。濾過分離部60の濾材には親水性PTFE膜(直
径25mm、膜孔径0.45μm以下)などの濾過膜を用いた。塩
素イオンの沈澱剤としては硫酸銀溶液(100ppm水溶液0.
5ml/min)を用い、洗浄管路65から導入される沈澱溶
解液としては10%アンモニア水または0.5Mチオ尿素
液(流量:1ml/min)を用いた。
Examples of the present invention will be described below. As the measuring apparatus, an apparatus having the measuring system shown in FIG. 1 was used. As a measurement system conduit, a PTFE (polytetrafluoroethylene) tube having an inner diameter of 1 mm and an outer diameter of 2 mm was used. The back pressure coil 43 has an inner diameter of 0.5 mm,
PTFE having an outer diameter of 1.7 mm was used. Further, it was led to a dilution section and a precipitation separation section as needed to dilute and remove chloride ions. A filtration membrane such as a hydrophilic PTFE membrane (diameter 25 mm, membrane pore diameter 0.45 μm or less) or the like was used as a filter medium of the filtration separation unit 60. Silver chloride solution (100 ppm aqueous solution
5% / min), and 10% aqueous ammonia or a 0.5M thiourea solution (flow rate: 1 ml / min) was used as the precipitate dissolving solution introduced from the washing line 65.

【0032】実施例1 (10M未満の硝酸濃度測定)表1に示す初期測定条件
下で試料溶液(0.1M硝酸溶液)を測定系に導入した後
に、測定部に導いて硝酸イオン濃度に基づく吸光度を測
定した。この最大測定値が光度計の測定可能な最大吸光
度以下(一般に3Abs.以下)であるものは、予め作成さ
れた検量線との対比から、測定された最大吸光度に対応
する硝酸濃度を求めた(表1試料No.1)。試料液中の硝
酸イオン濃度が高く、初期設定条件下で測定した最大吸
光度が光度計の測定可能な最大吸光度を越えるものは、
測定波長を300nmに変更して再度測定を行い硝酸濃度
を測定した(表1試料No.2)。この再測定による最大吸
光度がやはり測定可能域を逸脱する場合ものは、更に測
定波長を330nmに変更して再び測定を行い、測定可能
域に収まる最大吸光度によって硝酸濃度を測定した(表
1試料No.3)。また、測定可能域の試料液について希釈
率を高め、短波長側の測定光を用いて硝酸濃度を測定し
た(表1試料No7)。
Example 1 (Measurement of nitric acid concentration of less than 10 M) A sample solution (0.1 M nitric acid solution) was introduced into the measuring system under the initial measuring conditions shown in Table 1, and then guided to the measuring section, and the absorbance based on the nitrate ion concentration was measured. Was measured. If the maximum measured value was less than the maximum absorbance measurable by the photometer (generally 3 Abs. Or less), the nitrate concentration corresponding to the measured maximum absorbance was determined from a comparison with a previously prepared calibration curve ( Table 1 Sample No. 1). If the nitrate ion concentration in the sample solution is high and the maximum absorbance measured under the initial setting conditions exceeds the maximum absorbance measurable by the photometer,
The measurement wavelength was changed to 300 nm, and the measurement was performed again to measure the nitric acid concentration (Table 1 sample No. 2). If the maximum absorbance due to this re-measurement also deviated from the measurable range, the measurement wavelength was further changed to 330 nm, the measurement was performed again, and the nitrate concentration was measured based on the maximum absorbance falling within the measurable range (Table 1 sample No. .3). Further, the dilution ratio of the sample solution in the measurable region was increased, and the nitric acid concentration was measured using the measurement light on the short wavelength side (Table 1 sample No. 7).

