JP5468344B2 - Method for measuring concentration of water-soluble radical species in aqueous solution and apparatus for measuring concentration of water-soluble radical species - Google Patents

Method for measuring concentration of water-soluble radical species in aqueous solution and apparatus for measuring concentration of water-soluble radical species Download PDF

Info

Publication number
JP5468344B2
JP5468344B2 JP2009228445A JP2009228445A JP5468344B2 JP 5468344 B2 JP5468344 B2 JP 5468344B2 JP 2009228445 A JP2009228445 A JP 2009228445A JP 2009228445 A JP2009228445 A JP 2009228445A JP 5468344 B2 JP5468344 B2 JP 5468344B2
Authority
JP
Japan
Prior art keywords
aqueous solution
water
concentration
measuring
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009228445A
Other languages
Japanese (ja)
Other versions
JP2011075447A (en
Inventor
昇 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP2009228445A priority Critical patent/JP5468344B2/en
Publication of JP2011075447A publication Critical patent/JP2011075447A/en
Application granted granted Critical
Publication of JP5468344B2 publication Critical patent/JP5468344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、水溶液中の水溶性ラジカル種濃度の測定方法、及び、水溶性ラジカル種濃度測定装置に関する。   The present invention relates to a method for measuring a concentration of a water-soluble radical species in an aqueous solution and a water-soluble radical species concentration measuring apparatus.

一般に、可視・紫外光線による分光分析では、その吸収スペクトルが測定物質分子の電子遷移のエネルギー準位に及ぶため、近赤外線の吸収スペクトルよりはるかに大きなエネルギー変化を伴う。このことを利用した分光分析の歴史は深く、各種発光基の定性・定量分析に応用されており、今日ではたいていの発色団のスペクトルが知られている。このように紫外可視分光は従来から広く使用されているが、溶液成分の分光分析という観点からは200nm〜800nmの波長領域に固有の吸収バンドを有する溶質に対してのみ適用されていた。たとえば、降水中の硝酸イオン(NO32−)や亜硝酸イオン(NO2-)はそれぞれ201nm、210nmにピークをもつ吸収が知られており、それらの波長を用いた検出や測定が行われている。 In general, in the spectroscopic analysis using visible / ultraviolet rays, the absorption spectrum extends to the energy level of the electronic transition of the substance to be measured, and therefore involves a much larger energy change than the absorption spectrum of near infrared rays. The history of spectroscopic analysis using this fact is deep, and it has been applied to qualitative and quantitative analysis of various luminescent groups. Today, the spectrum of most chromophores is known. As described above, UV-visible spectroscopy has been widely used. However, from the viewpoint of spectroscopic analysis of solution components, it has been applied only to a solute having an intrinsic absorption band in a wavelength region of 200 nm to 800 nm. For example, nitrate ions (NO3 2− ) and nitrite ions (NO 2− ) in precipitation are known to have absorption peaks at 201 nm and 210 nm, respectively, and detection and measurement using those wavelengths are performed. Yes.

ところで、水の遠紫外分光スペクトルを観測すると、一番低エネルギー側に現れる電子遷移による吸収バンドが190nm以下の波長領域に現れる。図4は、遠赤外から遠紫外領域の液体の水の吸収スペクトルを示す図である。この遠紫外領域に現れる最初の吸収バンドは、水分子中の酸素原子が有する不対電子が非結合性のn軌道から反結合性のσ軌道へ遷移する電子遷移を伴うためn→σ*遷移とよばれる。このバンドは、水分子間の水素結合状態の変化に対応して敏感にシフトすることがすでによく調べられている。例えば、この水の吸収スペクトルは気体状態では波長167.0nmにピークを持つが、液体ではそのピークがおよそ150nm付近までシフトする。しかし、これまで水中に溶解する物質をこの水自身の吸収スペクトルを用いて検出あるいは測定する試みはなされなかった。なぜなら、水中に溶解する成分が微量である場合は、明らかに主成分は水であり、微量成分の混入による水自体のスペクトルの吸収量変化は無視されるほど小さいことが自明であるからである。   By the way, when the far-ultraviolet spectrum of water is observed, an absorption band due to electronic transition that appears on the lowest energy side appears in a wavelength region of 190 nm or less. FIG. 4 is a diagram showing an absorption spectrum of liquid water in the far infrared to far ultraviolet region. The first absorption band appearing in the far ultraviolet region is accompanied by an electronic transition in which an unpaired electron of an oxygen atom in a water molecule transitions from an unbonded n-orbital to an antibonded σ-orbital. It is called. It has already been well investigated that this band shifts sensitively in response to changes in the hydrogen bonding state between water molecules. For example, the absorption spectrum of water has a peak at a wavelength of 167.0 nm in a gas state, but the peak shifts to about 150 nm in a liquid. However, no attempt has been made so far to detect or measure substances dissolved in water using the absorption spectrum of the water itself. This is because when the amount of the component dissolved in water is very small, it is obvious that the main component is water, and it is obvious that the change in the absorption amount of the spectrum of the water itself due to the mixing of the trace component is negligibly small. .

