JP3484207B2 - Organic pollutant measurement method using ultraviolet oxidation - Google Patents

Organic pollutant measurement method using ultraviolet oxidation

Info

Publication number
JP3484207B2
JP3484207B2 JP22222793A JP22222793A JP3484207B2 JP 3484207 B2 JP3484207 B2 JP 3484207B2 JP 22222793 A JP22222793 A JP 22222793A JP 22222793 A JP22222793 A JP 22222793A JP 3484207 B2 JP3484207 B2 JP 3484207B2
Authority
JP
Japan
Prior art keywords
ultraviolet
sample water
lamp
measuring
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22222793A
Other languages
Japanese (ja)
Other versions
JPH0755798A (en
Inventor
重之 秋山
良助 福嶋
龍秀 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP22222793A priority Critical patent/JP3484207B2/en
Publication of JPH0755798A publication Critical patent/JPH0755798A/en
Application granted granted Critical
Publication of JP3484207B2 publication Critical patent/JP3484207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は紫外線酸化を用いた有
機性汚濁物質測定方法に関し、更に詳しくは、有機性汚
濁物質を構成する各種有機化合物を含む試料水に紫外線
ランプ(UVランプ)を照射することにより、有機性汚
濁物質のモニタを行う新規な有機性汚濁物質測定方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring organic pollutants using ultraviolet oxidation, and more specifically, irradiating a sample water containing various organic compounds constituting organic pollutants with an ultraviolet lamp (UV lamp). The present invention relates to a novel method for measuring organic pollutants, which monitors organic pollutants.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近
年、上水場の水源は、河川水に依存することが多いが、
人口の集中により、生活排水汚濁が進み、おいしい水を
供給するためには、有機性汚濁物質の管理が不可欠とな
ってきた。この有機性汚濁物質の構成成分はCOD成分
を測定することで管理できる訳であるが、COD分析計
は測定時間がかかったり、保守性の点で問題がある。
2. Description of the Related Art In recent years, the water source of water supply facilities often depends on river water.
Due to the concentration of the population, pollution of domestic wastewater has progressed, and the management of organic pollutants has become indispensable for supplying delicious water. The constituent components of this organic pollutant can be managed by measuring the COD component, but the COD analyzer has a problem in that it takes a long measuring time and is easy to maintain.

【0003】また、従来、事業所・工場排水および河川
・湖沼などの公共水域の水質、有機汚濁の程度は紫外線
の吸光度を測定することにより行われている。この紫外
線吸光度自動計測器(UV計)による紫外線吸光度測定
法では、試薬が必要でなく、かつ、測定操作が前述した
COD分析法に比して単純で簡単であり、保守も極めて
容易であるから、COD分析法に代えて、有機性汚濁物
質の測定に用いられているけれども、試料水中の有機性
汚濁物質量が、試料水の水質によっては必ずしもCOD
値と良い相関性をもつとはいえない。
Further, conventionally, the water quality of public waters such as rivers, lakes and marshes of works and factories, and the degree of organic pollution are measured by measuring the absorbance of ultraviolet rays. The ultraviolet absorbance measuring method using this automatic ultraviolet absorbance measuring device (UV meter) does not require a reagent, and the measuring operation is simpler and easier than the COD analysis method described above, and maintenance is also extremely easy. , The COD analysis method is used instead of the COD analysis method, but the amount of the organic pollutants in the sample water is not always COD depending on the quality of the sample water.
It cannot be said that it has a good correlation with the value.

【0004】この発明は、上記問題に鑑みてなしたもの
で、その目的は、試料水の水質に依存すること無く、試
料水中の有機性汚濁物質量とCOD値との相関性を更に
良好にできる紫外線酸化を用いた有機性汚濁物質測定方
法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to further improve the correlation between the amount of organic pollutants in the sample water and the COD value without depending on the water quality of the sample water. Another object of the present invention is to provide a method for measuring an organic pollutant using ultraviolet oxidation.

【0005】[0005]

【課題を解決するための手段および作用】本発明者ら
は、従来の紫外線吸光度測定法では、試料水中の有機性
汚濁物質量が、試料水の水質によっては必ずしもCOD
値とは良い相関性が得られないから、COD成分測定の
際に試薬として用いるKMnO4 の酸化力の効果に近い
酸化反応を得るための手段として紫外線ランプ(以下、
UVランプという)を試料水に照射する照射効果に着目
した。そして、有機性汚濁物質を構成する各種有機化合
物を含む試料水に、UVランプを照射することにより、
前記有機性汚濁物質が紫外線を吸収することで酸化して
分解されるという原理に基づき、有機性汚濁物質を構成
する各種有機化合物のUVランプによる酸化率を予め無
試薬で測定した。その結果、各種有機化合物の酸化率が
良好であり、そのため、試料水中の有機性汚濁物質への
UVランプだけによる酸化力の効果が無試薬であっても
KMnO4 のそれに近くて有効であることを本発明者ら
は見出した。
Means and Actions for Solving the Problems In the conventional ultraviolet absorptiometry, the inventors of the present invention have found that the amount of organic pollutants in the sample water is not always COD depending on the quality of the sample water.
Since a good correlation with the value cannot be obtained, as a means for obtaining an oxidation reaction close to the effect of the oxidizing power of KMnO 4 used as a reagent when measuring COD components, an ultraviolet lamp (hereinafter,
Focusing on the irradiation effect of irradiating the sample water with a UV lamp). Then, by irradiating the sample water containing various organic compounds constituting the organic pollutant with a UV lamp,
Based on the principle that the organic pollutants are oxidized and decomposed by absorbing ultraviolet rays, the oxidation rates of various organic compounds constituting the organic pollutants with a UV lamp were measured in advance without a reagent. As a result, a good oxidation rate of various organic compounds, therefore, the this effect only by oxidizing power UV lamps to the organic pollutant water sample is effective closer to that of KMnO 4 may be unsubstituted or reagents The present inventors have found out.

【0006】実際、この酸化率の測定結果(各濃度を約
50ppmcとした)は下記の表1に示されている。こ
の表1から、トルエンを除いてその他の有機化合物が、
KMnO4 の酸化力の効果に近い酸化率を示すことが分
かる。なお、トルエンについては、試料水への溶解度が
小さく、表1に挙げた測定値がその他の有機化合物に比
して正確であるとは必ずしも言えない。
Actually, the measurement result of the oxidation rate (each concentration was set to about 50 ppmc) is shown in Table 1 below. From Table 1, other organic compounds except toluene are
It can be seen that the oxidation rate is close to the effect of the oxidizing power of KMnO 4 . Note that toluene has a low solubility in sample water, and the measured values listed in Table 1 are not necessarily accurate as compared with other organic compounds.

【0007】[0007]

【表1】 [Table 1]

【0008】したがって、従来の紫外線吸光度測定法に
比してUVランプ照射前後の紫外線吸光度の変化量を測
定する方が有機性汚濁物質量の測定値としてCOD値に
近いものを得ることができ、COD値とは良好な相関性
が得られる。すなわち、この発明では、UVランプを用
いて、試料水中の有機性汚濁物質の酸化した分を取り出
すことで、有機性汚濁物質量とCOD値との相関性をワ
ン・ランク・アップできる。
Therefore, it is possible to obtain a measurement value of the amount of organic pollutants closer to the COD value by measuring the change amount of the UV absorbance before and after the irradiation of the UV lamp, as compared with the conventional UV absorbance measuring method. Good correlation with the COD value is obtained. That is, in the present invention, the correlation between the amount of organic pollutants and the COD value can be raised to one rank by taking out the oxidized portion of the organic pollutants in the sample water using the UV lamp.

【0009】かくして、この発明の紫外線酸化を用いた
有機性汚濁物質測定方法は、試料水に紫外線を照射して
試料水中の有機性汚濁物質を酸化させ、酸化反応前後の
紫外線吸光度の変化量を測定する。
Thus, the method for measuring organic pollutants using ultraviolet oxidation according to the present invention irradiates the sample water with ultraviolet rays to oxidize the organic pollutants in the sample water, and to measure the amount of change in the ultraviolet absorbance before and after the oxidation reaction. Measure .

【0010】すなわち、この発明では、有機性汚濁物質
を構成する各種有機化合物を含む試料水に、UVランプ
を照射することにより、前記有機性汚濁物質が紫外線を
吸収することで酸化して分解されるという原理に基づ
き、UVランプを用いた有機性汚濁物質の酸化がKMn
4 の酸化力の効果に近い酸化率を示すことから、UV
ランプを一定時間または連続的に照射して試料水中の有
機性汚濁物質を酸化し、波長254nmの紫外線域波長
におけるUVランプ照射前後の紫外線吸光度の変化量を
測定して有機性汚濁物質量を測定するようにしたもので
あり、試料水に、UVランプを照射することにより、前
記有機性汚濁物質の酸化分を取り出すだけで測定された
有機性汚濁物質量は、COD値と良好な相関性を持って
いる。
That is, according to the present invention, by irradiating the sample water containing various organic compounds constituting the organic pollutant with a UV lamp, the organic pollutant is oxidized and decomposed by absorbing ultraviolet rays. Based on the principle that the oxidation of organic pollutants using a UV lamp
Since it shows an oxidation rate close to the effect of the oxidizing power of O 4 , UV
The organic pollutants are measured by irradiating the lamp for a certain period of time or continuously to oxidize the organic pollutants in the sample water and measuring the amount of change in the UV absorbance before and after UV lamp irradiation in the UV wavelength range of 254 nm. By irradiating the sample water with a UV lamp, the amount of the organic pollutant measured only by extracting the oxidized component of the organic pollutant has a good correlation with the COD value. have.

【0011】この際、KMnO4 の試薬を用いて有機性
汚濁物質を測定するCOD分析法とは異なり、この発明
のように、試料水を直接吸光度測定法で測定するので、
試薬は必要でなく、かつ、測定操作も単純で簡単に行う
ことができる。
At this time, unlike the COD analysis method of measuring organic pollutants using a KMnO 4 reagent, the sample water is directly measured by the absorbance measurement method as in the present invention.
No reagent is required, and the measurement operation is simple and easy.

【0012】また、従来のUV計による紫外線吸光度測
定法とも異なり、この発明では、UVランプの照射によ
る有機性汚濁物質酸化反応の前後の有機性汚濁物質量を
紫外線吸光度で測定するため、試料水中の濁度による影
響も補正することができる。
Further, unlike the conventional method for measuring the ultraviolet absorbance by a UV meter, in the present invention, the amount of the organic contaminants before and after the oxidation reaction of the organic contaminants by the irradiation of the UV lamp is measured by the ultraviolet absorbance, so that The effect of turbidity can be corrected.

【0013】しかも、試料水中の有機性汚濁物質は、一
般に、有機性汚濁物質の指標となる紫外線域波長が25
4nm付近の紫外線を強く吸収するので有機性汚濁物質
酸化反応前後の波長254nmにおける紫外線吸光度の
変化量を測定して有機性汚濁物質量を測定するようにし
たものであるけれども、UVランプとして、波長254
nm付近に放射スペクトルを持つとともに、有機物の酸
化を促進する波長185nm付近に特に強い光量を持つ
水銀ランプを使用するのが、酸化を促進し短時間の測定
ができる点で好ましい。
Moreover, the organic pollutants in the sample water generally have an ultraviolet wavelength of 25 which is an index of the organic pollutants.
Since it strongly absorbs ultraviolet rays around 4 nm, the amount of organic pollutants is measured by measuring the amount of change in ultraviolet absorbance at a wavelength of 254 nm before and after the oxidation reaction of organic pollutants. 254
It is preferable to use a mercury lamp which has a radiation spectrum in the vicinity of nm and has a particularly strong light amount in the vicinity of a wavelength of 185 nm that promotes the oxidation of organic substances, because the oxidation is promoted and the measurement can be performed in a short time.

【0014】[0014]

【実施例】以下、この発明の実施例について説明する。
なお、それによってこの発明は限定をうけるものではな
い。図1、図2はこの発明の第1実施例を説明するため
の図である。図1、図2において、紫外線酸化を用いた
有機性汚濁物質測定方法は、紫外線ランプ1を用いて、
濁度(汚度)B’を有し、有機性汚濁物質U’を構成す
る各種有機化合物と、無機イオンC’とを含む試料水2
を一定時間(t)照射して試料水中の有機性汚濁物質を
酸化させ、254nm付近の紫外線域波長における酸化
反応前後の紫外線吸光度AbsT=0と紫外線吸光度Ab
sT=tとの変化量ΔAbs(=AbsT=0−AbsT=t)を測
定するものであって、三方電磁弁3,定圧トラップ4,
測定制御装置5からなるサンプリング装置と、紫外線吸
光度計6と、該紫外線吸光度計の上流側に設けられた紫
外線ランプ1とから構成された有機性汚濁物質測定装置
を用いて、紫外線ランプ1の点灯(図2の符号Pで示す
点灯パルス)と三方電磁弁3による測定ラインの切換
(図2の符号Qで示す切換パルス)とを同期させ、紫外
線ランプ1を非照射の状態で酸化反応前の紫外線吸光度
AbsT=0を酸化反応前の指示ホールド値(=U+B+
C)として得た後、試料水2に紫外線ランプ1を一定時
間(t)照射した後、紫外線吸光度AbsT=tを酸化反応
後の指示ホールド値(=B’’+C’’)として得、両
指示ホールド値の高低の差信号を変化量ΔAbs 〔=
(U+B+C)−(B’’+C’’)〕に対応させるこ
とで有機性汚濁物質量として測定できる。なお、図1に
おいて、符号7は流量計である。
Embodiments of the present invention will be described below.
However, the present invention is not limited thereby. 1 and 2 are views for explaining a first embodiment of the present invention. In FIG. 1 and FIG. 2, the method for measuring organic pollutants using ultraviolet oxidation uses an ultraviolet lamp 1,
Sample water 2 having various turbidity (pollution) B'and containing various organic compounds constituting the organic pollutant U ', and inorganic ions C'
For a certain period of time (t) to oxidize the organic pollutants in the sample water, and the ultraviolet absorbance Ab sT = 0 and the ultraviolet absorbance Ab before and after the oxidation reaction in the ultraviolet region wavelength near 254 nm.
The amount of change ΔAb s (= Ab sT = 0 −Ab sT = t ) with sT = t is measured, and the three-way solenoid valve 3, constant pressure trap 4,
Lighting of the ultraviolet lamp 1 using an organic pollutant measuring device including a sampling device composed of the measurement control device 5, an ultraviolet absorption meter 6 and an ultraviolet lamp 1 provided on the upstream side of the ultraviolet absorption meter. (Lighting pulse indicated by symbol P in FIG. 2) and measurement line switching by the three-way solenoid valve 3 (switching pulse indicated by symbol Q in FIG. 2) are synchronized, and the ultraviolet lamp 1 is not irradiated and before the oxidation reaction. UV absorbance Ab sT = 0 is the indicated hold value (= U + B +) before the oxidation reaction.
C), and after irradiating the sample water 2 with the ultraviolet lamp 1 for a certain time (t), the ultraviolet absorbance Ab sT = t is obtained as the indicated hold value (= B ″ + C ″) after the oxidation reaction, The difference signal of the high and low of both instruction hold values is changed ΔAb s [=
(U + B + C)-(B ″ + C ″)] can be used to measure the amount of organic pollutants. In FIG. 1, reference numeral 7 is a flow meter.

【0015】図3、図4は、連続的に、少流量の試料水
2を流しながら、紫外線吸光度計6前段に設けた紫外線
ランプ1の点灯(図4の符号Rで示す点灯パルス)によ
り酸化された有機性汚濁物質量を紫外線吸光度計6で測
定するようにしたこの発明の第2実施例を説明するため
の図である。
In FIGS. 3 and 4, while continuously flowing a small flow rate of sample water 2, oxidation is performed by turning on the ultraviolet lamp 1 provided in the preceding stage of the ultraviolet absorptiometer 6 (lighting pulse indicated by reference symbol R in FIG. 4). It is a figure for demonstrating the 2nd Example of this invention which was made to measure the amount of the produced organic pollutants with the ultraviolet absorptiometer 6.

【0016】図3、図4において、有機性汚濁物質測定
方法は、定圧トラップ4,測定制御装置5からなるサン
プリング装置と、紫外線吸光度計6と、該紫外線吸光度
計の上流側に設けられた紫外線ランプ1とから構成され
た有機性汚濁物質測定装置を用いて、連続的に、少流量
の試料水2を流しながら、紫外線ランプ1を間欠して点
灯し、紫外線吸光度AbsT=0,AbsT=tの最大値および
最小値の偏差から、酸化された有機性汚濁物質量を測定
できる。
In FIGS. 3 and 4, the method for measuring organic pollutants is as follows: a sampling device comprising a constant pressure trap 4 and a measurement control device 5, an ultraviolet absorptiometer 6, and an ultraviolet ray provided upstream of the ultraviolet absorptiometer. Using the organic pollutant measuring device composed of the lamp 1, the ultraviolet lamp 1 is intermittently turned on while continuously flowing a small amount of sample water 2, and the ultraviolet absorbance Ab sT = 0 , Ab sT The amount of oxidized organic pollutants can be measured from the deviation of the maximum value and the minimum value of = t .

【0017】図5は、紫外線ランプ11として水銀ラン
プを用い、紫外線ランプ11による反応槽11aと紫外
線吸光度計の検出セル12を一体化した有機性汚濁物質
測定装置を用いて有機性汚濁物質量を測定するようにし
たこの発明の第3実施例を説明するための図である。
In FIG. 5, a mercury lamp is used as the ultraviolet lamp 11, and the amount of the organic pollutant is measured by using an organic pollutant measuring device in which the reaction tank 11a by the ultraviolet lamp 11 and the detection cell 12 of the ultraviolet absorptiometer are integrated. It is a figure for demonstrating the 3rd Example of this invention made to measure.

【0018】図5において、本実施例では、波長254
nm付近に放射スペクトルを持ち、かつ有機物の酸化を
促進する波長185nm付近に強い光量を持つ水銀ラン
プ11を紫外線ランプとして使用しており、該水銀ラン
プによる反応槽11aと検出セル12を一体化するとと
もに、該検出セルに有機性汚濁物質の指標となる波長2
54nmのバンドパスフィルタ13を設け、更に、反応
槽11aの上流側の試料水2の入口14に二方電磁弁1
5を設けて構成された有機性汚濁物質測定装置を用い
て、二方電磁弁15により試料水2の流入・流出操作の
切換を行って、酸化された有機性汚濁物質量を上記第2
実施例と同様の方法で測定するものである。そして、任
意のセル長Lの吸光度測定用の光学系が、バンドパスフ
ィルタ13以外に、セル窓16、スリット17、シリコ
ンフォトセンサ18を備えて構成されている。なお、図
5において、符号19は試料水2の出口である。
In FIG. 5, the wavelength 254 is used in this embodiment.
A mercury lamp 11 having an emission spectrum in the vicinity of nm and a strong light amount in the vicinity of a wavelength of 185 nm that promotes oxidation of organic substances is used as an ultraviolet lamp, and the reaction tank 11a by the mercury lamp and the detection cell 12 are integrated. At the same time, the detection cell has a wavelength of 2 as an index of organic pollutants.
A 54 nm bandpass filter 13 is provided, and the two-way solenoid valve 1 is provided at the inlet 14 of the sample water 2 on the upstream side of the reaction tank 11a.
5, the two-way solenoid valve 15 is used to switch the inflow / outflow operation of the sample water 2 using the organic pollutant measuring device configured to provide the amount of the oxidized organic pollutant to the second amount.
It is measured by the same method as in the examples. Then, an optical system for measuring an absorbance of an arbitrary cell length L is configured to include a cell window 16, a slit 17, and a silicon photosensor 18 in addition to the bandpass filter 13. In FIG. 5, reference numeral 19 is an outlet for the sample water 2.

【0019】図6は、紫外線ランプ照射前後における紫
外線吸光度AbsT=0と紫外線吸光度AbsT=tをモニタし
ながら有機性汚濁物質量を測定するようにしたこの発明
の第4実施例を示す。図6において、有機性汚濁物質測
定装置は、試料水2の入口14側から、定圧トラップ
4、二方電磁弁20および紫外線ランプ1を順次設け、
二方電磁弁20と紫外線ランプ1間に形成される試料水
導入流路Fから分岐した分岐流路G途中に紫外線吸光度
計の紫外線測定槽21を設け、更に、紫外線ランプ1の
下流側で、紫外線測定槽21との間に、試料水2を紫外
線測定槽21から紫外線ランプ1の側に循環させる循環
ポンプ22を設けて構成されている。なお、図6におい
て、符号23は回転セル長変調方式の紫外線吸光度計で
ある。
FIG. 6 shows a fourth embodiment of the present invention in which the amount of organic pollutants is measured while monitoring the ultraviolet absorbance Ab sT = 0 and the ultraviolet absorbance Ab sT = t before and after irradiation with an ultraviolet lamp. In FIG. 6, the organic pollutant measuring apparatus is provided with a constant pressure trap 4, a two-way solenoid valve 20 and an ultraviolet lamp 1 sequentially from the inlet 14 side of the sample water 2,
An ultraviolet ray measuring tank 21 of an ultraviolet ray absorptiometer is provided in the middle of a branch channel G branched from the sample water introducing channel F formed between the two-way solenoid valve 20 and the ultraviolet lamp 1, and further on the downstream side of the ultraviolet lamp 1. A circulation pump 22 that circulates the sample water 2 from the ultraviolet ray measuring tank 21 to the ultraviolet ray lamp 1 side is provided between the ultraviolet ray measuring tank 21 and the ultraviolet ray measuring tank 21. In FIG. 6, reference numeral 23 is a rotary cell length modulation type ultraviolet absorptiometer.

【0020】以下、測定シーケンスについて簡単に説明
する。図6において、二方電磁弁20を開くとともに、
紫外線ランプ1を消灯し、試料水2を循環ポンプ22で
紫外線測定槽21に流し込んで該紫外線測定槽21を新
しい試料水で満たした後、紫外線吸光度計の指示値の安
定点を酸化反応前の紫外線吸光度値AbsT=0として読み
取り、しかる後、二方電磁弁20を閉じるとともに、紫
外線ランプ1を点灯し、循環ポンプ22で試料水2を循
環させながら、試料水2中の有機性汚濁物質を酸化し
て、指示値の安定を待機し、一定時間経過後に酸化反応
後の紫外線吸光度値AbsT=tを読み取り、前記AbsT=0
とAbsT=tとの変化値ΔAbs から有機性汚濁物質量を
測定できる。
The measurement sequence will be briefly described below. In FIG. 6, while opening the two-way solenoid valve 20,
After turning off the ultraviolet lamp 1, the sample water 2 was poured into the ultraviolet measuring tank 21 by the circulation pump 22 and the ultraviolet measuring tank 21 was filled with new sample water, and then the stable point of the indicated value of the ultraviolet absorptiometer was measured before the oxidation reaction. The ultraviolet absorbance value Ab sT is read as 0 , and then the two-way solenoid valve 20 is closed, the ultraviolet lamp 1 is turned on, and the sample water 2 is circulated by the circulation pump 22 while the organic pollutant in the sample water 2 is being circulated. And wait for the indicated value to stabilize, and after a certain period of time, read the UV absorbance value Ab sT = t after the oxidation reaction, and obtain the Ab sT = 0.
The amount of organic pollutants can be measured from the change value ΔAb s between AbsT = t and AbsT = t .

【0021】[0021]

【発明の効果】以上のようにこの発明では、有機性汚濁
物質を構成する各種有機化合物を含む試料水に、UVラ
ンプを照射することにより、前記有機性汚濁物質が紫外
線を吸収することで酸化して分解されるという原理に基
づき、UVランプを照射して試料水中の有機性汚濁物質
を酸化し、UVランプ照射前後の紫外線吸光度の変化量
を測定して有機性汚濁物質量を測定するようにしたもの
であり、試料水に、UVランプを照射することにより、
前記有機性汚濁物質の酸化分を取り出すだけで測定され
た有機性汚濁物質量は、COD値と良好な相関性を持つ
ことができる。
As described above, according to the present invention, the sample water containing various organic compounds constituting the organic pollutant is irradiated with a UV lamp, and the organic pollutant absorbs ultraviolet rays to be oxidized. Based on the principle that it is decomposed, the organic contaminants in the sample water are irradiated by irradiating the UV lamp, and the amount of change in the ultraviolet absorbance before and after the UV lamp irradiation is measured to measure the amount of the organic contaminants. By irradiating the sample water with a UV lamp,
The amount of the organic pollutant measured by only extracting the oxidized component of the organic pollutant can have a good correlation with the COD value.

【0022】この際、KMnO4 の試薬を用いて有機性
汚濁物質を測定するCOD分析法とは異なり、この発明
のように、試料水を直接吸光度測定法で測定するので、
試薬は必要でなく、かつ、測定操作も単純で簡単に行う
ことができる。
At this time, unlike the COD analysis method for measuring organic pollutants using a KMnO 4 reagent, the sample water is directly measured by the absorbance measurement method as in the present invention.
No reagent is required, and the measurement operation is simple and easy.

【0023】また、従来のUV計による紫外線吸光度測
定法とも異なり、この発明では、UVランプの照射によ
る有機性汚濁物質酸化反応の前後の有機性汚濁物質量を
紫外線吸光度で測定するため、試料水中の濁度による影
響も補正することができる。
Also, unlike the conventional method of measuring the ultraviolet absorbance by a UV meter, in the present invention, the amount of the organic pollutants before and after the oxidation reaction of the organic pollutants by the irradiation of the UV lamp is measured by the ultraviolet absorbance, so that the sample water is used. The effect of turbidity can be corrected.

【0024】しかも、試料水中の有機性汚濁物質は、一
般に、有機性汚濁物質の指標となる紫外線域波長が25
4nm付近の紫外線を強く吸収するので有機性汚濁物質
酸化反応前後の波長254nmにおける紫外線吸光度の
変化量を測定して有機性汚濁物質量を測定するようにし
たものであるけれども、UVランプとして、波長254
nm付近に放射スペクトルを持つとともに、有機物の酸
化を促進する波長185nm付近に特に強い光量を持つ
水銀ランプを使用すれば、酸化が促進されることで短時
間の測定ができる利点を有する。
Moreover, the organic pollutants in the sample water generally have an ultraviolet wavelength of 25 which is an index of the organic pollutants.
Since it strongly absorbs ultraviolet rays around 4 nm, the amount of organic pollutants is measured by measuring the amount of change in ultraviolet absorbance at a wavelength of 254 nm before and after the oxidation reaction of organic pollutants. 254
The use of a mercury lamp having a radiation spectrum in the vicinity of nm and a particularly strong light amount in the vicinity of a wavelength of 185 nm that promotes the oxidation of organic substances has the advantage that the oxidation can be accelerated and measurement can be performed in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例を説明するための構成説
明図である。
FIG. 1 is a configuration explanatory view for explaining a first embodiment of the present invention.

【図2】上記第1実施例における動作を説明するための
図である。
FIG. 2 is a diagram for explaining an operation in the first embodiment.

【図3】この発明の第2実施例を説明するための構成説
明図である。
FIG. 3 is a structural explanatory view for explaining a second embodiment of the present invention.

【図4】上記第2実施例における動作を説明するための
図である。
FIG. 4 is a diagram for explaining an operation in the second embodiment.

【図5】この発明の第3実施例を説明するための構成説
明図である。
FIG. 5 is a structural explanatory view for explaining a third embodiment of the present invention.

【図6】この発明の第4実施例を説明するための構成説
明図である。
FIG. 6 is a structural explanatory view for explaining a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…紫外線ランプ、2…試料水、3…三方電磁弁、4…
定圧トラップ、5…測定制御装置、6…紫外線吸光度
計、11…紫外線ランプ、ΔAbs …吸光度の変化量。
1 ... UV lamp, 2 ... Sample water, 3 ... three-way solenoid valve, 4 ...
Constant pressure trap, 5 ... Measurement control device, 6 ... Ultraviolet light absorptiometer, 11 ... Ultraviolet lamp, ΔAb s ... Absorbance change amount.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−228144(JP,A) 特開 昭62−228145(JP,A) 特開 昭62−228146(JP,A) 実開 昭64−34555(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 33/18 G01N 21/33 G01N 21/77 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-228144 (JP, A) JP-A-62-228145 (JP, A) JP-A-62-228146 (JP, A) Actual development Sho-64- 34555 (JP, U) (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 33/18 G01N 21/33 G01N 21/77

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料水に紫外線を照射して試料水中の有
機性汚濁物質を酸化させ、酸化反応前後の紫外線吸光度
の変化量を測定することからなる紫外線酸化を用いた有
機性汚濁物質測定方法であって、定圧トラップ,測定制
御装置からなるサンプリング装置と、紫外線吸光度計
と、該紫外線吸光度計の上流側に設けられた紫外線ラン
プとから構成された有機性汚濁物質測定装置を用いて、
連続的に、少流量の試料水を流しながら、紫外線ランプ
を間欠して点灯し、紫外線吸光度の最大値および最小値
の偏差から、有機性汚濁物質量を測定する紫外線酸化を
用いた有機性汚濁物質測定方法。
1. A method for measuring organic pollutants using ultraviolet oxidation, which comprises irradiating sample water with ultraviolet rays to oxidize the organic pollutants in the sample water and measuring the amount of change in ultraviolet absorbance before and after the oxidation reaction. A constant pressure trap, measurement system
Sampling device consisting of control device and UV absorption meter
And an ultraviolet ray run provided upstream of the ultraviolet ray absorptiometer.
Using an organic pollutant measuring device composed of
UV lamp continuously flowing a small amount of sample water
Lights up intermittently, and the maximum and minimum values of UV absorbance
From the deviation of the
Method for measuring organic pollutants used.
【請求項2】 波長254nm付近に放射スペクトルを
持ち、かつ有機物の酸化を促進する波長185nm付近
に強い光量を持つ水銀ランプを紫外線ランプとして使用
し、該紫外線ランプによる反応槽と紫外線吸光度計を一
体化するとともに、該紫外線吸光度計に有機性汚濁物質
の指標となる波長254nmのバンドパスフィルタを設
け、更に、前記反応槽の上流側に二方電磁弁を設けて構
成された有機性汚濁物質測定装置を用いて、前記二方電
磁弁により試料水の流入・流出操作の切換を行って、酸
化された有機性汚濁物質量を測定する請求項1に記載の
紫外線酸化を用いた有機性汚濁物質測定方法。
2. A mercury lamp having an emission spectrum near a wavelength of 254 nm and having a strong light amount near a wavelength of 185 nm that promotes the oxidation of organic substances is used as an ultraviolet lamp, and the reaction tank by the ultraviolet lamp and the ultraviolet absorptiometer are integrated. In addition, the ultraviolet absorption meter is provided with a bandpass filter having a wavelength of 254 nm, which is an index of organic pollutants, and a two-way solenoid valve is provided on the upstream side of the reaction tank to measure the organic pollutants. An organic pollutant using ultraviolet oxidation according to claim 1 , wherein an inflow / outflow operation of the sample water is switched by the two-way solenoid valve using an apparatus to measure the amount of the oxidized organic pollutant. Measuring method.
【請求項3】3. 試料水に紫外線を照射して試料水中の有Irradiate the sample water with ultraviolet light
機性汚濁物質を酸化させ、酸化反応前後の紫外線吸光度UV absorbance before and after the oxidation reaction by oxidizing mechanical pollutants
の変化量を測定することからなる紫外線酸化を用いた有Of UV oxidation, which consists of measuring the change in
機性汚濁物質測定方法であって、試料水入口側から、定A method for measuring mechanical pollutants,
圧トラップ、二方電磁弁および紫外線ランプを順次設A pressure trap, a two-way solenoid valve and an ultraviolet lamp are installed in sequence.
け、二方電磁弁と紫外線ランプ間に形成される試料水導The sample water guide formed between the two-way solenoid valve and the ultraviolet lamp.
入流路から分岐した分岐流路途中に紫外線吸光度計を設An ultraviolet absorption meter was installed in the middle of the branch flow path branched from the inlet flow path.
け、更に、紫外線ランプの下流側で、前記紫外線吸光度Furthermore, at the downstream side of the UV lamp, the UV absorbance
計との間に、試料水を該紫外線吸光度計から前記紫外線Sample water between the UV absorptiometer and the
ランプの側に循環させる循環ポンプを設けて構成されたIt was constructed by providing a circulation pump to circulate on the side of the lamp
有機性汚濁物質測定装置を用いる紫外線酸化を用いた有Existence using UV oxidation using an organic pollutant measuring device
機性汚濁物質測定方法。Method for measuring organic pollutants.
【請求項4】 二方電磁弁を開くとともに、紫外線ラン
プを消灯し、試料水を紫外線吸光度計に流し込んで該紫
外線吸光度計を新しい試料水で満たした後、紫外線吸光
度計の指示値の安定点を酸化反応前の紫外線吸光度値と
して読み取り、しかる後、前記二方電磁弁を閉じるとと
もに、前記紫外線ランプを点灯し、試料水中の有機性汚
濁物質を酸化して、指示値の安定を待機し、一定時間経
過後に酸化反応後の紫外線吸光度値を読み取り、酸化反
応前後の紫外線吸光度の変化値から有機性汚濁物質量を
測定する請求項3に記載の紫外線酸化を用いた有機性汚
濁物質測定方法。
4. The two- way solenoid valve is opened, the ultraviolet lamp is turned off, sample water is poured into the ultraviolet absorptiometer to fill the ultraviolet absorptiometer with new sample water, and then the stable point of the indicated value of the ultraviolet absorptiometer is reached. Is read as the ultraviolet absorbance value before the oxidation reaction, after that, with the two-way solenoid valve closed, the ultraviolet lamp is turned on, the organic pollutants in the sample water are oxidized, waiting for the stability of the indicated value, The method for measuring organic pollutants using ultraviolet oxidation according to claim 3 , wherein the ultraviolet absorbance value after the oxidation reaction is read after a certain period of time, and the amount of the organic pollutants is measured from the change value of the ultraviolet absorbance before and after the oxidation reaction.
JP22222793A 1993-08-14 1993-08-14 Organic pollutant measurement method using ultraviolet oxidation Expired - Fee Related JP3484207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22222793A JP3484207B2 (en) 1993-08-14 1993-08-14 Organic pollutant measurement method using ultraviolet oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22222793A JP3484207B2 (en) 1993-08-14 1993-08-14 Organic pollutant measurement method using ultraviolet oxidation

Publications (2)

Publication Number Publication Date
JPH0755798A JPH0755798A (en) 1995-03-03
JP3484207B2 true JP3484207B2 (en) 2004-01-06

Family

ID=16779114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22222793A Expired - Fee Related JP3484207B2 (en) 1993-08-14 1993-08-14 Organic pollutant measurement method using ultraviolet oxidation

Country Status (1)

Country Link
JP (1) JP3484207B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19806854C2 (en) * 1998-02-19 2000-02-03 Maihak Ag Method and device for determining the organic carbon (TOC) content in liquids, especially ultrapure water
KR100735609B1 (en) * 2001-08-17 2007-07-04 삼성전자주식회사 Method and apparatus controlling irradiation capacity of uv lamp for di water recovery device
JP2012058105A (en) * 2010-09-09 2012-03-22 Dkk Toa Corp Optical analyzer
KR101274830B1 (en) * 2011-07-01 2013-06-13 서울시립대학교 산학협력단 Dissolved Organic Carbon measureing apparatus
CN108918443A (en) * 2018-07-14 2018-11-30 浙江迪特西科技有限公司 A kind of integrated portable water-quality COD detection device

Also Published As

Publication number Publication date
JPH0755798A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
US11567043B2 (en) Organic carbon detector for liquid chromatography and use thereof
JP3484207B2 (en) Organic pollutant measurement method using ultraviolet oxidation
BRPI0901632B1 (en) PURIFICATION DEVICE HAVING A DEVICE TO ANALYZE THE AMOUNT OF ORGANIC COMPOUND IN A LIQUID LIKE ULTRAPURE WATER AT THE EXIT OF A PURIFICATION DEVICE
JP5601797B2 (en) Method for detecting leakage of specified chemical substances into the basin outside the system
CN111272685A (en) Automatic analyzer device and method for seawater heavy metal copper
JP3269196B2 (en) Analyzer for nitrogen compounds and phosphorus compounds in water
JP2953904B2 (en) Analyzer for silica component in water
WO2022014664A1 (en) Inspection method and inspection device
JPH09127005A (en) Method for analyzing compound in water
CN104297182B (en) Method for determining low-concentration protein in secondary output water of sewage plant
KR100840181B1 (en) Apparatus and method for automatic detecting total nitrogen and total phosphorus
EP0682250B1 (en) Method and device for characterising organic matter, nitrogen containing matter and suspended matter in a liquid
JPS5855839A (en) Method of measuring amount of free available chlorine in water
JP2010091309A (en) Method and apparatus for measuring water-quality in non-contact manner
CN113916818A (en) Surface water quality COD optical detection device
JP2001041949A (en) Apparatus and method for measurement of chemical oxygen demand
DK168580B1 (en) Method and apparatus for measuring cyanide
JP2009236831A (en) Monitoring method and device for dissolved pollutant
JP3172745B2 (en) Method for measuring peroxodisulfuric acid in wastewater
JP2009236832A (en) Monitoring method and device for dissolved pollutant
JP3264090B2 (en) Measuring device for nitrogen compounds, phosphorus compounds and organic pollutants
RU2118946C1 (en) Water-treatment and impurity-control apparatus
JP3651821B2 (en) Total nitrogen measuring device
JP3335776B2 (en) Water quality measurement method and water quality measurement device
SU950682A1 (en) Device for automatically controlling toxicity of liquids

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees