KR101274830B1 - Dissolved Organic Carbon measureing apparatus - Google Patents

Dissolved Organic Carbon measureing apparatus Download PDF

Info

Publication number
KR101274830B1
KR101274830B1 KR1020110065341A KR20110065341A KR101274830B1 KR 101274830 B1 KR101274830 B1 KR 101274830B1 KR 1020110065341 A KR1020110065341 A KR 1020110065341A KR 20110065341 A KR20110065341 A KR 20110065341A KR 101274830 B1 KR101274830 B1 KR 101274830B1
Authority
KR
South Korea
Prior art keywords
sample
switching valve
ultraviolet lamp
organic carbon
port
Prior art date
Application number
KR1020110065341A
Other languages
Korean (ko)
Other versions
KR20130003781A (en
Inventor
김은희
강범주
최송범
곽지현
김현욱
Original Assignee
서울시립대학교 산학협력단
(주)백년기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단, (주)백년기술 filed Critical 서울시립대학교 산학협력단
Priority to KR1020110065341A priority Critical patent/KR101274830B1/en
Publication of KR20130003781A publication Critical patent/KR20130003781A/en
Application granted granted Critical
Publication of KR101274830B1 publication Critical patent/KR101274830B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • G01N33/1846Total carbon analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

위한 본 발명에 의한 용존유기탄소 측정장치는, 시료가 되는 물을 흡입하는 제 1 펌프; 상기 제 1 펌프에서 유입된 물을 선택적으로 스위칭하는 복수 개의 포트를 가지는 스위칭밸브; 상기 스위칭밸브와 연결되어, 시료에 자외선을 조사하여 산화시키는 자외선 램프 모듈; 상기 스위칭밸브와 연결되어, 시료의 산화 전후의 전도도를 측정하는 전도도 셀; 및 상기 전도도 셀과 연결되어, 시료의 전도도 측정신호를 DOC 농도로 환산하는 자료처리장치;를 포함하는 것을 특징으로 한다.Dissolved organic carbon measuring apparatus according to the present invention for the first pump for sucking the water to be a sample; A switching valve having a plurality of ports for selectively switching the water introduced from the first pump; An ultraviolet lamp module connected to the switching valve and configured to irradiate and oxidize ultraviolet rays to a sample; A conductivity cell connected to the switching valve to measure conductivity before and after oxidation of a sample; And a data processing device connected to the conductivity cell and converting a conductivity measurement signal of a sample into a DOC concentration.

Description

용존유기탄소 측정장치{Dissolved Organic Carbon measureing apparatus}Dissolved Organic Carbon measureing apparatus

본 발명은 수중에 녹아 있는 자연유기물질을 측정할 수 있는 장치에 관한 것으로, 보다 상세하게는, 용존유기탄소(DOC)을 측정할 수 있는 장치에 관한 것이다.
The present invention relates to an apparatus capable of measuring natural organic substances dissolved in water, and more particularly, to an apparatus capable of measuring dissolved organic carbon (DOC).

수중의 자연유기물질은 존재형태에 따라 용존유기탄소(dissolved organic carbon)와 입자상유기물(particulate organic carbons)로 분류된다. 총유기탄소(TOC)는 POC와 DOC를 합한 값이며, 실제 유기물 농도를 나타내는 경우에는 TOC농도보다는 POC와 DOC로 구분하여 표시하기도 한다. 일반적으로 하천과 호소의 입자상유기물은 10 ~ 17%정도이고 대부분은 용존유기탄소 형태로 존재한다.Natural organic substances in water are classified into dissolved organic carbons and particulate organic carbons, depending on their existence. Total organic carbon (TOC) is the sum of POC and DOC, and in the case of representing the actual organic concentration, it may be expressed as POC and DOC rather than TOC concentration. Generally, particulates in rivers and lakes are about 10-17%, and most of them are in the form of dissolved organic carbon.

용존유기탄소는 수생생태계의 탄소순환과장 중 박테리아의 에너지원이 되며, 상위 먹이연쇄과정으로 전달되는 에너지의 중요한 근원이 된다. 또한 수중의 용존유기탄소는 금속이온과 착화합물을 형성하여 금속의 생물이용성을 증가시키거나 감소시키기도 하며 산화환원전위에 참여하고 완충작용도 한다. 그리고 용존유기탄소농도가 높은 물을 상수원으로 사용할 경우 염소소독에 의해 발암물질인 트리할로메탄(THMs)이 생성되기도 한다.Dissolved organic carbon is an energy source for bacteria in the carbon cycle of aquatic ecosystems, and is an important source of energy transferred to higher food chain processes. In addition, dissolved organic carbon in water forms complexes with metal ions, which increases or decreases the bioavailability of metals, participates in the redox potential and buffers them. In addition, when water with high dissolved organic carbon concentration is used as a source of water, chlorine disinfection causes trihalomethane (THMs) to be produced.

입자상유기물은 부착세균의 서식처를 제공하고 부착세균의 분해에 의해 용존유기탄소로 전환되어 박테리아의 에너지원으로 공급된다. 호소의 용존유기탄소 기원은 유역으로부터 유입되는 외부기원 뿐만 아니라 호수내의 생물체의 생산, 세포의 자가분해, 사체의 미생물분해로부터의 배출에 의한 내부생성이 있다. 하천의 용존유기탄소 농도는 기후와 계절, 그리고 유역내의 산림의 유무에 따라 다르며 강우시 유역으로부터 유기물의 유출은 초기 강우에 의해 대부분이 유출되고 그 이후에는 유출이 적게 나타나고 있다.
Particulate organic matter provides a habitat for adherent bacteria and is converted into dissolved organic carbon by decomposition of adherent bacteria and supplied as a source of bacteria energy. The dissolved organic carbon origin of the lake is internally generated by the production of organisms in the lake, the self-decomposition of cells, and the release of carcasses from microorganisms, as well as external sources from the watershed. Dissolved organic carbon concentrations in rivers depend on climate, season, and the presence of forests in the watershed. Most of the organic matter is discharged from rainfall during the rainfall, and less after that.

본 발명은 상기와 같은 점을 감안하여 안출된 것으로, 자외선을 이용하여, 측정 대상이 되는 시료의 DOC를 정확하게 측정할 수 있도록 구조가 개선된 DOC 측정장치를 제공하는데 그 목적이 있다.
The present invention has been made in view of the above, and an object thereof is to provide a DOC measuring device having an improved structure so that the DOC of a sample to be measured can be accurately measured using ultraviolet rays.

상기와 같은 목적을 달성하기 위한 본 발명에 의한 용존유기탄소 측정장치는, 시료가 되는 물을 흡입하는 제 1 펌프; 상기 제 1 펌프에서 유입된 물을 선택적으로 스위칭하는 복수 개의 포트를 가지는 스위칭밸브; 상기 스위칭밸브와 연결되어, 시료에 자외선을 조사하여 산화시키는 자외선 램프 모듈; 상기 스위칭밸브와 연결되어, 시료의 산화 전후의 전도도를 측정하는 전도도 셀; 및 상기 전도도 셀과 연결되어, 시료의 전도도 신호를 수집하여 DOC 농도로 환산하는 자료처리장치 ;를 포함하는 것을 특징으로 한다.Dissolved organic carbon measuring apparatus according to the present invention for achieving the above object, the first pump for sucking water to be a sample; A switching valve having a plurality of ports for selectively switching the water introduced from the first pump; An ultraviolet lamp module connected to the switching valve and configured to irradiate and oxidize ultraviolet rays to a sample; A conductivity cell connected to the switching valve to measure conductivity before and after oxidation of a sample; And a data processing device connected to the conductivity cell to collect a conductivity signal of a sample and convert the DOC concentration into a DOC concentration.

상기 스위칭밸브는, 상기 제 1 펌프와 연결되는 제 1 포트; 상기 전도도 셀과 연결되는 제 2 포트; 상기 제 1 및 제 2 포트와 각각 연결되는 제 3 및 제 4 포트; 및 상기 자외선 램프 모듈의 양단과 각각 연결되는 제 5 및 제 6 포트;를 포함하는 것이 바람직하다.
The switching valve may include a first port connected to the first pump; A second port connected with the conductivity cell; Third and fourth ports connected with the first and second ports, respectively; And fifth and sixth ports respectively connected to both ends of the ultraviolet lamp module.

이상과 같은 본 발명에 따르면, 6개의 포트를 가지는 스위칭 밸브와 자외선 램프 및 전도도 셀을 이용하여 유입되는 시료 내에 포함되어 있는 용존유기탄소(DOC)를 정확하게 측정할 수 있다.
According to the present invention as described above, it is possible to accurately measure the dissolved organic carbon (DOC) contained in the sample introduced by using a switching valve having six ports, an ultraviolet lamp and a conductivity cell.

