JP5943176B2 - Method and apparatus for treating harmful substance-containing water. - Google Patents

Method and apparatus for treating harmful substance-containing water. Download PDF

Info

Publication number
JP5943176B2
JP5943176B2 JP2011188650A JP2011188650A JP5943176B2 JP 5943176 B2 JP5943176 B2 JP 5943176B2 JP 2011188650 A JP2011188650 A JP 2011188650A JP 2011188650 A JP2011188650 A JP 2011188650A JP 5943176 B2 JP5943176 B2 JP 5943176B2
Authority
JP
Japan
Prior art keywords
sludge
soluble metal
water
solid
containing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011188650A
Other languages
Japanese (ja)
Other versions
JP2012106226A (en
Inventor
智也 二瓶
智也 二瓶
林 浩志
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011188650A priority Critical patent/JP5943176B2/en
Publication of JP2012106226A publication Critical patent/JP2012106226A/en
Application granted granted Critical
Publication of JP5943176B2 publication Critical patent/JP5943176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Treatment Of Sludge (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は有害物質含有水の処理方法および処理装置に関し、より詳しくは、フッ素、ホウ素、窒素化合物、リンや重金属類等の有害物質を含有する廃水などから、これらの有害物質を除去する処理システムであって、有害物質を取り込んだ汚泥の固液分離性が優れ、短時間に汚泥が沈降して有害物質を除去することができる処理システムに関する。 The present invention relates to a method and apparatus for treating water containing harmful substances, and more specifically, a treatment system for removing these harmful substances from waste water containing harmful substances such as fluorine, boron, nitrogen compounds, phosphorus and heavy metals. In addition, the present invention relates to a treatment system that is excellent in solid-liquid separation of sludge incorporating toxic substances, and that sludge settles in a short time to remove toxic substances.

排水に含まれる有害物質を層状複水酸化物に取り込ませて除去する方法が従来から知られている。例えば、特開2003−285076号公報(特許文献1)には、フッ素を含む排水に2価金属イオンと3価金属イオンを添加して層状複水酸化物を生成させ、該層状複水酸化物の層間にフッ素を取り込ませる処理方法が記載されている。 A method for removing harmful substances contained in waste water by taking them into layered double hydroxides is conventionally known. For example, Japanese Patent Application Laid-Open No. 2003-285076 (Patent Document 1) discloses that a layered double hydroxide is generated by adding a divalent metal ion and a trivalent metal ion to a wastewater containing fluorine to form the layered double hydroxide. A treatment method for incorporating fluorine between the two layers is described.

国際公開WO2005−087664号公報(特許文献2)には、アルミニウムイオンとマグネシウムイオンを含む酸性溶液とアルカリを含むアルカリ性溶液を混合し、酸性溶液とアルカリ性溶液の混合が完了した後、時間を置かずに直ちに水分を除去または中和することによって、一般式:Mg2+ 1-xAl3+ x(OH)2(An-)x/n・mH2O(An-はアニオン)で表されるハイドロタルサイト様物質を形成し、該物質にフッ素などを取り込ませて固定する処理方法が記載されている。 In International Publication WO2005-087664 (Patent Document 2), an acidic solution containing aluminum ions and magnesium ions and an alkaline solution containing alkali are mixed, and after mixing of the acidic solution and the alkaline solution is completed, no time is left. By immediately removing or neutralizing water, the general formula: Mg 2+ 1-x Al 3+ x (OH) 2 (A n− ) x / n · mH 2 O (A n− is an anion) The hydrotalcite-like substance is formed, and a treatment method is described in which fluorine or the like is taken into the substance and fixed.

特開2003−285076号公報JP 2003-285076 A 国際公開WO2005−087664号公報International Publication WO2005-087664

従来の上記処理方法は、ハイドロタルサイトなどの層状複水酸化物を生成させてフッ素を除去する方法であるが、生成した汚泥の沈降性に劣り、処理時間が長引く問題がある。また、特許文献1の処理方法は含フッ素乳化剤の回収を主眼にしており、重金属類の除去については不明である。また、特許文献2の処理方法では、ハイドロタルサイト様物質の結晶子サイズを20nm以下に制御することによって陰イオン交換能を高めているが、重金属イオンについてはクロムに対する吸着効果が示されているが、クロム以外の重金属類については不明である。 The conventional treatment method described above is a method of removing fluorine by producing a layered double hydroxide such as hydrotalcite, but has a problem that the treatment time is prolonged due to poor sedimentation of the produced sludge. Further, the treatment method of Patent Document 1 focuses on the recovery of the fluorine-containing emulsifier, and the removal of heavy metals is unclear. Moreover, in the processing method of patent document 2, although the anion exchange ability is improved by controlling the crystallite size of a hydrotalcite-like substance to 20 nm or less, the adsorption effect with respect to chromium is shown about heavy metal ion. However, heavy metals other than chromium are unknown.

本発明は、従来の上記処理方法において、生成した汚泥の沈降性が劣る問題を解決したものであり、フッ素に対する吸着効果および生成した汚泥の沈降性に優れた処理システムを提供する。また、ホウ素、窒素化合物、リン、重金属類の除去効果も優れており、好ましくは、フッ素と共にホウ素、窒素化合物、リン、重金属類等の有害物質の除去効果に優れた処理システムを提供する。 The present invention solves the problem of inferior sedimentation of the produced sludge in the above-described conventional treatment method, and provides a treatment system excellent in the adsorption effect on fluorine and the sedimentation of the produced sludge. Moreover, the removal effect of boron, a nitrogen compound, phosphorus, and heavy metals is also excellent, Preferably, the processing system excellent in the removal effect of harmful substances, such as a boron, a nitrogen compound, phosphorus, and heavy metals, with fluorine is provided.

本発明は、以下の構成からなる有害物質含有水の処理方法に関する。
〔1〕層状複水酸化物の成分となる難溶性金属酸化物と可溶性金属化合物とを有害物質含有水に添加する工程、pH7〜11の液性下で、該難溶性金属酸化物の表面を溶解させると共に未溶解部分を残し、溶解した難溶性金属酸化物と可溶性金属化合物の反応によって生成した上記層状複水酸化物が難溶性金属酸化物の未溶解部分表面に形成された汚泥を生成させる反応工程、この汚泥を沈降させて固液分離することによって該汚泥に取り込まれた有害物質を系外に除去する固液分離工程、固液分離した汚泥の一部または全部を反応工程に返送し、返送した汚泥を層状複水酸化物の形成に利用する汚泥返送工程を有することを特徴とする有害物質含有水の処理方法。
〔2〕汚泥返送工程に第二添加槽を設け、該第二添加槽において難溶性金属酸化物を添加し、難溶性金属酸化物が添加された汚泥を反応工程に返送して有害物質含有水に添加する上記[1]に記載する有害物質含有水の処理方法。
〔3〕生成した汚泥スラリーを静置したとき、30分後の安定容積が40%以下である上記[1]または上記[2]に記載する有害物質含有水の処理方法。
〔4〕難溶性金属酸化物が酸化マグネシウムであり、可溶性金属化合物が可溶性アルミニウム塩であり、有害物質含有水に酸化マグネシウムと可溶性アルミニウム塩を添加し、これをアルカリ性下で反応させて、酸化マグネシウムの表面にハイドロタルサイトを形成させることによって該ハイドロタルサイトに有害物質が取り込まれた汚泥を生成させ、該汚泥を固液分離する上記[1]〜上記[3]の何れかに記載する有害物質含有水の処理方法。
〔5〕有害物質がフッ素、ホウ素、窒素化合物、リン、重金属類の何れか1種または2種以上であり、有害物質を取り込んだ汚泥を生成させて固液分離する上記[1]〜上記[4]の何れかに記載する有害物質含有水の処理方法。
〔6〕フッ素濃度1〜50mg/Lの有害物質含有水1Lに対して、酸化マグネシウムを0.05〜10g/L、可溶性アルミニウム塩を水中のアルミニウム濃度が10〜1000mg/Lになるように添加し、反応槽においてpH7〜11で反応させる上記[1]〜上記[5]の何れかに記載する有害物質含有水の処理方法。
〔7〕有害物質含有水(原水)に含まれる有害物質および妨害物質を低減する前処理工程が設けられており、前処理した原水に層状複水酸化物の成分となる難溶性金属酸化物と可溶性金属化合物を添加する上記[1]〜上記[6]の何れかに記載する有害物質含有水の処理方法。
〔8〕汚泥を固液分離した処理水を後処理する工程が設けられている上記[1]〜上記[7]の何れかに記載する有害物質含有水の処理方法。

The present invention relates to a method for treating harmful substance-containing water having the following constitution.
[1] A step of adding a hardly soluble metal oxide and a soluble metal compound, which are components of the layered double hydroxide, to harmful substance-containing water, and under the liquidity of pH 7 to 11, the surface of the hardly soluble metal oxide is The above-mentioned layered double hydroxide produced by the reaction of the dissolved hardly soluble metal oxide and the soluble metal compound generates sludge formed on the surface of the hardly soluble metal oxide undissolved portion while dissolving and leaving the undissolved portion . The reaction process, the solid-liquid separation process in which the sludge is settled and solid-liquid separated to remove harmful substances incorporated in the sludge out of the system, and part or all of the solid-liquid separated sludge is returned to the reaction process. A method for treating toxic substance-containing water, comprising a sludge returning step of using the returned sludge to form a layered double hydroxide.
[2] A second addition tank is provided in the sludge return process, a hardly soluble metal oxide is added in the second addition tank, and the sludge to which the hardly soluble metal oxide is added is returned to the reaction process to contain harmful substance-containing water. The method for treating toxic substance-containing water as described in [1] above, which is added to the water.
[3] The method for treating toxic substance-containing water according to the above [1] or [2], wherein when the produced sludge slurry is allowed to stand, the stable volume after 30 minutes is 40% or less.
[4] The poorly soluble metal oxide is magnesium oxide, the soluble metal compound is a soluble aluminum salt, magnesium oxide and a soluble aluminum salt are added to harmful substance-containing water, and this is reacted under alkalinity to produce magnesium oxide. The toxic substances described in any one of [1] to [3] above, wherein sludge in which harmful substances are taken into hydrotalcite is formed by forming hydrotalcite on the surface of the slag, and the sludge is solid-liquid separated. Method for treating substance-containing water.
[5] The above-mentioned [1] to [[1] above, wherein the harmful substance is any one or more of fluorine, boron, nitrogen compound, phosphorus, and heavy metals, and sludge incorporating the harmful substance is generated and solid-liquid separated. [4] The method for treating toxic substance-containing water according to any one of [4].
[6] Addition of 0.05 to 10 g / L of magnesium oxide and soluble aluminum salt to 10 to 1000 mg / L of water in water for 1 L of harmful substance-containing water with a fluorine concentration of 1 to 50 mg / L Then, the method for treating toxic substance-containing water according to any one of [1] to [5] above, wherein the reaction is carried out at a pH of 7 to 11 in a reaction tank.
[7] A pre-treatment step is provided for reducing harmful substances and interfering substances contained in harmful substance-containing water (raw water), and the pre-treated raw water contains a hardly soluble metal oxide that becomes a component of the layered double hydroxide; The method for treating toxic substance-containing water according to any one of [1] to [6] above, wherein a soluble metal compound is added.
[8] The method for treating toxic substance-containing water according to any one of [1] to [7], wherein a step of post-treating treated water obtained by solid-liquid separation of sludge is provided.

また、本発明は、以下の構成からなる有害物質含有水の処理装置に関する。
〔9〕有害物質含有水に薬剤を添加する添加槽と、添加した薬剤を反応させて汚泥を生成させる反応槽と、生成した汚泥を分離する固液分離槽とが管路によって順に接続されており、添加槽には有害物質含有水と可溶性金属化合物の供給手段がおのおの設けられており、反応槽には難溶性金属酸化物とpH調整剤の供給手段がおのおの設けられており、固液分離槽には分離した汚泥と処理水の排出管路がおのおの接続しており、さらに該固液分離槽から反応槽に至る返送管路が設けられており、添加槽において可溶性金属化合物が添加された有害物質含有水が反応槽に導入され、反応槽において難溶性金属酸化物とpH調整剤が添加され、該難溶性金属酸化物の表面が溶解して可溶性金属化合物とアルカリ性下で反応し該難溶性金属酸化物の未溶解部分表面に層状複水酸化物が形成された汚泥が生成され、該汚泥が固液分離槽に導入されて沈降分離され、固液分離した汚泥の一部または全部は返送管路を通じて反応槽に返送されることを特徴とする有害物質含有水の処理装置。
〔10〕上記[9]に記載する処理装置において、分離した汚泥に難溶性金属酸化物を添加する第二添加槽が上記返送管路の途中に設けられている有害物質含有水の処理装置。
Moreover, this invention relates to the processing apparatus of the harmful | toxic substance containing water which consists of the following structures.
[9] An addition tank for adding a chemical to toxic substance-containing water, a reaction tank for reacting the added chemical to produce sludge, and a solid-liquid separation tank for separating the produced sludge are sequentially connected by a pipe line. In addition, each supply tank is provided with a means for supplying harmful substance-containing water and a soluble metal compound, and each reaction tank is provided with a supply means for a hardly soluble metal oxide and a pH adjuster. The tank is connected to the separated sludge and the treated water discharge pipe, respectively, and is further provided with a return pipe from the solid-liquid separation tank to the reaction tank, in which the soluble metal compound was added in the addition tank. Hazardous substance-containing water is introduced into the reaction tank, and the hardly soluble metal oxide and the pH adjuster are added in the reaction tank. The surface of the hardly soluble metal oxide dissolves and reacts with the soluble metal compound under alkalinity. Soluble metal oxide Sludge layered double hydroxide is formed on the dissolved portion surface is generated and sedimentation is introduced into the sludge solid-liquid separation tank, some or all of the sludge subjected to solid-liquid separation of the reaction vessel through the return conduit A device for treating water containing hazardous substances, which is returned to the factory.
[10] The treatment apparatus according to [9], wherein a second addition tank for adding a hardly soluble metal oxide to the separated sludge is provided in the middle of the return conduit.

本発明の処理システム(処理方法および処理装置)では、生成する汚泥の沈降性に優れており、例えば、生成した汚泥スラリーを静置したとき、30分後の安定容積が40%以下であり、短時間に沈降するので、短時間で固液分離することができ、かつ固液分離槽を小型化することができる。 In the treatment system (treatment method and treatment apparatus) of the present invention, the sludge produced is excellent in sedimentation, for example, when the produced sludge slurry is allowed to stand, the stable volume after 30 minutes is 40% or less, Since it settles in a short time, solid-liquid separation can be performed in a short time, and a solid-liquid separation tank can be reduced in size.

本発明の処理システムは、フッ素の除去効果に優れており、容易に排水中のフッ素濃度を排水基準〔フッ素8mg/L(海域以外の公共用水域)、フッ素15mg/L(海域)〕以下まで低減することができる。さらに、分離した汚泥を反応工程に返送することによって、フッ素の除去効果を高めることができ、排水中のフッ素濃度を容易に環境基準(0.8mg/L以下)まで低減することができる。また、フッ素と同時にホウ素、窒素化合物、リン、重金属類等の有害物質を除去することができる。 The treatment system of the present invention is excellent in the effect of removing fluorine, and easily reduces the fluorine concentration in the wastewater to below the drainage standard [fluorine 8 mg / L (public water area other than sea area), fluorine 15 mg / L (sea area)]. Can be reduced. Furthermore, by returning the separated sludge to the reaction step, the effect of removing fluorine can be enhanced, and the fluorine concentration in the waste water can be easily reduced to the environmental standard (0.8 mg / L or less). In addition, harmful substances such as boron, nitrogen compounds, phosphorus, and heavy metals can be removed simultaneously with fluorine.

本発明の処理方法による汚泥のSEM写真SEM photograph of sludge by the treatment method of the present invention 汚泥内部(図1(A)イ)の成分分析図Component analysis diagram inside sludge (Fig. 1 (A) b) 汚泥の表面付近(図1(A)ロ)の成分分析図Component analysis diagram near the surface of the sludge (Fig. 1 (A) b) 本発明の処理方法と従来の処理方法について、汚泥の沈降性を示す写真Photograph showing sludge sedimentation for the treatment method of the present invention and the conventional treatment method 本発明の処理方法を示す工程図Process drawing showing the processing method of the present invention 本発明の処理方法において第二添加槽を設けた例を示す工程図Process drawing which shows the example which provided the 2nd addition tank in the processing method of this invention 前処理工程および後処理工程を設けた本発明の処理方法を示す工程図Process drawing which shows the processing method of this invention which provided the pre-processing process and the post-processing process 本発明の処理方法による汚泥のXRD解析チャートXRD analysis chart of sludge by the treatment method of the present invention

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の処理方法は、層状複水酸化物の成分となる難溶性金属酸化物と可溶性金属化合物とを有害物質含有水に添加する工程、pH7〜11の液性下で、該難溶性金属酸化物の表面を溶解させると共に未溶解部分を残し、溶解した難溶性金属酸化物と可溶性金属化合物の反応によって生成した上記層状複水酸化物が難溶性金属酸化物の未溶解部分表面に形成された汚泥を生成させる反応工程、この汚泥を沈降させて固液分離することによって該汚泥に取り込まれた有害物質を系外に除去する固液分離工程、固液分離した汚泥の一部または全部を反応工程に返送し、返送した汚泥を層状複水酸化物の形成に利用する汚泥返送工程を有することを特徴とする有害物質含有水の処理方法である。

Hereinafter, the present invention will be specifically described based on embodiments.
Processing method of the present invention, the step of adding a sparingly soluble metal oxide becomes a component of the layered double hydroxide and the soluble metal compound to the pollutant water under liquid property of PH7~11, flame soluble metal oxide The layered double hydroxide formed by the reaction of the dissolved hardly soluble metal oxide and the soluble metal compound was formed on the surface of the undissolved part of the hardly soluble metal oxide while dissolving the surface of the product and leaving the undissolved part . A reaction process for generating sludge, a solid-liquid separation process for removing harmful substances taken into the sludge by allowing the sludge to settle and solid-liquid separation, and reacting part or all of the solid-liquid separated sludge This is a method for treating toxic substance-containing water, characterized by having a sludge returning step of returning to the process and using the returned sludge for forming a layered double hydroxide.

本発明の処理方法は、好ましくは、上記処理方法において、固液分離した汚泥の一部または全部を反応工程に返送し、返送した汚泥を層状複水酸化物の形成に利用する工程を含む有害物質含有水の処理方法である。 Preferably, the treatment method of the present invention includes a step of returning a part or all of the solid-liquid separated sludge to the reaction step and utilizing the returned sludge for forming the layered double hydroxide in the above treatment method. This is a method for treating substance-containing water.

本発明において、有害物質含有水とは有害物質を含む水を広く意味し、自然発生的および人為的に生じた各種の廃水や排水等を含み、例えば、工場排水や下水、海水、河川水、湖沼や池の水、地表の溜り水、河川等の堰止域の水、地下の流水や溜り水、暗渠の水等であって有害物質を含有するもの、あるいは、有害物質によって汚染された土壌の浄化排水、海水や最終処分場からの浸出水などの塩類濃度の高い排水を逆浸透膜および電気透析などを利用して清澄水(淡水)と濃縮水に分離(脱塩処理)した後の濃縮水などである。 In the present invention, toxic substance-containing water broadly means water containing toxic substances, and includes various types of wastewater and wastewater generated naturally and artificially, such as factory effluent and sewage, seawater, river water, Lakes and ponds, surface pools, rivers and other dams, underground running water and pools, underdrains, etc. that contain harmful substances or soil contaminated by harmful substances Wastewater with high salt concentration such as seawater and leachate from the final disposal site is separated into clear water (fresh water) and concentrated water using reverse osmosis membrane and electrodialysis (desalting treatment) Such as concentrated water.

処理対象の有害物質は、例えば、重金属類、フッ素、ホウ素、窒素、リンなどである。重金属類はカドミウム、鉛、銅、亜鉛、鉄、ニッケル、セレン、六価クロム、ヒ素、マンガン、アンチモンなどであり、本発明の処理システムによれば、有害物質含有水に含まれるこれらの有害物質の何れか1種または2種以上に対して優れた除去効果を有する。 Examples of harmful substances to be treated include heavy metals, fluorine, boron, nitrogen, and phosphorus. Heavy metals are cadmium, lead, copper, zinc, iron, nickel, selenium, hexavalent chromium, arsenic, manganese, antimony, etc. According to the treatment system of the present invention, these harmful substances contained in water containing harmful substances It has an excellent removal effect on any one or more of the above.

さらに有害物質には、ハロゲン化物イオン、各種のハロゲン酸(ハロゲン酸、過ハロゲン酸、亜ハロゲン酸、次亜ハロゲン酸など)、ヘキサフルオロリン酸イオン(PF6 -)、ホウフッ化物イオン(BF4 -)、珪フッ化物イオン(SiF6 2-)、有機酸、浮遊物質(SS)および有機物などが含まれる。本発明の処理システムはこれらの有害物質の1種または2種以上に対して優れた除去効果を有する。 Further, harmful substances include halide ions, various halogen acids (halogen acids, perhalogen acids, halous acids, hypohalous acids, etc.), hexafluorophosphate ions (PF 6 ), borofluoride ions (BF 4 - ), Silicofluoride ions (SiF 6 2- ), organic acids, suspended solids (SS) and organic substances. The treatment system of the present invention has an excellent removal effect on one or more of these harmful substances.

〔添加工程〕
本発明の処理システムでは、添加工程において層状複水酸化物の成分となる難溶性金属酸化物と可溶性金属化合物とを有害物質含有水に添加し、これを反応工程においてアルカリ性下で反応させて上記難溶性金属酸化物の表面に層状複水酸化物が形成された汚泥を生成させる。
[Addition process]
In the treatment system of the present invention, the hardly soluble metal oxide and the soluble metal compound, which are the components of the layered double hydroxide in the addition step, are added to the harmful substance-containing water, and this is reacted under alkaline in the reaction step. Sludge having a layered double hydroxide formed on the surface of the hardly soluble metal oxide is generated.

難溶性金属酸化物は、その表面が一部溶解して層状複水酸化物の成分源になると共に大部分は未溶解部分として残り、溶解した難溶性金属酸化物と可溶性金属化合物とが反応して、難溶性金属酸化物の表面に層状複水酸化物が形成される。また、溶解した難溶性金属酸化物は層状複水酸化物の成分源になると共にアルカリ剤としての役割を果たす。 The hardly soluble metal oxide partially dissolves on its surface and becomes a component source of the layered double hydroxide, and most of it remains as an undissolved part, and the dissolved hardly soluble metal oxide reacts with the soluble metal compound. Thus, a layered double hydroxide is formed on the surface of the hardly soluble metal oxide. Further, the dissolved hardly soluble metal oxide serves as a component source of the layered double hydroxide and serves as an alkali agent.

難溶性金属酸化物としては酸化マグネシウムや酸化カルシウムなどが用いられる。なお、層状複水酸化物のハイドロタルサイトを形成させるには酸化マグネシウムが好ましい。この酸化マグネシウムは、ドロマイト〔CaMg(CO3)2〕の焼成物のように、成分の一部に酸化マグネシウムを含むもの、あるいはCaに限らず他の成分と共に酸化マグネシウムを含むものを用いることができる。 Examples of the hardly soluble metal oxide include magnesium oxide and calcium oxide. In addition, magnesium oxide is preferable for forming the hydrotalcite of the layered double hydroxide. This magnesium oxide may be one containing magnesium oxide as a part of the component, such as a baked product of dolomite [CaMg (CO 3 ) 2 ], or one containing magnesium oxide together with other components, not limited to Ca. it can.

可溶性金属化合物として可溶性アルミニウム塩や可溶性鉄塩などを用いることができる。このなかで、ハイドロタルサイトを形成させるには可溶性アルミニウム塩が好ましい。具体的には、ポリ塩化アルミニウム、硫酸アルミニウム(硫酸バンド)、塩化アルミニウム、硝酸アルミニウムなどが好ましい。なお、可溶性アルミニウム塩として、アルミニウムを高濃度に含有する廃液(貴金属触媒の回収廃液、金属アルミニウムを溶解した液など)を利用することができる。 A soluble aluminum salt, a soluble iron salt, etc. can be used as a soluble metal compound. Among these, a soluble aluminum salt is preferable for forming hydrotalcite. Specifically, polyaluminum chloride, aluminum sulfate (sulfuric acid band), aluminum chloride, aluminum nitrate and the like are preferable. In addition, as a soluble aluminum salt, a waste liquid containing a high concentration of aluminum (a recovery waste liquid of a noble metal catalyst, a liquid in which metal aluminum is dissolved, or the like) can be used.

可溶性アルミニウム塩の添加量は、フッ素濃度1〜50mg/Lの有害物質含有水1Lに対して水中のアルミニウム濃度が10〜1000mg/Lになる量が適当である。また、酸化マグネシウムの添加量は、フッ素濃度1〜50mg/Lの有害物質含有水1Lに対して、対して0.05〜10g/Lになる量が適当である。 The amount of the soluble aluminum salt added is suitably such that the aluminum concentration in the water is 10 to 1000 mg / L with respect to 1 L of harmful substance-containing water having a fluorine concentration of 1 to 50 mg / L. The amount of magnesium oxide added is suitably 0.05 to 10 g / L with respect to 1 L of harmful substance-containing water having a fluorine concentration of 1 to 50 mg / L.

有害物質含有水に難溶性金属酸化物と可溶性金属化合物を添加する工程において、添加槽では有害物質含有水に可溶性金属化合物と難溶性金属酸化物を添加し、これを反応槽に導入しても良いし、添加槽において有害物質含有水に可溶性金属化合物を添加して、これを反応槽に導入し、反応槽において難溶性金属酸化物と必要に応じてpH調整剤を添加してもよい。また、有害物質含有水を反応槽に導入する管路中で有害物質含有水と可溶性金属化合物を添加してもよい。 In the process of adding the hardly soluble metal oxide and the soluble metal compound to the harmful substance-containing water, the addition tank adds the soluble metal compound and the hardly soluble metal oxide to the harmful substance-containing water and introduces it into the reaction tank. Alternatively, a soluble metal compound may be added to the harmful substance-containing water in the addition tank, and this may be introduced into the reaction tank, and a poorly soluble metal oxide and a pH adjuster may be added as necessary in the reaction tank. Moreover, you may add harmful substance containing water and a soluble metal compound in the pipe line which introduces harmful substance containing water to a reaction tank.

〔反応工程〕
例えば、難溶性金属酸化物として酸化マグネシウムを用い、可溶性金属化合物として可溶性アルミニウム塩を用い、これらを有害物質含有水に添加し、アルカリ性下(pH7〜11が好ましい)で反応させると、酸化マグネシウムは溶け難いので大部分は未溶解部分として残るが、表面は部分的に溶解し、溶出したマグネシウムがアルミニウムと反応して酸化マグネシウム表面に層状複水酸化物が形成される。具体的には、酸化マグネシウム表面にマグネシウムとアルミニウムが反応してハイドロタルサイト〔一般式:Mg2+ 1-xAl3+ x(OH)2(An-)x/n・mH2O(An-はアニオン)〕が形成される。
[Reaction process]
For example, when magnesium oxide is used as a hardly soluble metal oxide, a soluble aluminum salt is used as a soluble metal compound, and these are added to harmful substance-containing water and reacted under alkaline conditions (preferably pH 7 to 11), Since it is difficult to dissolve, most remains as an undissolved part, but the surface is partially dissolved, and the eluted magnesium reacts with aluminum to form a layered double hydroxide on the surface of magnesium oxide. Specifically, magnesium and aluminum react with the magnesium oxide surface to form hydrotalcite [general formula: Mg 2+ 1-x Al 3+ x (OH) 2 (A n− ) x / n · mH 2 O ( An- is an anion)].

この状態を図1(A)〜(C)に示す。図1(A)の汚泥の内部(イ)についてEDX分析を行うと、図1(B)のように、圧倒的にマグネシウム成分が多く、酸化マグネシウムであることを示している。一方、図1(A)の汚泥の表面付近(ロ)についてEDX分析を行うと、図1(C)のように、マグネシウムとアルミニウムのピークが検出され、ハイドロタルサイトを形成していることが分かる。 This state is shown in FIGS. When EDX analysis is performed on the inside (a) of the sludge in FIG. 1 (A), it is shown that the magnesium component is predominantly magnesium oxide as shown in FIG. 1 (B). On the other hand, when EDX analysis is performed on the surface (b) of the sludge in FIG. 1 (A), peaks of magnesium and aluminum are detected and hydrotalcite is formed as shown in FIG. 1 (C). I understand.

なお、該難溶性金属酸化物は反応工程中で水和して金属水酸化物になることもあるため、難溶性金属酸化物と金属水酸化物の共存物質の表面に層状複水酸化物を形成してもよい。 Since the hardly soluble metal oxide may be hydrated into a metal hydroxide in the reaction process, a layered double hydroxide is formed on the surface of the coexisting substance of the hardly soluble metal oxide and the metal hydroxide. It may be formed.

上記層状複水酸化物は、層間に水分子を含む層状構造を有しており、電気的中性を保つために層間に陰イオンを取り込む性質があり、有害物質含有水に接触したときに、この水に含まれているフッ素、有機酸、オキシアニオン系のホウ素、窒素、リン、セレン、六価クロム、ヒ素、アンチモンなどの陰イオンの有害物質が層間に取り込まれる。さらに、層状複水酸化物を形成しているマグネシウムやアルミニウムの一部が陽イオンの重金属類と置換することによって、カドミウム、鉛、銅、亜鉛、鉄、ニッケル、マンガンなどの有害重金属類が取り込まれる。また、浮遊物質(SS)は層状複水酸化物を含む汚泥と凝集して取り込まれ、有機物は層状複水酸化物を含む汚泥の表面に吸着して取り込まれる。こうして有害物質を取り込んだ層状複水酸化物を含む汚泥が沈降し、これを固液分離することによって有害物質を除去することができる。 The layered double hydroxide has a layered structure containing water molecules between layers, and has the property of taking in anions between layers in order to maintain electrical neutrality. Anionic harmful substances such as fluorine, organic acids, oxyanionic boron, nitrogen, phosphorus, selenium, hexavalent chromium, arsenic and antimony contained in this water are taken in between the layers. In addition, harmful heavy metals such as cadmium, lead, copper, zinc, iron, nickel, and manganese are incorporated by replacing some of the magnesium and aluminum forming the layered double hydroxide with cationic heavy metals. It is. The suspended matter (SS) is aggregated and taken in with the sludge containing the layered double hydroxide, and the organic matter is adsorbed and taken in the surface of the sludge containing the layered double hydroxide. Thus, the sludge containing the layered double hydroxide that has taken in the toxic substance settles, and the toxic substance can be removed by solid-liquid separation.

反応工程では必要に応じて、pH調整剤を添加することができる。pH調整剤としては、水酸化ナトリウム、水酸化カルシウム、酸化カルシウムなどのアルカリや硫酸、塩酸などの酸が挙げられる。これにより、pH7〜11に制御される。pHの調整は反応前でも、反応中でも、反応後でも構わないが、層状複水酸化物の形成を促進することから、反応中もしくは反応後の方が好ましい。 In the reaction step, a pH adjuster can be added as necessary. Examples of the pH adjuster include alkalis such as sodium hydroxide, calcium hydroxide and calcium oxide, and acids such as sulfuric acid and hydrochloric acid. Thereby, it is controlled to pH 7-11. The pH may be adjusted before the reaction, during the reaction, or after the reaction, but it is preferably during or after the reaction because it promotes the formation of the layered double hydroxide.

〔固液分離工程〕
生成した汚泥を固液分離工程に導いて沈降させ、固液分離する。本発明の処理方法によって生成した汚泥は、未溶解の難溶性金属酸化物(酸化マグネシウム等)の表面に層状複水酸化物が形成された構造を有しているので沈降性が良い。
[Solid-liquid separation process]
The produced sludge is guided to the solid-liquid separation step to be settled and solid-liquid separation is performed. The sludge produced by the treatment method of the present invention has a structure in which a layered double hydroxide is formed on the surface of an undissolved hardly soluble metal oxide (magnesium oxide or the like), and thus has good sedimentation.

例えば、図2に示すように、本発明の処理方法によって生成した汚泥スラリーをメスシリンダーに入れて30分間静置すると、静置開始時の汚泥スラリーの容積は2300mLであったものが、静置後の汚泥スラリー部分の容積は約550mLとなり、安定容積が短時間に40%以下、好ましくは25%以下になる。ここで安定容積とは次式[1]によって算出される指標である。安定容積の小さい方が汚泥を短時間に固液分離することができることを示す。
(一定時間経過後の汚泥スラリー容積)/(初期の汚泥スラリー容積)×100…[1]
For example, as shown in FIG. 2, when the sludge slurry generated by the treatment method of the present invention is placed in a graduated cylinder and allowed to stand for 30 minutes, the volume of sludge slurry at the start of standing is 2300 mL. The volume of the later sludge slurry portion is about 550 mL, and the stable volume is 40% or less, preferably 25% or less in a short time. Here, the stable volume is an index calculated by the following equation [1]. A smaller stable volume indicates that sludge can be solid-liquid separated in a short time.
(Sludge slurry volume after a certain period of time) / (initial sludge slurry volume) × 100 ... [1]

本発明の処理システムは安定容積が小さく、従って汚泥を短時間に固液分離することができる。固液分離槽に導入する前に凝集剤を添加すれば、さらに短時間で固液分離することができる。凝集剤は無機凝集剤やアニオン性、カチオン性、ノニオン性、両性の高分子凝集剤を用いることができる。 The treatment system of the present invention has a small stable volume, so that sludge can be solid-liquid separated in a short time. If a flocculant is added before introducing into the solid-liquid separation tank, solid-liquid separation can be achieved in a shorter time. As the flocculant, inorganic flocculants and anionic, cationic, nonionic and amphoteric polymer flocculants can be used.

なお、酸化マグネシウムに代えて可溶性のマグネシウム塩(塩化マグネシウムなど)を用い、これを可溶性アルミニウム塩と共に有害物質含有水に添加し、さらに水酸化ナトリウムを添加してアルカリ性に調整する従来の処理方法によって生成した汚泥スラリーは、この汚泥スラリーをメスシリンダーに入れて30分間静置すると、図2に示すように、例えば静置開始時の初期汚泥スラリー容積が2300mLであったものは、静置後の汚泥スラリー容積が約2200mLであり、30分程度では殆ど沈降しない。 In addition, a soluble magnesium salt (such as magnesium chloride) is used instead of magnesium oxide, and this is added to a harmful substance-containing water together with a soluble aluminum salt, and further added with sodium hydroxide to adjust to alkalinity. When the produced sludge slurry is placed in a graduated cylinder and allowed to stand for 30 minutes, as shown in FIG. 2, for example, the initial sludge slurry volume at the start of standing is 2300 mL. The sludge slurry volume is about 2200 mL, and hardly settles in about 30 minutes.

〔汚泥返送工程〕
本発明の処理方法において、好ましくは、固液分離した汚泥の一部または全部を反応工程に返送し、返送した汚泥を層状複水酸化物の形成に利用すると良い。汚泥の一部または全部を反応工程に戻すことによって、層状複水酸化物の生成が促進し、フッ素、ホウ素、窒素化合物、リン、有害重金属類等の有害物質が汚泥中に多く取り込まれるようになり、これらの除去効果が向上する。
[Sludge return process]
In the treatment method of the present invention, preferably, a part or all of the solid-liquid separated sludge is returned to the reaction step, and the returned sludge is used for forming the layered double hydroxide. By returning some or all of the sludge to the reaction process, the formation of layered double hydroxides is promoted, and a large amount of harmful substances such as fluorine, boron, nitrogen compounds, phosphorus, and toxic heavy metals are taken into the sludge. Thus, the removal effect is improved.

なお、固液分離した汚泥について、重量や比重あるいは沈降速度の違いを利用して難溶性金属酸化物量の多いものに濃縮した汚泥を反応工程に返送するとよい。例えば、難溶性金属酸化物量の多い汚泥は他の汚泥よりも重いために速く沈降するので、沈降初期の汚泥を集めて難溶性金属酸化物量の多い汚泥に濃縮することができる。反応工程に難溶性金属酸化物量の多い汚泥を返送することによって、層状複水酸化物の生成を促進することができる。例えば、難溶性金属酸化物として酸化マグネシウムを使用したとき、酸化マグネシウム量の多い汚泥を濃縮して反応工程に返送することによって、ハイドロタルサイトの生成を促進することができる。 In addition, about the sludge isolate | separated into solid and liquid, it is good to return the sludge concentrated to the thing with much amount of a hardly soluble metal oxide using the difference in a weight, specific gravity, or sedimentation speed to a reaction process. For example, since sludge with a large amount of hardly soluble metal oxides is heavier than other sludges and settles quickly, it is possible to collect sludge at the initial stage of sedimentation and concentrate it to sludge with a large amount of hardly soluble metal oxides. By returning the sludge having a large amount of the hardly soluble metal oxide to the reaction step, the generation of the layered double hydroxide can be promoted. For example, when magnesium oxide is used as the hardly soluble metal oxide, the formation of hydrotalcite can be promoted by concentrating sludge having a large amount of magnesium oxide and returning it to the reaction step.

一方、反応工程に返送しない余剰の汚泥は、これを回収してセメント原料として再資源化することができる。あるいは余剰汚泥は土壌汚染や廃水処理の浄化材として利用することができる。 On the other hand, surplus sludge that is not returned to the reaction process can be recovered and recycled as a cement raw material. Alternatively, excess sludge can be used as a purification material for soil contamination and wastewater treatment.

〔前処理工程〕
本発明の処理方法は、有害物質含有水(原水)に含まれる有害物質や妨害物質を予め低減する前処理工程を反応工程の前に設けることができる。前処理することによって有害物質の除去効果をさらに高めることができる。図5参照。なお、妨害成分とは、それ自身は有害物質ではないが、本発明の処理方法を妨害する物質である。
[Pretreatment process]
In the treatment method of the present invention, a pretreatment step for reducing in advance harmful substances and interfering substances contained in harmful substance-containing water (raw water) can be provided before the reaction step. The pretreatment can further enhance the effect of removing harmful substances. See FIG. The disturbing component is not a harmful substance itself, but is a substance that interferes with the treatment method of the present invention.

具体的には、例えば、原水に含まれている重金属類(カドミウム、鉛、銅、亜鉛、鉄、ニッケル、マンガン、六価クロム、ヒ素など)の濃度が20mg/Lより高いと、重金属類を取り込んだ層状複水酸化物の構造が部分的に崩れ、重金属類などの有害物質の除去効果が不充分になることがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、中和剤(NaOH、Ca(OH)2など)を加えて原水のpHを5〜10の範囲に調整し、重金属類の水酸化物沈殿を生成させ、これを凝集沈澱処理し、原水の重金属濃度を10mg/L未満にしてもよいし、原水にアルミニウム塩や鉄塩を添加した後、中和剤(NaOH、Ca(OH)2など)を加えて原水のpHを5〜10の範囲に調整し、水酸化物沈殿を生成させ、その沈殿に共沈させて、これを固液分離して原水の重金属濃度を10mg/L未満にしてもよい。 Specifically, for example, if the concentration of heavy metals (cadmium, lead, copper, zinc, iron, nickel, manganese, hexavalent chromium, arsenic, etc.) contained in raw water is higher than 20 mg / L, The structure of the incorporated layered double hydroxide may partially collapse, and the removal effect of harmful substances such as heavy metals may be insufficient. Therefore, preprocessing may be performed. The pretreatment method is not limited. As a pretreatment, for example, a neutralizing agent (NaOH, Ca (OH) 2, etc.) is added to adjust the pH of the raw water to a range of 5 to 10 to generate a heavy metal hydroxide precipitate, which is agglomerated and precipitated. After processing, the heavy metal concentration in the raw water may be less than 10 mg / L, or after adding aluminum salt or iron salt to the raw water, neutralizing agents (NaOH, Ca (OH) 2 etc.) are added to adjust the pH of the raw water. It may be adjusted to a range of 5 to 10 to generate a hydroxide precipitate, which is co-precipitated in the precipitate, and then solid-liquid separated to make the heavy metal concentration of raw water less than 10 mg / L.

また、原水のリン酸イオンがリン濃度として50mg/Lより高いと、リン酸イオンが他の有害物質と競争して層状複水酸化物に吸着され、他の有害物質の除去効果が低下することがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、原水にカルシウム塩(Ca(OH)2など)を添加し、リン酸カルシウム塩を生成させて除去し、原水のリン酸イオンをリン濃度として5mg/L未満にするとよい。 In addition, if the phosphate ion of raw water is higher than 50 mg / L, the phosphate ion competes with other harmful substances and is adsorbed on the layered double hydroxide, reducing the effect of removing other harmful substances. There is. Therefore, preprocessing may be performed. The pretreatment method is not limited. As the pretreatment, for example, a calcium salt (Ca (OH) 2 or the like) is added to the raw water to generate and remove the calcium phosphate salt, and the phosphate ion of the raw water is adjusted to a phosphorus concentration of less than 5 mg / L.

同様に、原水の硝酸イオンが窒素濃度として200mg/Lより高いと、硝酸イオンが他の有害物質と競争して層状複水酸化物に吸着され、他の有害物質の除去効果が低下することがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、生物処理(嫌気性脱窒法など)を行い、原水の硝酸イオンを窒素濃度として200mg/L未満にするとよい。 Similarly, if the nitrate ion of raw water is higher than 200 mg / L as the nitrogen concentration, the nitrate ion competes with other harmful substances and is adsorbed on the layered double hydroxide, which may reduce the effect of removing other harmful substances. is there. Therefore, preprocessing may be performed. The pretreatment method is not limited. As the pretreatment, for example, biological treatment (anaerobic denitrification method or the like) is performed, and nitrate ion of raw water is preferably set to a nitrogen concentration of less than 200 mg / L.

さらに、原水のホウ酸イオンがホウ素濃度として100mg/Lより高いと、ホウ酸イオンが他の有害物質と競争して層状複水酸化物に吸着され、他の有害物質の除去効果が低下することがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、メチルグルカミン基を有するキレート樹脂に原水を通液してホウ酸イオンを吸着させ、原水のホウ酸イオンをホウ素濃度として100mg/L未満にするとよい。 Furthermore, when the borate ions in the raw water are higher than 100 mg / L as the boron concentration, the borate ions compete with other harmful substances and are adsorbed on the layered double hydroxide, and the removal effect of other harmful substances decreases. There is. Therefore, preprocessing may be performed. The pretreatment method is not limited. As the pretreatment, for example, raw water is passed through a chelate resin having a methylglucamine group to adsorb borate ions, and the borate ions of the raw water are adjusted to a boron concentration of less than 100 mg / L.

さらに、原水のフッ素濃度が50mg/Lより高いと、層状複水酸化物の必要量が増大するため、投入する薬剤量が多くなることがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、カルシウム塩を添加して難溶性のフッ化カルシウムを生成させ、これを固液分離してフッ素濃度を50mg/L未満にするとよい。 Further, if the fluorine concentration of the raw water is higher than 50 mg / L, the required amount of the layered double hydroxide increases, so that the amount of drug to be added may increase. Therefore, preprocessing may be performed. The pretreatment method is not limited. As a pretreatment, for example, a calcium salt may be added to form poorly soluble calcium fluoride, which is then solid-liquid separated so that the fluorine concentration is less than 50 mg / L.

また、原水に含まれる浮遊物質(SS)の濃度が60mg/Lより高いと、浮遊物質を取り込んだ層状複水酸化物の構造が部分的に崩れ、有害物質の除去効果が不充分になることがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、無機凝集剤や高分子凝集剤を添加して浮遊物質を沈澱分離し、原水の浮遊物質の濃度を20mg/L未満にするとよい。 In addition, if the concentration of suspended solids (SS) in raw water is higher than 60 mg / L, the structure of the layered double hydroxide that has incorporated suspended solids will partially collapse, resulting in an insufficient removal effect of harmful substances. There is. Therefore, preprocessing may be performed. The pretreatment method is not limited. As the pretreatment, for example, an inorganic flocculant or a polymer flocculant is added to precipitate and separate floating substances, so that the concentration of floating substances in raw water is less than 20 mg / L.

同様に、原水に含まれる有機物の濃度がCODとして200mg/Lより高いと、有機物を取り込んだ層状複水酸化物の構造が部分的に崩れ、有害物質の除去効果が不充分になることがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、生物処理法(活性汚泥法など)や促進酸化法(紫外線酸化や光触媒など)などによって、原水の有機物濃度をCODとして80mg/L未満にするとよい。 Similarly, when the concentration of the organic substance contained in the raw water is higher than 200 mg / L as COD, the structure of the layered double hydroxide incorporating the organic substance may partially collapse, and the harmful substance removal effect may be insufficient. . Therefore, preprocessing may be performed. The pretreatment method is not limited. As the pretreatment, for example, the organic matter concentration of raw water may be less than 80 mg / L as COD by a biological treatment method (such as activated sludge method) or an accelerated oxidation method (such as ultraviolet oxidation or photocatalyst).

前処理工程において、原水に含まれる妨害成分を除去すれば処理効果をさらに高めることができる。妨害成分としては硫酸イオン、亜硫酸イオン、塩化物イオン、炭酸イオン、溶存シリカやケイ酸イオンなどである。 In the pretreatment step, the treatment effect can be further enhanced by removing the disturbing components contained in the raw water. Interfering components include sulfate ions, sulfite ions, chloride ions, carbonate ions, dissolved silica and silicate ions.

例えば、原水に含まれる硫酸イオン濃度が1500mg/Lより高いと、硫酸イオンが有害物質と競争して層状複水酸化物に吸着され、有害物質の除去効果が低下することがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、原水にCa塩やBa塩を添加して難溶性の硫酸塩を生成させ、これを固液分離して硫酸イオン濃度を低下させる。Ca塩を用いる場合には硫酸イオンを1000mg/L未満に低減することができる。Ba塩を用いる場合には硫酸イオンを5mg/L未満に低減することができる。 For example, if the concentration of sulfate ion contained in the raw water is higher than 1500 mg / L, the sulfate ion competes with the harmful substance and is adsorbed on the layered double hydroxide, and the harmful substance removal effect may be reduced. Therefore, preprocessing may be performed. The pretreatment method is not limited. As a pretreatment, for example, a Ca salt or a Ba salt is added to raw water to form a hardly soluble sulfate, which is solid-liquid separated to lower the sulfate ion concentration. When using a Ca salt, sulfate ions can be reduced to less than 1000 mg / L. When Ba salt is used, sulfate ion can be reduced to less than 5 mg / L.

また、原水の亜硫酸イオン濃度が50mg/Lより高いと、亜硫酸イオンがアルミニウムイオンと反応するので、アルミニウム添加量が多く必要になることがある。また、亜硫酸イオンが有害物質と競争して層状複水酸化物に吸着され、有害物質の除去効果が低下することがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、原水に過酸化水素などの酸化剤を添加して亜硫酸イオンを硫酸イオンに酸化し、原水の亜硫酸イオンを10mg/L未満にするとよい。 Further, if the concentration of sulfite ions in the raw water is higher than 50 mg / L, sulfite ions react with aluminum ions, so that a large amount of aluminum may be required. In addition, sulfite ions compete with harmful substances and are adsorbed on the layered double hydroxide, which may reduce the effect of removing harmful substances. Therefore, preprocessing may be performed. The pretreatment method is not limited. As pretreatment, for example, an oxidizing agent such as hydrogen peroxide may be added to raw water to oxidize sulfite ions to sulfate ions, so that the sulfite ions of raw water are less than 10 mg / L.

さらに、原水の塩化物イオン濃度が2000mg/Lより高いと、塩化物イオンが有害物質と競争して層状複水酸化物に吸着され、有害物質の除去効果が低下することがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、電解分解によって塩素をガス化して除去し、あるいは逆浸透法や電気透析法など膜処理によって塩化物イオン濃度を1000mg/L未満にするとよい。 Furthermore, when the chloride ion concentration in the raw water is higher than 2000 mg / L, chloride ions may be adsorbed on the layered double hydroxide in competition with harmful substances, and the harmful substance removal effect may be reduced. Therefore, preprocessing may be performed. The pretreatment method is not limited. As pretreatment, for example, chlorine may be gasified and removed by electrolytic decomposition, or the chloride ion concentration may be made less than 1000 mg / L by membrane treatment such as reverse osmosis or electrodialysis.

原水の炭酸イオン濃度が500mg/Lより高いと、炭酸イオンが有害物質と競争して層状複水酸化物に吸着され、有害物質の除去効果が低下することがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、曝気して炭酸イオンを気散させ、あるいはCa塩を添加して難溶性の炭酸塩を生成させ、これを固液分離して炭酸イオン濃度を50mg/L未満にするとよい。 When the carbonate ion concentration of raw water is higher than 500 mg / L, carbonate ions compete with harmful substances and are adsorbed on the layered double hydroxide, which may reduce the harmful substance removal effect. Therefore, preprocessing may be performed. The pretreatment method is not limited. As pretreatment, for example, aeration is performed to disperse carbonate ions, or Ca salt is added to form a hardly soluble carbonate, which is solid-liquid separated so that the carbonate ion concentration is less than 50 mg / L. .

原水の溶存シリカやケイ酸イオンがSi濃度として20mg/Lより高いと、溶存シリカやケイ酸イオンを取り込んだ層状複水酸化物の構造が部分的に崩れ、有害物質の除去効果が不充分になることがある。そこで前処理を行ってもよい。前処理の方法は限定されない。前処理として、例えば、鉄塩やアルミニウム塩を添加し、さらに中和剤(NaOH、Ca(OH)2など)を加えて原水のpHを5〜10の範囲に調整し、水酸化物沈殿を生成させ、その沈殿に溶存シリカやケイ酸イオンを共沈させ、これを固液分離して原水の溶存シリカやケイ酸イオンをSi濃度として10mg/L未満にするとよい。 If the dissolved silica and silicate ions in the raw water are higher than 20 mg / L as the Si concentration, the structure of the layered double hydroxide incorporating the dissolved silica and silicate ions will partially collapse, and the removal effect of harmful substances will be insufficient. May be. Therefore, preprocessing may be performed. The pretreatment method is not limited. As pretreatment, for example, an iron salt or an aluminum salt is added, and a neutralizing agent (NaOH, Ca (OH) 2, etc.) is added to adjust the pH of the raw water to a range of 5 to 10 to precipitate hydroxide. It is preferable that dissolved silica and silicate ions are co-precipitated in the precipitate, and this is solid-liquid separated to make the dissolved silica and silicate ions of raw water less than 10 mg / L as Si concentration.

〔後処理工程〕
さらに、本発明の処理方法は、汚泥を分離した液分(処理水)を後処理する工程を設けることができる。図5参照。
[Post-treatment process]
Furthermore, the processing method of this invention can provide the process of post-processing the liquid component (process water) which isolate | separated sludge. See FIG.

固液分離工程で汚泥を分離した液分(処理水)に、有機物や浮遊物質、窒素化合物が残留している場合や、あるいは処理水のpHが9以上の場合がある。そこで、処理水の後処理工程を設けてもよい。後処理方法は限定されない。 There are cases where organic matter, suspended solids, and nitrogen compounds remain in the liquid component (treated water) from which the sludge has been separated in the solid-liquid separation step, or the pH of the treated water is 9 or more. Therefore, a post-treatment process for treated water may be provided. The post-processing method is not limited.

処理水に含まれる有機物については、例えば、生物処理法(活性汚泥法など)や促進酸化法(紫外線酸化や光触媒など)などによって、有機物をCOD濃度として80mg/L未満に低減するとよい。また、処理水に含まれる浮遊物質(SS)については、例えば、無機凝集剤や高分子凝集剤を添加して浮遊物質を沈澱分離し、浮遊物質の濃度を20mg/L未満にするとよい。さらに、処理水に含まれる窒素化合物については、例えば、生物処理(硝化脱窒素法など)を行い、窒素濃度として60mg/L未満に低減するとよい。 The organic matter contained in the treated water may be reduced to a COD concentration of less than 80 mg / L by, for example, a biological treatment method (such as an activated sludge method) or an accelerated oxidation method (such as ultraviolet oxidation or a photocatalyst). In addition, for the suspended matter (SS) contained in the treated water, for example, an inorganic flocculant or a polymer flocculant is added to precipitate and separate the suspended matter, so that the concentration of suspended matter is less than 20 mg / L. Further, for nitrogen compounds contained in the treated water, for example, biological treatment (nitrification denitrification method or the like) may be performed to reduce the nitrogen concentration to less than 60 mg / L.

処理水のpHが9以上になる場合があるので、pHが高い場合には処理水に硫酸や塩酸などを添加してpH6〜8になるように中和処理するとよい。 Since the pH of the treated water may be 9 or more, when the pH is high, sulfuric acid or hydrochloric acid may be added to the treated water and neutralized so that the pH becomes 6-8.

〔処理装置〕
本発明の処理装置を図3および図4に示す。
図示する処理装置には、有害物質含有水(原水)に薬剤を添加する添加槽10と、添加した薬剤を反応させて汚泥を生成させる反応槽30と、生成した汚泥を分離する固液分離槽40とが設けられており、これらの添加槽10と反応槽30と固液分離槽40とは管路50によって順に接続されている。
[Processing equipment]
The processing apparatus of the present invention is shown in FIGS.
The illustrated treatment apparatus includes an addition tank 10 for adding a chemical to harmful substance-containing water (raw water), a reaction tank 30 for reacting the added chemical to generate sludge, and a solid-liquid separation tank for separating the generated sludge. 40, and the addition tank 10, the reaction tank 30, and the solid-liquid separation tank 40 are sequentially connected by a pipe 50.

固液分離槽40には分離した処理水と汚泥を排出する排出管路51、52がおのおの接続しており、汚泥の排出管路52には分離した汚泥の一部または全部を反応槽30に返送する返送管路53が接続している。図4に示す処理システムでは、返送管路53の途中に第二添加槽20が設けられている。 Discharge pipes 51 and 52 for discharging the separated treated water and sludge are connected to the solid-liquid separation tank 40, respectively, and part or all of the separated sludge is sent to the reaction tank 30 in the sludge discharge pipe 52. A return pipeline 53 to be returned is connected. In the processing system shown in FIG. 4, the second addition tank 20 is provided in the middle of the return conduit 53.

添加槽10には有害物質含有水の供給管路60と可溶性金属化合物の供給管路61が接続している。なお、添加槽10を省略して管路60と管路61を接続し、管路内で原水に可溶性金属化合物を添加してもよい。 To the addition tank 10, a supply pipe 60 for toxic substance-containing water and a supply pipe 61 for a soluble metal compound are connected. Note that the addition tank 10 may be omitted, the pipe 60 and the pipe 61 may be connected, and the soluble metal compound may be added to the raw water in the pipe.

図3の装置例では、反応槽30には難溶性金属酸化物の供給管路62とpH調整剤の供給管路63が設けられている。図4の装置例では第二添加槽20に難溶性金属酸化物の供給管路62が設けられている。 In the example of the apparatus of FIG. 3, the reaction tank 30 is provided with a supply line 62 for a hardly soluble metal oxide and a supply line 63 for a pH adjusting agent. In the example of the apparatus of FIG. 4, a supply line 62 of a hardly soluble metal oxide is provided in the second addition tank 20.

添加槽10において、有害物質含有水にポリ塩化アルミニウムなどの可溶性金属化合物を添加し、これを反応槽30に導入する。図3の装置例では反応槽30には管路53を通じて汚泥を添加し、さらに管路62を通じて難溶性金属酸化物が添加される。図4の装置例では、分離された汚泥は第二添加槽20において管路62を通じて難溶性金属酸化物が添加された後に反応槽30に導入される。 In the addition tank 10, a soluble metal compound such as polyaluminum chloride is added to the harmful substance-containing water, and this is introduced into the reaction tank 30. In the example of FIG. 3, sludge is added to the reaction tank 30 through a pipe 53, and further a hardly soluble metal oxide is added through a pipe 62. In the apparatus example of FIG. 4, the separated sludge is introduced into the reaction tank 30 after the hardly soluble metal oxide is added through the pipe line 62 in the second addition tank 20.

反応槽30には、管路63を通じてpH調整剤が添加され、反応槽内がpH7〜11に制御される。また、反応は開放系でも密閉系でも構わないが、二酸化炭素の吸収により有害物質の除去を阻害する可能性があるため、反応槽30は二酸化炭素を吸収し難い構造が好ましい。一般的には密閉系の反応槽が好ましい。 A pH adjuster is added to the reaction tank 30 through the pipe 63, and the inside of the reaction tank is controlled to pH 7-11. The reaction may be an open system or a closed system, but the reaction tank 30 preferably has a structure that hardly absorbs carbon dioxide because it may inhibit removal of harmful substances due to absorption of carbon dioxide. In general, a closed reaction tank is preferred.

反応槽30において、難溶性金属酸化物の表面が一部溶解して可溶性金属化合物とアルカリ性下(pH7〜11が好ましい)で反応し、難溶性金属酸化物表面にハイドロタルサイト等の層状複水酸化物が形成された汚泥が生成する。汚泥は固液分離槽40に導かれ、沈降して固液分離される。固液分離槽40に導入される前に凝集剤を添加してもよい。凝集剤は凝集剤供給管路と管路50とを接続して管路内で添加してもよいし、凝集剤添加槽を設け、その凝集剤添加槽に管路50を通じて汚泥を入れ、さらに凝集剤供給管路を通じて凝集剤を添加してもよい。分離された汚泥の一部または全部は管路53を通じて反応槽30に返送される。一部の汚泥は脱水して廃棄してもよいし、回収してセメント原料として再資源化してもよく、あるいは土壌汚染や廃水処理の浄化材として利用してもよい。 In the reaction tank 30, the surface of the hardly soluble metal oxide partially dissolves and reacts with the soluble metal compound under alkalinity (preferably pH 7 to 11), and layered double water such as hydrotalcite is formed on the hardly soluble metal oxide surface. Sludge with oxides formed. The sludge is guided to the solid-liquid separation tank 40, settles and is separated into solid and liquid. A flocculant may be added before being introduced into the solid-liquid separation tank 40. The flocculant may be added in the pipe by connecting the flocculant supply pipe and the pipe 50, or a flocculant addition tank is provided, and sludge is put into the flocculant addition tank through the pipe 50, and The flocculant may be added through the flocculant supply line. Part or all of the separated sludge is returned to the reaction tank 30 through the pipe line 53. Some sludge may be dehydrated and discarded, recovered and recycled as a raw material for cement, or used as a purification material for soil contamination and wastewater treatment.

本発明の処理装置は、例えば、車載可能にし、あるいは添加槽や反応槽および固液分離槽などのユニットに分離可能にした可搬型装置にすることができる。 The processing apparatus of this invention can be made into a portable apparatus which can be mounted on a vehicle or can be separated into units such as an addition tank, a reaction tank, and a solid-liquid separation tank.

以下、本発明の実施例を比較例と共に示す。なお、これらの各例において、フッ素濃度はイオン電極法により測定した。また、ホウ素濃度、クロム(VI)濃度、ヒ素濃度、銅濃度、マンガン濃度、亜鉛濃度はICP発光分光分析法により測定した。セレン濃度、カドミウム濃度、鉛濃度はICP質量分析法により測定した。 Examples of the present invention are shown below together with comparative examples. In each of these examples, the fluorine concentration was measured by the ion electrode method. Further, the boron concentration, chromium (VI) concentration, arsenic concentration, copper concentration, manganese concentration, and zinc concentration were measured by ICP emission spectroscopy. Selenium concentration, cadmium concentration, and lead concentration were measured by ICP mass spectrometry.

〔実施例1〕
図4に示す処理システムに従い、フッ素含有水を以下のように処理した。まず、フッ素含有水(フッ素濃度20mg/L)を添加槽10に導入し、ポリ塩化アルミニウムをアルミニウム濃度が水中で240mg/Lになるように添加した。一方、固液分離槽40で分離した汚泥の全量を第二添加槽20に返送し、ここで酸化マグネシウムをフッ素含有水1Lに対して1g/L添加した。この汚泥を反応槽30に導入し、ポリ塩化アルミニウムを添加したフッ素含有水と混合し、30分間攪拌し、温度20℃下、30分間反応させた。反応後、pH調整剤として水酸化ナトリウムを添加してpH8.5〜9.5に調整した後、生成した汚泥を固液分離槽40(シックナー)に導入して20時間静置して汚泥を沈降させた。なお、固液分離槽40に導入する前の汚泥スラリーにアニオン性高分子凝集剤2mg/Lを添加した。固液分離槽40で分離した汚泥の全量を先に述べたように第二添加槽20に導入し、酸化マグネシウムをフッ素含有水1Lに対して1g/L添加して反応槽30に戻した。この汚泥の生成を15回繰り返した。処理条件を表1に示し、処理結果を表2に示した。また、汚泥のX線解析チャートを図6に示した。図6において1st〜10thは繰返し回数である。
[Example 1]
In accordance with the treatment system shown in FIG. 4, the fluorine-containing water was treated as follows. First, fluorine-containing water (fluorine concentration 20 mg / L) was introduced into the addition tank 10, and polyaluminum chloride was added so that the aluminum concentration was 240 mg / L in water. On the other hand, the entire amount of sludge separated in the solid-liquid separation tank 40 was returned to the second addition tank 20, where 1 g / L of magnesium oxide was added to 1 L of fluorine-containing water. This sludge was introduced into the reaction tank 30, mixed with fluorine-containing water added with polyaluminum chloride, stirred for 30 minutes, and reacted at a temperature of 20 ° C. for 30 minutes. After the reaction, sodium hydroxide is added as a pH adjusting agent to adjust the pH to 8.5 to 9.5, and then the generated sludge is introduced into the solid-liquid separation tank 40 (thickener) and left to stand for 20 hours to remove the sludge. Allowed to settle. In addition, 2 mg / L of anionic polymer flocculant was added to the sludge slurry before introducing into the solid-liquid separation tank 40. The whole amount of sludge separated in the solid-liquid separation tank 40 was introduced into the second addition tank 20 as described above, and 1 g / L of magnesium oxide was added to 1 L of fluorine-containing water and returned to the reaction tank 30. This sludge generation was repeated 15 times. The processing conditions are shown in Table 1, and the processing results are shown in Table 2. Moreover, the X-ray analysis chart of sludge was shown in FIG. In FIG. 6, 1st to 10th is the number of repetitions.

処理結果に示すように、繰り返し回数1回目で、処理水のフッ素濃度を海域以外の公共用水域の排水基準(8mg/L)以下まで低減することができ、また、繰返し回数12回目で、処理水のフッ素濃度を環境基準(0.8mg/L以下)まで低減することができる。また、汚泥のX線解析チャートに示すように、酸化マグネシウムと共にハイドロタルサイトのピークが現れており、酸化マグネシウム表面にハイドロタルサイトが形成されていることが分かる。繰返し回数が1回ではハイドロタルサイトのピークは小さいが、繰返し回数が5回以降になるとハイドロタルサイトのピークは大きくなり、繰返し回数に比例して成長している。 As shown in the treatment results, the fluorine concentration of treated water can be reduced to below the drainage standard (8 mg / L) for public water areas other than the sea area at the first iteration, and the treatment can be performed at the 12th iteration. The fluorine concentration of water can be reduced to the environmental standard (0.8 mg / L or less). Moreover, as shown in the X-ray analysis chart of sludge, the peak of hydrotalcite appears with magnesium oxide, and it turns out that the hydrotalcite is formed on the magnesium oxide surface. When the number of repetitions is 1, the hydrotalcite peak is small, but when the number of repetitions is 5 or more, the hydrotalcite peak increases and grows in proportion to the number of repetitions.

〔実施例2〕
図3に示す処理システムに従い、フッ素含有水を以下のように処理した。まず、フッ素含有水(フッ素濃度20mg/L)を添加槽10に導入し、硫酸アルミニウムをアルミニウム濃度が水中で240mg/Lになるように添加した。これを反応槽30に導入した。一方、固液分離槽40で分離した汚泥の全量を反応槽30に返送した。また反応槽30で酸化マグネシウムをフッ素含有水1Lに対して1g/L添加し、硫酸アルミニウムを添加したフッ素含有水と混合し、30分間攪拌し、温度20℃下、30分間反応させた。反応後、pH調整剤として水酸化ナトリウムを添加してpH8.5〜9.5に調整した後、生成した汚泥を固液分離槽40(シックナー)に導入して20時間静置して汚泥を沈降させた。なお、固液分離槽40に導入する前の汚泥スラリーにアニオン性高分子凝集剤2mg/Lを添加した。固液分離槽40で分離した汚泥を、上記のように、反応槽30に返送して酸化マグネシウムをフッ素含有水1Lに対して1g/L添加した。この汚泥の生成を15回繰り返した。処理条件を表3に示し、処理結果を表4に示した。
[Example 2]
In accordance with the treatment system shown in FIG. 3, the fluorine-containing water was treated as follows. First, fluorine-containing water (fluorine concentration 20 mg / L) was introduced into the addition tank 10, and aluminum sulfate was added so that the aluminum concentration was 240 mg / L in water. This was introduced into the reaction vessel 30. On the other hand, the entire amount of sludge separated in the solid-liquid separation tank 40 was returned to the reaction tank 30. Further, 1 g / L of magnesium oxide was added to 1 L of fluorine-containing water in the reaction tank 30, mixed with fluorine-containing water added with aluminum sulfate, stirred for 30 minutes, and reacted at a temperature of 20 ° C. for 30 minutes. After the reaction, sodium hydroxide is added as a pH adjusting agent to adjust the pH to 8.5 to 9.5, and then the generated sludge is introduced into the solid-liquid separation tank 40 (thickener) and left to stand for 20 hours to remove the sludge. Allowed to settle. In addition, 2 mg / L of anionic polymer flocculant was added to the sludge slurry before introducing into the solid-liquid separation tank 40. The sludge separated in the solid-liquid separation tank 40 was returned to the reaction tank 30 as described above, and 1 g / L of magnesium oxide was added to 1 L of fluorine-containing water. This sludge generation was repeated 15 times. The processing conditions are shown in Table 3, and the processing results are shown in Table 4.

処理結果に示すように、繰り返し回数1回目で、処理水のフッ素濃度を海域以外の公共用水域の排水基準(8mg/L)以下まで低減することができる。繰返し回数を重ねるごとに、処理水中のフッ素濃度を低減することができる。 As shown in the treatment results, the fluorine concentration of the treated water can be reduced to a drainage standard (8 mg / L) or less in public water areas other than the sea area by the first repetition. Each time the number of repetitions is repeated, the fluorine concentration in the treated water can be reduced.

〔実施例3〕
図4に示す処理システムに従い、フッ素及び重金属類を含む有害物質含有水を以下のように処理した。まず、有害物質含有水(原水中の有害物質濃度は表5に記載)を添加槽10に導入し、ポリ塩化アルミニウムをアルミニウム濃度が水中で240mg/Lになるように添加した。これを反応槽30に導入した。一方、固液分離槽40で分離した汚泥の全量を第二添加槽20に返送し、ここで酸化マグネシウムを有害物質含有水1Lに対して1g/L添加した。この汚泥を反応槽30に戻し、ポリ塩化アルミニウムを添加した有害物質含有水と混合し、30分間攪拌し、温度20℃下、30分間反応させた。反応後、pH調整剤として水酸化ナトリウムを添加してpH8.5〜9.5に調整した後、生成した汚泥を固液分離槽40(シックナー)に導入して20時間静置して汚泥を沈降させた。なお、固液分離槽40に導入する前の汚泥スラリーにアニオン性高分子凝集剤2mg/Lを添加した。固液分離槽40で分離した汚泥の全量を、上記のように、第二添加槽20に導入し、酸化マグネシウムを有害物質含有水1Lに対して1g/L添加して反応槽30に戻し、この汚泥の生成を5回繰り返した。処理条件を表5に示し、処理結果を表6に示した。
Example 3
In accordance with the treatment system shown in FIG. 4, water containing harmful substances containing fluorine and heavy metals was treated as follows. First, toxic substance-containing water (hazardous substance concentration in raw water is listed in Table 5) was introduced into the addition tank 10 and polyaluminum chloride was added so that the aluminum concentration was 240 mg / L in water. This was introduced into the reaction vessel 30. On the other hand, the entire amount of sludge separated in the solid-liquid separation tank 40 was returned to the second addition tank 20, where 1 g / L of magnesium oxide was added to 1 L of harmful substance-containing water. This sludge was returned to the reaction tank 30, mixed with harmful substance-containing water added with polyaluminum chloride, stirred for 30 minutes, and reacted at a temperature of 20 ° C. for 30 minutes. After the reaction, sodium hydroxide is added as a pH adjusting agent to adjust the pH to 8.5 to 9.5, and then the generated sludge is introduced into the solid-liquid separation tank 40 (thickener) and left to stand for 20 hours to remove the sludge. Allowed to settle. In addition, 2 mg / L of anionic polymer flocculant was added to the sludge slurry before introducing into the solid-liquid separation tank 40. The total amount of sludge separated in the solid-liquid separation tank 40 is introduced into the second addition tank 20 as described above, and magnesium oxide is added at 1 g / L to 1 L of harmful substance-containing water and returned to the reaction tank 30. This sludge generation was repeated 5 times. The processing conditions are shown in Table 5, and the processing results are shown in Table 6.

処理結果に示すように、繰り返し回数1回目で、処理水のフッ素濃度を海域以外の公共用水域の排水基準(8mg/L)以下まで低減することができる。繰返し回数を重ねるごとに、処理水中のフッ素濃度を低減することができる。他の有害物質についても、処理水中の濃度を低減することができ、繰返し回数を重ねるごとに、その濃度をさらに低減することができる。 As shown in the treatment results, the fluorine concentration of the treated water can be reduced to a drainage standard (8 mg / L) or less in public water areas other than the sea area by the first repetition. Each time the number of repetitions is repeated, the fluorine concentration in the treated water can be reduced. Concerning other harmful substances, the concentration in the treated water can be reduced, and the concentration can be further reduced as the number of repetitions is repeated.

〔実施例4〕
図3に示す処理システムに従い、フッ素含有水を以下のように処理した。まず、フッ素含有水(フッ素濃度20mg/L)を添加槽10に導入し、ポリ塩化アルミニウムをアルミニウム濃度が水中で240mg/Lになるように添加した。これを反応槽30に導入した。その後、反応槽30で酸化マグネシウム1g/Lとポリ塩化アルミニウムを添加した水とを混合し、pH調整剤として水酸化ナトリウムを添加してpH8.5〜9.5に調整した後、30分間攪拌し、温度20℃下、30分間反応させた。反応後、生成した汚泥を固液分離槽40(シックナー)に導入して30分間静置して汚泥を沈降させた。処理条件および処理結果を表7に示した。
Example 4
In accordance with the treatment system shown in FIG. 3, the fluorine-containing water was treated as follows. First, fluorine-containing water (fluorine concentration 20 mg / L) was introduced into the addition tank 10, and polyaluminum chloride was added so that the aluminum concentration was 240 mg / L in water. This was introduced into the reaction vessel 30. Thereafter, 1 g / L of magnesium oxide and water added with polyaluminum chloride were mixed in the reaction tank 30, adjusted to pH 8.5 to 9.5 by adding sodium hydroxide as a pH adjuster, and then stirred for 30 minutes. And reacted at a temperature of 20 ° C. for 30 minutes. After the reaction, the produced sludge was introduced into the solid-liquid separation tank 40 (thickener) and allowed to stand for 30 minutes to settle the sludge. The processing conditions and processing results are shown in Table 7.

〔比較例1〕
図3に示す処理システムに従い、フッ素含有水を以下のように処理した。まず、フッ素含有水(フッ素濃度20mg/L)を添加槽10に導入し、ポリ塩化アルミニウムをアルミニウム濃度が水中で240mg/Lになるように添加した。これを反応槽30に導入した。その後、反応槽30で塩化マグネシウム2.4g/Lとポリ塩化アルミニウムを添加した水とを混合し、pH調整剤として水酸化ナトリウムを添加してpH8.5〜9.5に調整した後、30分間攪拌し、温度20℃下、30分間反応させた。反応後、生成した汚泥を固液分離槽40(シックナー)に導入して30分間静置して汚泥を沈降させた。処理条件および処理結果を表7に示した。
[Comparative Example 1]
In accordance with the treatment system shown in FIG. 3, the fluorine-containing water was treated as follows. First, fluorine-containing water (fluorine concentration 20 mg / L) was introduced into the addition tank 10, and polyaluminum chloride was added so that the aluminum concentration was 240 mg / L in water. This was introduced into the reaction vessel 30. Thereafter, 2.4 g / L of magnesium chloride and water added with polyaluminum chloride were mixed in the reaction tank 30 and adjusted to pH 8.5 to 9.5 by adding sodium hydroxide as a pH adjuster. The mixture was stirred for 30 minutes and reacted at a temperature of 20 ° C. for 30 minutes. After the reaction, the produced sludge was introduced into the solid-liquid separation tank 40 (thickener) and allowed to stand for 30 minutes to settle the sludge. The processing conditions and processing results are shown in Table 7.

処理結果に示すように、実施例4と比較例1は何れも処理水のフッ素濃度を海域以外の公共用水域の排水基準(8mg/L)以下まで低減することができるが、安定容積は比較例1の方が非常に大きく、分離性が悪い。一方、実施例4は安定容積が小さく、分離性が良好であり、短時間で固液分離することができる。 As shown in the treatment results, both Example 4 and Comparative Example 1 can reduce the fluorine concentration of the treated water to below the drainage standard (8 mg / L) for public water areas other than sea areas, but the stable volumes are comparable. Example 1 is much larger and has poor separation. On the other hand, Example 4 has a small stable volume, good separability, and can perform solid-liquid separation in a short time.

10−添加槽、20−第二添加槽、30−反応槽、40−固液分離槽、50−管路、51、52−排出管路、53−返送管路、60、61、62、63−供給管路。 10-addition tank, 20-second addition tank, 30-reaction tank, 40-solid-liquid separation tank, 50-line, 51, 52-discharge line, 53-return line, 60, 61, 62, 63 -Supply line.

Claims (10)

層状複水酸化物の成分となる難溶性金属酸化物と可溶性金属化合物とを有害物質含有水に添加する工程、pH7〜11の液性下で、該難溶性金属酸化物の表面を溶解させると共に未溶解部分を残し、溶解した難溶性金属酸化物と可溶性金属化合物の反応によって生成した上記層状複水酸化物が難溶性金属酸化物の未溶解部分表面に形成された汚泥を生成させる反応工程、この汚泥を沈降させて固液分離することによって該汚泥に取り込まれた有害物質を系外に除去する固液分離工程、固液分離した汚泥の一部または全部を反応工程に返送し、返送した汚泥を層状複水酸化物の形成に利用する汚泥返送工程を有することを特徴とする有害物質含有水の処理方法。
A step of adding a poorly soluble metal oxide and a soluble metal compound, which are components of the layered double hydroxide, to water containing harmful substances, and dissolving the surface of the hardly soluble metal oxide under liquidity of pH 7-11 A reaction step of leaving the undissolved part and generating sludge formed on the surface of the undissolved part of the hardly soluble metal oxide by the layered double hydroxide generated by the reaction of the dissolved hardly soluble metal oxide and the soluble metal compound ; The sludge is settled and solid-liquid separated to remove harmful substances taken into the sludge out of the system, the solid-liquid separation step, part or all of the solid-liquid separated sludge is returned to the reaction step and returned. A method for treating toxic substance-containing water, comprising a sludge return step in which sludge is used to form layered double hydroxides.
汚泥返送工程に第二添加槽を設け、該第二添加槽において難溶性金属酸化物を添加し、難溶性金属酸化物が添加された汚泥を反応工程に返送して有害物質含有水に添加する請求項1に記載する有害物質含有水の処理方法。 A second addition tank is provided in the sludge return process, the hardly soluble metal oxide is added in the second addition tank, and the sludge to which the hardly soluble metal oxide is added is returned to the reaction process and added to the water containing harmful substances. The method for treating toxic substance-containing water according to claim 1. 生成した汚泥スラリーを静置したとき、30分後の安定容積が40%以下である請求項1または請求項2に記載する有害物質含有水の処理方法。 The method for treating toxic substance-containing water according to claim 1 or 2, wherein when the produced sludge slurry is allowed to stand, the stable volume after 30 minutes is 40% or less . 難溶性金属酸化物が酸化マグネシウムであり、可溶性金属化合物が可溶性アルミニウム塩であり、有害物質含有水に酸化マグネシウムと可溶性アルミニウム塩を添加し、これをアルカリ性下で反応させて、酸化マグネシウムの表面にハイドロタルサイトを形成させることによって該ハイドロタルサイトに有害物質が取り込まれた汚泥を生成させ、該汚泥を固液分離する請求項1〜請求項3の何れかに記載する有害物質含有水の処理方法。 The hardly soluble metal oxide is magnesium oxide, the soluble metal compound is a soluble aluminum salt, magnesium oxide and a soluble aluminum salt are added to harmful substance-containing water, and this is allowed to react under alkaline conditions. The treatment of water containing harmful substances according to any one of claims 1 to 3, wherein sludge in which harmful substances are taken into hydrotalcite is formed by forming hydrotalcite, and the sludge is solid-liquid separated. Method. 有害物質がフッ素、ホウ素、窒素化合物、リン、重金属類の何れか1種または2種以上であり、有害物質を取り込んだ汚泥を生成させて固液分離する請求項1〜請求項4の何れかに記載する有害物質含有水の処理方法。 Toxic substances fluorine, boron, nitrogen compounds, phosphorus, not less than one kind or two kinds of heavy metals, any of claims 1 to 4 for separating harmful substances by generating a sludge incorporating solid-liquid Method for treating hazardous substance-containing water described in 1. フッ素濃度1〜50mg/Lの有害物質含有水1Lに対して、酸化マグネシウムを0.05〜10g/L、可溶性アルミニウム塩を水中のアルミニウム濃度が10〜1000mg/Lになるように添加し、反応槽においてpH7〜11で反応させる請求項1〜請求項5の何れかに記載する有害物質含有水の処理方法。 To 1L of harmful substance-containing water with a fluorine concentration of 1 to 50mg / L, add magnesium oxide 0.05 to 10g / L and soluble aluminum salt so that the aluminum concentration in water is 10 to 1000mg / L. The method for treating toxic substance-containing water according to any one of claims 1 to 5 , wherein the reaction is carried out at a pH of 7 to 11 in a tank. 有害物質含有水(原水)に含まれる有害物質および妨害物質を低減する前処理工程が設けられており、前処理した原水に層状複水酸化物の成分となる難溶性金属酸化物と可溶性金属化合物を添加する請求項1〜請求項6の何れかに記載する有害物質含有水の処理方法。 Pre-treatment process to reduce harmful substances and interfering substances contained in harmful substance-containing water (raw water) is provided, and sparingly soluble metal oxides and soluble metal compounds that become components of layered double hydroxides in the pretreated raw water The processing method of the hazardous | toxic substance containing water in any one of Claims 1-6 which add. 汚泥を固液分離した処理水を後処理する工程が設けられている請求項1〜請求項7の何れかに記載する有害物質含有水の処理方法。 The method for treating toxic substance-containing water according to any one of claims 1 to 7, further comprising a step of post-treating treated water obtained by solid-liquid separation of sludge. 有害物質含有水に薬剤を添加する添加槽と、添加した薬剤を反応させて汚泥を生成させる反応槽と、生成した汚泥を分離する固液分離槽とが管路によって順に接続されており、添加槽には有害物質含有水と可溶性金属化合物の供給手段がおのおの設けられており、反応槽には難溶性金属酸化物とpH調整剤の供給手段がおのおの設けられており、固液分離槽には分離した汚泥と処理水の排出管路がおのおの接続しており、さらに該固液分離槽から反応槽に至る返送管路が設けられており、添加槽において可溶性金属化合物が添加された有害物質含有水が反応槽に導入され、反応槽において難溶性金属酸化物とpH調整剤が添加され、該難溶性金属酸化物の表面が溶解して可溶性金属化合物とアルカリ性下で反応し該難溶性金属酸化物の未溶解部分表面に層状複水酸化物が形成された汚泥が生成され、該汚泥が固液分離槽に導入されて沈降分離され、固液分離した汚泥の一部または全部は返送管路を通じて反応槽に返送されることを特徴とする有害物質含有水の処理装置。
An addition tank for adding chemicals to toxic substance-containing water, a reaction tank for reacting the added chemicals to produce sludge, and a solid-liquid separation tank for separating the produced sludge are connected in order by pipes. Each tank is provided with means for supplying toxic substance-containing water and soluble metal compounds, each reaction tank is provided with means for supplying a hardly soluble metal oxide and a pH adjuster, and each solid-liquid separation tank is provided with The separated sludge and the treated water discharge pipe are connected to each other, and a return pipe from the solid-liquid separation tank to the reaction tank is provided, which contains a toxic substance to which a soluble metal compound is added. Water is introduced into the reaction vessel, a hardly soluble metal oxide and a pH adjuster are added in the reaction vessel, and the surface of the hardly soluble metal oxide dissolves and reacts with the soluble metal compound under alkalinity to cause the hardly soluble metal oxidation. Undissolved thing Sludge layered double hydroxide is formed on the partial surface is generated and sedimentation is introduced into the sludge solid-liquid separation tank, some or all of the sludge subjected to solid-liquid separation in the reaction vessel through the return conduit A device for treating harmful substance-containing water, which is returned.
請求項9に記載する処理装置において、分離した汚泥に難溶性金属酸化物を添加する第二添加槽が上記返送管路の途中に設けられている有害物質含有水の処理装置。
The processing apparatus according to claim 9, wherein a second addition tank for adding a hardly soluble metal oxide to the separated sludge is provided in the middle of the return conduit.
JP2011188650A 2010-10-29 2011-08-31 Method and apparatus for treating harmful substance-containing water. Active JP5943176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188650A JP5943176B2 (en) 2010-10-29 2011-08-31 Method and apparatus for treating harmful substance-containing water.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010244772 2010-10-29
JP2010244772 2010-10-29
JP2011188650A JP5943176B2 (en) 2010-10-29 2011-08-31 Method and apparatus for treating harmful substance-containing water.

Publications (2)

Publication Number Publication Date
JP2012106226A JP2012106226A (en) 2012-06-07
JP5943176B2 true JP5943176B2 (en) 2016-06-29

Family

ID=45993556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188650A Active JP5943176B2 (en) 2010-10-29 2011-08-31 Method and apparatus for treating harmful substance-containing water.

Country Status (4)

Country Link
JP (1) JP5943176B2 (en)
KR (2) KR20150100950A (en)
CN (2) CN103180251A (en)
WO (1) WO2012056826A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257469B2 (en) * 2011-02-01 2013-08-07 吉澤石灰工業株式会社 Remover of harmful substances in waste water and removal method using the same
JP5794422B2 (en) * 2011-09-30 2015-10-14 三菱マテリアル株式会社 Treatment method and treatment apparatus for removing fluorine and harmful substances
JP5794423B2 (en) * 2011-09-30 2015-10-14 三菱マテリアル株式会社 Processing method and processing apparatus for removing harmful substances
JP6076649B2 (en) * 2012-08-22 2017-02-08 吉田 英夫 Soil decontamination method and soil decontamination system
CN102974309A (en) * 2012-11-28 2013-03-20 常州大学 Method for simultaneously processing industrial pickling waste water and washing waste water
CN102992440A (en) * 2012-11-28 2013-03-27 常州大学 Purification method of photovoltaic wastewater
CN103043815B (en) * 2012-11-29 2014-10-29 常州大学 Method for synchronously purifying electroplating wastewater, washing wastewater and chemical organic wastewater
SG11201607850WA (en) * 2014-04-10 2016-11-29 Kurita Water Ind Ltd Copper-containing wastewater treatment method and treatment device
JP6826806B2 (en) * 2015-03-30 2021-02-10 住友重機械エンバイロメント株式会社 Wastewater treatment equipment and wastewater treatment method
KR20170135959A (en) * 2015-04-15 2017-12-08 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 Methods for the treatment and / or purification of water
JP6109999B1 (en) * 2015-11-25 2017-04-05 株式会社武部鉄工所 Water treatment method and water treatment system
CN105562422B (en) * 2016-01-04 2018-07-06 扬州杰嘉工业固废处置有限公司 A kind of fluoro-containing pesticide waste residue stabilizes curing
CN111295361A (en) * 2017-09-08 2020-06-16 联邦科学和工业研究组织 Water treatment method
JP2019155209A (en) * 2018-03-07 2019-09-19 住友金属鉱山株式会社 Treatment facility and treatment method of boron-containing water
JP7202250B2 (en) * 2019-04-26 2023-01-11 住友重機械エンバイロメント株式会社 Wastewater treatment equipment and wastewater treatment method
CN112551772A (en) * 2020-11-24 2021-03-26 衢州学院 Resource treatment method for Grignard reaction wastewater
JP7028358B1 (en) * 2021-01-13 2022-03-02 Jfeエンジニアリング株式会社 Water treatment equipment, water treatment methods, chemicals, and methods for manufacturing chemicals

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424993B2 (en) * 1972-03-02 1979-08-24
JPS5253786A (en) * 1975-10-29 1977-04-30 Toyo Soda Mfg Co Ltd Al-cont. adsorbent
JPS5924727B2 (en) * 1976-12-22 1984-06-12 東ソー株式会社 Method for producing basic aluminum chloride salt containing magnesium
DE3346943A1 (en) * 1983-12-24 1985-07-04 Bayer Ag, 5090 Leverkusen Preparation of hydrotalcite with improved properties
CA1338346C (en) * 1989-08-23 1996-05-28 Chanakya Misra Method for reducing the amount of anionic metal-ligand complex in a solution
GB9206841D0 (en) * 1992-03-28 1992-05-13 Unilever Plc Sorbing agents
JP2912226B2 (en) * 1996-04-19 1999-06-28 日本電気環境エンジニアリング株式会社 Wastewater treatment method
FR2753697B1 (en) * 1996-09-25 1998-10-30 PROCESS FOR REMOVING HEAVY METALS FROM A PHOTOGRAPHIC EFFLUENT
JP4114968B2 (en) * 1997-01-31 2008-07-09 川研ファインケミカル株式会社 Method for collecting heavy metal-containing ions
CN1257847C (en) * 2003-07-24 2006-05-31 合肥工业大学 Water treatment method for instant synthesis of laminated bis-hydroxide
JP4036237B2 (en) * 2004-03-16 2008-01-23 学校法人早稲田大学 Hydrotalcite-like substance, method for producing the same, and method for immobilizing harmful substances
JP4845188B2 (en) * 2006-03-14 2011-12-28 協和化学工業株式会社 Waste water treatment agent and method for reducing fluorine ions in waste water
KR101436652B1 (en) * 2006-07-31 2014-09-01 니폰 고쿠도 가이하츠 가부시키가이샤 Hydrotalcite-like particulate material and method for production thereof
JP2010099552A (en) * 2008-10-21 2010-05-06 Mitsubishi Materials Techno Corp Wastewater treatment method
US9133038B2 (en) * 2009-03-20 2015-09-15 Commonwealth Scientific And Industrial Research Organisation Treatment or remediation of natural or waste water
JP5451323B2 (en) * 2009-11-10 2014-03-26 学校法人早稲田大学 Water treatment method

Also Published As

Publication number Publication date
KR20130069798A (en) 2013-06-26
JP2012106226A (en) 2012-06-07
KR20150100950A (en) 2015-09-02
CN103180251A (en) 2013-06-26
CN105692759A (en) 2016-06-22
KR101613774B1 (en) 2016-04-19
WO2012056826A1 (en) 2012-05-03
CN105692759B (en) 2019-06-07

Similar Documents

Publication Publication Date Title
JP5943176B2 (en) Method and apparatus for treating harmful substance-containing water.
JP5794423B2 (en) Processing method and processing apparatus for removing harmful substances
JP6738145B2 (en) Method for producing sodium hypochlorite and apparatus for producing sodium hypochlorite
CN105293775A (en) Method adopting combined technology of pre-oxidation and coagulating sedimentation to process wastewater containing thallium and ammonia-nitrogen
JP5915834B2 (en) Method for producing purification treatment material
JP5794422B2 (en) Treatment method and treatment apparatus for removing fluorine and harmful substances
CN110799461A (en) Wastewater treatment method for removing chemical oxygen demand
CN109592821A (en) A kind of method of EDTA- thallium complex in removal waste water
JP3635643B2 (en) Waste liquid treatment method
JP5945682B2 (en) Treatment method of wastewater containing cyanide
JP4954131B2 (en) Treatment method of water containing borofluoride
He et al. Research progress on removal methods of Cl-from industrial wastewater
JP4396965B2 (en) Heavy metal removal method and apparatus
JP5848119B2 (en) Treatment method for fluorine-containing wastewater
Duan et al. A review of chloride ions removal from high chloride industrial wastewater: Sources, hazards, and mechanisms
RU2725315C1 (en) Method of purifying water from arsenic compounds
JP4210509B2 (en) Method for treating boron-containing water
KR102116420B1 (en) Waste water treatment method of removing fluorine and cyanides
JP2008200599A (en) Method for cleaning waste water containing ammonia nitrogen
JP2009178638A (en) Arsenic removing agent
JP4706828B2 (en) Method and apparatus for treating nitrate-containing water
JP2003136070A (en) Method and agent for treating lead-containing waste water
KR100211127B1 (en) Method for treating waste water containing water-solublr oil and fluoride ion
TIWARI SYNTHESIS AND STUDIES ON POLYANILINE AS AN EFFECTIVE ADSORBENT FOR THE REMOVAL OF HEAVY METALS FROM WASTEWATER
Wang Activated Iron Media for Wastewater Treatment: Mechanisms for Anionic Contaminants Immobilization and Transformation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160510

R150 Certificate of patent or registration of utility model

Ref document number: 5943176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150