本発明者は、水中に荷電性の溶解成分(例えば、ナトリウムイオンやカリウムイオン等の陽イオンや、塩化物イオンや硝酸イオン等の陰イオン)が水和している状態では、この水のn→σ*遷移に要するエネルギーが、その水和イオンに固有の変化を示すことに着目し、各種の水和イオンに関する水のn→σ*遷移スペクトルの変化の様子を系統的に調査した。その結果、水中に溶解成分が水和した状態では、水和イオンの電場が影響して、n→σ*遷移に起因する150nm〜160nm付近の吸収ピークの裾野の部分(180nm〜210nmの常用分光装置で測定可能な領域に現れる吸収バンド)の強度、位置、バンド幅が、水の水素結合や水和に非常に敏感に変化していることを突き止め、これを利用した水溶液測定方法を既に発明している(例えば、特許文献1参照)。   In the state where the charged dissolved component (for example, a cation such as sodium ion or potassium ion or an anion such as chloride ion or nitrate ion) is hydrated in water, Focusing on the fact that the energy required for the σ * transition shows changes inherent to the hydrated ions, the state of changes in the n → σ * transition spectra of water for various hydrated ions was systematically investigated. As a result, in the state where the dissolved component is hydrated in water, the electric field of the hydrated ion affects the bottom of the absorption peak near 150 nm to 160 nm due to the n → σ * transition (ordinary spectroscopy of 180 nm to 210 nm). We have already invented an aqueous solution measurement method using this, ascertaining that the intensity, position, and band width of the absorption band appearing in the region measurable by the apparatus are very sensitive to hydrogen bonding and hydration of water. (For example, refer to Patent Document 1).

特開2005−214863号公報Japanese Patent Laying-Open No. 2005-214863

一方、近年、水溶液中の水溶性ラジカル種(例えば、ヒドロキシルラジカル)の濃度の測定は、半導体洗浄プロセス、食品の殺菌洗浄、環境汚染物質の分解処理等の分野において必要不可欠なものとなっている。そして、このような水溶性ラジカル種濃度の測定には、電子スピン共鳴(ESR:Electron Spin Resonance)が一般的に利用されてきている。しかしながら、ESRにおいては、水溶性ラジカル種(特に、ヒドロキシルラジカル)が極短寿命であることから、スピントラップ剤を添加した上で測定する必要があった。また、蛍光失活を利用する方法も用いられるが、このような方法では、蛍光プローブとなる分子の添加が必要であった。そのため、上述したような既存の水溶性ラジカル種濃度の測定方法は、スピントラップ剤等の添加により、いずれも測定対象の水溶液をあるがままの状態で測定する方法とは言えなかった。一方で食品や半導体の洗浄工程で、測定のために洗浄液に添加剤を混入することは許されない。そこで、水溶性ラジカル種濃度をその発生場所にて、添加剤混入等の前処理なく非侵襲且つリアルタイムに測定する方法の出現が切望されていた。   On the other hand, in recent years, the measurement of the concentration of water-soluble radical species (for example, hydroxyl radical) in an aqueous solution has become indispensable in fields such as semiconductor cleaning processes, food sterilization cleaning, and environmental pollutant decomposition treatment. . And the electron spin resonance (ESR: Electron Spin Resonance) has generally been utilized for the measurement of such water-soluble radical species concentration. However, in ESR, since water-soluble radical species (particularly hydroxyl radicals) have an extremely short lifetime, it was necessary to perform measurement after adding a spin trap agent. In addition, a method using fluorescence deactivation is also used, but in such a method, it is necessary to add a molecule to be a fluorescent probe. Therefore, none of the existing methods for measuring the concentration of water-soluble radical species as described above can be said to be a method of measuring an aqueous solution to be measured as it is by adding a spin trap agent or the like. On the other hand, it is not allowed to mix an additive into a cleaning solution for measurement in a cleaning process of food or semiconductor. Therefore, the advent of a method for measuring the water-soluble radical species concentration in a non-invasive and real-time manner without pretreatment such as mixing of additives at the place where the water-soluble radical species is generated has been desired.

本発明は、上述した課題に鑑みてなされたものであり、その目的は、水溶性ラジカル種濃度をその発生場所にて添加剤混入等の前処理なく非侵襲且つリアルタイムに計測することが可能な水溶液中の水溶性ラジカル種濃度の測定方法、及び、水溶性ラジカル種濃度測定装置を提供することにある。   The present invention has been made in view of the above-described problems, and the object thereof is to measure the concentration of water-soluble radical species in a non-invasive and real-time manner without pretreatment such as mixing of additives at the place of occurrence. An object of the present invention is to provide a method for measuring a water-soluble radical species concentration in an aqueous solution and a water-soluble radical species concentration measuring apparatus.

以上のような目的を達成するために、本発明者は、水溶液中の水溶性ラジカル種濃度の測定方法について鋭意研究を行った。その結果、水溶液の遠赤外分光スペクトル強度が塩の水和と同様に水溶性ラジカル種の発生によっても変化することを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventor has diligently studied a method for measuring the concentration of water-soluble radical species in an aqueous solution. As a result, it has been found that the far-infrared spectrum intensity of the aqueous solution is changed by the generation of water-soluble radical species as well as the hydration of the salt, and the present invention has been completed.

すなわち、本発明の水溶液中の水溶性ラジカル種濃度の測定方法は、水溶液中の水溶性ラジカル種濃度と、該水溶液の140〜210nmの範囲内における1以上の波長で測定した吸光特性との相関性に基づいて該水溶液中の水溶性ラジカル種濃度を定量すること特徴とする。   That is, the method for measuring the concentration of the water-soluble radical species in the aqueous solution of the present invention is the correlation between the concentration of the water-soluble radical species in the aqueous solution and the absorption characteristics measured at one or more wavelengths within the range of 140 to 210 nm of the aqueous solution. The water-soluble radical species concentration in the aqueous solution is quantified based on the property.

上記構成によれば、水溶液の吸光特性を直接測定すればよいため、スピントラップ剤等を添加する等、測定対象の水溶液の状態を変化させることなく、水溶性ラジカル種濃度を測定することができる。また、水溶液の140〜210nmの範囲内における1以上の波長での吸光特性を測定すればよいため、当該水溶液を系から取り出すことなく、その発生場所にて非侵襲且つリアルタイムに測定することができる。上記相関性は、水溶液中の水溶性ラジカル種濃度と、該水溶液の150〜210nmの範囲内における1以上の波長で測定した吸光特性との相関性であることが好ましく、該水溶液の155〜185nmの範囲内における1以上の波長で測定した吸光特性との相関性であることがより好ましい。なお、本明細書中、遠紫外領域とは、280nmより短波長且つ100nmより長波長の紫外線領域をいう。また、本発明において、水溶性ラジカル種とは、ヒドロキシルラジカル、スーパーオキシド、ヒドロペルオキシルラジカル、及び、水素ラジカルを含む、水溶性を有するラジカル種のうちの少なくとも1種をいう。   According to the above configuration, since the light absorption characteristics of the aqueous solution may be directly measured, the concentration of the water-soluble radical species can be measured without changing the state of the aqueous solution to be measured, such as by adding a spin trap agent or the like. . Moreover, since it is only necessary to measure the light absorption characteristics of the aqueous solution at one or more wavelengths within the range of 140 to 210 nm, the aqueous solution can be measured non-invasively and in real time without taking out the aqueous solution from the system. . The correlation is preferably a correlation between the concentration of the water-soluble radical species in the aqueous solution and the light absorption characteristics measured at one or more wavelengths within the range of 150 to 210 nm of the aqueous solution, and the 155 to 185 nm of the aqueous solution. The correlation with the light absorption characteristics measured at one or more wavelengths within the above range is more preferable. In this specification, the far ultraviolet region refers to an ultraviolet region having a wavelength shorter than 280 nm and longer than 100 nm. In the present invention, the water-soluble radical species refers to at least one of water-soluble radical species including a hydroxyl radical, a superoxide, a hydroperoxyl radical, and a hydrogen radical.

また、本発明の水溶液中の水溶性ラジカル種濃度の測定方法は、水溶性ラジカル種を含む水溶液の140〜210nmの範囲内における1以上の波長での吸光特性と水溶性ラジカル種濃度との検量線をあらかじめ決定しておき、水溶性ラジカル種を含む水溶液の吸光特性を、前記1以上の波長で測定し、得られた吸光特性データより前記検量線を用いて水溶液中の水溶性ラジカル種濃度を定量することを特徴とする。   The method for measuring the concentration of the water-soluble radical species in the aqueous solution of the present invention is the calibration of the light absorption characteristics and the water-soluble radical species concentration at one or more wavelengths within the range of 140 to 210 nm of the aqueous solution containing the water-soluble radical species. The absorption characteristic of the aqueous solution containing the water-soluble radical species is measured in advance at one or more wavelengths, and the concentration of the water-soluble radical species in the aqueous solution is determined using the calibration curve from the obtained absorption characteristic data. It is characterized by quantifying.

上記構成によれば、水溶液の吸光特性を直接測定すればよいため、スピントラップ剤等を添加する等、測定対象の水溶液の状態を変化させることなく、水溶性ラジカル種濃度を測定することができる。また、予め作成した検量線を用いて、得られた吸光特性より前記検量線を用いて水溶液中の水溶性ラジカル種濃度を測定するため、当該水溶液を系から取り出すことなく、その発生場所にて非侵襲且つリアルタイムに測定することができる。   According to the above configuration, since the light absorption characteristics of the aqueous solution may be directly measured, the concentration of the water-soluble radical species can be measured without changing the state of the aqueous solution to be measured, such as by adding a spin trap agent or the like. . In addition, using a calibration curve prepared in advance, the concentration of water-soluble radical species in the aqueous solution is measured using the calibration curve from the obtained light absorption characteristics. Non-invasive and real-time measurement is possible.

上記構成においては、前記吸光特性の測定を継続的に行って、水溶性ラジカル種濃度の定量を継続的に行うことが好ましい。   In the said structure, it is preferable to perform the measurement of the said light absorption characteristic continuously and to perform fixed_quantity | quantitative_assay of water-soluble radical seed | species concentration.

また、本発明の水溶性ラジカル種濃度測定装置は、140〜210nmの範囲内における1以上の波長で測定対象となる水溶液の吸光特性を測定する吸光特性測定手段と、水溶液中の水溶性ラジカル種濃度と該水溶液の140〜210nmの範囲内における1以上の波長で測定した吸光特性との相関性とに基づいて、前記吸光特性測定手段により測定した吸光特性から、測定対象の水溶液の水溶性ラジカル種濃度を定量する定量手段とを備えたことを特徴とする。   In addition, the water-soluble radical species concentration measuring apparatus of the present invention includes an absorption characteristic measuring means for measuring the absorption characteristics of an aqueous solution to be measured at one or more wavelengths within a range of 140 to 210 nm, and a water-soluble radical species in the aqueous solution. Based on the light absorption characteristics measured by the light absorption characteristic measurement means based on the concentration and the correlation between the light absorption characteristics of the aqueous solution measured at one or more wavelengths within the range of 140 to 210 nm, the water-soluble radicals of the aqueous solution to be measured And quantification means for quantifying the seed concentration.

上記構成によれば、水溶液の吸光特性を直接測定するため、スピントラップ剤等を添加する等、測定対象の水溶液の状態を変化させることなく、水溶性ラジカル種濃度を測定することができる。また、水溶液の140〜210nmの範囲内における1以上の波長での吸光特性を測定するため、当該水溶液を系から取り出すことなく、その発生場所にて非侵襲且つリアルタイムに測定することができる。   According to the above configuration, since the light absorption characteristics of the aqueous solution are directly measured, the concentration of the water-soluble radical species can be measured without changing the state of the aqueous solution to be measured, such as adding a spin trap agent. In addition, since the light absorption characteristics of the aqueous solution at one or more wavelengths within the range of 140 to 210 nm are measured, the aqueous solution can be measured non-invasively and in real time without taking out the aqueous solution from the system.

また、本発明の水溶性ラジカル種濃度測定装置は、水溶性ラジカル種を含む水溶液の140〜210nmの範囲内における1以上の波長での吸光特性と水溶性ラジカル種濃度との検量線を決定する検量線決定手段と、測定対象となる水溶性ラジカル種を含む水溶液の吸光特性を、前記1以上の波長で測定する測定手段と、得られた吸光特性データより前記検量線を用いて測定対象の水溶液中の水溶性ラジカル種濃度を定量する定量手段とを備えたことを特徴とする。   Moreover, the water-soluble radical species concentration measuring apparatus of the present invention determines a calibration curve between the light absorption characteristics and the water-soluble radical species concentration at one or more wavelengths within the range of 140 to 210 nm of an aqueous solution containing a water-soluble radical species. A calibration curve determining means, a measuring means for measuring the light absorption characteristics of the aqueous solution containing the water-soluble radical species to be measured at the one or more wavelengths, and using the calibration curve from the obtained light absorption characteristics data, And a quantitative means for quantifying the concentration of water-soluble radical species in the aqueous solution.

上記構成によれば、水溶液の吸光特性を直接測定するため、スピントラップ剤等を添加する等、測定対象の水溶液の状態を変化させることなく、水溶性ラジカル種濃度を測定することができる。また、予め作成した検量線を用いて、得られた吸光特性より前記検量線を用いて水溶液中の水溶性ラジカル種濃度を測定するため、当該水溶液を系から取り出すことなく、その発生場所にて非侵襲且つリアルタイムに測定することができる。   According to the above configuration, since the light absorption characteristics of the aqueous solution are directly measured, the concentration of the water-soluble radical species can be measured without changing the state of the aqueous solution to be measured, such as adding a spin trap agent. In addition, using a calibration curve prepared in advance, the concentration of water-soluble radical species in the aqueous solution is measured using the calibration curve from the obtained light absorption characteristics. Non-invasive and real-time measurement is possible.

上記構成においては、前記測定手段は、測定対象となる水溶性ラジカル種を含む水溶液の吸光特性を、前記1以上の波長で継続的に測定し、前記定量手段は、得られた吸光特性データより前記検量線を用いて測定対象の水溶液中の水溶性ラジカル種濃度を継続的に定量することが好ましい。   In the above configuration, the measuring means continuously measures the light absorption characteristics of the aqueous solution containing the water-soluble radical species to be measured at the one or more wavelengths, and the quantifying means is based on the obtained light absorption characteristic data. It is preferable to continuously quantify the water-soluble radical species concentration in the aqueous solution to be measured using the calibration curve.

本発明によれば、水溶性ラジカル種濃度をその発生場所にて添加剤混入等の前処理なく非侵襲且つリアルタイムに計測することが可能な水溶液中の水溶性ラジカル種濃度の測定方法、及び、水溶性ラジカル種濃度測定装置を提供することができる。   According to the present invention, a method for measuring the concentration of a water-soluble radical species in an aqueous solution capable of measuring the water-soluble radical species concentration in a non-invasive and real-time manner without pretreatment such as mixing of additives at the place of occurrence thereof, and A water-soluble radical species concentration measuring device can be provided.

ヒドロキシルラジカル発生前後における水の遠紫外吸光スペクトルの差を示す図である。It is a figure which shows the difference of the far ultraviolet absorption spectrum of water before and behind hydroxyl radical generation. 水溶液中のヒドロキシルラジカル濃度の測定に用いた減衰全反射型遠紫外分光装置のブロック図である。It is a block diagram of the attenuated total reflection type far ultraviolet spectrometer used for the measurement of the hydroxyl radical density | concentration in aqueous solution. 図2に示した測定部を模式的に示す図である。It is a figure which shows typically the measurement part shown in FIG. 遠赤外から遠紫外領域の液体の水の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the water of the liquid of a far infrared region to a far ultraviolet region.

以下、添付の図面を参照して本発明の実施の形態を説明する。なお、以下では、水溶性ラジカル種としてのヒドロキシルラジカルの水溶液中の濃度の測定方法、及び、ヒドロキシルラジカル濃度測定装置について説明するが、本発明は、その他の水溶性ラジカル種(例えば、スーパーオキシド、ヒドロペルオキシルラジカル、水素ラジカル等)についても同様に適用することができる。さらに、本発明は、水溶性ラジカル種だけでなく、水の水素結合や水和に影響を与える、例えば、一重項酸素等の濃度の測定、及び、その濃度測定装置にも適用することができる。
図4に示すように、水は、液体状態において、150nm付近にn→σ*遷移に由来する吸収スペクトルを有している。この吸収スペクトルは、水に溶解されているヒドロキシルラジカルの濃度に相関している。以下に、その例を図1を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the following, a method for measuring the concentration of hydroxyl radicals in an aqueous solution as a water-soluble radical species and a hydroxyl radical concentration measuring device will be described. However, the present invention is not limited to other water-soluble radical species (for example, superoxide, The same applies to hydroperoxyl radicals, hydrogen radicals and the like. Furthermore, the present invention can be applied not only to water-soluble radical species but also to measurement of the concentration of, for example, singlet oxygen that affects the hydrogen bonding and hydration of water and the concentration measuring device thereof. .
As shown in FIG. 4, water has an absorption spectrum derived from the n → σ * transition in the vicinity of 150 nm in the liquid state. This absorption spectrum correlates with the concentration of hydroxyl radicals dissolved in water. An example will be described below with reference to FIG.

