JP2010234300A - Method for treating wastewater containing inorganic ion - Google Patents

Method for treating wastewater containing inorganic ion Download PDF

Info

Publication number
JP2010234300A
JP2010234300A JP2009086346A JP2009086346A JP2010234300A JP 2010234300 A JP2010234300 A JP 2010234300A JP 2009086346 A JP2009086346 A JP 2009086346A JP 2009086346 A JP2009086346 A JP 2009086346A JP 2010234300 A JP2010234300 A JP 2010234300A
Authority
JP
Japan
Prior art keywords
sludge
return
flow rate
added
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009086346A
Other languages
Japanese (ja)
Other versions
JP5338432B2 (en
Inventor
Ichiro Sumita
一郎 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009086346A priority Critical patent/JP5338432B2/en
Publication of JP2010234300A publication Critical patent/JP2010234300A/en
Application granted granted Critical
Publication of JP5338432B2 publication Critical patent/JP5338432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating wastewater containing inorganic ions by the HDS method, by which the return amount of sludge can be made appropriate without the adoption of special additional equipment. <P>SOLUTION: Sludge containing an alkali added thereto is added to raw water in a reaction tank 1, and the mixture is stirred. Thereafter, the mixture is transferred to a flocculation tank 2, and a polymer flocculant is added thereto. The mixture is then introduced into a sedimentation basin 3 and subjected to sedimentation treatment. Part of the settled sludge is taken out of the system as withdrawn sludge. The remainder of the settled sludge is transferred to an alkali addition tank 6 as returned sludge, and an alkali is added thereto. This sludge containing the alkali added thereto is transferred to the reaction tank 1 and added to the raw water in the reaction tank 1. The ratio of the flow rate of the returned sludge to the flow rate of the withdrawn sludge is set at a predetermined constant sludge return ratio. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属イオンやリン酸イオン等の無機イオンを含む排水の処理方法に係り、特に汚泥の一部を返送すると共に、この返送汚泥にアルカリ等の不溶性塩生成剤を添加するようにした無機イオン含有排水の処理方法に関する。   The present invention relates to a method for treating wastewater containing inorganic ions such as metal ions and phosphate ions, and in particular, a part of sludge is returned, and an insoluble salt generator such as alkali is added to the returned sludge. The present invention relates to a method for treating inorganic ion-containing wastewater.

金属イオン含有排水の処理において、濃縮性に富み、脱水性に優れた高濃度金属水酸化物汚泥を得る方法として、アルカリ汚泥法等の高密度汚泥法(HDS法:High Density Sludge)が知られている。アルカリ汚泥法では、金属イオン含有排水の処理で分離されて返送される汚泥の一部にアルカリ添加する。   High density sludge methods (HDS method: High Density Sludge) such as the alkaline sludge method are known as methods for obtaining highly concentrated metal hydroxide sludge that is rich in concentration and excellent in dewaterability in the treatment of metal ion-containing wastewater. ing. In the alkaline sludge method, alkali is added to a part of the sludge that is separated and returned by the treatment of metal ion-containing wastewater.

アルカリ汚泥法では、高濃度で脱水性に優れた汚泥を安定して得ると共に、良好な処理水の水質を維持するために、原水の中和によって生成する不溶化物量(SS量)と返送汚泥量の比を適切な範囲に維持することが重要である。   In the alkaline sludge method, the amount of insolubilized material (SS amount) and the amount of returned sludge produced by neutralization of raw water is used to stably obtain sludge with high concentration and excellent dewaterability and maintain good quality of treated water. It is important to maintain the ratio in a proper range.

特開平5−57292号公報には、アルカリと混合する返送汚泥の固形分量を、アルカリと原水とが反応して生成する不溶化物の量の15〜40倍特に20〜30倍とする重金属含有廃水の処理方法が記載されている。   Japanese Patent Application Laid-Open No. 5-57292 discloses a heavy metal-containing wastewater in which the solid content of the return sludge mixed with alkali is 15 to 40 times, particularly 20 to 30 times the amount of insolubilized product produced by the reaction between alkali and raw water. The processing method is described.

また、特開平8−24877号公報には、アルカリ汚泥法によるイオン含有排水の処理方法において、アルカリと排水とが反応して生成する不溶化物の量を、排水のpHが3から8.5付近になるまでに要したアルカリ使用量から算出することが記載されている。   JP-A-8-24877 discloses the amount of insolubilized product produced by the reaction between alkali and wastewater in the method for treating ion-containing wastewater by the alkali sludge method, and the pH of the wastewater is around 3 to 8.5. It is described that it is calculated from the amount of alkali used until it becomes.

なお、フッ素イオンやリン酸イオンもHDS法によって除去される。この場合、不溶性塩生成剤としてはカルシウム化合物等が用いられる。   Note that fluorine ions and phosphate ions are also removed by the HDS method. In this case, a calcium compound or the like is used as the insoluble salt generator.

特開平5−57292号公報Japanese Patent Laid-Open No. 5-57292 特開平8−24877号公報JP-A-8-24877

HDS法において汚泥返送比が適切に制御されないと、たとえば汚泥返送比が過度に小さいと、通常凝集汚泥のように脱水性が悪化する。逆に、汚泥返送比が過度に高いと、微細フロックが生成し、処理水質が悪化する。   If the sludge return ratio is not properly controlled in the HDS method, for example, if the sludge return ratio is excessively small, the dewaterability is usually deteriorated like aggregated sludge. Conversely, if the sludge return ratio is excessively high, fine flocs are generated and the quality of the treated water is deteriorated.

汚泥返送比を的確に制御するために、実際に原水から発生する汚泥量を求める方法(例えば上記特開平5−57292)を採用した場合、本来の排水処理設備とは別に、実際の処理と同等の薬剤を使用して、汚泥を発生させ、これを計測する計測設備が必要である。このような計測設備を設けることは、コストがかかるほか、無機汚泥を発生させる設備はすなわちスケール生成装置であり、メンテナンスが容易でないという問題があった。   In order to accurately control the sludge return ratio, when a method for obtaining the amount of sludge actually generated from raw water (for example, the above-mentioned Japanese Patent Laid-Open No. 5-57292) is adopted, it is equivalent to the actual treatment separately from the original wastewater treatment facility. It is necessary to have a measuring facility that uses sludge to generate sludge and measure it. Providing such a measuring facility is costly, and the facility for generating inorganic sludge is a scale generating device, and there is a problem that maintenance is not easy.

上記特開平8−24877号公報は、原水を分取してアルカリを添加し、pHが3から8.3にまで上昇するのに要するアルカリ量を金属イオンの中和に用いられるアルカリ量とみなし、このアルカリ量と金属イオンの種類とから生成する不溶性塩の量を演算し、汚泥返送比が8〜40となるように汚泥返送ポンプを制御するものである。   In the above Japanese Patent Laid-Open No. 8-24877, raw water is separated and alkali is added, and the amount of alkali required to raise the pH from 3 to 8.3 is regarded as the amount of alkali used for neutralization of metal ions. The amount of insoluble salt generated from the amount of alkali and the type of metal ions is calculated, and the sludge return pump is controlled so that the sludge return ratio is 8 to 40.

このような特開平8−24877号公報の方法では、原水を分取してアルカリ滴定を行うところから、ランニングコストが高い。また、この方法は、あらかじめ汚泥発生量とアルカリ消費量の関係を求め、計算式を作成し、この計算式に基づいて汚泥発生量を推算するものであるが、必ずしも原水性状と計算式が一致せず、計算式を場合により頻繁に更新することが必要である。   In such a method of JP-A-8-24877, since raw water is fractionated and subjected to alkali titration, the running cost is high. In this method, the relationship between sludge generation amount and alkali consumption is obtained in advance, and a calculation formula is created, and sludge generation amount is estimated based on this calculation formula. Instead, it is necessary to update the calculation formula frequently.

本発明は、上記従来の問題点を解決し、HDS法による無機イオン含有排水を処理する方法において、格別な追加設備を採用することなく、汚泥返送量を適正量とすることができる無機イオン含有排水の処理方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in the method of treating inorganic ion-containing wastewater by the HDS method, it contains inorganic ions that can make the amount of sludge returned to an appropriate amount without employing special additional equipment. It aims at providing the processing method of waste water.

請求項1の無機イオン含有排水の処理方法は、無機イオン含有排水に不溶性塩生成剤を添加して不溶性塩を析出させ、次いで固液分離処理して不溶性塩を含む汚泥を処理水から分離し、分離した汚泥の一部を返送汚泥とし、この返送汚泥に前記不溶性塩生成剤を添加して前記無機イオン含有排水に添加し、汚泥の残部を引き抜き汚泥として排出する無機イオン含有排水の処理方法において、返送汚泥の流量と引抜汚泥の流量との比を予め設定した一定の汚泥返送比とすることを特徴とするものである。   The method for treating wastewater containing inorganic ions according to claim 1 adds an insoluble salt generator to the wastewater containing inorganic ions to precipitate insoluble salts, and then separates sludge containing the insoluble salts from the treated water by solid-liquid separation treatment. A method for treating wastewater containing inorganic ions, wherein a part of the separated sludge is returned to the sludge, the insoluble salt generator is added to the returned sludge and added to the inorganic ion-containing wastewater, and the remainder of the sludge is extracted and discharged as sludge. In the above, the ratio between the flow rate of the return sludge and the flow rate of the extracted sludge is set to a predetermined sludge return ratio.

請求項2の無機イオン含有排水の処理方法は、請求項1において、前記汚泥返送比を無機イオンの種類によって設定することを特徴とするものである。   The method for treating wastewater containing inorganic ions according to claim 2 is characterized in that, in claim 1, the sludge return ratio is set according to the type of inorganic ions.

請求項3の無機イオン含有排水の処理方法は、請求項1又は2において、返送汚泥濃度が2〜10重量%となるように前記所定値を設定することを特徴とするものである。   A method for treating wastewater containing inorganic ions according to claim 3 is characterized in that, in claim 1 or 2, the predetermined value is set so that the return sludge concentration is 2 to 10% by weight.

本発明は、返送汚泥の流量と引抜汚泥の流量との比が予め設定した一定の汚泥返送比となるように返送汚泥流量を制御するようにしたものである。本発明によると、原水の性状に変化があっても、自ずから汚泥返送比が適正な値に収束する。   In the present invention, the return sludge flow rate is controlled so that the ratio between the return sludge flow rate and the drawn sludge flow rate becomes a predetermined constant sludge return ratio. According to the present invention, even if there is a change in the properties of raw water, the sludge return ratio naturally converges to an appropriate value.

実施の形態に係る無機イオン含有排水の処理方法を説明するためのフロー図である。It is a flowchart for demonstrating the processing method of the inorganic ion containing waste_water | drain which concerns on embodiment. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.