도 1 내지 도 3은 본 발명의 제 1 실시예에 따른 용존유기탄소 측정장치의 일 예를 개략적으로 도시한 도면,
도 4는 본 발명의 제 2 실시예에 따른 용존유기탄소 측정장치의 일예를 개략적으로 도시한 도면이다.
1 to 3 schematically show an example of the dissolved organic carbon measuring apparatus according to the first embodiment of the present invention,
4 is a view schematically showing an example of the dissolved organic carbon measuring apparatus according to the second embodiment of the present invention.

이하, 본 발명에 의한 용존유기탄소 측정장치의 구성을 도면과 함께 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the structure of the dissolved organic carbon measuring apparatus by this invention is demonstrated with drawing.

도 1 내지 도 3은 본 발명의 제 1 실시예에 의한 용존유기탄소 측정장치의 일 예를 개략적으로 도시한 도면이다.1 to 3 schematically show an example of the dissolved organic carbon measuring apparatus according to the first embodiment of the present invention.

도시된 바와 같이, 용존유기탄소 측정장치는 제 1 펌프(10), 스위칭밸브(20), 자외선 램프 모듈(30), 전도도 셀(40) 및 자료처리장치(50)를 포함한다.As shown, the dissolved organic carbon measuring device includes a first pump 10, a switching valve 20, an ultraviolet lamp module 30, a conductivity cell 40, and a data processing device 50.

제 1 펌프(10)는 시료가 되는 물을 흡입 및 배출하기 위한 것으로, 흡입된 물을 배관을 통해 상기 스위칭 밸브(20) 측으로 전달한다.The first pump 10 is for sucking and discharging water to be a sample, and transfers the sucked water to the switching valve 20 through a pipe.

스위칭 밸브(20)는 복수 개의 포트를 가지도록 구성되며, 바람직하게는 도시된 바와 같이 총 6개의 포트(21~26)를 가지도록 마련되는 것이 좋다.The switching valve 20 is configured to have a plurality of ports, and preferably, six switching ports 21 to 26 are provided as shown.

제 1 포트(21)는 상기 제 1 펌프(10)와 연결되어, 상기 제 1 펌프(10)에서 배출된 시료가 되는 물을 유입 받는다. 제 2 포트(22)는 상기 제 1 포트(21)에서 유입된 시료가 되는 물이 상기 스위칭 밸브(20)이 바깥쪽으로 배출될 수 있도록 구성된 포트로서, 상기 전도도 셀(40)과 연결된다. The first port 21 is connected to the first pump 10 to receive water that is a sample discharged from the first pump 10. The second port 22 is a port configured to allow the water to be a sample introduced from the first port 21 to be discharged to the outside of the switching valve 20, and is connected to the conductivity cell 40.

제 3 및 제 4 포트(23)(24)는 서로 연결되어, 별도의 유로를 형성하는 것으로, 상기 제 1 펌프(10)로부터 유입된 시료가 상기 자외선 램프 모듈(30)을 경유하지 않도록 유로가 스위칭 될 경우, 사용된다.The third and fourth ports 23 and 24 are connected to each other to form a separate flow path, so that the flow path is formed so that the sample introduced from the first pump 10 does not pass through the ultraviolet lamp module 30. If switched, it is used.

제 5 및 제 6 포트(25)(26)는 상기 자외선 램프 모듈(30)과 각각 연결되어, 상기 제 1 펌프(10)로부터 유입된 시료를 상기 자외선 램프 모듈(30)에 공급하고, 상기 자외선 램프 모듈(30)을 통과하여 산화된 시료를 다시 스위칭 밸브(20)로 유입 받는 역할을 수행한다. 각각의 연결구조는 상기 자외선 램프 모듈(30)의 구조 설명시 보다 상세히 설명한다.Fifth and sixth ports 25 and 26 are connected to the ultraviolet lamp module 30, respectively, to supply the sample introduced from the first pump 10 to the ultraviolet lamp module 30, and the ultraviolet light. Through the lamp module 30 serves to receive the oxidized sample back to the switching valve (20). Each connection structure will be described in more detail when describing the structure of the ultraviolet lamp module 30.

자외선 램프 모듈(30)은 상기 스위칭 밸브(20)와 연결되어, 유입된 시료에 자외선을 조사하고, 산화시키는 역할을 수행한다. 자외선 램프 모듈(30)의 입구단(30a)은 상기 제 5 포트(25)와 연결되고, 출구단(30b)은 상기 제 6 포트(26)와 연결되어, 시료 일정량을 산화시킬수 있는 반응조(30c)와, 산화용 자외선 램프(31)로 구성된다.The ultraviolet lamp module 30 is connected to the switching valve 20, and serves to irradiate and oxidize the ultraviolet light to the introduced sample. The inlet end 30a of the ultraviolet lamp module 30 is connected to the fifth port 25, and the outlet end 30b is connected to the sixth port 26, and the reaction tank 30c capable of oxidizing a predetermined amount of the sample. ) And an ultraviolet lamp 31 for oxidation.

전도도 셀(40)은 상기 시료의 산화 전 후의 전도도를 측정하기 위한 것으로, 상기 제 2 포트(22)와 연결된다. 상기 전도도 셀(40)은 유입된 시료에 전류를 공급하여 그 값을 측정하는 것으로 그 원리 및 사용은 본 발명의 요지와 관련이 없으므로, 구체적인 설명은 생략한다.The conductivity cell 40 is for measuring conductivity before and after oxidation of the sample, and is connected to the second port 22. The conductivity cell 40 measures the value by supplying a current to the introduced sample, and its principle and use are not related to the gist of the present invention, and thus a detailed description thereof will be omitted.

자료처리장치(50)는 상기 전도도 셀(40)과 연결되어, 상기 전도도 셀(40)에서 감지된 시료의 전도도를 저장하며, 수집된 정보 들을 이용하여, 용존유기탄소로 환산한다. 용존유기탄소를 측정하는 방법은 다양한데, 자연유기물질은 일반적으로 organics 샘플을 0.45μm grass-fiber filer 로 여과하여 DOC (dissolved organic carbon)를 측정함으로써 정량할 수 있다(Levine et al., 1985). 수계에 존재하는 자연유기물질의 양은 일반적으로 유기탄소의 량으로 정의되며 보통 particulated organic carbon (POC)의 량을 무시한 DOC를 정량한다.The data processing device 50 is connected to the conductivity cell 40, stores the conductivity of the sample detected by the conductivity cell 40, and converts it into dissolved organic carbon using the collected information. There are many ways to measure dissolved organic carbon. Natural organic materials can generally be quantified by filtration of organics samples with 0.45 μm grass-fiber filer and measuring dissolved organic carbon (DOC) (Levine et al., 1985). The amount of natural organic matter in the water system is generally defined as the amount of organic carbon and usually quantifies DOC, ignoring the amount of particulated organic carbon (POC).

이하, 본 발명의 바람직한 실시예에 의한 용존유기탄소 측정장치의 동작을 도면과 함께 설명한다.Hereinafter, the operation of the dissolved organic carbon measuring apparatus according to a preferred embodiment of the present invention will be described with the drawings.

도 1과 같이 구성된 본 발명에 의한 용존유기탄소 측정장치를 작동하면, 도 2에 도시된 바와 같아, 시료가 유입되는 제 1 펌프(10)를 작동하고, 제 1 포트(21)를 통해 유입된 시료를 제 3 및 제 4 포트(23)(24)와 제 2 포트(22)를 경유하는 유로를 지나도록 하여, 아무런 처리과정을 거치지 않은 시료가 전도도 셀(40)에 유입될 수 있도록 한다. 그러면 상기 전도도 셀(40)에서는 처리전 시료에 대한 전도도 값을 측정한다.When the dissolved organic carbon measuring apparatus according to the present invention configured as shown in FIG. 1 is operated, as shown in FIG. The sample is passed through the flow paths through the third and fourth ports 23, 24 and the second port 22, so that the sample that has not undergone any processing can flow into the conductivity cell 40. The conductivity cell 40 then measures the conductivity value for the sample before treatment.

그리고, 도 3에 도시된 바와 같이, 제 1 포트(21)와 제 5 포트(25), 제 2 포트(22)와 제 6 포트(26)를 서로 연결하여, 새로운 유로를 형성하여, 상기 시료가 되는 물을 상기 자외선 램프 모듈(30) 측으로 유입시킨다. 상기 자외선 램프 모듈(30)에서는 유입된 시료에 자외선을 조사하여, 시료 중의 유기물을 이산화탄소(CO2)로 산화시킨다. 이와 같이 이산화탄소로 산화된 시료는 다시 전도도 셀(40)로 공급되어, 전도도를 다시 측정하게 되고, 자료처리장치(50)에서는, 전도도 셀(40)에서 측정된 산화 전후의 전도도를 이용하여 용존유기탄소(DOC)을 환산한다.3, the first port 21 and the fifth port 25, the second port 22, and the sixth port 26 are connected to each other to form a new flow path to form the sample. Water to be introduced into the UV lamp module 30 side. The ultraviolet lamp module 30 irradiates the introduced sample with ultraviolet light, and oxidizes organic matter in the sample to carbon dioxide (CO 2 ). The sample oxidized with carbon dioxide is supplied to the conductivity cell 40 again, and the conductivity is measured again. In the data processing apparatus 50, the dissolved organic acid is used by using the conductivity before and after the oxidation measured in the conductivity cell 40. Convert carbon (DOC).

앞에서 설명되고, 도면에 도시된 본 발명의 실시예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.
The embodiments of the present invention described above and shown in the drawings should not be construed as limiting the technical idea of the present invention. The scope of protection of the present invention is limited only by the matters described in the claims, and those skilled in the art will be able to modify the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the scope of the present invention as long as they are obvious to those skilled in the art.

10; 제 1 펌프 11; 제 2 펌프
20; 스위칭밸브 21~26; 제 1 포트 내지 제 6 포트
30; 자외선 램프 모듈 30a; 입구단
30b; 출구단 30c; 자외선 램프
40; 전도도 셀 50; 자료처리장치
10; First pump 11; 2nd pump
20; Switching valves 21 to 26; 1st port to 6th port
30; Ultraviolet lamp module 30a; Entrance
30b; Outlet stage 30c; UV lamp
40; Conductivity cell 50; Data processing device

Claims (3)

시료가 되는 물을 흡입하는 제 1 펌프;
상기 제 1 펌프에서 유입된 물을 선택적으로 스위칭 하는 복수 개의 포트를 가지는 스위칭밸브;
상기 스위칭밸브와 연결되어, 시료에 자외선을 조사하여 산화시키는 자외선 램프 모듈;
상기 스위칭밸브와 연결되어, 시료의 산화 전후의 전도도를 측정하는 전도도 셀; 및
상기 전도도 셀과 연결되어, 시료의 상태자료를 수집하는 자료처리장치;를 포함하며,
상기 스위칭밸브는,
상기 제 1 펌프와 연결되는 제 1 포트;
상기 전도도 셀과 연결되는 제 2 포트;
상기 제 1 및 제 2 포트와 각각 연결되어, 상기 전도도 셀에 상기 자외선 램프에 의해 산화되기 전 상태의 시료를 전달하도록 서로 연결되는 제 3 및 제 4 포트; 및
상기 자외선 램프 모듈의 양단과 각각 연결되는 제 5 및 제 6 포트;를 포함하고,
상기 자외선 램프 모듈은,
산화용 자외선 램프; 및
입구단은 상기 제 5 포트와 연결되고, 출구단은 상기 제 6 포트와 연결되어, 시료 일정량을 산화시킬 수 있는 반응조;을 포함하며,
상기 산화용 자외선 램프는 상기 반응조의 중앙에 배치되는 것을 특징으로 하는 용존유기탄소 측정장치.
A first pump that sucks water to be a sample;
A switching valve having a plurality of ports for selectively switching water introduced from the first pump;
An ultraviolet lamp module connected to the switching valve and configured to irradiate and oxidize ultraviolet rays to a sample;
A conductivity cell connected to the switching valve to measure conductivity before and after oxidation of a sample; And
And a data processing device connected to the conductivity cell and collecting state data of the sample.
The switching valve,
A first port connected to the first pump;
A second port connected with the conductivity cell;
Third and fourth ports connected to the first and second ports, respectively, and connected to each other to transfer a sample in a state before being oxidized by the ultraviolet lamp to the conductivity cell; And
And fifth and sixth ports respectively connected to both ends of the ultraviolet lamp module.
The ultraviolet lamp module,
Ultraviolet lamps for oxidation; And
An inlet end is connected with the fifth port, and an outlet end is connected with the sixth port and capable of oxidizing a predetermined amount of a sample.
The ultraviolet lamp for oxidation is dissolved organic carbon measuring device, characterized in that disposed in the center of the reaction tank.
삭제delete 삭제delete
KR1020110065341A 2011-07-01 2011-07-01 Dissolved Organic Carbon measureing apparatus KR101274830B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110065341A KR101274830B1 (en) 2011-07-01 2011-07-01 Dissolved Organic Carbon measureing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110065341A KR101274830B1 (en) 2011-07-01 2011-07-01 Dissolved Organic Carbon measureing apparatus

Publications (2)

Publication Number Publication Date
KR20130003781A KR20130003781A (en) 2013-01-09
KR101274830B1 true KR101274830B1 (en) 2013-06-13

Family

ID=47835881

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110065341A KR101274830B1 (en) 2011-07-01 2011-07-01 Dissolved Organic Carbon measureing apparatus

Country Status (1)

Country Link
KR (1) KR101274830B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102152245B1 (en) 2019-10-18 2020-09-04 주식회사 유앤유 Device for measuring dissolved organic carbon
KR102187689B1 (en) 2020-06-09 2020-12-07 에이티티(주) Crucible furnace structure for TOC measurement
KR102207889B1 (en) 2020-06-09 2021-01-26 에이티티(주) Residual carbon dioxide emission structure for TOC measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115889A1 (en) * 2015-12-30 2017-07-06 비엘프로세스(주) Apparatus for oxidation pretreatment of nutrient salts and organic matter, and method for measurement thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755798A (en) * 1993-08-14 1995-03-03 Horiba Ltd Organic contaminant substance measuring method using ultraviolet oxidation
JP2008180662A (en) * 2007-01-26 2008-08-07 Techno Morioka Kk Oxidation reaction device for measuring total organic carbon value, organic carbon value measurement unit, and ultraviolet oxidation method of organic compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755798A (en) * 1993-08-14 1995-03-03 Horiba Ltd Organic contaminant substance measuring method using ultraviolet oxidation
JP2008180662A (en) * 2007-01-26 2008-08-07 Techno Morioka Kk Oxidation reaction device for measuring total organic carbon value, organic carbon value measurement unit, and ultraviolet oxidation method of organic compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102152245B1 (en) 2019-10-18 2020-09-04 주식회사 유앤유 Device for measuring dissolved organic carbon
KR102187689B1 (en) 2020-06-09 2020-12-07 에이티티(주) Crucible furnace structure for TOC measurement
KR102207889B1 (en) 2020-06-09 2021-01-26 에이티티(주) Residual carbon dioxide emission structure for TOC measuring device

Also Published As

Publication number Publication date
KR20130003781A (en) 2013-01-09

Similar Documents

Publication Publication Date Title
Bandala et al. Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review
Kelly et al. Wastewater treatment alters microbial colonization of microplastics
KR101274830B1 (en) Dissolved Organic Carbon measureing apparatus
Boutilier et al. Water filtration using plant xylem
Goldstein et al. Photolysis of aqueous H2O2: quantum yield and applications for polychromatic UV actinometry in photoreactors
Dias et al. Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen
CN104198391A (en) Ultraviolet fluorescence double-signal water quality monitoring device taking LED (light emitting diode) as light source and application method of device
CN105593173B (en) Drainage processing method and drain treatment apparatus
CN104163540B (en) Ozone for ozone-life assemblage technique adds automatic control system
Lima et al. Photodecomposition and color removal of a real sample of textile wastewater using heterogeneous photocatalysis with polypyrrole
TR200805735A2 (en) Cleaning of olive oil wastewater by mechanical, chemical and biological methods.
WO2016035237A1 (en) Water quality sensor and water processing system
WO2015061569A1 (en) Kit, composition and method for determination of chemical oxidation demand
CN106442920A (en) Ship ballast water drainage real-time monitoring device and method
Nocker et al. Microbiological changes along a modular wastewater reuse treatment process with a special focus on bacterial regrowth
JP4538604B2 (en) Photoreaction tube built-in photoreaction apparatus and water quality monitoring apparatus using the same
Tue-Ngeun et al. Determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters by sequential injection spectrophotometry with on-line UV photo-oxidation
Shetty et al. Total organic carbon analysis in water–A review of current methods
Flores et al. Heterogeneous photocatalytic discoloration/degradation of rhodamine B with H2O2 and spinel copper ferrite magnetic nanoparticles
Ghazanfari et al. Decolourisation of direct red dye 81 from aqueous solutions by SnO2/H2O2 hybrid process
Li et al. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay
CN105510423B (en) Measure the automatic on-line monitoring instrument of chemical oxygen demand of water body
CN104211256A (en) COD biological film-photocatalytic device in slightly-polluted water body
CN106770093B (en) A method of viable bacteria content and composition in evaluation sludge ozone treatment process
CN103913448A (en) Real-time dynamic detection system for hydroxyl radicals generated by photo-catalytic reaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170608

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180605

Year of fee payment: 6