TWM565796U - Full spectrum water quality analysis system - Google Patents

Full spectrum water quality analysis system Download PDF

Info

Publication number
TWM565796U
TWM565796U TW107206534U TW107206534U TWM565796U TW M565796 U TWM565796 U TW M565796U TW 107206534 U TW107206534 U TW 107206534U TW 107206534 U TW107206534 U TW 107206534U TW M565796 U TWM565796 U TW M565796U
Authority
TW
Taiwan
Prior art keywords
light source
full
water quality
analysis system
light
Prior art date
Application number
TW107206534U
Other languages
Chinese (zh)
Inventor
楊明恭
Original Assignee
楊明恭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楊明恭 filed Critical 楊明恭
Priority to TW107206534U priority Critical patent/TWM565796U/en
Publication of TWM565796U publication Critical patent/TWM565796U/en

Links

Abstract

一種全光譜水質分析系統,主要包含有一光源產生裝置及一光源接收運算裝置,該光源產生裝置及光源接收運算裝置之間具有一取樣區;該光源產生裝置產生一紫外至可見光全光譜範圍的光經取樣區傳送至光源接收運算裝置中,該光源接收運算裝置會根據預存的人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷及總氮等多種有機物質濃度。A full-spectrum water quality analysis system mainly comprises a light source generating device and a light source receiving computing device, wherein the light source generating device and the light source receiving computing device have a sampling area; the light source generating device generates a light of a full spectrum range from ultraviolet to visible light The sampling area is transmitted to the light source receiving operation device, and the light source receiving computing device calculates the modified weighting parameter according to the pre-stored artificial intelligence model algorithm, the big data parallel comparison verification, the self-deep learning analysis correlation and various interference factors. Mutual numerical compensation and noise filtering (such as turbidity and chromaticity) to further obtain higher concentrations of organic nitrogen such as ammonia nitrogen, total phosphorus and total nitrogen.

Description

全光譜水質分析系統Full spectrum water quality analysis system

本創作是有關一種紫外至可見光全光譜水質分析系統,特別是一種將接收光分光為許多高解析度的光譜,並測量不同的光吸收度,再根據預設人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度的全光譜水質分析系統。This creation is about a UV-to-visible full-spectrum water quality analysis system, especially one that splits the received light into many high-resolution spectra and measures different light absorbances, according to the preset artificial intelligence model algorithm, big data parallel Comparison verification, self-deep learning analysis correlation and various interference factors, calculate correction weighting parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity) to further obtain higher precision ammonia nitrogen, Total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate A full-spectrum water quality analysis system for the concentration of various organic substances such as nitrous oxide, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide.

習知水中氨氮分析儀主要是採用離子選擇電極法,係由鉀離子選擇電極、PH電極(參比電極)和溫度電極共同組成一個一體式電極,包含一傳感器電極膜頭,係用傳感器電極膜頭產生電化學反應,經由氨離子濃度來進行換算電化學的反應,以取得污水水中氨氮的含量。但離子選擇電極法最大的缺點為傳感器電極膜頭要經常要更換,且該傳感器電極膜頭會老化或阻塞鈍化,所以大概10-14天左右要校準一次,造成人工耗費很大,而且該傳感器電極膜頭會偏移,大約2-3個月就要更換,不符合經濟效益。The conventional ammonia nitrogen analyzer mainly uses an ion selective electrode method, which is composed of a potassium ion selective electrode, a pH electrode (reference electrode) and a temperature electrode to form an integrated electrode, which comprises a sensor electrode film head and a sensor electrode film. The head generates an electrochemical reaction, and the electrochemical reaction is converted by the concentration of the ammonia ion to obtain the ammonia nitrogen content in the sewage water. However, the biggest disadvantage of the ion-selective electrode method is that the sensor electrode tip should be replaced frequently, and the sensor electrode tip will age or block the passivation, so it takes about 10-14 days to calibrate once, which causes labor expense, and the sensor The electrode tip will be offset and will be replaced in about 2-3 months, which is not economical.

另一種習知水中氨氮分析儀是採用水楊酸分光光度法或納氏試劑比色法,該水楊酸分光光度法是基於水揚酸鈉比色法測量水中的氨氮含量,在鹼性介質及催化劑的條件下,以游離狀態的氨或銨離子等形式存在氨氮與水揚酸鹽反應生成一種帶色絡合物,分析儀根據絡合物顏色深淺程度,最終將其轉換化為氨氮濃度值。而該納氏試劑比色法的原理是以游離態的氨或銨離子存在氨氮與納氏試劑反應生成淡紅棕色絡合物,該絡合物的吸光度與氨氮的含量成正比,於該絡合物的特徵吸收波長處測量吸光度,通過儀表計算得到水樣中氨氮的含量。Another conventional ammonia nitrogen analyzer is a salicylic acid spectrophotometric method or a Nessler reagent colorimetric method. The salicylic acid spectrophotometric method is based on a sodium salicylate colorimetric method for measuring ammonia nitrogen content in water, in an alkaline medium. Under the condition of catalyst, ammonia nitrogen reacts with salicylate in the form of free ammonia or ammonium ions to form a colored complex. The analyzer converts the ammonia to the ammonia concentration according to the color depth of the complex. value. The principle of the Nessler reagent colorimetric method is to react with ammonia nitrogen or ammonium ions in the presence of free ammonia or ammonium ions to form a reddish brown complex. The absorbance of the complex is proportional to the ammonia nitrogen content, and the complex is The characteristic absorbance is measured at the absorption wavelength, and the ammonia nitrogen content in the water sample is calculated by the meter.

習知總磷分析儀基於比色法測量水中的總磷含量,原理是水中聚磷酸鹽和其他含磷化合物,在高溫或高壓的酸性條件下水解,生成磷酸根,對於其他難氧化的磷化合物,則被強氧化劑過硫酸納氧化為磷酸根。磷酸根在含鉬離子酸鹽的強酸溶液中,生成一種銻化合物,這種銻化合物被抗壞血酸還原為藍色的磷鉬酸鹽,測量磷鉬酸鹽的吸光度,和標準相比,就得到水樣中總磷含量用。The conventional total phosphorus analyzer measures the total phosphorus content in water based on the colorimetric method. The principle is that polyphosphate and other phosphorus-containing compounds in water are hydrolyzed under high temperature or high pressure acidic conditions to form phosphate, and other difficult-to-oxidize phosphorus compounds. , by the strong oxidant sodium persulfate oxidation to phosphate. Phosphate in a strong acid solution containing molybdenum ionic acid salt, a bismuth compound is produced, which is reduced to ascorbic acid by the ascorbic acid, and the absorbance of the phosphomolybdate is measured, and the water is obtained in comparison with the standard. The total phosphorus content in the sample is used.

另一種水中總磷含量的測量方法為過硫酸鉀或硝酸-高氯酸使試樣消解,並將總含磷全部轉化為正磷酸鹽。在酸性介質中,正磷酸鹽與鉬酸銨反應,在銻鹽存在下生成磷鉬雜多酸後,立即被抗換血酸還原,生成藍色絡合物,其吸光度與總磷的濃度成正本。Another method for measuring the total phosphorus content in water is potassium persulfate or nitric acid-perchloric acid to digest the sample and convert the total phosphorus content to orthophosphate. In an acidic medium, orthophosphate reacts with ammonium molybdate to form a molybdenum heteropolyacid in the presence of a cerium salt, which is immediately reduced by the anti-exchangeable acid to form a blue complex. The absorbance is proportional to the total phosphorus concentration. .

習知水中總氮分析儀是基於比色法測量水中的總氮含量,原理是在120~124°C下,鹼性過硫酸鉀溶液使樣品中的含氮化合物的氮轉化為硝酸鹽,採用紫外分光光度法於波長200nm和275nm處,分別測定吸光度,按公式計算校正吸光度,總氮含量與校正吸光度成正本,以取得水中總氮的含量。The conventional total nitrogen analyzer is based on the colorimetric method for measuring the total nitrogen content in water. The principle is that the alkaline potassium persulfate solution converts the nitrogen of the nitrogen-containing compound in the sample into nitrate at 120-124 ° C. The absorbance was measured by ultraviolet spectrophotometry at wavelengths of 200 nm and 275 nm, and the corrected absorbance was calculated according to the formula. The total nitrogen content was corrected to the corrected absorbance to obtain the total nitrogen content in the water.

然而,上述無論是水中氨氮或總磷或總氮含量的測量方法,主要都是以投藥為測量方法,除了本身分析儀器造價昂貴外,藥物本身成本亦相當高昂,且會造成二次污染,而且無論是電極法或投藥法,儀器設備及特殊藥品耗材及人工維護費用相當高,且分析時間約30分鐘~1小時左右,無法達到即時監測及控制的目的,實不符合環境及經濟成本。However, the above-mentioned methods for measuring the content of ammonia nitrogen or total phosphorus or total nitrogen in water are mainly measured by administration, and in addition to the expensive cost of the analytical instrument itself, the cost of the drug itself is also quite high, and it causes secondary pollution, and Regardless of the electrode method or the drug administration method, the equipment and special drug consumables and manual maintenance costs are quite high, and the analysis time is about 30 minutes to 1 hour, which cannot achieve the purpose of immediate monitoring and control, and does not meet the environmental and economic costs.

因此,若能夠設計出一種全光譜分析系統,取得全部光譜範圍,以人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度應為一最佳解決方案。Therefore, if a full-spectral analysis system can be designed to obtain the full spectral range, the artificial intelligence model algorithm, the big data parallel alignment verification, the self-deep learning analysis correlation and various interference factors, calculate the modified weighting parameters for mutual values. Compensation and noise filtering (such as turbidity and chromaticity) to further obtain higher precision ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), Biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate, nitrous oxide, color, turbidity, total suspended solids, phenol (BTX), ozone or sulfur The concentration of various organic substances such as hydrogen should be an optimal solution.

一種全光譜水質分析系統,包含:一裝置本體,而該裝置本體係具有一具有第一鏡窗之光源產生裝置及一具有第二鏡窗之光源接收運算裝置,其中該光源產生裝置與該光源接收運算裝置之間具有一取樣區,且該第一鏡窗之位置係相對於該第二鏡窗;一氙閃光燈,係設置於該光源產生裝置內部,而該氙閃光燈能夠朝向該第一鏡窗發射一穿透取樣區之測量光束,該測量光束能夠穿過該第一鏡窗及該第二鏡窗,並穿透至該光源接收運算裝置內部;一透鏡,係設置於該光源接收運算裝置內部,並位於該測量光束行進路徑上,用以對穿透至該光源接收運算裝置內部之測量光束進行聚光處理;一狹縫,用以提高解析度減少雜散光;一準直鏡,用以接收來自狹縫傳送的測量光束,並對該測量光束做準直化處理;一光柵,係接收來自準直鏡的測量光束,並將該測量光束分光為多個不同波長的光線;一透鏡,係設置於該光源接收運算裝置內部,係接收來自光柵的光束,並將集於一陣列光度計;該陣列光度器係設置於該光源接收運算裝置內部,係接收來自該透鏡的光束,並進測量高解析度不同波長的光譜;一儲存器,係用以儲存氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質光波長吸光度及修正加權參數資料檔;以及一微處理器,係用以整體系統之運作,而該微處理器係與該氙閃光燈及該陣列光度器電性連接,用以於該測量光束穿過一通過該取樣區之液體後,該微處理器能夠依據比爾定律計算該測量光束全光譜波長之吸收度,用多成分定量分析解聯立方程式,獲得各種有機物的濃度,並再藉由一內嵌式人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度。A full-spectrum water quality analysis system, comprising: a device body, wherein the device has a light source generating device having a first mirror window and a light source receiving computing device having a second mirror window, wherein the light source generating device and the light source Having a sampling area between the receiving computing devices, and the first mirror window is positioned relative to the second mirror window; a flash is disposed inside the light source generating device, and the xenon flash lamp is capable of facing the first mirror The window emits a measuring beam penetrating the sampling area, the measuring beam can pass through the first mirror window and the second mirror window, and penetrates into the light source receiving operation device; a lens is disposed at the light source to receive the operation Inside the device, and located on the measuring beam travel path, for concentrating the measuring beam penetrating into the receiving device of the light source; a slit for improving the resolution to reduce stray light; a collimating mirror, Receiving a measurement beam transmitted from the slit and collimating the measurement beam; a grating receiving the measurement beam from the collimating mirror and measuring the beam The beam splitting light is a plurality of different wavelengths of light; a lens is disposed inside the light source receiving computing device, receives the light beam from the grating, and is collected in an array photometer; the array photometer is disposed in the light source receiving operation Inside the device, the light beam from the lens is received, and the spectrum of different wavelengths of high resolution is measured. A reservoir is used to store ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon. (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate nitrogen, nitrous oxide, color, turbidity, total suspended solids, phenol (BTX) Light-wavelength absorbance and correction weighting parameter data files of various organic substances such as ozone or hydrogen sulfide; and a microprocessor for operating the entire system, and the microprocessor is electrically connected to the xenon flash lamp and the array photometer Connecting, after the measuring beam passes through a liquid passing through the sampling area, the microprocessor can calculate the absorbance of the full spectral wavelength of the measuring beam according to Beer's law, and quantitatively analyze the unjoined cubic program by using multiple components. The concentration of various organic matter is obtained, and an in-line artificial intelligence model algorithm, big data parallel alignment verification, self-deep learning analysis correlation and various interference factors are calculated, and the modified weighting parameters are calculated for mutual numerical compensation and noise. Filtration (such as turbidity and chromaticity) to further obtain higher accuracy of ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), and biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate, nitrous oxide, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide Substance concentration.

於一較佳實施例中,其中該光源產生裝置更具有一透鏡及一光感測器,用以設置於該測量光束行進路徑上,該透鏡能將測量光束聚光,該取樣區能夠將該測量光束分開為一穿透水樣之測量光束及一不穿透水樣之參比光束,其中該穿透水樣之測量光束能夠穿過該第一鏡窗及該第二鏡窗,並穿透至該光源接收運算裝置內部,而該光感測器係設置於該不穿透水樣之參比光束行進路徑上,用以感測該不穿透水樣之參比光束之光強度,可在每次測量中對光源進行補償。In a preferred embodiment, the light source generating device further has a lens and a light sensor disposed on the measuring beam traveling path, the lens can collect the measuring beam, and the sampling area can The measuring beam is divided into a measuring beam penetrating the water sample and a reference beam not penetrating the water sample, wherein the measuring beam penetrating the water sample can pass through the first mirror window and the second mirror window and pass through Passing the light source to the inside of the computing device, and the light sensor is disposed on the reference beam traveling path that does not penetrate the water sample to sense the light intensity of the reference beam that does not penetrate the water sample. The light source can be compensated for in each measurement.

於一較佳實施例中,其中該光源接收運算裝置內部更具有一與該微處理器電性連接之時序產生器,該時序產生器用以發出一訊號至該微處理器,以控制該氙閃光燈發射光束與陣列光度計同步接收進行測量。In a preferred embodiment, the light source receiving computing device further has a timing generator electrically connected to the microprocessor, and the timing generator is configured to send a signal to the microprocessor to control the flash. The transmitted beam is received simultaneously with the array photometer for measurement.

於一較佳實施例中,其中該光源接收運算裝置內部更具有一與該微處理器電性連接之通訊器,用以能夠將該全光譜水質分析系統所偵測或/及運算之數據資料傳送出去。In a preferred embodiment, the light source receiving computing device further has a communicator electrically connected to the microprocessor for enabling the data of the full spectrum water quality analysis system to be detected or/and computed. Send it out.

於一較佳實施例中,其中該裝置本體上的該取樣區為一凹口,該取樣區處係具有一清潔刷,而該光源接收運算裝置內部更具有一與該微處理器電性連接之馬達,其中該馬達係延伸出一驅動軸固定於該清潔刷上,而該清潔刷兩側具有一刷體,因此該馬達被驅動使該驅動軸轉動時,該清潔刷兩側之刷體能夠分別清潔該第一鏡窗及該第二鏡窗之朝外表面。In a preferred embodiment, the sampling area on the body of the device is a notch, and the sampling area has a cleaning brush, and the light receiving receiving device has an internal connection to the microprocessor. a motor, wherein the motor extends from a driving shaft to the cleaning brush, and the cleaning brush has a brush body on both sides thereof, so when the motor is driven to rotate the driving shaft, the brush body on both sides of the cleaning brush The outwardly facing surfaces of the first mirror window and the second mirror window can be separately cleaned.

於一較佳實施例中,其中該裝置本體靠近第一鏡窗及第二鏡窗處設置有一超音波清潔裝置,可自動清潔該第一鏡窗及該第二鏡窗。In a preferred embodiment, the apparatus body is provided with an ultrasonic cleaning device near the first mirror window and the second mirror window to automatically clean the first mirror window and the second mirror window.

於一較佳實施例中,其中該氙閃光燈所發射之測量光束的波長為160~800nm。In a preferred embodiment, the measuring beam emitted by the xenon flash lamp has a wavelength of 160 to 800 nm.

於一較佳實施例中,其中該微處理器的運算公式為比爾定律及多成分定量分析公式,係將要測量的有機物濃度列成一聯立方程式後,再進行解聯立方程式,即可取得各種有機物的濃度值。In a preferred embodiment, the calculation formula of the microprocessor is Beer's law and a multi-component quantitative analysis formula, and the organic matter concentration to be measured is listed as a simultaneous equation, and then the de-coupling equation is performed to obtain various organic substances. Concentration value.

於一較佳實施例中,其中該總磷的光吸收率變異性最高是在於170~190nm之間。In a preferred embodiment, the maximum absorbance of the total phosphorus is between 170 and 190 nm.

於一較佳實施例中,其中該總氮的光吸收率變異性最高是在於190~245nm之間。In a preferred embodiment, wherein the total nitrogen absorbance variability is between 190 and 245 nm.

於一較佳實施例中,其中該氨氮的光吸收率變異性最高是在於180~200nm之間。In a preferred embodiment, the variability of the absorbance of the ammonia nitrogen is at most between 180 and 200 nm.

有關於本創作其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。Other technical contents, features, and effects of the present invention will be apparent from the following detailed description of the preferred embodiments.

請參閱第1、2及3圖,為本創作全光譜水質分析系統,由圖中可知,該全光譜水質分析系統係包含有一裝置本體1,而該裝置本體1具有一第一鏡窗111之光源產生裝置11及一具有第二鏡窗121之光源接收運算裝置12,其中該光源產生裝置11與該光源接收運算裝置12之間具有一取樣區13,且該第一鏡窗111之位置係相對於該第二鏡窗121。Please refer to Figures 1, 2 and 3 for the full-spectrum water quality analysis system. The full-spectrum water quality analysis system includes a device body 1 having a first mirror window 111. The light source generating device 11 and the light source receiving computing device 12 having the second mirror window 121, wherein the light source generating device 11 and the light source receiving computing device 12 have a sampling area 13 and the position of the first mirror window 111 is Relative to the second mirror window 121.

而該光源產生裝置11內部係具有一個或一個一個以上的氙閃光燈112、一透鏡113及一光感測器114,其中該氙閃光燈112所發射之測量光束的波常為160~800nm,因此能夠朝向該第一鏡窗111發射一紫外至可見光的測量光束(白光),該透鏡113用以設置於該測量光束行進路徑上,該取樣區13將該測量光束分開為一穿透水樣之測量光束及一不穿透水樣之參比光束,其中該穿透水樣之測量光束能夠穿過該第一鏡窗111及該第二鏡窗121,並穿透至該光源接收運算裝置12內部,而該光感測器114係設置於該不穿透水樣之參比光束行進路徑上,用以感測該不穿透水樣之參比光束之光強度。The light source generating device 11 has one or more xenon flash lamps 112, a lens 113 and a light sensor 114, wherein the measuring beam emitted by the xenon flash lamp 112 is often 160 to 800 nm, thereby enabling A measuring beam (white light) of ultraviolet to visible light is emitted toward the first mirror window 111. The lens 113 is configured to be disposed on the measuring beam traveling path, and the sampling area 13 separates the measuring beam into a measurement of a penetrating water sample. a light beam and a reference beam that does not penetrate the water sample, wherein the measurement beam that penetrates the water sample can pass through the first mirror window 111 and the second mirror window 121 and penetrate into the light source receiving operation device 12 The light sensor 114 is disposed on the reference beam travel path that does not penetrate the water sample to sense the light intensity of the reference beam that does not penetrate the water sample.

而該光源接收運算裝置12內部係具有一第一透鏡122、一狹縫132、一準直鏡133、一光柵129、一陣列光度器123、一微處理器124、一儲存器125、一時序產生器126、一通訊器127及一第二透鏡130,其中該準直鏡122係設置於該光源接收運算裝置12內部,並位於該穿透水樣之測量光束行進路徑上,用以接收來自第二鏡窗121之穿透水樣之測量光束,並將光束傳送至該光柵129;The light source receiving computing device 12 has a first lens 122, a slit 132, a collimating mirror 133, a grating 129, an array illuminator 123, a microprocessor 124, a storage 125, and a timing. a generator 126, a communicator 127 and a second lens 130, wherein the collimating mirror 122 is disposed inside the light source receiving computing device 12 and located on the measuring beam travel path of the penetrating water sample for receiving The second mirror 121 penetrates the measuring beam of the water sample and transmits the beam to the grating 129;

該光柵129能夠將該穿透水樣之測量光束分光為多個波長的彩虹光束,並將該彩虹光束傳送至該透鏡130聚集光束並傳送該陣列光度器123,該陣列光度器123會測量高解析度不同波長光譜,將該光譜傳送至微處理器124中進行運算分析;且該陣列光度器123係為1024像素陣列光度器或2048像素陣列光度器或3072像素陣列光度器,可測量1024條或2048條或3072條高解析度的波長光譜,達到準確運算分析之目的。The grating 129 is capable of splitting the measuring beam penetrating the water sample into a rainbow beam of a plurality of wavelengths, and transmitting the rainbow beam to the lens 130 to concentrate the beam and transmitting the array photometer 123, the array photometer 123 measuring high The resolution is different wavelength spectrum, and the spectrum is transmitted to the microprocessor 124 for operation analysis; and the array photometer 123 is a 1024 pixel array illuminator or a 2048 pixel array illuminator or a 3072 pixel array illuminator, which can measure 1024 Or 2048 or 3072 high-resolution wavelength spectra for accurate calculation analysis.

該儲存器125用以儲存氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質光波長吸光度及修正加權參數資料檔,而該微處理器124用以控制該全光譜水質分析系統之運作,該微處理器125係與該氙閃光燈112及該陣列光度器123電性連接,用以於該穿透水樣之測量光束穿過一通過該取樣區13之液體2後,該微處理器125能夠依據比爾定律該穿透水樣之測量光束計算出全光譜吸收度,並再藉由多成分定量分析、內嵌人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度。The reservoir 125 is used for storing ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), and high manganese. Acid wavelength index (CODMn), nitrate nitrogen, nitrous oxide, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide, and other organic substances, optical wavelength absorbance and correction weighting parameter data files, and the micro The processor 124 is configured to control the operation of the full-spectrum water quality analysis system. The microprocessor 125 is electrically connected to the xenon flash lamp 112 and the array photometric device 123 for passing the measuring beam of the penetrating water sample through the After passing through the liquid 2 of the sampling zone 13, the microprocessor 125 can calculate the full-spectrum absorbance according to Beer's law, the measurement beam of the penetrating water sample, and then perform multi-component quantitative analysis and embedded artificial intelligence model algorithm. , big data parallel alignment verification, self-deep learning analysis correlation and various interference factors, calculate modified weighting parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity) to further achieve higher precision Ammonia nitrogen, total phosphorus, total nitrogen, UV25 4. Chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate nitrogen, nitrous oxide, color Concentration of various organic substances such as degree, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide.

而微處理器125運算主要是透過比爾定律(紫外線-可見光吸收光譜之定量分析公式)公式: A=log(P o/P)=εbc 其中A是代表吸光度,P o是代表原本光束未通過樣品槽之輻射功率,P是代表光束通過樣品槽後之輻射功率,ε是代表莫耳吸光係數、單位為Lmol -1cm -1),b是代表光束通過樣品槽之光徑長度、單位為cm,c是代表樣品濃度、單位為mol L -1The microprocessor 125 operation is mainly through Beer's law (quantitative analysis formula of ultraviolet-visible absorption spectrum) formula: A=log(P o /P)=εbc where A is the absorbance and P o is the original beam not passing the sample. The radiated power of the slot, P is the radiated power of the beam after passing through the sample cell, ε is the Mohr absorption coefficient, the unit is Lmol -1 cm -1 ), and b is the length of the light path representing the beam passing through the sample slot, in cm , c is representative of the sample concentration, the unit is mol L -1 ;

以上述公式當基礎延伸,再套用多成分的定量分析公式: A total=A 1+A 2+A 3+A 4+….A n1bc 12bc 23bc 34bc 4+……ε nbc n In the above formula when extending base, and then apply the quantitative analysis of multi-component formulas: A total = A 1 + A 2 + A 3 + A 4 + ... .A n = ε 1 bc 1 + ε 2 bc 2 + ε 3 bc 3 +ε 4 bc 4 +...ε n bc n

含有一種上的成分溶液,只要成分彼此不起化學變化,同樣可運運比爾定律進行定量分析,即總吸收光度(A total)=各成分吸光度(A 1 2 3 4…n)之加總,其中下標代表成分1、成分2、成分3….成分n。 Containing a solution of the above components, as long as the components do not chemically change each other, can also be transported by Beer's law for quantitative analysis, that is, total absorption luminosity (A total ) = absorbance of each component (A 1 , 2 , 3 , 4...n ) In addition, the subscripts represent component 1, component 2, component 3.. component n.

因此,若微處理器只要把要測量的每一種成分經由上述公式列成一聯立方程式,再進行解聯立方程式,即可獲得水中各種有有機物的濃度,包含氨氮、總磷及總氮及所有有機物的濃度測量分析。Therefore, if the microprocessor simply sorts each component to be measured into a simultaneous equation through the above formula, and then performs a de-coupling equation, the concentration of various organic substances in the water, including ammonia nitrogen, total phosphorus, total nitrogen, and all organic matter, can be obtained. Concentration measurement analysis.

透過人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度。Through artificial intelligence model algorithm, big data parallel alignment verification, self-deep learning analysis correlation and various interference factors, calculate the modified weight parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity, etc.) Further higher ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), and high Concentrations of various organic substances such as manganate index (CODMn), nitrate nitrogen, nitrous oxide, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide.

該時序產生器126用以發出一訊號至該微處理器124,以控制該氙閃光燈112發射光束與該陣列光度計123同步進行接收測量;且該通訊器127用以能夠將該全光譜水質分析系統所偵測或/及運算之數據資料傳送出去,該通訊器127係能夠為RS485介面,且該通訊器127並可導入電源至裝置本體1中,讓每個用電電路可正常運作。The timing generator 126 is configured to send a signal to the microprocessor 124 to control the emitted light of the xenon flash 112 to be received and measured in synchronization with the array photometer 123; and the communicator 127 is configured to enable the full spectrum water quality analysis The data data detected or/and calculated by the system is transmitted. The communicator 127 can be an RS485 interface, and the communicator 127 can be powered into the device body 1 so that each power circuit can operate normally.