図1は、ヒドロキシルラジカル発生前後における水の遠紫外吸光スペクトルの差を示す図である。図1では、純水にオゾンガスを50ppm溶解させた水(以下、「オゾン水」ともいう)と、ヒドロキシルラジカルを含有させた水との吸光度の差を、167nm、168nm、及び、169nmの3波長において示している。上記ヒドロキシルラジカルを含有させた水は、上記オゾン水に紫外線を照射してヒドロキシルラジカルを発生させることにより得た水である。図1に示すように、オゾン水の吸光度は、紫外線の照射後、すなわち、ヒドロキシルラジカル濃度の増加に応じて増大している。なお、本実施形態では、紫外線の照射により、1.2ppm(70.6μM)のヒドロキシルラジカルが発生していることを、JIS-R1704(2007)「ファインセラミックス−活性酸素生成能力測定による光触媒材料の水質浄化性能試験方法」に基づいて確認した。   FIG. 1 is a diagram showing the difference in the far ultraviolet absorption spectrum of water before and after the generation of hydroxyl radicals. In FIG. 1, the difference in absorbance between water obtained by dissolving 50 ppm of ozone gas in pure water (hereinafter also referred to as “ozone water”) and water containing hydroxyl radicals is represented by three wavelengths of 167 nm, 168 nm, and 169 nm. Is shown. The water containing the hydroxyl radical is water obtained by generating hydroxyl radicals by irradiating the ozone water with ultraviolet rays. As shown in FIG. 1, the absorbance of ozone water increases after irradiation with ultraviolet light, that is, according to an increase in the concentration of hydroxyl radicals. In the present embodiment, 1.2 ppm (70.6 μM) of hydroxyl radicals are generated by irradiation with ultraviolet rays, and JIS-R1704 (2007) “Fine ceramics-Photocatalytic material by active oxygen generation ability measurement. It was confirmed based on the “Water purification performance test method”.

このように、水溶液中のヒドロキシルラジカル濃度と、該水溶液の167nm、168nm、及び、169nmにおける波長での吸光度とは、相関性を有している。従って、複数のヒドロキシルラジカル濃度に対して、167nm、168nm、及び、169nmのうちの1の波長における吸光度を測定することにより、検量線を得ることができる。その結果、測定対象のヒドロキシルラジカルを含む水溶液の吸光度を、前記波長で測定し、得られた吸光度データより前記検量線を用いて水溶液中のヒドロキシルラジカル濃度を定量することが可能となる。また、複数のヒドロキシルラジカル濃度に対して、167nm、168nm、及び、169nmのうちの2以上の波長における吸光度を測定することにより、より正確な検量線を得ることが可能となる。   Thus, the hydroxyl radical concentration in the aqueous solution and the absorbance at wavelengths of 167 nm, 168 nm, and 169 nm of the aqueous solution have a correlation. Therefore, a calibration curve can be obtained by measuring the absorbance at one wavelength of 167 nm, 168 nm, and 169 nm for a plurality of hydroxyl radical concentrations. As a result, the absorbance of the aqueous solution containing the hydroxyl radical to be measured can be measured at the wavelength, and the hydroxyl radical concentration in the aqueous solution can be quantified using the calibration curve from the obtained absorbance data. Moreover, it is possible to obtain a more accurate calibration curve by measuring the absorbance at two or more wavelengths of 167 nm, 168 nm, and 169 nm for a plurality of hydroxyl radical concentrations.

図1に示したヒドロキシルラジカル発生前後における水の遠紫外吸光スペクトルの差は、以下に示す減衰全反射型遠紫外分光装置を用いて測定した。そこで、次に、本測定に用いた減衰全反射型遠紫外分光装置について説明する。   The difference in the far ultraviolet absorption spectrum of water before and after hydroxyl radical generation shown in FIG. 1 was measured using an attenuated total reflection type far ultraviolet spectroscope shown below. Therefore, next, the attenuated total reflection type far-ultraviolet spectroscopic apparatus used in this measurement will be described.

図2は、水溶液中のヒドロキシルラジカル濃度の測定に用いた減衰全反射型遠紫外分光装置のブロック図である。図3は、図2に示した測定部を模式的に示す図である。本実施形態において用いられる減衰全反射型遠紫外分光装置10は、遠紫外領域において全反射減衰吸光法を用いて、水の吸収スペクトルを測定することができるものである。具体的には、例えば、特開2007−279025号公報や、特開2008−224240号公報に記載されているもの等を用いることができる。そこで、以下では、本発明を説明するために必要な範囲で減衰全反射型遠紫外分光装置10について説明することとする。   FIG. 2 is a block diagram of an attenuated total reflection far-ultraviolet spectroscopic apparatus used for measuring the hydroxyl radical concentration in an aqueous solution. FIG. 3 is a diagram schematically showing the measurement unit shown in FIG. The attenuated total reflection type far-ultraviolet spectroscopic device 10 used in the present embodiment is capable of measuring the absorption spectrum of water in the far ultraviolet region using the total reflection attenuation absorption method. Specifically, for example, those described in JP2007-279025A and JP2008-224240A can be used. Therefore, hereinafter, the attenuated total reflection far-ultraviolet spectroscopic device 10 will be described within a range necessary to describe the present invention.

図2に示すように、減衰全反射型遠紫外分光装置10は、測定部30と、制御部40とを備える。制御部40は、中央演算処理装置とメモリとを有しており、減衰全反射型遠紫外分光装置10全体の情報処理や、動作の制御を行う。図3に示すように、測定部30は、水12(オゾン水12)に接する石英の配管14に取り付けられており、配管14に接するように配置された石英材質の全反射減衰プローブ16と、光源(図示せず)により発生された遠紫外光を全反射減衰プローブ16の界面へ臨界角より大きい入射角で照射する投光光学系18と、全反射減衰プローブ16の界面から全反射する反射光を光検出器(図示せず)で受光する受光光学系20とを備えている。   As shown in FIG. 2, the attenuated total reflection far-ultraviolet spectroscopic device 10 includes a measurement unit 30 and a control unit 40. The control unit 40 includes a central processing unit and a memory, and performs information processing and operation control of the attenuated total reflection far-ultraviolet spectroscopic device 10 as a whole. As shown in FIG. 3, the measurement unit 30 is attached to a quartz pipe 14 that is in contact with water 12 (ozone water 12), and is made of a total reflection attenuation probe 16 made of quartz material that is arranged so as to be in contact with the pipe 14. A projection optical system 18 that irradiates far ultraviolet light generated by a light source (not shown) to the interface of the total reflection attenuation probe 16 at an incident angle larger than the critical angle, and reflection that is totally reflected from the interface of the total reflection attenuation probe 16. And a light receiving optical system 20 that receives light with a photodetector (not shown).