【0033】(10M以上の硝酸濃度測定)上述の10
M未満濃度の測定ルーチンを行っても、測定した最大吸
光度が測定可能域を越えるものについては、測定波長を
330nmに設定したまま試料注入量を制御して試料液の
希釈率を高めて測定した。例えば、硝酸濃度11Mレベ
ルの試料液については、上記初期測定条件のうち試料注
入量を33μl、試料注入時間を1秒に変えて吸光度を
測定し、この最大吸光度から検量線に基づいて硝酸濃度
を求めた(表1試料No.4)。また、硝酸濃度が13Mレ
ベルの試料液については、流量:1.0ml/min、試料注入
量:17μl、試料注入時間1秒、測定波長:330nmの
条件で吸光度を測定し、その最大吸光度から検量線に基
づいて硝酸濃度を求めた(表1試料No.5)。試料No.1〜
No.7の測定結果を測定条件と共に表1にまとめて示し
た。
(Measurement of nitric acid concentration of 10 M or more)
Even if a measurement routine of a concentration of less than M is performed, if the measured maximum absorbance exceeds the measurable range, the measurement is performed by increasing the dilution rate of the sample liquid by controlling the sample injection amount while setting the measurement wavelength to 330 nm. . For example, for a sample solution having a nitric acid concentration of 11 M, absorbance was measured by changing the sample injection amount to 33 μl and the sample injection time to 1 second among the above initial measurement conditions, and the nitrate concentration was determined based on the calibration curve from the maximum absorbance. (Sample No. 4 in Table 1). For a sample solution with a nitric acid concentration of 13 M, absorbance was measured under the conditions of a flow rate of 1.0 ml / min, a sample injection amount of 17 μl, a sample injection time of 1 second, and a measurement wavelength of 330 nm. The nitric acid concentration was determined based on the line (Table 1, Sample No. 5). Sample No.1 ~
Table 1 shows the measurement results of No. 7 together with the measurement conditions.

【0034】[0034]

【表1】 [Table 1]

【0035】実施例2 図1の測定装置を用い、脱硝設備中の窒素ガス吸収液を
試料液とし、表2に示す測定条件にて吸光度を測定し、
その最大吸光度から検量線に基づいて硝酸イオン濃度を
求めた。この結果を測定条件と共に表2に示した。これ
とは別に中和滴定法によって同一試料液の硝酸濃度を測
定した結果を表2に対比して示した。本発明の測定結果
は常用されている中和滴定法による測定濃度と良く一致
した結果が得られた。
Example 2 Using the measuring apparatus shown in FIG. 1, the nitrogen gas absorbing liquid in the denitration equipment was used as a sample liquid, and the absorbance was measured under the measuring conditions shown in Table 2.
The nitrate ion concentration was determined from the maximum absorbance based on a calibration curve. The results are shown in Table 2 together with the measurement conditions. Separately, the results of measuring the nitric acid concentration of the same sample solution by the neutralization titration method are shown in Table 2. The measurement results of the present invention were in good agreement with the concentrations measured by the commonly used neutralization titration method.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】以上述べた本発明の測定方法および装置
によれば、連続流れ分析に基づき、濃度に応じて波長を
選択し最適な測定波長を用いることにより、脱硝設備内
の硝酸吸収液のような高濃度の硝酸溶液はもとより、低
濃度の硝酸溶液に対しても迅速に正確な濃度測定を行う
ことができる。
According to the measurement method and apparatus of the present invention described above, the wavelength is selected according to the concentration and the optimum measurement wavelength is used based on the continuous flow analysis, so that the nitric acid absorbing solution in the denitration equipment can be used. It is possible to quickly and accurately measure the concentration of a nitric acid solution having a low concentration as well as a nitric acid solution having such a high concentration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る測定装置の測定系を示す概念図FIG. 1 is a conceptual diagram showing a measurement system of a measurement device according to the present invention.

【図2】 上記測定装置における沈澱分離部の概念図FIG. 2 is a conceptual diagram of a settling / separation unit in the measuring device.

【符号の説明】[Explanation of symbols]

10;試料液導入部、 11:注入バルブ、 12:切
替バルブ、 13:試料保持部、 14:吸引ポンプ、
15:管路、 16:ポンプ、 17:洗浄液管路、
20:希釈部、 30:測定部、 40:管路、 4
1:脱気装置、42:ポンプ、 43:背圧コイル、
50:中央制御装置
10: sample liquid introduction part, 11: injection valve, 12: switching valve, 13: sample holding part, 14: suction pump,
15: line, 16: pump, 17: washing liquid line,
20: dilution section, 30: measurement section, 40: pipeline, 4
1: deaerator, 42: pump, 43: back pressure coil,
50: Central control unit

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 管路を通じて試料液を流しながら試料液
の調整と吸光度の測定を行う連続流れ分析法に基づき、
試料液の吸光度から硝酸濃度を測定する方法において、
硝酸イオンに対して吸収域を有する複数の波長を含む測
定光を用い、試料の硝酸濃度に応じて測定光の波長を選
択して吸光度の測定を行うことを特徴とする硝酸濃度の
測定方法。
1. A continuous flow analysis method for adjusting a sample solution and measuring absorbance while flowing the sample solution through a pipe,
In the method of measuring the nitric acid concentration from the absorbance of the sample solution,
A method for measuring a nitric acid concentration, comprising using a measuring light including a plurality of wavelengths having an absorption range for nitrate ions and selecting a wavelength of the measuring light according to a nitric acid concentration of a sample to measure an absorbance.
【請求項2】 高硝酸濃度の試料液に対しては330nm
側の波長の測定光を用い、低硝酸濃度の試料液に対して
は280nm側の波長の測定光を用いる請求項1に記載の
測定方法。
2. A sample solution having a high nitric acid concentration is 330 nm.
The measurement method according to claim 1, wherein the measurement light having a wavelength of 280 nm is used for a sample solution having a low nitric acid concentration, using the measurement light having a wavelength of about 280 nm.
【請求項3】 予備測定によって試料液の硝酸濃度レベ
ルを先ず測定し、その硝酸濃度レベルに基づいて測定光
の波長を選択し、この波長の測定光により本測定を行う
請求項1または2に記載の測定方法。
3. The method according to claim 1, wherein the nitric acid concentration level of the sample liquid is first measured by preliminary measurement, the wavelength of the measuring light is selected based on the nitric acid concentration level, and the main measurement is performed using the measuring light of this wavelength. The measurement method described.
【請求項4】 予備測定において、硝酸濃度が測定可能
域内の10M以上の試料液に対しては330nm側の測定
光を用い、10M未満の試料液に対しては280nm側の
測定光を用いて本測定を行う請求項3に記載の測定方
法。
4. In a preliminary measurement, a measurement light on the 330 nm side is used for a sample solution having a nitric acid concentration of 10 M or more in a measurable range, and a measurement light on the 280 nm side is used for a sample solution having a nitric acid concentration of less than 10 M. The measurement method according to claim 3, wherein the main measurement is performed.
【請求項5】 予備測定において、硝酸濃度が測定可能
域を外れる試料液を希釈して測定可能域にした後に硝酸
濃度を測定する請求項1〜4のいずれかに記載の測定方
法。
5. The method according to claim 1, wherein, in the preliminary measurement, the nitric acid concentration is measured after diluting a sample solution having a nitric acid concentration outside the measurable range to a measurable range.
【請求項6】 硝酸濃度が測定可能域の試料液を希釈
し、280nm側の測定光を用いて硝酸濃度を測定する請
求項1〜4のいずれかに記載の測定方法。
6. The method according to claim 1, wherein the sample solution in which the nitric acid concentration can be measured is diluted, and the nitric acid concentration is measured using a measuring light on the 280 nm side.
【請求項7】 試料液の導入部、導入された試料液の希
釈部、希釈された試料液の硝酸イオンによる吸光度を測
定する測定部、これら各部を直列に結ぶ管路によって連
続流れ分析の測定系が形成されており、上記測定部には
硝酸イオンに対して吸収域を有する複数の波長を含む測
定光を有し、硝酸濃度に応じて測定光の波長が選択でき
る分光光度計が設けられていることを特徴とする硝酸濃
度測定装置。
7. A continuous flow analysis measurement using a sample liquid introducing section, a diluted section of the introduced sample liquid, a measuring section for measuring the absorbance of the diluted sample liquid due to nitrate ions, and a pipe connecting these sections in series. A system is formed, and the measuring unit is provided with a spectrophotometer that has measurement light including a plurality of wavelengths having an absorption range for nitrate ions and that can select the wavelength of the measurement light according to the nitric acid concentration. A nitric acid concentration measuring device.
【請求項8】 複数の試料液を保持して測定系の上記
管路に選択的に導入する選択供給手段が上記試料液導入
部に設けられている請求項6に記載の測定装置。
8. The measuring apparatus according to claim 6, wherein a selective supply means for holding a plurality of sample liquids and selectively introducing the sample liquids into the conduit of the measurement system is provided in the sample liquid introduction section.
【請求項9】 測定系の上記管路に介設された注入バル
ブ、該注入バルブに接続した切替バルブ、該切替バルブ
に連通した複数の試料液保持部、試料液を測定系の管路
に導く吸引ポンプ、およびこれらを結ぶ注入管路によっ
て上記選択供給手段が形成されている請求項7に記載の
測定装置。
9. An injection valve interposed in the pipe of the measurement system, a switching valve connected to the injection valve, a plurality of sample liquid holding portions connected to the switching valve, and a sample liquid supplied to the pipe of the measurement system. 8. The measuring device according to claim 7, wherein said selective supply means is formed by a guiding suction pump and an injection line connecting them.
【請求項10】 試料液の導入部と測定部の間に沈澱分
離部が介設されている請求項6〜8のいずれかに記載の
測定装置。
10. The measuring apparatus according to claim 6, wherein a precipitation separating section is provided between the sample liquid introducing section and the measuring section.
【請求項11】測定系管路に介設された切替バルブ、該
切替バルブの試料液流入側に設けられた沈澱剤添加管路
および沈澱剤と試料液を混合するための混合コイル部、
該切替バルブに装着された濾過ループ、該切替バルブに
連通した洗浄管路によって沈澱分離部が形成されてお
り、切替バルブによって濾過ループの接続が測定系管路
または洗浄管路に切り替えられる請求項9に記載の測定
装置。
11. A switching valve interposed in a measurement system pipe, a precipitant addition pipe provided on a sample liquid inflow side of the switching valve, and a mixing coil section for mixing the precipitant with the sample liquid.
The filter loop mounted on the switching valve and a washing line communicating with the switching valve form a sedimentation separation section, and the connection of the filtration loop is switched to a measurement system line or a washing line by the switching valve. 10. The measuring device according to 9.
【請求項12】 試料液導入部の選択供給手段、希釈
部、沈澱分離部および測定部が中央制御装置に接続され
ており、試料液の導入から吸光度の測定に至る一連の操
作が中央制御装置によって自動制御され、該中央制御装
置に記録されている吸光度の検量線データに基づいて試
料液の硝酸濃度が自動的に測定される請求項10または
11に記載の測定装置。
12. A means for selectively supplying a sample liquid introduction section, a dilution section, a precipitation separation section, and a measurement section are connected to a central controller, and a series of operations from introduction of the sample liquid to measurement of absorbance are performed by the central controller. The measuring device according to claim 10, wherein the nitric acid concentration of the sample solution is automatically measured based on the calibration curve data of the absorbance recorded in the central controller.
JP33483796A 1996-11-30 1996-11-30 Method and device for measuring nitric acid concentration by continuous flow analysis method Withdrawn JPH10160668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33483796A JPH10160668A (en) 1996-11-30 1996-11-30 Method and device for measuring nitric acid concentration by continuous flow analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33483796A JPH10160668A (en) 1996-11-30 1996-11-30 Method and device for measuring nitric acid concentration by continuous flow analysis method

Publications (1)

Publication Number Publication Date
JPH10160668A true JPH10160668A (en) 1998-06-19

Family

ID=18281782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33483796A Withdrawn JPH10160668A (en) 1996-11-30 1996-11-30 Method and device for measuring nitric acid concentration by continuous flow analysis method

Country Status (1)

Country Link
JP (1) JPH10160668A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165152A1 (en) * 2012-04-30 2013-11-07 주식회사 삼천리 Concentration measuring aid
WO2014002677A1 (en) * 2012-06-25 2014-01-03 株式会社日立ハイテクノロジーズ Automatic analysis device and test sample measurement method
CN107101957A (en) * 2017-05-12 2017-08-29 清华大学 Detect the device and the detection method using the device of inorganic hydrated ion concentration
EP3548861A4 (en) * 2016-12-05 2020-11-04 B.G. Negev Technologies & Applications Ltd., at Ben-Gurion University In-situ measurement of nitrate in soil
CN114428064A (en) * 2021-12-31 2022-05-03 江苏和达电子科技有限公司 Method for detecting content of nitrate ions in copper etching solution

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165152A1 (en) * 2012-04-30 2013-11-07 주식회사 삼천리 Concentration measuring aid
KR101330417B1 (en) * 2012-04-30 2013-11-15 주식회사 삼천리 Assistant apparatus for measuring concentration
WO2014002677A1 (en) * 2012-06-25 2014-01-03 株式会社日立ハイテクノロジーズ Automatic analysis device and test sample measurement method
JP2014006160A (en) * 2012-06-25 2014-01-16 Hitachi High-Technologies Corp Automatic analyzer and sample measurement method
US10168345B2 (en) 2012-06-25 2019-01-01 Hitachi High-Technologies Corporation Automatic analysis apparatus and sample measuring method
EP3548861A4 (en) * 2016-12-05 2020-11-04 B.G. Negev Technologies & Applications Ltd., at Ben-Gurion University In-situ measurement of nitrate in soil
US11175223B2 (en) 2016-12-05 2021-11-16 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University In-situ measurement of nitrate in soil
AU2017372058B2 (en) * 2016-12-05 2022-10-06 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University In-Situ measurement of nitrate in soil
CN107101957A (en) * 2017-05-12 2017-08-29 清华大学 Detect the device and the detection method using the device of inorganic hydrated ion concentration
CN114428064A (en) * 2021-12-31 2022-05-03 江苏和达电子科技有限公司 Method for detecting content of nitrate ions in copper etching solution
CN114428064B (en) * 2021-12-31 2023-09-19 江苏和达电子科技有限公司 Method for detecting content of nitrate ions in copper etching solution

Similar Documents

Publication Publication Date Title
US5902751A (en) Method and apparatus for the measurement of dissolved carbon
CN100529733C (en) Non-contact COD/DOC water quality on-line monitoring method and device by spectrum method
US6762832B2 (en) Methods and systems for controlling the concentration of a component in a composition with absorption spectroscopy
US7556773B2 (en) Analyzer device and method
JP2009288228A (en) Method and device for automatic analysis quantitative observation
US5968835A (en) Method for estimating nitric acid and nitrous acid ions
US3898042A (en) Method and apparatus for continuously determining total copper in an aqueous stream
JPWO2018179494A1 (en) Water quality measurement device
KR101692677B1 (en) Apparatus for Measuring Turbidity of Water with Bubble Removing Portion
JPH10160668A (en) Method and device for measuring nitric acid concentration by continuous flow analysis method
US3186799A (en) Apparatus for automatic analyzing
JPS61172058A (en) Method and device for continuously monitoring organic compound in water current
JP2004522973A (en) Continuous flow titration
US20210370235A1 (en) Method for preparing water quality profile, method for inspecting separation membrane module, and water treatment apparatus
CN112748190A (en) Interface system and corresponding method
JP2008002916A (en) Component removing system for in-line removing specific component in sample liquid
JP2953904B2 (en) Analyzer for silica component in water
KR100840181B1 (en) Apparatus and method for automatic detecting total nitrogen and total phosphorus
CN112305034B (en) Method for calibrating an analytical measurement device and measurement points of an analytical measurement device
CN114324287A (en) Hexavalent chromium monitoring system based on fluorescence detection
JP3538957B2 (en) Method and apparatus for analyzing three-state nitrogen in water
US20200292444A1 (en) Testing method for residual organic compounds in a liquid sample
JPH0493638A (en) Continuous measurement device of low density absorbance
JP3329071B2 (en) Method and apparatus for analyzing nitrate and nitrite ions
JP2009115758A (en) Method of measuring dissolved inorganic nitrogen in seawater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203