以下、図面を参照して実施の形態について説明する。第1図は本発明の無機イオン含有排水の処理方法が適用された排水処理設備のフロー図である。   Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a flow diagram of a wastewater treatment facility to which the inorganic ion-containing wastewater treatment method of the present invention is applied.

原水は、反応槽1にて配管7からのアルカリ添加汚泥が添加され、攪拌された後、凝集槽2に送られ、ポリマー凝集剤が添加され、凝集フロックが成長する。この汚泥フロックを含んだ水が沈殿池3に導入され、固液分離処理(汚泥フロックの沈降分離処理)が行われる。沈降した汚泥の一部は引抜汚泥として配管4から汚泥取出ポンプ(図示略)を介して系外に取り出される。沈降した汚泥の残部は、返送汚泥として配管5から汚泥返送ポンプ(図示略)を介してアルカリ添加槽6に送られ、水酸化ナトリウム等のアルカリが添加され、攪拌される。このアルカリ添加汚泥が配管7を介して反応槽1に送られ、該反応槽1内の原水に添加される。   The raw water is added with the alkali-added sludge from the pipe 7 in the reaction tank 1 and stirred, and then sent to the coagulation tank 2 to which the polymer coagulant is added and the coagulation floc grows. The water containing the sludge floc is introduced into the sedimentation basin 3 and a solid-liquid separation process (sludge floc sedimentation process) is performed. A part of the settled sludge is taken out of the system as a drawn sludge from the pipe 4 via a sludge extraction pump (not shown). The remaining sludge settled is sent as return sludge from the pipe 5 to the alkali addition tank 6 via a sludge return pump (not shown), and an alkali such as sodium hydroxide is added and stirred. This alkali-added sludge is sent to the reaction tank 1 through the pipe 7 and added to the raw water in the reaction tank 1.

本発明において、無機イオンとしてはAl,Ca,Cu,Zn,Cd,Pb,Fe,Co,Ni,Cr,Mnなどの金属イオンのほか、リン酸イオンやフッ化物イオンなどが例示される。   In the present invention, examples of inorganic ions include metal ions such as Al, Ca, Cu, Zn, Cd, Pb, Fe, Co, Ni, Cr, and Mn, as well as phosphate ions and fluoride ions.

金属イオンから不溶性塩を生成させるための不溶性塩生成剤としては水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリ剤が好適である。リン酸イオンの不溶性塩生成剤としては塩化カルシウムなどのカルシウム塩や水酸化カルシウム等が好適である。フッ化物イオンの不溶性塩生成剤としては、塩化カルシウムなどのカルシウム塩や水酸化カルシウム等が好適である。   As the insoluble salt generating agent for generating an insoluble salt from metal ions, alkali agents such as sodium hydroxide, potassium hydroxide and calcium hydroxide are suitable. As an insoluble salt-generating agent for phosphate ions, calcium salts such as calcium chloride, calcium hydroxide, and the like are suitable. As the insoluble salt-generating agent for fluoride ions, calcium salts such as calcium chloride, calcium hydroxide, and the like are suitable.

アルカリ剤は、反応槽1内のpHが所定範囲となるように添加される。好適なpH範囲は金属種によって異なり、Alの場合はpH4〜6、Crの場合はpH5〜7、Fe2+の場合はpH8〜10、Znの場合はpH8〜10、Fe3+の場合はpH4〜5、Cuの場合はpH6〜8である。 The alkaline agent is added so that the pH in the reaction tank 1 falls within a predetermined range. A suitable pH range varies depending on the metal species, pH 4 to 6 in the case of Al, pH 5 to 7 in the case of Cr, pH 8 to 10 in the case of Fe 2+ , pH 8 to 10 in the case of Zn, and pH 4 to 4 in the case of Fe 3+. 5. In the case of Cu, the pH is 6-8.

カルシウム塩等は、原水中のリン酸イオン濃度又はフッ化物イオン濃度に応じて添加される。リン酸イオンを処理する場合、カルシウム塩等の添加量は、当モル比の1倍+残留Caとして20〜200mg/L程度が好適である。フッ化物イオンを処理する場合、カルシウム塩等の添加量は、当モル比の1倍+残留Caとして200〜500mg/L程度が好適である。   Calcium salts and the like are added according to the phosphate ion concentration or fluoride ion concentration in the raw water. When processing phosphate ion, the addition amount of calcium salt and the like is preferably about 20 to 200 mg / L as 1 time of the molar ratio + residual Ca. In the case of treating fluoride ions, the addition amount of calcium salt or the like is preferably about 200 to 500 mg / L as 1 time of the molar ratio + residual Ca.

金属イオンの排水中の濃度が50〜5000mg/L程度である場合に本発明を適用するのに好適である。本発明方法を適用するのに好適な金属イオン含有排水の具体例としては、各種工場排水、鉱山排水などが例示される。   It is suitable for applying this invention when the density | concentration in the waste_water | drain of a metal ion is about 50-5000 mg / L. Specific examples of the metal ion-containing wastewater suitable for applying the method of the present invention include various factory wastewater and mine wastewater.

リン酸イオンの排水中の濃度が10〜5000mg/L程度である場合に本発明を適用するのに好適である。リン酸イオン含有排水の具体例としては、各種工場排水、農業排水、活性汚泥の脱水濾液、嫌気消化脱離液等が例示される。フッ化物イオンの排水中の濃度が15〜20000mg/L程度である場合に本発明を適用するのに好適である。フッ化物イオン含有排水の具体例としては、各種工場排水、洗煙排水、などが例示される。   It is suitable for applying the present invention when the concentration of phosphate ions in the waste water is about 10 to 5000 mg / L. Specific examples of the phosphate ion-containing wastewater include various factory wastewater, agricultural wastewater, dehydrated filtrate of activated sludge, anaerobic digestion and desorption fluid, and the like. It is suitable for applying the present invention when the concentration of fluoride ions in the waste water is about 15 to 20000 mg / L. Specific examples of the fluoride ion-containing waste water include various factory waste water and smoke washing waste water.

本発明では、返送汚泥の流量と、引抜汚泥の流量との比が予め設定した一定の汚泥返送比となるように汚泥取出ポンプ及び汚泥返送ポンプを制御する。この汚泥返送比の値は、無機イオンの種類によって異なる。主なイオンにおける好適な上記汚泥返送比(返送汚泥流量[m/h]/引抜汚泥流量[m/h]の値)の範囲を次に例示する。 In the present invention, the sludge extraction pump and the sludge return pump are controlled so that the ratio between the flow rate of the return sludge and the flow rate of the drawn sludge becomes a predetermined sludge return ratio. The value of this sludge return ratio varies depending on the type of inorganic ions. The range of the above preferable sludge return ratio (value of return sludge flow rate [m 3 / h] / drawn sludge flow rate [m 3 / h]) in the main ions is exemplified below.

鉄イオン 12〜40特に15〜30から選ばれた一定値
アルミニウムイオン 30〜100特に40〜60から選ばれた一定値
亜鉛イオン 15〜50特に20〜30から選ばれた一定値
クロムイオン 15〜50特に20〜30から選ばれた一定値
カルシウムイオン 10〜500特に10〜100から選ばれた一定値
リン酸イオン 10〜500特に10〜100から選ばれた一定値
フッ化物イオン 10〜500特に10〜100から選ばれた一定値
銅イオン 30〜100特に40〜60から選ばれた一定値
本発明方法によると、原水の性状が変動しても、返送汚泥流量と引抜汚泥流量との比が経時的に上記所定値に収束してくる。この理由について以下に説明する。
Iron ions 12 to 40, in particular, a constant value selected from 15 to 30 Aluminum ions 30 to 100, in particular a constant value selected from 40 to 60 Zinc ions 15 to 50, in particular, a constant value selected from 20 to 30 Chromium ions 15 to 50 In particular, a constant value selected from 20 to 30 Calcium ions 10 to 500, in particular, a constant value selected from 10 to 100, phosphate ions 10 to 500, in particular, a constant value selected from 10 to 100, fluoride ions 10 to 500, especially 10 Constant value selected from 100 Copper ions 30 to 100 Especially fixed value selected from 40 to 60 According to the method of the present invention, even if the properties of raw water fluctuate, the ratio of the return sludge flow rate and the extracted sludge flow rate is time-dependent. To converge to the predetermined value. The reason for this will be described below.

第1図において、ある時点での原水流量をQ[m/h]、原水からの汚泥発生率をC[kg/m]とすると、汚泥発生量(固形物量)はC・Q[kg/h]となる。 In FIG. 1, when the raw water flow rate at a certain point is Q 1 [m 3 / h] and the sludge generation rate from the raw water is C 1 [kg / m 3 ], the sludge generation amount (solid matter amount) is C 1 · Q 1 [kg / h].

汚泥返送比をRとすると、返送固形物量は、汚泥発生量(固形物量)にRを乗じた量として定義されるので、
返送固形物量[kg/h]=R・C・Q (1)
となる。
If the sludge return ratio is R, the amount of returned solids is defined as the amount of sludge generated (solids amount) multiplied by R.
Returned solid amount [kg / h] = R · C 1 · Q 1 (1)
It becomes.

返送汚泥流量と引抜汚泥流量との比を汚泥返送比Rと同一の一定値に保った場合、引抜汚泥流量をQ[m/h]とすると、返送汚泥流量Qは、Q=R・Q[m/h]となる。 When the ratio between the return sludge flow rate and the drawn sludge flow rate is kept constant at the same value as the sludge return rate R, if the drawn sludge flow rate is Q 2 [m 3 / h], the returned sludge flow rate Q 3 is Q 3 = R · Q 2 [m 3 / h].

この時点での、引抜汚泥濃度をC[kg/m]とすると、
返送固形物量[kg/h]=C・Q
=C・R・Q[kg/h] (2)
引抜固形物量[kg/h]=C・Q[kg/h] (3)
となる。
If the extracted sludge concentration at this point is C 2 [kg / m 3 ],
Returned solid amount [kg / h] = C 2 · Q 3
= C 2 · R · Q 2 [kg / h] (2)
Pulled solid amount [kg / h] = C 2 · Q 2 [kg / h] (3)
It becomes.

定常状態(即ち、原水流量が変動せず、原水中の無機イオンの種類及び濃度も変動せず、汚泥発生率も変動しない状態)では、原水からの汚泥発生量と引抜固形物量は等しくなるので、
・Q=C・Q (4)
なる関係が成り立つ。
In the steady state (ie, the raw water flow rate does not change, the type and concentration of inorganic ions in the raw water does not change, and the sludge generation rate does not change), the amount of sludge generated from the raw water is equal to the amount of extracted solids. ,
C 1 · Q 1 = C 2 · Q 2 (4)
The relationship becomes true.

返送固形物量は、(2)に(4)式を代入することにより、
返送固形物量[kg/h]=C・R・Q
=R・C・Q (5)
となり、(1)式と等しくなる。
The amount of returned solids is calculated by substituting equation (4) into (2)
Returned solid amount [kg / h] = C 2 · R · Q 2
= R ・ C 1・ Q 1 (5)
And is equal to equation (1).

このように、返送汚泥流量Qと引抜汚泥流量Qとの比Q/Qを予め設定した汚泥返送比Rと同じ値とするだけで、定常状態では、一定の汚泥返送比Rでの運転状態とすることができる。 Thus, only the same value as the return sludge flow rate Q 3 and extracted sludge flow rate Q 2 and a ratio Q 3 / Q 2 sludge return ratio R set in advance, and in the steady state, at a constant sludge return ratio R It can be set as the driving state.

原水汚泥発生率が変動した場合、一時的に、返送汚泥流量と引抜汚泥流量との比が、設定した汚泥返送比Rの値から乖離するようになる。   When the raw water sludge generation rate fluctuates, the ratio between the return sludge flow rate and the extracted sludge flow rate temporarily deviates from the set sludge return ratio R.

即ち、原水からの汚泥発生率がCからC’に変化した場合、原水からの汚泥発生量(固形物量)はC’・Qに変化するので、引抜汚泥固形物量もC’・Qに変化させるべきである。なお、この時点での汚泥返送比R’すなわち(5)式の返送固形物量(R・C・Q)と新たな汚泥発生固形物量との比は、
R’=(R・C・Q)/(C’・Q
=R・(C/C’)
となっている。
That is, when the sludge generation rate from the raw water changes from C 1 to C 1 ′, the sludge generation amount (solid amount) from the raw water changes to C 1 ′ · Q 1 , so that the extracted sludge solid amount is also C 1 ′. should be varied to · Q 1. At this time, the sludge return ratio R ′, that is, the ratio of the amount of returned solids (R · C 1 · Q 1 ) in equation (5) to the amount of new sludge generated solids is:
R ′ = (R · C 1 · Q 1 ) / (C 1 ′ · Q 1 )
= R · (C 1 / C 1 ')
It has become.

ところが、実際には、この時点での実際の汚泥引抜固形物量はC・Q(=C・Q)[kg/h]のままであり、この時点での原水からの汚泥発生固形物量C’・Qとの間に乖離が生じる。具体的には、C>C’であれば、C・Q>C’・Qであり、C<C’であれば、C・Q<C’・Qである。しかしながら、C>C’又はC<C’の状態が継続すると、次第に汚泥引抜固形物量は原水からの汚泥発生固形物量C’・Qに合致してくる。 However, in practice, the actual amount of sludge drawn solids at this point remains C 2 · Q 2 (= C 1 · Q 1 ) [kg / h], and sludge generated solids from raw water at this point Deviation occurs between the quantity C 1 'and Q 1 . Specifically, if C 1 > C 1 ′, C 2 · Q 2 > C 1 ′ · Q 1 , and if C 1 <C 1 ′, then C 2 · Q 2 <C 1 ′ · a Q 1. However, if the state of C 1 > C 1 ′ or C 1 <C 1 ′ continues, the amount of solid matter extracted from the sludge gradually becomes equal to the amount of solid matter generated sludge from raw water C 1 ′ · Q 1 .

例えば、C>C’の場合、汚泥引抜固形物量C・Qが原水からの汚泥発生固形物量より多い状態が継続すると、沈殿池の汚泥保有量が減少し、汚泥の沈殿時間が短くなり、返送汚泥濃度及び引抜汚泥濃度の低下が起こり、Cは低下していき、最終的には汚泥引抜量C・QはC’・Qにまで低下してくる。C<C’の場合は、その逆に、汚泥引抜固形物量C・Qが原水からの汚泥発生固形物量C’・Qよりも少ない状態が継続すると、沈殿池の汚泥保有量が増加し、沈殿池での沈殿時間が長くなり、Cが高くなってくる。最終的には、汚泥引抜量C・QはC’・Qにまで上昇する。 For example, in the case of C 1 > C 1 ′, if the sludge extraction solid amount C 2 · Q 2 continues to be larger than the sludge generation solid amount from the raw water, the sludge retention amount in the settling pond will decrease and the sludge settling time will decrease. Shorter, the return sludge concentration and the extracted sludge concentration decrease, C 2 decreases, and finally, the sludge extraction amount C 2 · Q 2 decreases to C 1 '· Q 1 . In the case of C 1 <C 1 ′, conversely, if the sludge extraction solid amount C 2 · Q 2 continues to be less than the sludge generated solid amount C 1 '· Q 1 from the raw water, the sedimentation basin holds sludge the amount is increased, precipitation time in the sedimentation pond is increased, C 2 comes higher. Eventually, the sludge extraction amount C 2 · Q 2 rises to C 1 '· Q 2 .

このように、汚泥発生率Cが増減変化しても、汚泥引抜量及び汚泥返送量は新たな定常状態へ向かって収束していく。そして、汚泥返送比は、返送汚泥流量Qと引抜汚泥流量Qとの比Q/Qに合致してくる。 Thus, sludge generation rate C 1 is also increased or decreased change, sludge withdrawal amount and sludge return amount converges toward a new steady state. The sludge return ratio matches the ratio Q 3 / Q 2 between the return sludge flow rate Q 3 and the drawn sludge flow rate Q 2 .

ところで凝集槽から流出した無機塩を主体とする汚泥は、沈降速度及び圧密速度が極めて速く(例えばFeやZnを主体とする汚泥の場合、沈降速度は0.5m/h程度であり、約2分以内に10%以上に濃縮する。)、沈降池から返送汚泥に至るための所要時間は数分〜15分程度であり、負荷変動があった場合にも上記の収支が十分に成り立つ。従って、とくに原水汚泥発生量を計測して返送固形物量を制御するまでもなく、汚泥返送比は自然に予め設定した汚泥返送比とほぼ同一の値となる。   By the way, the sludge mainly composed of inorganic salt flowing out from the coagulation tank has a very high sedimentation speed and compaction speed (for example, in the case of sludge mainly composed of Fe and Zn, the sedimentation speed is about 0.5 m / h, about 2 Concentrate to 10% or more within a minute.), The time required to reach the return sludge from the sedimentation basin is about several minutes to 15 minutes, and the above balance is sufficiently established even when there is a load fluctuation. Therefore, it is not necessary to measure the amount of raw water sludge generated and control the amount of returned solids, and the sludge return ratio is almost the same as the sludge return ratio set in advance.

上記のように、本発明では、返送汚泥流量と引抜汚泥流量との比が予め設定した一定の汚泥返送比と同じ値となるように返送汚泥流量及び引抜汚泥流量を制御する。   As described above, in the present invention, the return sludge flow rate and the extracted sludge flow rate are controlled so that the ratio between the returned sludge flow rate and the extracted sludge flow rate becomes the same value as a predetermined sludge return ratio.

この引抜汚泥は連続的に引き抜かれてもよく、間欠的に引き抜かれてもよい。   This drawn sludge may be drawn continuously or intermittently.

たとえば、汚泥返送比20で運転する場合、返送汚泥流量20m/hに対して引抜汚泥流量1m/hに設定し、常時この流量にて汚泥の返送及び引き抜きを行ってもよい。また、返送汚泥、引抜汚泥流量を同一とし、タイマーで返送と引き抜きを切り替えてもよい。具体的には、沈殿池からの汚泥の全量を返送汚泥として20分返送し、その後、沈殿池からの汚泥の全量を引抜汚泥として1分間だけ排出し、以下、これを交互にくり返すように運転してもよい。 For example, when operating at a sludge return ratio of 20, the extraction sludge flow rate may be set to 1 m 3 / h with respect to the return sludge flow rate of 20 m 3 / h, and sludge return and extraction may always be performed at this flow rate. Alternatively, the return sludge and the extracted sludge flow rate may be the same, and the return and extraction may be switched by a timer. Specifically, the entire amount of sludge from the settling basin is returned as return sludge for 20 minutes, and then the entire amount of sludge from the settling basin is discharged for 1 minute as drawn sludge, and this is repeated alternately below. You may drive.

本発明では、負荷変動への応答性を高めるために、沈殿池の汚泥保有量を極力少なくすることが好ましい。沈殿池の汚泥保有量が多くなると、沈殿池へ流入した汚泥が返送されるまでの時間が長くなり、負荷変動への追随性が悪くなる。また、HDS汚泥は、10%以上に容易に濃縮され、20%以上にまで濃縮されることもあり、沈殿池での滞留時間が長くなると、予期せずして返送汚泥濃度が高くなり、その結果、汚泥返送比が過度に高くなるおそれがある。   In the present invention, it is preferable to reduce the amount of sludge retained in the settling basin as much as possible in order to increase the response to load fluctuations. If the amount of sludge retained in the sedimentation basin increases, the time until the sludge that has flowed into the sedimentation basin is returned becomes longer, and the followability to load fluctuations becomes worse. In addition, HDS sludge is easily concentrated to 10% or more and may be concentrated to 20% or more. If the residence time in the sedimentation basin becomes long, the return sludge concentration unexpectedly increases. As a result, the sludge return ratio may become excessively high.

本発明では、負荷変動への追随性を高めるために沈殿池での汚泥の滞留時間を短くするのが好ましいところから、返送汚泥流量を返送汚泥濃度が10重量%以下好ましくは5〜8重量%で所定の汚泥返送比を満たす固形物量を送ることができる流量とするのが好ましい。たとえば負荷増加時には返送汚泥濃度が高くなるが、このように汚泥濃度が上昇しても汚泥を流通させることができるようにするために、通常時は5〜10重量%程度の濃度域で運転を行うのが好ましい。   In the present invention, since it is preferable to shorten the sludge residence time in the settling basin in order to increase the followability to load fluctuations, the return sludge flow rate is set to 10% by weight or less, preferably 5 to 8% by weight. It is preferable to set the flow rate so that a solid amount satisfying a predetermined sludge return ratio can be sent. For example, the return sludge concentration increases when the load increases, but in order to allow the sludge to circulate even if the sludge concentration increases, the operation is normally performed in a concentration range of about 5 to 10% by weight. It is preferred to do so.

なお、前述の通り、HDS汚泥は沈降速度及び圧密速度が高く、10%以上まで容易に濃縮されるが、汚泥がさらに濃縮される場合には、その分時間を要するため、負荷変動への追随性が低下する。返送汚泥濃度は低いほど負荷変動への追随性が高いといえるが、引抜汚泥濃度は高いほうが汚泥脱水時の処理速度が高いため、返送汚泥濃度(これは引抜汚泥濃度と等しい。)は5重量%以上とすることが望ましい。   As described above, HDS sludge has a high sedimentation rate and compaction rate, and is easily concentrated to 10% or more. However, when the sludge is further concentrated, it takes time, so it can follow the load fluctuation. Sex is reduced. It can be said that the lower the return sludge concentration, the higher the followability to the load fluctuation. However, the higher the extracted sludge concentration, the higher the treatment speed during sludge dehydration, so the return sludge concentration (this is equal to the extracted sludge concentration) is 5 weights. % Or more is desirable.

また、本発明方法は、負荷変動に良好に追随できるものであるが、装置を安定的に運転するためには、負荷変動は小さいほうがよく、装置の前段に負荷変動を吸収するための調整槽を設置することが望ましい。負荷変動範囲は、1時間あたり±50%以内、特に±25%以内であることが望ましい。   In addition, the method of the present invention can follow load fluctuations satisfactorily, but in order to operate the apparatus stably, the load fluctuations should be small, and the adjustment tank for absorbing the load fluctuations in the front stage of the apparatus It is desirable to install. The load fluctuation range is desirably within ± 50% per hour, and particularly within ± 25%.

以下、実施例について説明する。第1図に示す装置の各条件を下記の通りとした。原水としては、硫酸第一鉄の600〜1000mg as Fe/L水溶液を用いた。この水溶液の濃度を5時間周期で最高値1000mg as Fe/L、最低値600mg as Fe/Lの間で周期的に増減させた。   Examples will be described below. Each condition of the apparatus shown in FIG. 1 was as follows. As raw water, 600-1000 mg as Fe / L aqueous solution of ferrous sulfate was used. The concentration of this aqueous solution was periodically increased or decreased between a maximum value of 1000 mg as Fe / L and a minimum value of 600 mg as Fe / L over a 5-hour period.

原水流量、返送汚泥流量及び引抜汚泥流量を下記の量に固定して、汚泥返送比の変動を調査した。その結果を第2図に示す。   The raw water flow rate, return sludge flow rate, and extraction sludge flow rate were fixed to the following amounts, and the fluctuation of the sludge return ratio was investigated. The results are shown in FIG.

原水からの汚泥発生率 1200〜2000mg/L
汚泥返送比設定値 15
原水流量 3L/h
返送汚泥流量(Q) 1L/h
引抜汚泥流量(Q) 0.067L/h
反応槽1のpH 8.5
反応槽1の容量 1L
凝集槽2の容量 0.2L
化学反応槽7の容量 0.05L
アルカリ添加量 Ca(OH)1700mg/L(平均)
/Qを約15(14.93)に設定したこの実施例では、第2図の通り、原水中の鉄イオン濃度変動に追随して実際の汚泥返送比は12〜20で変動し、平均で15.6となった。この実施例より、返送汚泥流量を制御せずに、返送汚泥流量と引抜汚泥流量を固定することで汚泥返送比が原水中の金属イオン濃度変動に追随してほぼ目標値(設定値)となることが認められた。
Sludge generation rate from raw water 1200-2000mg / L
Sludge return ratio set value 15
Raw water flow rate 3L / h
Return sludge flow rate (Q 3 ) 1L / h
Extracted sludge flow rate (Q 2 ) 0.067 L / h
PH of reactor 1 8.5
Capacity of reaction tank 1 1L
Coagulation tank 2 capacity 0.2L
Capacity of chemical reactor 7 0.05L
Alkaline addition amount Ca (OH) 2 1700 mg / L (average)
In this example in which Q 3 / Q 2 is set to about 15 (14.93), the actual sludge return ratio fluctuates between 12 and 20 following the fluctuation of the iron ion concentration in the raw water as shown in FIG. The average was 15.6. From this example, the return sludge flow rate and the extracted sludge flow rate are fixed without controlling the return sludge flow rate, so that the sludge return ratio follows the fluctuation of the metal ion concentration in the raw water and becomes almost the target value (set value). It was recognized that

1 反応槽
2 凝集槽
3 沈殿池
6 アルカリ添加槽
1 Reaction tank 2 Coagulation tank 3 Sedimentation tank 6 Alkali addition tank

Claims (3)

無機イオン含有排水に不溶性塩生成剤を添加して不溶性塩を析出させ、次いで固液分離処理して不溶性塩を含む汚泥を処理水から分離し、
分離した汚泥の一部を返送汚泥とし、この返送汚泥に前記不溶性塩生成剤を添加して前記無機イオン含有排水に添加し、
汚泥の残部を引き抜き汚泥として排出する無機イオン含有排水の処理方法において、
返送汚泥の流量と引抜汚泥の流量との比を予め設定した一定の汚泥返送比とすることを特徴とする無機イオン含有排水の処理方法。
Insoluble salt generator is added to the waste water containing inorganic ions to precipitate the insoluble salt, and then the solid-liquid separation treatment is performed to separate the sludge containing the insoluble salt from the treated water,
A part of the separated sludge is returned to the sludge, the insoluble salt generator is added to the returned sludge and added to the inorganic ion-containing waste water,
In the method for treating inorganic ion-containing wastewater that draws the remainder of the sludge and discharges it as sludge,
A method for treating wastewater containing inorganic ions, characterized in that a ratio between the flow rate of the return sludge and the flow rate of the extracted sludge is set to a predetermined sludge return ratio.
請求項1において、前記汚泥返送比を無機イオンの種類によって設定することを特徴とする無機イオン含有排水の処理方法。   In Claim 1, the said sludge return ratio is set with the kind of inorganic ion, The processing method of the inorganic ion containing waste_water | drain characterized by the above-mentioned. 請求項1又は2において、返送汚泥濃度が2〜10重量%となるように前記所定値を設定することを特徴とする無機イオン含有排水の処理方法。   In Claim 1 or 2, the said predetermined value is set so that a returned sludge density | concentration may be 2-10 weight%, The processing method of the inorganic ion containing waste_water | drain characterized by the above-mentioned.
JP2009086346A 2009-03-31 2009-03-31 Treatment method of inorganic ion-containing wastewater Active JP5338432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086346A JP5338432B2 (en) 2009-03-31 2009-03-31 Treatment method of inorganic ion-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086346A JP5338432B2 (en) 2009-03-31 2009-03-31 Treatment method of inorganic ion-containing wastewater

Publications (2)

Publication Number Publication Date
JP2010234300A true JP2010234300A (en) 2010-10-21
JP5338432B2 JP5338432B2 (en) 2013-11-13

Family

ID=43089172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086346A Active JP5338432B2 (en) 2009-03-31 2009-03-31 Treatment method of inorganic ion-containing wastewater

Country Status (1)

Country Link
JP (1) JP5338432B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288191A (en) * 2013-06-03 2013-09-11 中南大学 Method for forming non-biological granular sludge in heavy metal waste water treatment process
WO2023089926A1 (en) * 2021-11-19 2023-05-25 栗田工業株式会社 Waste water treatment method
WO2023089927A1 (en) * 2021-11-19 2023-05-25 栗田工業株式会社 Waste water treatment method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104656A (en) * 1997-10-06 1999-04-20 Kurita Water Ind Ltd Apparatus for treating water containing inorganic contaminant
JP2000084570A (en) * 1998-07-17 2000-03-28 Nec Corp Treatment of fluorine-containing waste water and treating apparatus
JP2001054791A (en) * 1999-08-19 2001-02-27 Kurita Water Ind Ltd Waste water treating device
JP2006255499A (en) * 2005-03-15 2006-09-28 Kurita Water Ind Ltd Fluorine-containing wastewater treatment method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104656A (en) * 1997-10-06 1999-04-20 Kurita Water Ind Ltd Apparatus for treating water containing inorganic contaminant
JP2000084570A (en) * 1998-07-17 2000-03-28 Nec Corp Treatment of fluorine-containing waste water and treating apparatus
JP2001054791A (en) * 1999-08-19 2001-02-27 Kurita Water Ind Ltd Waste water treating device
JP2006255499A (en) * 2005-03-15 2006-09-28 Kurita Water Ind Ltd Fluorine-containing wastewater treatment method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288191A (en) * 2013-06-03 2013-09-11 中南大学 Method for forming non-biological granular sludge in heavy metal waste water treatment process
WO2023089926A1 (en) * 2021-11-19 2023-05-25 栗田工業株式会社 Waste water treatment method
WO2023089927A1 (en) * 2021-11-19 2023-05-25 栗田工業株式会社 Waste water treatment method and device
JP2023075534A (en) * 2021-11-19 2023-05-31 栗田工業株式会社 Method for treating waste water
JP2023075535A (en) * 2021-11-19 2023-05-31 栗田工業株式会社 Apparatus for treating waste water

Also Published As

Publication number Publication date
JP5338432B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5005225B2 (en) Treatment method of fluorine-containing waste liquid
WO2016063852A1 (en) Water treatment method and water treatment device
JP6793014B2 (en) Wastewater treatment method and wastewater treatment equipment
CN106746108A (en) A kind of desulfurization wastewater recycling treatment system and method
JP5439439B2 (en) Sludge treatment apparatus, phosphorus production method and sludge treatment method
JP5338432B2 (en) Treatment method of inorganic ion-containing wastewater
WO2020102542A1 (en) Waste water fluoride and cyanide removal
JP4518893B2 (en) Wastewater treatment method and apparatus containing heavy metal
JP2006142301A (en) Method and equipment for treating phosphorus-containing water
JP2006255499A (en) Fluorine-containing wastewater treatment method and apparatus
JP2013119081A (en) Treatment method and treatment apparatus for phosphorus-containing wastewater
JP4678599B2 (en) Treatment method for wastewater containing phosphoric acid
JP2004261640A (en) Dephosphorization method for waste water
JP2017159194A (en) Treatment equipment and treatment method for heavy metal-containing water
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2021186793A (en) Water purification method and water purification apparatus
JP3195495B2 (en) Coagulation sedimentation method and equipment
JP2010162493A (en) Method and device for flocculation and sedimentation treatment of low organic compound concentration wastewater
JP4190679B2 (en) Method and apparatus for treating phosphorus-containing water
JP2008264654A (en) Waste liquid treatment method and apparatus using iron-oxidizing bacteria
JP2000263086A (en) Waste water treatment apparatus
JP2005040739A (en) Phosphate-containing wastewater treatment method
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
CN110655254A (en) Coke oven flue gas carbon-based catalytic desulfurization byproduct dilute sulfuric acid recovery treatment method
JP6162375B2 (en) Method for recovering phosphoric acid from waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5338432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150