投光光学系18を構成する光源としては、30Wの重水素ランプを用いた。また、受光光学系20を構成する光検出器としては、200nm以上の波長に感度を有さない光電子増倍管を用いた。   A 30 W deuterium lamp was used as the light source constituting the light projecting optical system 18. In addition, as a photodetector constituting the light receiving optical system 20, a photomultiplier tube having no sensitivity at a wavelength of 200 nm or more was used.

全反射減衰プローブ16としては、石英を材質とするプローブを用いた。これにより、測定波長範囲を150〜210nmの範囲とすることができる。   As the total reflection attenuation probe 16, a probe made of quartz was used. Thereby, a measurement wavelength range can be made into the range of 150-210 nm.

オゾン分解用の紫外光22の光源としては、200Wの水銀キセノンランプを用い、紫外光22を全反射減衰プローブ16側から全反射減衰プローブ16及び配管14を介してオゾン水12に照射した。このとき、スペクトル変化を高感度に捉えるべく、紫外線照射を5kzで明滅させて行い、明滅に同期した信号変化のみをロックインアンプで増幅して観察した。そして、紫外線照射時(ヒドロキシルラジカル発生時)と、非照射時(ヒドロキシルラジカル非発生時)との差を求めた。以上より、図1に示すヒドロキシルラジカル発生前後における水の遠紫外吸光スペクトルの差を得た。   As a light source of the ultraviolet light 22 for ozone decomposition, a 200 W mercury xenon lamp was used, and the ultraviolet light 22 was applied to the ozone water 12 from the total reflection attenuation probe 16 side through the total reflection attenuation probe 16 and the pipe 14. At this time, in order to capture the spectral change with high sensitivity, the ultraviolet irradiation was blinked at 5 kHz, and only the signal change synchronized with the blinking was amplified and observed. And the difference of the time of ultraviolet irradiation (at the time of hydroxyl radical generation) and the time of non-irradiation (at the time of hydroxyl radical non-generation) was calculated | required. From the above, the difference in the far ultraviolet absorption spectrum of water before and after hydroxyl radical generation shown in FIG. 1 was obtained.

上記において、測定対象となる水溶液の吸光度を測定するとき、測定部30は、吸光特性測定手段として機能する。また、複数のヒドロキシルラジカル濃度に対して、上記波長における吸光度を測定して検量線を決定するとき、制御部40は、検量線決定手段として機能する。また、測定した測定対象の水溶液の吸光度から、該測定対象の水溶液のヒドロキシルラジカル濃度を定量するとき、制御部40は、定量手段として機能する。また、測定対象となる水溶液の上記波長における吸光度を測定し、その測定した吸光度から、測定対象の水溶液のヒドロキシルラジカル濃度を定量するとき、減衰全反射型遠紫外分光装置10は、本発明のヒドロキシルラジカル濃度測定装置として機能する。 In the above description, when measuring the absorbance of the aqueous solution to be measured, the measuring unit 30 functions as a light absorption characteristic measuring unit. In addition, when measuring the absorbance at the above wavelengths for a plurality of hydroxyl radical concentrations to determine a calibration curve, the control unit 40 functions as a calibration curve determination means. Further, when the hydroxyl radical concentration of the aqueous solution to be measured is quantified from the measured absorbance of the aqueous solution to be measured, the control unit 40 functions as a quantification unit. Further, when the absorbance at the above-mentioned wavelength of the aqueous solution to be measured is measured, and the hydroxyl radical concentration of the aqueous solution to be measured is quantified from the measured absorbance, the attenuated total reflection far-ultraviolet spectroscopic device 10 is the hydroxyl group of the present invention. Functions as a radical concentration measuring device.

また、上記吸光度の測定を、継続的(連続的、又は、間欠的)に行い、ヒドロキシルラジカル濃度の定量を継続的に行えば、継続的なヒドロキシルラジカル濃度の変化をモニターすることが可能となる。   In addition, if the absorbance is measured continuously (continuously or intermittently) and the hydroxyl radical concentration is continuously quantified, it is possible to monitor the continuous change of the hydroxyl radical concentration. .

上述した実施形態では、特定の波長(167nm、168nm、及び、169nmのうち少なくとも1以上の波長)での吸収スペクトル強度を測定することにより検量線を得て、この検量線を用いて、水溶液中のヒドロキシルラジカル濃度を測定する場合について説明した。しかしながら、本発明においては、水溶液中のヒドロキシルラジカル濃度と、該水溶液の140〜210nmの範囲内における1以上の波長での吸収スペクトル強度との相関性に基づいて該水溶液中のヒドロキシルラジカル濃度を測定するのであれば、この例に限定されない。本発明においては、例えば、水のn→σ*遷移に由来する吸収スペクトルのピークの移動量と、水溶液中のヒドロキシルラジカル濃度との相関性に基づいて水溶液中のヒドロキシルラジカル濃度を測定することとしてもよい。上記吸収スペクトルのピークの移動量と、水溶液中のヒドロキシルラジカル濃度との相関性については、特に限定されないが、例えば、予め濃度が既知の複数種類のヒドロキシルラジカル含有水と、その吸収スペクトルのピークとを測定することにより得ることができる。   In the above-described embodiment, a calibration curve is obtained by measuring the absorption spectrum intensity at a specific wavelength (at least one wavelength of 167 nm, 168 nm, and 169 nm), and this calibration curve is used in an aqueous solution. The case where the hydroxyl radical concentration was measured was described. However, in the present invention, the hydroxyl radical concentration in the aqueous solution is measured based on the correlation between the hydroxyl radical concentration in the aqueous solution and the absorption spectrum intensity at one or more wavelengths within the range of 140 to 210 nm of the aqueous solution. If it does, it is not limited to this example. In the present invention, for example, the measurement of the hydroxyl radical concentration in an aqueous solution based on the correlation between the amount of peak movement of the absorption spectrum derived from the n → σ * transition of water and the hydroxyl radical concentration in the aqueous solution. Also good. The correlation between the amount of movement of the absorption spectrum peak and the hydroxyl radical concentration in the aqueous solution is not particularly limited. For example, a plurality of types of hydroxyl radical-containing water whose concentrations are known in advance and the peak of the absorption spectrum Can be obtained by measuring.