該取樣區13處係具有一清潔刷131,而該光源接收運算裝置12內部更具有一與該微處理器125電性連接之馬達128,其中該馬達128係延伸出一驅動軸1281固定於該清潔刷131上,而該清潔刷131兩側具有一刷體1311,因此該馬達128被驅動使該驅動軸1281轉動時,該清潔刷131兩側之刷體1311能夠分別清潔該第一鏡窗111及該第二鏡窗121之朝外表面,避免第一鏡窗111及該第二鏡窗121沾附污物,同時可保持清潔。The sampling area 13 has a cleaning brush 131, and the light receiving receiving device 12 further has a motor 128 electrically connected to the microprocessor 125. The motor 128 extends from a driving shaft 1281 to the motor 128. The cleaning brush 131 has a brush body 1311 on both sides of the cleaning brush 131. Therefore, when the motor 128 is driven to rotate the driving shaft 1281, the brush body 1311 on both sides of the cleaning brush 131 can respectively clean the first window. 111 and the outwardly facing surface of the second mirror window 121 prevent the first mirror window 111 and the second mirror window 121 from being contaminated while maintaining cleanliness.

另外,請參閱第4、5圖所示,該光源產生裝置11及光源接收運算裝置12靠近第一鏡區111及第二鏡區121係設置有一超音波清潔裝置134,可自動清潔該第一鏡窗111及第二鏡窗121上沾附的污物,達到保持清潔之目的。In addition, as shown in FIGS. 4 and 5, the light source generating device 11 and the light source receiving computing device 12 are disposed adjacent to the first mirror region 111 and the second mirror region 121 with an ultrasonic cleaning device 134, which can automatically clean the first The dirt adhering to the mirror window 111 and the second mirror window 121 is kept clean.

請同時參閱第6及7圖所示,如第6圖所示,欲量測水中氨氮、總磷及總氮等濃度時,係將該裝置本體1放入水槽、水庫、河川、湖泊、渠道或 海洋等環境中,且藉由上述的量測方法,取得一全光譜圖,則如第7圖所示,波長160~800nm的不同波長對應吸光度則皆如圖中所示,而針對不同有機物說明如下: (1) 而經光譜圖可知,總磷之光吸收率變異性最大的是位於170~195nm範圍之間(例如為170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195nm皆為取樣範圍),其中,較佳實施例是在波長180nm、182nm、185nm、187nm及195nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的總磷濃度值,並經由多次取樣數據的平均值,判定水中總磷準確的濃度值。 (2) 而經光譜圖可知,總氮之光吸收率變異性最大的是位於190~245nm範圍之間(例如為190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245皆在取樣範圍),其中,較佳實施例是在波長190nm、195nm、200nm、220nm及245nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的總氮濃度值,並經由多次取樣數據的平均值,判定水中總氮準確的濃度值。 (3) 而經光譜圖可知,氨氮之光吸收率變異性最大的是位於180~200nm範圍之間(例如為180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199及200nm皆在取樣範圍),其中,較佳實施例是在波長182nm、187nm、192nm、195nm及200nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的氨氮濃度值,並經由多次取樣數據的平均值,判定水中氨氮準確的濃度值。 (4) 而經光譜圖可知,該化學需氧量(COD)、生物需氧量(BOD)、總有機碳(TOC)、溶解性有機碳(DOC)、高錳鹽酸指數(CODMn)、紫外吸光係數(SAC254)之光吸收率變異最大是位於243~290nm範圍之間(例如為243、244、245、246、247、248、249、250、251、252、253、254、255、256、257、258、259、260、261、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276、277、278、279、280、281、282、283、284、285、286、287、288、289、290nm之間皆為取樣範圍),較佳實施例是在波長243nm、254nm、265nm、275nm及290nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的化學需氧量(COD)、生物需氧量(BOD)、總有機碳(TOC)、溶解性有機碳(DOC)、高錳鹽酸指數(CODMn)、紫外吸光係數(SAC254)濃度值,並經由多次取樣數據的平均值,判定水中化學需氧量(COD)、生物需氧量(BOD)、總有機碳(TOC)、溶解性有機碳(DOC)、高錳鹽酸指數(CODMn)、紫外吸光係數(SAC254)準確的濃度值。。 (5) 而經光譜圖可知,該色度的光吸收率變異最高是位於390~525nm範圍之間(例如為390、391、392、393、394、395、396、397、398、399、400、401、402、403、404、405、406、407、408、409、410、411、412、413、414、415、416、417、418、419、420、421、422、423、424、425、426、427、428、429、430、431、432、433、434、435、436、437、438、439、440、441、442、443、444、445、446、447、448、449、450、451、452、453、454、455、456、457、458、459、460、461、462、463、464、465、466、467、468、469、470、471、472、473、474、475、476、477、478、479、480、481、482、483、484、485、486、487、488、489、490、491、492、493、494、495、496、497、498、499、500、501、502、503、504、505、506、507、508、509、510、511、512、513、514、515、516、517、518、519、520、521、522、523、524、525nm之間皆為取樣範圍),較佳實施例是在波長390nm、410nm、455nm、500nm及525nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的色度濃度值,並經由多次取樣數據的平均值,判定水中色度準確的濃度值。 (6) 而經光譜圖可知,苯酚 (BTX)之最高吸光度是位於300~350nm範圍之間(例如為300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350),較佳實施例是在波長300nm、310nm、325nm、340nm及350nm進行取樣,每一次取樣都藉由比爾定律、多成分定量分析、人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除(如濁度及色度等),以進一步得出更高精準度的苯酚 (BTX)濃度值,並經由多次取樣數據的平均值,判定水中苯酚 (BTX)準確的濃度值。Please also refer to Figures 6 and 7. As shown in Figure 6, when measuring the concentration of ammonia nitrogen, total phosphorus and total nitrogen in water, the body 1 of the device is placed in a sink, a reservoir, a river, a lake, and a channel. Or in an environment such as the ocean, and obtaining a full spectrum by the above-mentioned measurement method, as shown in Fig. 7, the absorbances of different wavelengths of 160 to 800 nm are as shown in the figure, and for different organic substances. The description is as follows: (1) According to the spectrogram, the maximum variability of total phosphorus absorption is between 170 and 195 nm (for example, 170, 171, 172, 173, 174, 175, 176, 177, 178). , 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195 nm are all sampling ranges), wherein the preferred embodiment is at a wavelength of 180 nm. Sampling at 182nm, 185nm, 187nm and 195nm, each sample is calculated by Beer's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel alignment verification, self-deep learning analysis correlation and various interference factors, calculation Corrected weighting parameters for mutual numerical compensation Noise filter (e.g., color and turbidity, etc.), to further obtain a higher accuracy of the total phosphorus concentration, and the average of multiple samples via data, accurate determination of total phosphorus concentration in water. (2) According to the spectrogram, the maximum variability of total nitrogen absorption is between 190 and 245 nm (for example, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245 are all in the sampling range), wherein The preferred embodiment samples at wavelengths of 190 nm, 195 nm, 200 nm, 220 nm, and 245 nm. Each sampling is performed by Beer's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel alignment verification, and self-deep learning analysis. Sex and various interference factors, calculate the modified weighting parameters for mutual numerical compensation and noise filtering (such as turbidity and chromaticity, etc.) to further obtain higher accuracy total nitrogen concentration values, and through multiple sampling data The average value is used to determine the exact concentration of total nitrogen in the water. (3) According to the spectrogram, the variability of the absorption rate of ammonia nitrogen is the largest between 180 and 200 nm (for example, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190). 191, 192, 193, 194, 195, 196, 197, 198, 199, and 200 nm are all in the sampling range. The preferred embodiment is to sample at wavelengths of 182 nm, 187 nm, 192 nm, 195 nm, and 200 nm, each sampling. By using Beer's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel alignment verification, self-deep learning analysis correlation and various interference factors, the calculated weighting parameters are calculated for mutual numerical compensation and noise filtering ( For example, turbidity and chromaticity, etc., to further obtain a higher precision ammonia nitrogen concentration value, and determine the accurate concentration value of ammonia nitrogen in water through the average of multiple sampling data. (4) According to the spectrogram, the chemical oxygen demand (COD), biological oxygen demand (BOD), total organic carbon (TOC), dissolved organic carbon (DOC), high manganese hydrochloric acid index (CODMn), ultraviolet The absorbance coefficient (SAC254) has a maximum optical absorbance variation between 243 and 290 nm (for example, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, The sampling range is between 282, 283, 284, 285, 286, 287, 288, 289, and 290 nm. The preferred embodiment is to sample at wavelengths of 243 nm, 254 nm, 265 nm, 275 nm, and 290 nm, each sampling by Beer's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel alignment verification, self-deep learning analysis correlation and various interference factors, calculate modified weighting parameters for mutual numerical compensation and noise filtering (such as turbidity) And chromaticity, etc.) to further obtain higher precision chemical oxygen demand (COD), biological oxygen demand (BOD), total Determination of the concentration of organic carbon (TOC), dissolved organic carbon (DOC), high manganese hydrochloric acid index (CODMn), ultraviolet absorption coefficient (SAC254), and the average value of multiple sampling data to determine the chemical oxygen demand (COD) in water , Biological oxygen demand (BOD), total organic carbon (TOC), dissolved organic carbon (DOC), high manganese hydrochloric acid index (CODMn), UV absorbance coefficient (SAC254) accurate concentration values. . (5) According to the spectrogram, the chromatic variation of the chromaticity is highest between 390 and 525 nm (for example, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400) , 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425 , 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450 , 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475 476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495 , 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525 nm The sampling range is between), and the preferred embodiment is at wavelengths of 390 nm, 410 nm, and 45. Samples were taken at 5 nm, 500 nm, and 525 nm. Each sample was calculated by Beer's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel alignment verification, self-deep learning analysis correlation and various interference factors, and calculated correction weights. The parameters are used for mutual numerical compensation and noise filtering (such as turbidity and chromaticity) to further obtain higher precision chromaticity concentration values, and determine the chromaticity of the water accurately through the average of multiple sampling data. Concentration value. (6) According to the spectrogram, the highest absorbance of phenol (BTX) is between 300 and 350 nm (for example, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311). , 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 , 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350), the preferred embodiment is to sample at wavelengths of 300 nm, 310 nm, 325 nm, 340 nm, and 350 nm, each One sampling is performed by Beer's law, multi-component quantitative analysis, artificial intelligence model algorithm, big data parallel comparison verification, self-deep learning analysis correlation and various interference factors, and calculated correction weight parameters for mutual numerical compensation and noise filtering. In addition to (such as turbidity and chromaticity), to further obtain a higher precision phenol (BTX) concentration value, and through the average of multiple sampling data, determine the accurate concentration of phenol (BTX) in water.

本創作所提供之全光譜水質分析系統,與其他習用技術相互比較時,其優點如下: (1) 本創作具有無須水樣處理,可在無添加化學試劑的情況下放入水中,連續在線全光譜紫外光-可見光直接同時量測水中多種參數,包含氨氮、總磷、總氮、、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質及營養鹽等參數,並通過全光譜測量對濁度與色度彼此相互干擾進行補償,確保測量準確,內置相關標定參數,達到即時監測及反應迅速之功效。 (2) 本創作為一種可進行即時測量、現場校正,超低功耗,適合戶外無電力環境,強固型沉水式外殼,可連續沉水100米深。 (3) 本創作具有自動清潔刷或超音波清潔裝置,防止境窗沾污,幾乎免維護。 (4) 本創作具有體積小、重量輕及方便攜帶等諸多優點,更能夠應用於水槽、水庫、河川、湖泊、渠道、 海洋等應用環境。The full-spectrum water quality analysis system provided by this creation has the following advantages when compared with other conventional technologies: (1) The creation has no need for water sample treatment, and can be placed in water without adding chemical reagents. Spectral ultraviolet-visible direct simultaneous measurement of various parameters in water, including ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), solubility Parameters such as organic carbon (DOC), permanganate index (CODMn), nitrate nitrogen, nitrous oxide, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide, and other nutrients And through the full spectrum measurement, the turbidity and chromaticity interfere with each other to compensate, to ensure accurate measurement, built-in relevant calibration parameters, to achieve immediate monitoring and rapid response. (2) This creation is a kind of real-time measurement, on-site correction, ultra-low power consumption, suitable for outdoor no-electric environment, strong submerged shell, and can be continuously submerged 100 meters deep. (3) This creation has an automatic cleaning brush or ultrasonic cleaning device to prevent contamination of the window and is almost maintenance-free. (4) The creation has many advantages such as small size, light weight and convenient carrying, and can be applied to applications such as sinks, reservoirs, rivers, lakes, channels, and oceans.

本創作已透過上述之實施例揭露如上,然其並非用以限定本創作,任何熟悉此一技術領域具有通常知識者,在瞭解本創作前述的技術特徵及實施例,並在不脫離本創作之精神和範圍內,不可作些許之更動與潤飾,因此本創作之專利保護範圍須視本說明書所附之請求項所界定者為準。The present invention has been disclosed above in the above embodiments, but it is not intended to limit the present invention. Anyone skilled in the art having ordinary knowledge will understand the foregoing technical features and embodiments of the present invention without departing from the present invention. In the spirit and scope, no modifications or refinements may be made. Therefore, the scope of patent protection of this creation shall be subject to the definition of the requirements attached to this manual.

1‧‧‧裝置本體
11‧‧‧光源產生裝置
111‧‧‧第一鏡窗
112‧‧‧氙閃光燈
113‧‧‧透鏡
114‧‧‧光感測器
12‧‧‧光源接收運算裝置
121‧‧‧第二鏡窗
122‧‧‧透鏡
123‧‧‧陣列光度器
129‧‧‧光柵
124‧‧‧微處理器
125‧‧‧儲存器
126‧‧‧時序產生器
127‧‧‧通訊器
128‧‧‧馬達
130‧‧‧透鏡
13‧‧‧取樣區
131‧‧‧清潔刷
1311‧‧‧刷體
132‧‧‧狹縫
133‧‧‧準直鏡
134‧‧‧超音波清潔裝置
2‧‧‧液體
1‧‧‧ device body
11‧‧‧Light source generating device
111‧‧‧ first window
112‧‧‧氙Flash
113‧‧‧ lens
114‧‧‧Light sensor
12‧‧‧Light source receiving arithmetic unit
121‧‧‧Second mirror window
122‧‧‧ lens
123‧‧‧Array photometer
129‧‧‧Raster
124‧‧‧Microprocessor
125‧‧‧Storage
126‧‧‧ Timing generator
127‧‧‧Communicator
128‧‧‧Motor
130‧‧‧ lens
13‧‧‧Sampling area
131‧‧‧ cleaning brush
1311‧‧‧ brush body
132‧‧‧slit
133‧‧‧ collimation mirror
134‧‧‧Ultrasonic cleaning device
2‧‧‧Liquid

[第1圖]係本創作全光譜水質分析系統之結構示意圖。 [第2圖]係本創作全光譜水質分析系統之上視結構示意圖。 [第3圖]係本創作全光譜水質分析系統之架構示意圖。 [第4圖]係本創作全光譜水質分析系統之另一實施示意圖。 [第5圖]係第4圖之架構示意圖。 [第6圖]係本創作全光譜水質分析系統之量測運作實施示意圖。 [第7圖]係本創作全光譜水質分析系統之量測光譜示意圖。[Fig. 1] is a schematic diagram of the structure of the full spectrum water quality analysis system of the present creation. [Fig. 2] is a schematic diagram of the top view of the full spectrum water quality analysis system of the present creation. [Fig. 3] is a schematic diagram of the architecture of the full spectrum water quality analysis system. [Fig. 4] is a schematic diagram of another implementation of the present full spectrum water quality analysis system. [Fig. 5] is a schematic diagram of the structure of Fig. 4. [Fig. 6] is a schematic diagram of the measurement operation of the full-spectrum water quality analysis system of the present creation. [Fig. 7] is a schematic diagram of the measured spectrum of the full spectrum water quality analysis system of the present creation.

Claims (11)

一種全光譜水質分析系統,包含: 一裝置本體,而該裝置本體係具有一具有第一鏡窗之光源產生裝置及一具有第二鏡窗之光源接收運算裝置,其中該光源產生裝置與該光源接收運算裝置之間具有一取樣區,且該第一鏡窗之位置係相對於該第二鏡窗; 一氙閃光燈,係設置於該光源產生裝置內部,而該氙閃光燈能夠朝向該第一鏡窗發射一穿透取樣區之測量光束,該測量光束能夠穿過該第一鏡窗及該第二鏡窗,並穿透至該光源接收運算裝置內部; 一透鏡,係設置於該光源接收運算裝置內部,並位於該測量光束行進路徑上,用以對穿透至該光源接收運算裝置內部之測量光束進行聚光處理; 一狹縫,用以提高解析度,減少雜散光; 一準直鏡,用以接收來自狹縫傳送的測量光束,並對該測量光束做準直化處理; 一光柵,係接收來自準直鏡的測量光束,並將該測量光束分光為多個不同波長的光線; 一透鏡,係設置於該光源接收運算裝置內部,係接收來自光柵的光束,並將該光束聚集一陣列光度器,該陣列光度器係設置於該光源接收運算裝置內部,係接收來自該透鏡的光束,並測量高解析度不同波長之光譜; 一儲存器,係用以儲存氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質光波長吸光度及修正加權參數資料檔;以及 一微處理器,係用以整體系統之運作,而該微處理器係與該氙閃光燈及該陣列光度器電性連接,用以於該測量光束穿過一通過該取樣區之液體後,該微處理器能夠依據比爾定律計算該測量光束全光譜波長之吸收度,並再藉由一內嵌式人工智慧模型演算法,大數據平行比對驗證,自我深度學習分析相關性及各種干擾因子,計算出修正加權參數作相互數值補償及雜訊濾除,以進一步得出更高精準度的氨氮、總磷、總氮、UV254、化學需氧量(COD)、總有機碳(TOC)、生物需氧量(BOD)、溶解性有機碳(DOC)、高錳酸鹽指數(CODMn)、硝氮、亞硝氮、色度、濁度、總懸浮固體、苯酚(BTX)、臭氧或硫化氫等多種有機物質濃度。A full-spectrum water quality analysis system, comprising: a device body, wherein the device has a light source generating device having a first mirror window and a light source receiving computing device having a second mirror window, wherein the light source generating device and the light source Having a sampling area between the receiving computing devices, and the first mirror window is positioned relative to the second mirror window; a flash light is disposed inside the light source generating device, and the xenon flash lamp is capable of facing the first mirror The window emits a measuring beam penetrating the sampling area, the measuring beam can pass through the first mirror window and the second mirror window, and penetrates into the light source receiving operation device; a lens is disposed at the light source receiving operation Inside the device, and located on the measuring beam travel path, for concentrating the measuring beam penetrating into the receiving device of the light source; a slit for improving resolution and reducing stray light; a collimating mirror Receiving a measurement beam transmitted from the slit and collimating the measurement beam; a grating receiving the measurement beam from the collimating mirror and The measuring beam is split into a plurality of different wavelengths of light; a lens is disposed inside the light source receiving computing device, receives the light beam from the grating, and concentrates the light beam on an array of photometers, the array photometer is disposed on the light source Inside the receiving computing device, receiving a light beam from the lens and measuring a spectrum of high resolution and different wavelengths; a reservoir for storing ammonia nitrogen, total phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total Organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate nitrogen, nitrous oxide, color, turbidity, total suspended solids, phenol ( BTX), ozone or hydrogen sulfide, and other organic substances, optical wavelength absorbance and correction weighting parameter data files; and a microprocessor for the operation of the overall system, and the microprocessor is coupled with the xenon flash lamp and the array photometer Electrically connected, after the measuring beam passes through a liquid passing through the sampling area, the microprocessor can calculate the absorbance of the full spectral wavelength of the measuring beam according to Beer's law, and then use an in-line human Intelligent model algorithm, big data parallel alignment verification, self-deep learning analysis correlation and various interference factors, calculate modified weighting parameters for mutual numerical compensation and noise filtering, to further obtain higher precision ammonia nitrogen, total Phosphorus, total nitrogen, UV254, chemical oxygen demand (COD), total organic carbon (TOC), biological oxygen demand (BOD), dissolved organic carbon (DOC), permanganate index (CODMn), nitrate, Concentrations of various organic substances such as nitrous oxide, color, turbidity, total suspended solids, phenol (BTX), ozone or hydrogen sulfide. 如請求項1所述之全光譜水質分析系統,其中該光源產生裝置更具有一透鏡及一光感測器,用以設置於該測量光束行進路徑上,該透鏡能將測量光束聚光,該取樣區能夠將該測量光束分開為一穿透水樣之測量光束及一不穿透水樣之參比光束,其中該穿透水樣之測量光束能夠穿過該第一鏡窗及該第二鏡窗,並穿透至該光源接收運算裝置內部,而該光感測器係設置於該不穿透水樣之參比光束行進路徑上,用以感測該不穿透水樣之參比光束之光強度,在每次測量中對光源進行補償。The full-spectrum water quality analysis system of claim 1, wherein the light source generating device further has a lens and a light sensor disposed on the measuring beam traveling path, the lens capable of collecting the measuring beam, the lens The sampling area is capable of separating the measuring beam into a measuring beam penetrating the water sample and a reference beam not penetrating the water sample, wherein the measuring beam penetrating the water sample can pass through the first mirror window and the second a mirror window penetrates into the light source receiving operation unit, and the light sensor is disposed on the reference beam traveling path of the water-impermeable sample to sense the reference of the non-penetrating water sample The light intensity of the beam compensates for the source in each measurement. 如請求項1所述之全光譜水質分析系統,其中該光源接收運算裝置內部更具有一與該微處理器電性連接之時序產生器,該時序產生器用以發出一訊號至該微處理器,以控制該氙閃光燈發射光束與陣列光度計同步進行接收測量。The full-spectrum water quality analysis system of claim 1, wherein the light source receiving computing device further has a timing generator electrically connected to the microprocessor, and the timing generator is configured to send a signal to the microprocessor. The measurement is performed in synchronization with the array photometer by controlling the xenon flash emission beam. 如請求項1所述之全光譜水質分析系統,其中該光源接收運算裝置內部更具有一與該微處理器電性連接之通訊器,用以能夠將該全光譜水質分析系統所偵測或/及運算之數據資料傳送出去。The full spectrum water quality analysis system of claim 1, wherein the light source receiving computing device further has a communicator electrically connected to the microprocessor for detecting the full spectrum water quality analysis system or And the data of the operation is transmitted. 如請求項1所述之全光譜水質分析系統,其中該裝置本體上的該取樣區為一凹口,該取樣區處係具有一清潔刷,而該光源接收運算裝置內部更具有一與該微處理器電性連接之馬達,其中該馬達係延伸出一驅動軸固定於該清潔刷上,而該清潔刷兩側具有一刷體,因此該馬達被驅動使該驅動軸轉動時,該清潔刷兩側之刷體能夠分別清潔該第一鏡窗及該第二鏡窗之朝外表面。The full-spectrum water quality analysis system of claim 1, wherein the sampling area on the body of the apparatus is a notch, the sampling area has a cleaning brush, and the light receiving receiving device has a more internal and micro a motor electrically connected to the processor, wherein the motor extends from a driving shaft to the cleaning brush, and the cleaning brush has a brush body on both sides thereof, so when the motor is driven to rotate the driving shaft, the cleaning brush The brush bodies on both sides can respectively clean the outward facing surfaces of the first mirror window and the second mirror window. 如請求項1所述之全光譜水質分析系統,其中該裝置本體靠近第一鏡窗及第二鏡窗處設置有一超音波清潔裝置,可自動清潔該第一鏡窗及該第二鏡窗。The full-spectrum water quality analysis system of claim 1, wherein the apparatus body is provided with an ultrasonic cleaning device near the first mirror window and the second mirror window, and the first mirror window and the second mirror window are automatically cleaned. 如請求項1所述之全光譜水質分析系統,其中該氙閃光燈所發射之測量光束的波長為160~800nm。The full-spectrum water quality analysis system according to claim 1, wherein the measuring beam emitted by the xenon flash lamp has a wavelength of 160 to 800 nm. 如請求項1所述之全光譜水質分析系統,其中該微處理器的運算公式為比爾定律及多成分定量分析公式,係將要測量的有機物濃度列成一聯立方程式後,再進行解聯立方程式,即可取得各種有機物的濃度值。The full-spectrum water quality analysis system according to claim 1, wherein the calculation formula of the microprocessor is Beer's law and a multi-component quantitative analysis formula, and the organic matter concentration to be measured is listed as a simultaneous equation, and then the de-coupling equation is performed, that is, Concentration values of various organic substances can be obtained. 如請求項1所述之全光譜水質分析系統,其中該總磷的光吸收率變異性最高是在於170~190nm之間。The full-spectrum water quality analysis system according to claim 1, wherein the total phosphorus absorbance variability is between 170 and 190 nm. 如請求項1所述之全光譜水質分析系統,其中該總氮的光吸收率變異性最高是在於190~245nm之間。The full-spectrum water quality analysis system according to claim 1, wherein the total nitrogen absorbance variability is between 190 and 245 nm. 如請求項1所述之全光譜水質分析系統,其中該氨氮的光吸收率變異性最高是在於180~200nm之間。The full-spectrum water quality analysis system according to claim 1, wherein the highest absorbance of the ammonia nitrogen is between 180 and 200 nm.
TW107206534U 2018-05-18 2018-05-18 Full spectrum water quality analysis system TWM565796U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107206534U TWM565796U (en) 2018-05-18 2018-05-18 Full spectrum water quality analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107206534U TWM565796U (en) 2018-05-18 2018-05-18 Full spectrum water quality analysis system

Publications (1)

Publication Number Publication Date
TWM565796U true TWM565796U (en) 2018-08-21

Family

ID=63962173

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107206534U TWM565796U (en) 2018-05-18 2018-05-18 Full spectrum water quality analysis system

Country Status (1)

Country Link
TW (1) TWM565796U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060697A (en) * 2018-10-24 2018-12-21 深圳市长隆科技有限公司 Automatically select the water quality parameter analyzer of Detection wavelength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060697A (en) * 2018-10-24 2018-12-21 深圳市长隆科技有限公司 Automatically select the water quality parameter analyzer of Detection wavelength

Similar Documents

Publication Publication Date Title
CA1219464A (en) Florescent fluid analysis
CN110530801A (en) Full spectral water quality analysis system
Zeng et al. Development of in situ sensors for chlorophyll concentration measurement
US8467059B2 (en) Deep-UV LED and laser induced fluorescence detection and monitoring of trace organics in potable liquids
Wang et al. Development and characterization of a highly sensitive fluorometric transducer for ultra low aqueous ammonia nitrogen measurements in aquaculture
CN106596436B (en) Multi-parameter water quality real-time online monitoring device based on spectrum method
Lai et al. Autonomous Optofluidic Chemical Analyzers for Marine Applications: Insights from the Submersible Autonomous Moored Instruments (SAMI) for pH and p CO2
CN102928390A (en) On-line detection method and device for chlorophyll concentration in water body based on two detectors
US7336362B2 (en) Arsenic meter
KR20150107945A (en) Microfluidic chip based absorbance measurement apparatus using standard addition method
CN106053421A (en) Method and apparatus for on-line detection of content of organic substances in water and break warning of core filters/membranes
TWM565796U (en) Full spectrum water quality analysis system
Nehir et al. Improved calibration and data processing procedures of OPUS optical sensor for high-resolution in situ monitoring of nitrate in seawater
JPS641741B2 (en)
TWI661197B (en) Full-spectrum water quality analysis system
CN210720145U (en) Portable quick water quality testing appearance
KR100840181B1 (en) Apparatus and method for automatic detecting total nitrogen and total phosphorus
Clayson Sensing of nitrate concentration by UV absorption spectrophotometry
JP2000356635A (en) Concentration measuring method of chlorophyll a and device therefor
Sen et al. A low‐cost device for the estimation of fluoride in drinking water
JPH038502B2 (en)
JP3545928B2 (en) Magnesium ion concentration measurement device
RU211486U1 (en) Flow-through measuring cell for real-time monitoring of drinking water quality
CN116297251B (en) Multi-sensor combined water quality detection system and detection probe thereof
Choi et al. Analysis of boron in water using an improved curcumin method