CN100529733C - Non-contact COD/DOC water quality on-line monitoring method and device by spectrum method - Google Patents

Non-contact COD/DOC water quality on-line monitoring method and device by spectrum method Download PDF

Info

Publication number
CN100529733C
CN100529733C CNB2005100383315A CN200510038331A CN100529733C CN 100529733 C CN100529733 C CN 100529733C CN B2005100383315 A CNB2005100383315 A CN B2005100383315A CN 200510038331 A CN200510038331 A CN 200510038331A CN 100529733 C CN100529733 C CN 100529733C
Authority
CN
China
Prior art keywords
light
chopper wheel
filter
beam splitting
splitting chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100383315A
Other languages
Chinese (zh)
Other versions
CN1683921A (en
Inventor
陈军
王亚萍
刘文清
刘建国
连翠华
陆钒
胡学明
曾宗泳
魏庆农
陆亦怀
方武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Institute of Optics and Fine Mechanics of CAS
Original Assignee
Anhui Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Institute of Optics and Fine Mechanics of CAS filed Critical Anhui Institute of Optics and Fine Mechanics of CAS
Priority to CNB2005100383315A priority Critical patent/CN100529733C/en
Publication of CN1683921A publication Critical patent/CN1683921A/en
Application granted granted Critical
Publication of CN100529733C publication Critical patent/CN100529733C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention discloses a kind of spectral non-contact on-line COD/DOC water quality monitoring method and device. In the optical path, there are low pressure mercury lamp as light source, reticule, UV filter and visible light filter, beam splitter and photomultiplier successively. Light beam is made to pass through freely falling water flow and the UV absorbance and the visible light absorbance of the water flow are measured so as to obtain the COD value of water through inversion with the difference between the visible light absorbance and the UV absorbance. The present invention realizes the true on-line COD/DOC water quality monitoring without need of water sample pre-treatment, chemical reagent and regular cleaning.

Description

Spectroscopic methodology noncontact COD/DOC on-line water quality monitoring method and device
Technical field
The invention belongs to environmental monitoring technology and analysis, optical technology, specifically is a kind of spectroscopic methodology COD/DOC on-line water quality monitoring method and device.
Background technology
Chemical oxygen demand (COD) is called for short COD, and dissolved organic carbon is called for short DOC, is the important indicator of weighing sewage discharge.Potassium dichromate method is generally adopted in the laboratory, is exactly in strongly acidic solution, and add a certain amount of potassium dichromate and make oxygenant, under special-purpose composite catalyst, the organism in the oxidize water, thereby the COD value in the measurement water outlet.This method will add chemical reagent because sewage is carried out acid treatment, brought secondary pollution to water quality, and the reaction time is long, can not accomplish on-line real time monitoring.The water body spectrum monitoring fast method of abroad carrying out is represented the trend of water sample analysis to the spectroscopic methodology technical development.Often can save sampling system chemistry pre-treatment process for the monitoring spectral analysis, apparatus structure is succinct.But existing C OD spectroscopic methodology is generally all adopted water sample in the sample cell and is measured.Need add chemical reagent and often will clean sample cell when water sample analysis, the with serious pollution environment of water because the sample cell window contacts sewage, pollutes especially severe especially at home, at all can't long-term stable operation as the on-line monitoring instrument.
Summary of the invention
The purpose of this invention is to provide a kind of spectroscopic methodology noncontact COD/DOC on-line water quality monitoring method and device,
Utilize light beam to pass the freely falling body current, measure the absorbance pass visible light and ultraviolet light behind the current, and the value by COD in the difference inverting water outlet of visible light and ultraviolet light absorbance.Realize noncontact spectroscopy measurements COD in water body/DOC value.Thereby need not the water sample pre-service, need not chemical reagent consumption, need not frequent cleaning and become real water-quality COD/DOC on-line monitoring instrument.
Spectroscopic methodology noncontact COD/DOC on-line water quality monitoring method, it is characterized in that ultraviolet filter (2) and vision filter (3) are installed on the chopper wheel (12), control by stepper motor, and locate by optocoupler, ultraviolet filter (2) or vision filter (3) on the chopper wheel (12) that the light that sends from low pressure mercury lamp light source (1) passes through to rotate, the light that comes out through optical filter (2) or (3) is divided into the two-way light beam by 45 ° of beam splitting chips (5), wherein one the tunnel be folded to 90 ° of directions as reference light path reflection, by catoptron (6) and (10), beam splitting chip (9) is to photomultiplier (11); Another road penetrates as measuring light Reuter after chopper wheel (7), by at the uniform velocity stable cascade to be measured (8), seeing through beam splitting chip (9) is received by photomultiplier (11), chopper wheel (7) is by step motor control, passing through and closure of control survey light path and reference path distinguished in the optocoupler location, when light source (1) passes through ultraviolet filter (2), measure light path by tested cascade, the light intensity that sees through and the light intensity of reference path are made the ultraviolet absorptivity that computing just can draw water sample; When light source (1) passes through vision filter (3), can draw the visible absorbance of water sample equally.By the absorbance data that records, just can calculate the COD/DOC content of water quality.
Described cascade is that two ends are the falling bodies current on plane.
Spectroscopic methodology noncontact COD/DOC water quality on-line monitoring device, it is characterized in that being provided with successively in the light path low pressure mercury lamp light source (1), chopper wheel (12), ultraviolet filter (2) and vision filter (3) are installed on the chopper wheel (12), chopper wheel (12) is controlled by stepper motor, and is located by optocoupler; The beam splitting chip (5) of miter angle is installed behind the chopper wheel (12), the chopper wheel (7) that install beam splitting chip (5) back, logical light breach is arranged on the chopper wheel (7), and chopper wheel (7) back is equipped with 135 degree angle beam splitting chips (9), and the photomultiplier (11) of receiving optical signals is installed behind the beam splitting chip (9); In beam splitting chip (5) below 45 degree catoptrons (6) are installed, 135 degree catoptrons (10) are installed behind the catoptron (6).
The double light path detection system that single light source, simple detector constitute is not only eliminated the influence that the intensity of light source rises and falls, and needn't have been carried out the calibration of detector consistance and temperature characterisitic.Spectroscopic methodology noncontact COD and DOC on-line water quality monitoring method and device need not the water sample pre-service, need not chemical reagent, have avoided the secondary pollution of water body, save cost.Need not to use sample cell, avoided the eyeglass of sample cell to pollute, need not frequent cleaning, can be at the long-term real time on-line monitoring of pollution source.And can choose different water outlet nozzle width according to different pollution concentrations.In monitoring COD and two kinds of contamination indexs of DOC, can monitor the turbidity index of water quality.
Description of drawings
Fig. 1 is a light path principle figure of the present invention.
Fig. 2 is the (operating) water nozzle sectional structure chart that the present invention produces cascade.
Fig. 3 is the view of chopper wheel when beginning to measure.
Fig. 4 is the view of chopper wheel when finishing to measure.
Light path principle figure of the present invention as shown in Figure 1.The light that is sent by low pressure mercury lamp light source (1) is by ultraviolet filter (2) or vision filter (3) on the chopper wheel (12), and the conversion of optical filter drives chopper wheel (12) by stepper motor (4) and controls, and is located by optocoupler.The light that comes out through optical filter (2) or (3) is divided into the two-way light beam by 45 ° of beam splitting chips (5), be folded to 90 ° of directions with reference to one tunnel reflection, measuring light Reuter penetrates after chopper wheel (7) by at the uniform velocity stable cascade to be measured (8), sees through beam splitting chip (9) and received by photomultiplier (11).Chopper wheel (7) is by step motor control, and optocoupler is located, and control survey light path and reference path passes through and closure respectively.Reference path, by catoptron (6) and (10), beam splitting chip (9) is to photomultiplier (11).When light source (1) passes through ultraviolet filter (2), measure light path by tested cascade, the light intensity that sees through and the light intensity of reference path are made the ultraviolet absorptivity that computing just can draw water sample.When light source (1) passes through vision filter (3), can draw the visible absorbance of water sample equally.
When measuring organic uv absorption, the scattering extinction effect of suspended particulate substance also is detected the device reception simultaneously in the water body, adopt the rotating filtering sheet, timesharing monitoring ultraviolet (254nm) absorbs, and visible light (435nm) absorption that includes organic pollutants and suspended particulate substance, by the diffuse transmission influence of mathematical operation elimination suspended particulate substance.
Because organism is bigger to the absorptance of ultraviolet light, in the higher place of COD concentration ratio, the absorbance of the ultraviolet state that can reach capacity.Can be suitable reduce the thickness of light by cascade (8).Thereby can satisfy the measurement of different pollution concentration sewage.
Through test of many times, developed the at the uniform velocity (operating) water nozzle (see figure 2) of water outlet, make that the both ends of the surface of falling bodies current are the plane, i.e. the consistency of thickness of cascade, current are even, and are very little to the diffuse transmission influence of measuring light path like this.
The upper end of (operating) water nozzle is an inlet segment, and the lower end is a contraction section, and water flows out from the lower end, and lower port is a rectangle, and cascade also forms rectangle.If the current turbulivity that enters (operating) water nozzle is than higher, then can enter before contraction section,, make current become even through a stable section that fairings such as honeycomb, damping screen are arranged at current, turbulivity reduces greatly, and is even with the current of warranty test section.
Fig. 3, Fig. 4 represent the principle of work of chopper wheel and optocoupler location.As shown in Figure 3, notched chopper wheel rotates to the position that begins to measure, and measures light path and starts working, and the modulated dish of reference path blocks; When chopper wheel forwards the position of finishing measurement to, as shown in Figure 4.Chopper wheel among the present invention (12), (7) principle of work are identical.

Claims (3)

1, spectroscopic methodology noncontact chemical oxygen demand (COD)/dissolved organic carbon on-line water quality monitoring method, it is characterized in that ultraviolet filter (2) and vision filter (3) are installed on the chopper wheel b (12), the conversion of ultraviolet filter (2) and vision filter (3) is that the first stepping driven by motor chopper wheel b (12) controls, and locate by optocoupler, ultraviolet filter (2) or vision filter (3) on the chopper wheel b (12) that the light that sends from low pressure mercury lamp light source (1) passes through to rotate, the light that comes out through ultraviolet filter (2) or vision filter (3) is divided into the two-way light beam by 45 ° of beam splitting chip a (5), wherein one the tunnel be folded to 90 ° of directions as reference light path reflection, by 45 degree catoptrons (6) and 135 degree catoptrons (10), beam splitting chip b (9) is to photomultiplier (11); Another road penetrates as measuring light Reuter after chopper wheel a (7), by the stable cascade to be measured (8) of average rate, seeing through beam splitting chip b (9) is received by photomultiplier (11), chopper wheel a (7) is by second step motor control, the optocoupler location, passing through and closure of chopper wheel a (7) control survey light path and reference path, the light that sends when light source (1) is during by ultraviolet filter (2), measure light path by tested cascade, the light intensity that sees through and the light intensity of reference path are made the ultraviolet absorptivity that computing just can draw water sample; The light that sends when light source (1) can draw the visible absorbance of water sample during by vision filter (3) equally, by the absorbance data that records, just can calculate the chemical oxygen demand (COD)/dissolved organic carbon content of water quality.
2, spectroscopic methodology noncontact chemical oxygen demand (COD) according to claim 1/dissolved organic carbon on-line water quality monitoring method is characterized in that described cascade is that two ends are the falling bodies current on plane.
3, spectroscopic methodology noncontact chemical oxygen demand (COD)/dissolved organic carbon water quality on-line monitoring device, it is characterized in that: be provided with low-pressure mercury light source (1) in the light path successively, chopper wheel b (12), ultraviolet filter (2) and vision filter (3) are installed on the chopper wheel b (12), chopper wheel b (12) is by first step motor control, and located by optocoupler; The beam splitting chip a (5) of miter angle is installed behind the chopper wheel b (12), the chopper wheel a (7) that beam splitting chip a (5) installs the back, logical light breach is arranged on the chopper wheel a (7), chopper wheel a (7) back is equipped with 135 degree angle beam splitting chip b (9), the photomultiplier (1) of receiving optical signals is installed behind the beam splitting chip b (9), in beam splitting chip a (5) below 45 degree catoptrons (6) are installed, 135 degree catoptrons (10) are installed behind the catoptron (6); Ultraviolet filter (2) or vision filter (3) on the chopper wheel b (12) that the light that sends from low pressure mercury lamp light source (1) passes through to rotate, the light that comes out through ultraviolet filter (2) or vision filter (3) is divided into the two-way light beam by 45 ° of beam splitting chip a (5), wherein one the tunnel be folded to 90 ° of directions as reference light path reflection, by 45 degree catoptrons (6) and 135 degree catoptrons (10), beam splitting chip b (9) is to photomultiplier (11); Another road penetrates as measuring light Reuter after chopper wheel a (7) by the stable cascade to be measured (8) of average rate, sees through beam splitting chip b (9) and received by photomultiplier (11).
CNB2005100383315A 2005-02-05 2005-02-05 Non-contact COD/DOC water quality on-line monitoring method and device by spectrum method Expired - Fee Related CN100529733C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100383315A CN100529733C (en) 2005-02-05 2005-02-05 Non-contact COD/DOC water quality on-line monitoring method and device by spectrum method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100383315A CN100529733C (en) 2005-02-05 2005-02-05 Non-contact COD/DOC water quality on-line monitoring method and device by spectrum method

Publications (2)

Publication Number Publication Date
CN1683921A CN1683921A (en) 2005-10-19
CN100529733C true CN100529733C (en) 2009-08-19

Family

ID=35263338

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100383315A Expired - Fee Related CN100529733C (en) 2005-02-05 2005-02-05 Non-contact COD/DOC water quality on-line monitoring method and device by spectrum method

Country Status (1)

Country Link
CN (1) CN100529733C (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100541171C (en) * 2007-08-01 2009-09-16 山东省科学院海洋仪器仪表研究所 The method of ultraviolet cooperating with ozone measuring water body total nitrogen and total phosphorous by digestion spectrophotometry
CN101805028B (en) * 2009-12-01 2012-06-27 青岛双瑞海洋环境工程股份有限公司 Adding method of organic carbon dissolved in ballast water
CN102162791B (en) * 2010-12-09 2014-05-21 霍尼韦尔综合科技(中国)有限公司 Real-time on-line adsorption detection system
CN102735624B (en) * 2011-03-31 2014-08-27 深圳市清时捷科技有限公司 Rapid determination method of CODmn in water
CN103645140A (en) * 2013-12-30 2014-03-19 北京雪迪龙科技股份有限公司 Water quality monitoring system and method
CN103776787A (en) * 2014-02-25 2014-05-07 杭州纳宏光电科技有限公司 Double-spectrum water quality analyzer
CN103969206A (en) * 2014-04-23 2014-08-06 北京金达清创环境科技有限公司 Multi-index water quality sensing probe based on ultraviolet visible absorption spectrum
CN105004701B (en) * 2015-06-03 2017-11-28 南京大学 The smart water quality monitor and its application method that a kind of ultraviolet method and fluorescence method are combined
CN104897598B (en) * 2015-06-15 2017-07-04 南京大学 The spectral measurement device and measuring method of water-quality COD
CN106979936A (en) * 2016-01-18 2017-07-25 南开大学 It is a kind of for water quality detection without tube wall flow cell device
CN105717072A (en) * 2016-04-14 2016-06-29 天津视讯云光电科技有限公司 Transmission type COD (chemical oxygen demand) detection device based on reflecting mirror
CN105675522A (en) * 2016-04-22 2016-06-15 青岛市光电工程技术研究院 Device for detecting content of water in crude oil
CN106568715B (en) * 2016-09-30 2019-03-19 深圳市赛宝伦科技有限公司 A kind of online full spectral water quality analyzer
WO2018072201A1 (en) * 2016-10-21 2018-04-26 Honeywell International Inc. Compact ultraviolet light adsorption sensing system
CN106770212B (en) * 2016-11-22 2023-08-25 山东省科学院海洋仪器仪表研究所 Device for on-line monitoring content of soluble organic carbon in seawater
CN106770094A (en) * 2016-11-30 2017-05-31 天津大学 A kind of bimodal thin layer optical tomography system
CN106596434B (en) * 2016-12-26 2020-01-03 高安水务有限公司 Water quality detection system
CN107340250A (en) * 2017-07-27 2017-11-10 山西鑫华翔科技发展有限公司 Double light-metering light path COD on-line analysis measuring instruments
CN107860718A (en) * 2017-12-08 2018-03-30 杭州驱歌科技有限公司 A kind of water analysis outfit
CN108776109A (en) * 2018-04-17 2018-11-09 江西省科学院 A kind of method of organic matter status in qualitative assessment wastewater from pig farm processing procedure
CN110887800B (en) * 2019-11-27 2021-01-15 中国科学院西安光学精密机械研究所 Data calibration method for online water quality monitoring system by using spectroscopy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1460728A (en) * 1973-02-09 1977-01-06 Nat Res Dev Otpical density measurement
US4764018A (en) * 1987-05-18 1988-08-16 Eos Corporation Apparatus for measuring water content
US4775794A (en) * 1987-11-02 1988-10-04 Zenon Environmental Inc. Process and apparatus for measurement of light-absorbable components dissolved in liquids
CN2257380Y (en) * 1995-06-07 1997-07-02 郭敬慈 Sewage BOD/COD fast recognizer
GB2312278A (en) * 1996-04-19 1997-10-22 Boghos Awanes Manook Organic and/or biological pollution monitor
JP2000310736A (en) * 1999-04-27 2000-11-07 Olympus Optical Co Ltd Ultraviolet microscopic optical system
CN1400459A (en) * 2002-04-26 2003-03-05 常春 On-line COD water quality testing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1460728A (en) * 1973-02-09 1977-01-06 Nat Res Dev Otpical density measurement
US4764018A (en) * 1987-05-18 1988-08-16 Eos Corporation Apparatus for measuring water content
US4775794A (en) * 1987-11-02 1988-10-04 Zenon Environmental Inc. Process and apparatus for measurement of light-absorbable components dissolved in liquids
CN2257380Y (en) * 1995-06-07 1997-07-02 郭敬慈 Sewage BOD/COD fast recognizer
GB2312278A (en) * 1996-04-19 1997-10-22 Boghos Awanes Manook Organic and/or biological pollution monitor
JP2000310736A (en) * 1999-04-27 2000-11-07 Olympus Optical Co Ltd Ultraviolet microscopic optical system
CN1400459A (en) * 2002-04-26 2003-03-05 常春 On-line COD water quality testing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
紫外吸光度与渗滤液COD浓度的关系研究. 欧远洋等.苏州科技学院学报(工程技术版),第16卷第3期. 2003 *

Also Published As

Publication number Publication date
CN1683921A (en) 2005-10-19

Similar Documents

Publication Publication Date Title
CN100529733C (en) Non-contact COD/DOC water quality on-line monitoring method and device by spectrum method
CN101183071B (en) Novel water quality analysis meter
CN102042963A (en) Online detector for detecting total organic carbon (TOC) in sewage with ultraviolet spectrometry method
US20120275958A1 (en) Determination method and instruments of hexavalent chromium
KR20100112748A (en) Apparatus for simultaneously measuring carbon monoxide and carbon dioxide
CN101303293B (en) Apparatus for measuring COD by double-light path ultraviolet light absorption method
CN102252990A (en) Automatic calibration method of water quality monitoring system with application of ultraviolet absorption method
CN106644970A (en) Three wavelength spectrophotometry method for simultaneously measuring methylene blue and bivalent copper ions in solution by ultraviolet and visible spectrophotometer
CN110887801A (en) Device and method for carrying out long-time in-situ detection on complex water body based on spectrum method
CN100543455C (en) Ozone oxidation and ultraviolet scanning spectrum integral way is measured the method for total organic carbon
CN206074435U (en) It is a kind of to be based on water-quality COD compatibility ammonia nitrogen concentration real-time monitoring device
KR101108561B1 (en) Apparatus for measuring pH by using absorptiometric analysis and measuring method using the same
Manera et al. Flow-through solid-phase reflectometric method for simultaneous multiresidue determination of nitrophenol derivatives
CN204694629U (en) Total arsenic online automatic monitor
Lipták Analytical instrumentation
DE19922812C2 (en) Measurement of turbidity using reflectometry
Miró et al. A novel flow-through disk-based solid-phase extraction diffuse reflectance optrode. Application to preconcentration and determination of trace levels of nitrite
CN102692396B (en) Endotoxin detection system and quantitative detection method thereof
Zhang et al. Catalytic determination of trace formaldehyde with a flow injection system using the indicator reaction between crystal violet and bromate
CN115931451A (en) Sampling analysis unit suitable for surface water monitoring
CN108426836A (en) Water monitoring device
Ervin et al. Investigation of a robust flow-through Cu (I) optical sensor using 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline immobilized into a Nafion film
CN209372694U (en) A kind of sewage monitoring system
Wang et al. Sequential injection analysis for Cr (VI) and Cr (III) with renewable surface reflection spectrophotometry
CN205506674U (en) Aquatic benzene aminated compounds's continuous flow detection device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090819

Termination date: 20120205