また、本発明においては、例えば、上記吸収スペクトルのバンド幅と水溶液中のヒドロキシルラジカル濃度との相関性に基づいて水溶液中のヒドロキシルラジカル濃度を測定することとしてもよい。   In the present invention, for example, the hydroxyl radical concentration in the aqueous solution may be measured based on the correlation between the band width of the absorption spectrum and the hydroxyl radical concentration in the aqueous solution.

以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、各手段等の具体的構成は、適宜設計変更可能である。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されるものではない。   The embodiment of the present invention has been described above, but only specific examples are illustrated, and the present invention is not particularly limited. The specific configuration of each unit and the like can be appropriately changed. The effects described in the embodiments of the present invention are only the most preferable effects resulting from the present invention, and the effects of the present invention are limited to those described in the embodiments of the present invention. is not.

10 減衰全反射型遠紫外分光装置
12 水(オゾン水)
14 配管
16 全反射減衰プローブ
18 投光光学系
20 受光光学系
30 測定部
40 制御部
10 Attenuated total reflection type far ultraviolet spectrometer 12 Water (ozone water)
14 piping 16 total reflection attenuation probe 18 light projecting optical system 20 light receiving optical system 30 measuring unit 40 control unit

Claims (6)

水溶液中のヒドロキシルラジカル濃度と、該水溶液の155〜185nmの範囲内における1以上の波長で測定した吸光特性との相関性に基づいて該水溶液中のヒドロキシルラジカル濃度を定量することを特徴とする水溶液中の水溶性ラジカル種濃度の測定方法。 Quantifying the hydroxyl radical concentration in the aqueous solution based on the correlation between the hydroxyl radical concentration in the aqueous solution and the light absorption characteristics measured at one or more wavelengths within the range of 155 to 185 nm of the aqueous solution. A method for measuring the concentration of water-soluble radical species in an aqueous solution. ヒドロキシルラジカルを含む水溶液の155〜185nmの範囲内における1以上の波長での吸光特性とヒドロキシルラジカル濃度との検量線をあらかじめ決定しておき、
ヒドロキシルラジカルを含む水溶液の吸光特性を、前記1以上の波長で測定し、
得られた吸光特性データより前記検量線を用いて水溶液中のヒドロキシルラジカル濃度を定量することを特徴とする水溶液中の水溶性ラジカル種濃度の測定方法。
A calibration curve between the absorption characteristics at one or more wavelengths in the range of 155 to 185 nm of the aqueous solution containing hydroxyl radicals and the hydroxyl radical concentration is determined in advance,
Measuring the absorption characteristics of an aqueous solution containing hydroxyl radicals at the one or more wavelengths;
A method for measuring the concentration of water-soluble radical species in an aqueous solution, wherein the concentration of hydroxyl radicals in the aqueous solution is quantified using the calibration curve from the obtained light absorption characteristic data.
前記吸光特性の測定を継続的に行って、ヒドロキシルラジカル濃度の定量を継続的に行うことを特徴とする請求項1又は2に記載の水溶液中の水溶性ラジカル種濃度の測定方法。 The method for measuring the concentration of water-soluble radical species in an aqueous solution according to claim 1 or 2, wherein the measurement of the light absorption characteristic is continuously performed and the determination of the hydroxyl radical concentration is continuously performed. 155〜185nmの範囲内における1以上の波長で測定対象となる水溶液の吸光特性を測定する吸光特性測定手段と、
水溶液中のヒドロキシルラジカル濃度と該水溶液の155〜185nmの範囲内における1以上の波長で測定した吸光特性との相関性とに基づいて、前記吸光特性測定手段により測定した吸光特性から、測定対象の水溶液のヒドロキシルラジカル濃度を定量する定量手段と
を備えたことを特徴とする水溶性ラジカル種濃度測定装置。
An absorption characteristic measuring means for measuring the absorption characteristic of an aqueous solution to be measured at one or more wavelengths within a range of 155 to 185 nm;
Based on the light absorption characteristics measured by the light absorption characteristic measuring means based on the correlation between the hydroxyl radical concentration in the aqueous solution and the light absorption characteristics measured at one or more wavelengths within the range of 155 to 185 nm of the aqueous solution, An apparatus for measuring the concentration of water-soluble radical species, comprising a quantitative means for determining the hydroxyl radical concentration of an aqueous solution of
ヒドロキシルラジカルを含む水溶液の155〜185nmの範囲内における1以上の波長での吸光特性とヒドロキシルラジカル濃度との検量線を決定する検量線決定手段と、
測定対象となるヒドロキシルラジカルを含む水溶液の吸光特性を、前記1以上の波長で測定する測定手段と、
得られた吸光特性データより前記検量線を用いて測定対象の水溶液中のヒドロキシルラジカル濃度を定量する定量手段と
を備えたことを特徴とする水溶性ラジカル種濃度測定装置。
A calibration curve determining means for determining a calibration curve between the absorption characteristics at one or more wavelengths in the range of 155 to 185 nm of the aqueous solution containing hydroxyl radicals and the hydroxyl radical concentration;
Measuring means for measuring the light absorption characteristics of an aqueous solution containing a hydroxyl radical to be measured at the one or more wavelengths;
A water-soluble radical species concentration measuring apparatus comprising: a quantifying means for quantifying the hydroxyl radical concentration in the aqueous solution to be measured using the calibration curve from the obtained light absorption characteristic data.
前記測定手段は、測定対象となるヒドロキシルラジカルを含む水溶液の吸光特性を、前記1以上の波長で継続的に測定し、
前記定量手段は、得られた吸光特性データより前記検量線を用いて測定対象の水溶液中のヒドロキシルラジカル濃度を継続的に定量することを特徴とする請求項4又は5に記載の水溶性ラジカル種濃度測定装置。
The measurement means continuously measures the light absorption characteristics of an aqueous solution containing a hydroxyl radical to be measured at the one or more wavelengths,
The water-soluble radical species according to claim 4 or 5, wherein the quantitative means continuously quantifies the hydroxyl radical concentration in the aqueous solution to be measured using the calibration curve from the obtained light absorption characteristic data. Concentration measuring device.
JP2009228445A 2009-09-30 2009-09-30 Method for measuring concentration of water-soluble radical species in aqueous solution and apparatus for measuring concentration of water-soluble radical species Expired - Fee Related JP5468344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228445A JP5468344B2 (en) 2009-09-30 2009-09-30 Method for measuring concentration of water-soluble radical species in aqueous solution and apparatus for measuring concentration of water-soluble radical species

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228445A JP5468344B2 (en) 2009-09-30 2009-09-30 Method for measuring concentration of water-soluble radical species in aqueous solution and apparatus for measuring concentration of water-soluble radical species

Publications (2)

Publication Number Publication Date
JP2011075447A JP2011075447A (en) 2011-04-14
JP5468344B2 true JP5468344B2 (en) 2014-04-09

Family

ID=44019583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228445A Expired - Fee Related JP5468344B2 (en) 2009-09-30 2009-09-30 Method for measuring concentration of water-soluble radical species in aqueous solution and apparatus for measuring concentration of water-soluble radical species

Country Status (1)

Country Link
JP (1) JP5468344B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404523B2 (en) * 2010-05-14 2014-02-05 倉敷紡績株式会社 Method and apparatus for measuring hydroxyl radical concentration
JP6086524B2 (en) * 2012-09-03 2017-03-01 倉敷紡績株式会社 Method and apparatus for measuring concentration of accelerated oxidation active species
KR101432090B1 (en) * 2013-10-10 2014-08-22 한양대학교 산학협력단 Coated nanoparticles and quantitative method of radical using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933403B2 (en) * 2001-02-28 2007-06-20 株式会社日本トリム Electrolytically reduced water and method for producing the same
JP3657535B2 (en) * 2001-05-29 2005-06-08 株式会社日本トリム Hydrogen radical detection method and quantitative analysis method
JP4722513B2 (en) * 2005-03-15 2011-07-13 倉敷紡績株式会社 Apparatus and method for measuring the concentration of an acid solution containing peracetic acid
JP4911606B2 (en) * 2007-03-08 2012-04-04 倉敷紡績株式会社 Total reflection attenuation optical probe and aqueous solution spectrometer using the same

Also Published As

Publication number Publication date
JP2011075447A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
US20150021491A1 (en) Method and apparatus for measuring concentration of advanced-oxidation active species
JP5468344B2 (en) Method for measuring concentration of water-soluble radical species in aqueous solution and apparatus for measuring concentration of water-soluble radical species
CN106053421A (en) Method and apparatus for on-line detection of content of organic substances in water and break warning of core filters/membranes
TW200944776A (en) Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
JP2005214863A (en) Method of measuring water and aqueous solution by ultraviolet ray
CA2383906A1 (en) In situ methods for measuring the release of a substance from a dosage form
JP2008102068A (en) Mercury analyzer and mercury analysis method
EP3321664B1 (en) Functional water concentration sensor
KR20110040851A (en) Apparatus for measurement of silicon concentration
US9513227B2 (en) Method for quantitative determination of oxidant and apparatus for quantitative determination of oxidant
JP4048139B2 (en) Concentration measuring device
CN205982088U (en) Aquatic organic matter content on -line measuring and filter core / membrane punctures device of early warning
RU2442141C2 (en) Method for measuring concentrations of iodine-containing substances in process liquids formed during spent nuclear fuel recycling
Lukasiewicz et al. Digital integration method for fluorimetric studies of photochemically unstable compounds
US12019021B2 (en) Zinc measurement
JP2000356635A (en) Concentration measuring method of chlorophyll a and device therefor
RU2626389C1 (en) Method for optical determination of component, mainly hydrogen sulfide, and its concentration in gas flow
CN116380876B (en) Method for detecting content of phosphorus element in water body
CN113670866B (en) Method and system for analyzing dissolved organic matters in electro-Fenton process in online quantitative manner
RU2227286C1 (en) Procedure determining concentration of iodine-carrying substances formed during processing of depleted nuclear fuel and gear for its implementation
Das et al. Smartphone-Based Photometric Detection of Nitrite Level in Water
JP2014130153A (en) Hydroxyl radical-containing water supply apparatus
JP2013205339A (en) Total reflection absorption measuring device and total reflection absorption measuring method
CN221528436U (en) Synchronous online real-time quantitative detection system for electrolyte in dialysate
DE102009050198A1 (en) Method for measuring concentration of gaseous and fluid material and optical power of lamp based on Lambert-Beer's law, involves providing photoreceivers at variable distance to optical source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees