JP4336148B2 - Magnesium oxide powder and method for producing the same - Google Patents

Magnesium oxide powder and method for producing the same Download PDF

Info

Publication number
JP4336148B2
JP4336148B2 JP2003168369A JP2003168369A JP4336148B2 JP 4336148 B2 JP4336148 B2 JP 4336148B2 JP 2003168369 A JP2003168369 A JP 2003168369A JP 2003168369 A JP2003168369 A JP 2003168369A JP 4336148 B2 JP4336148 B2 JP 4336148B2
Authority
JP
Japan
Prior art keywords
magnesium oxide
oxide powder
magnesium
average particle
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003168369A
Other languages
Japanese (ja)
Other versions
JP2005001949A (en
Inventor
彰 兼安
智 新松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2003168369A priority Critical patent/JP4336148B2/en
Publication of JP2005001949A publication Critical patent/JP2005001949A/en
Application granted granted Critical
Publication of JP4336148B2 publication Critical patent/JP4336148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸着剤や排水処理剤として有用な酸化マグネシウム粉末、及びその製造方法に関する。本発明はまた、上記の酸化マグネシウム粉末を用いた排水処理方法に関する。
【0002】
【従来の技術】
従来より、水酸化マグネシウムなどのマグネシウム化合物を焼成して酸化マグネシウム粉末を製造することが行われている。このマグネシウム化合物の焼成温度を低くすると、ペリクレース結晶子のサイズが小さく、比表面積の大きい酸化マグネシウム粉末が得られることが知られている(非特許文献1)。
【0003】
非特許文献1には、水酸化マグネシウム粉末を500℃程度の温度で焼成すると、水酸化マグネシウムの板状結晶の形状を残した、ペリクレース結晶子の凝集体(結晶スケルトンと呼ばれている)が形成されると記載されている。なお、この非特許文献1には、ペリクレース結晶子径が29nm、比表面積が40〜70m2/gの酸化マグネシウム粉末が記載されている。
【0004】
ペリクレース結晶子のサイズが小さく、比表面積の大きい酸化マグネシウム粉末は、一般に高い吸着能力を有する傾向にある。
例えば、特許文献1には、熱分解により酸化マグネシウム粒子の形成が可能なマグネシウム化合物を400〜700℃の温度で焼成して得た酸化マグネシウム粒子からなる吸着剤が開示されている。この特許文献の実施例によれば、水酸化マグネシウムと塩基性炭酸マグネシウムを上記の温度範囲で焼成して得たペリクレース結晶子のサイズが小さく、比表面積が大きい酸化マグネシウム粉末は、排水のCOD除去率及び色度除去率が高い値を示す。
【0005】
特許文献2には、熱分解により酸化マグネシウム粒子の形成が可能なマグネシウム化合物を400〜700℃の温度で焼成して得た酸化マグネシウム粒子を主成分とする吸着剤により、水中に溶解するフッ素イオンを吸着させる技術が開示されている。
【0006】
特許文献3には、ホウ素及び/又はフッ素含有排水の効率的な処理方法として、排水に約1400℃以下の温度で焼成して得た酸化マグネシウムを添加し、30℃以上の温度で処理した後、固液分離する方法が開示されている。
【0007】
【非特許文献1】
「ニューセラミック粉体ハンドブック」,株式会社サイエンスフォーラム,1983年,p.119−121
【特許文献1】
特公昭61−43089号公報
【特許文献2】
特公昭60−26595号公報
【特許文献3】
特開2001−340872号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、吸着剤や排水処理剤として有用な酸化マグネシウム粉末及びその製造方法を提供することにある。本発明の目的はまた、上記の酸化マグネシウム粉末を用いた排水の処理方法を提供することにもある。
【0009】
【課題を解決するための手段】
本発明は、平均粒子径が0.1〜5μmの範囲にある板状水酸化マグネシウム粒子を含み、1400℃で灼熱後の酸化マグネシウム含有量が98.0質量%以上にある水酸化マグネシウム粉末を、350〜900℃の温度で焼成することにより得られた、平均子径が1〜20nmの範囲にあるペリクレース結晶子の凝集体であって、平均粒子径が0.1〜5μmの範囲にある板状一次凝集体を含み、比表面積が80m2/g以上であって、1400℃で灼熱後の酸化マグネシウム含有量が98.0質量%以上である酸化マグネシウム粉末にある。
【0010】
本発明の酸化マグネシウム粉末の好ましい態様を下記に示す。
(1)ペリクレース結晶粒子の平均粒子径が、1〜10nmの範囲にある。
(2)板状一次凝集体の平均粒子径が、0.1〜3μmの範囲にある。
(3)比表面積が80〜400m2/gの範囲にある。
(4)1400℃で灼熱後の酸化マグネシウム含有量が、98.8〜99.6質量%の範囲にある。
(5)板状一次凝集体が二次凝集体を形成している。
(6)上記二次凝集体の粒子径が30μm以下である。
(7)フッ素及び/又はホウ素の吸着剤用である。
(8)フッ素及び/又はホウ素を含む排水の排水処理剤用である。
【0011】
本発明はまた、平均粒子径が0.1〜5μmの範囲にある板状水酸化マグネシウム粒子を含み、1400℃で灼熱後の酸化マグネシウム含有量が98.0質量%以上にある水酸化マグネシウム粉末を、350〜900℃の温度で焼成することを特徴とする上記の酸化マグネシウム粉末の製造方法にもある。
【0012】
本発明はさらに、フッ素及び/又はホウ素を含む排水に、上記の酸化マグネシウム粉末を接触させることを特徴とする排水処理方法にもある。
【0013】
【発明の実施の形態】
本発明の酸化マグネシウム粉末は、複数個のペリクレース結晶子が板状に凝集した板状一次凝集体を含んでいる。ペリクレース結晶子の平均径は1〜20nmの範囲、好ましくは1〜10nmの範囲にある。ペリクレース結晶子の平均子径は、内部標準にシリコンを用いたX線粉末回折法により測定することができる。
【0014】
板状一次凝集体は、平均粒子径(板状一次凝集体表面の長軸方向の長さの平均)が、0.1〜5μmの範囲、好ましくは0.1〜3μmの範囲にある。板状一次凝集体の平均アスペクト比(長軸方向の長さ/厚さ)は、5〜20の範囲にあることが好ましく、5〜12の範囲にあることがより好ましい。板状一次凝集体の粒子径及び厚さは、電子顕微鏡の拡大画像から測定することができる。
【0015】
本発明の酸化マグネシウム粉末は、比表面積が80m2/g以上、好ましくは80〜400m2/gの範囲、より好ましくは100〜400m2/gの範囲にある。
【0016】
本発明の酸化マグネシウム粉末は、1400℃で灼熱後の酸化マグネシウム含有量が98.0質量%以上、好ましくは98.8〜99.6質量%の範囲にある。1400℃で灼熱後の酸化マグネシウム粉末は、酸化カルシウムを0.2〜0.6質量%の範囲で、酸化ケイ素とアルミナとをその合計量として0.1〜0.3質量%の範囲で含んでいてもよい。
【0017】
本発明の酸化マグネシウム粉末は、板状一次凝集体を60質量%以上含んでいることが好ましく、80質量%以上含んでいることがより好ましい。板状一次凝集体は、板状一次凝集体が二次凝集体を形成していてもよい。二次凝集体は、レーザ回折法による粒子径が30μm以下であることが好ましく、10μm以下であることがより好ましく、8μm以下であることが特に好ましい。
【0018】
本発明の酸化マグネシウム粉末は、例えば、平均粒子径が0.1〜5μmの範囲にある板状水酸化マグネシウム粒子を含み、1400℃で灼熱後の酸化マグネシウム含有量が98.0質量%以上にある水酸化マグネシウム粉末を、350〜900℃(好ましくは、400〜600℃)の温度で焼成することによって製造することができる。
前述の通り、水酸化マグネシウム粉末を500℃程度の温度で焼成することにより、水酸化マグネシウムの板状結晶の形状を残した、ペリクレース結晶子の凝集体を得ることができることは、従来より知られている。しかしながら、本発明者の研究によれば、1400℃で灼熱後の酸化マグネシウム含有量が98.0質量%未満の水酸化マグネシウム粉末を焼成しても、本発明の酸化マグネシウム粉末のような平均子径が20nm以下の微細なペリクレース結晶子を形成させることは難しい。この原因は必ずしも明確ではないが、水酸化マグネシウム粉末に含まれている不純物がペリクレース結晶子の粒成長に何らかの影響を与えているものと考えられる。
【0019】
酸化マグネシウム粉末の製造に用いる水酸化マグネシウム粉末は、例えば、海水、苦汁及びかん水などのマグネシウムを含む水に、水酸化カルシウムなどのアルカリを添加することにより製造することができる。
水酸化マグネシウム粉末の焼成炉には特には制限はない。例えば、ロータリーキルン、ヘレシヨフ炉、及び電気炉を用いることができる。
【0020】
本発明の酸化マグネシウム粉末は、フッ素及び/又はホウ素の吸着材として、あるいはフッ素及び/又はホウ素を含む排水の処理剤として有利に使用することができる。例えば、フッ素化合物の製造及びフッ素による処理などのフッ素化学工程、シリコンウェハや電子部品の洗浄工程、アルミニウム電解製錬工程、リン酸肥料製造工程、ステンレス鋼などの金属製品ピクリング工程、電解メッキ工程、石炭を燃料とする発電所での排ガス脱硫工程などの各種の工程から排出される排水の排水処理剤として有用である。
【0021】
本発明の酸化マグネシウム粉末を用いてフッ素及び/又はホウ素を含む排水処理を行う場合は、排水中のフッ素及び/又はホウ素量に対して質量比で10〜1000倍、特に好ましくは10〜200倍の量の酸化マグネシウム粉末を添加することが好ましい。
【0022】
【実施例】
以下、本発明を実施例により説明する。
本実施例において、酸化マグネシウムのペリクレース結晶粒子の平均粒子径、板状一次凝集体の平均粒子径、二次凝集体の最大粒子径、比表面積、及び1400℃の灼熱後の化学成分は、下記の方法により測定した。
【0023】
(1)ペリクレース結晶粒子の平均粒子径:粉末X線回折法(内部標準物質にシリコンを使用)により測定した。
(2)板状一次凝集体の平均粒子径、及びアスペクト比:電子顕微鏡を用いた画像解析法により測定した。
(3)二次凝集体の最大粒子径:エタノールに試料を投入し、超音波にて試料を分散させた後、レーザー回折粒度分布測定装置により測定した。
(4)比表面積:BET法により測定した。
(5)1400℃の灼熱後の化学成分:試料を1400℃の温度で1間加熱して、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、シリカ(SiO2)、及びアルミナ(Al23)の含有量を定量した。
【0024】
[実施例1]
(1)水酸化マグネシウム粉末の製造
海水(マグネシウム濃度:1300mg/L、炭酸濃度:80mg/L、ホウ素成分濃度(B23換算):13mg/L)をアンスラサイトが充填されたろ過塔に通水し、海水の浮遊物を除去した。次に、海水に硫酸を加えて弱酸性とした後、エアレーションによる脱炭酸処理を行なって、海水中の炭酸濃度を1mg/Lとした。さらに、海水をホウ素選択性イオン交換樹脂を充填した吸着塔に空間速度SV=60(/H)にて通水して、海水中のホウ素成分濃度を5mg/Lとした。この炭酸濃度とホウ素成分濃度を低減させた海水に、水酸化カルシウム(粒径:350メッシュ以下)の濃度が15質量%の石灰精製乳(水酸化カルシウムスラリー)を、海水中のマグネシウム100モルに対してカルシウム量84モルとなる量にて添加して、水酸化マグネシウムを生成した。次いで、シックナーを用いて水酸化マグネシウムを沈降濃縮して、濃度35質量%の水酸化マグネシウムスラリーを得た。この水酸化マグネシウムスラリーを工業用水で洗浄し、再度シックナーにて濃度35質量%に濃縮した。この水酸化マグネシウムスラリーをろ過脱水した後、200℃の温度で乾燥して水酸化マグネシウム粉末を得た。得られた水酸化マグネシウム粉末は、一次粒子が六角板状(平均粒子径:0.5μm、平均アスペクト比:8)であって、1400℃の灼熱後の酸化マグネシウム含有量が99.1質量%であった。
【0025】
(2)酸化マグネシウム粉末の製造
上記の水酸化マグネシウム粉末をロータリー型間接キルンを用いて、530℃の温度で30分間焼成して酸化マグネシウム粉末を得た。得られた酸化マグネシウム粉末のペリクレース結晶粒子の平均粒子径、板状一次凝集体の平均粒子径、二次凝集体の最大粒子径、比表面積、及び1400℃で灼熱後の化学成分を、表1に示す。
【0026】
[実施例2]
(1)水酸化マグネシウム粉末の製造
海水(マグネシウム濃度:1300mg/L、炭酸濃度:80mg/L、ホウ素成分濃度(B23換算):13mg/L)をアンスラサイトが充填されたろ過塔に通水し、海水の浮遊物を除去した。次に、海水に硫酸を加えて弱酸性とした後、エアレーションによる脱炭酸処理を行なって、海水中の炭酸濃度を1mg/Lとした。そして、海水をホウ素選択性イオン交換樹脂を充填した吸着塔に空間速度SV=20(/H)にて通水して、海水中のホウ素成分濃度を1mg/Lとした。この炭酸濃度とホウ素成分濃度を低減させた海水に、水酸化カルシウム(粒径:350メッシュ以下)の濃度が15質量%の石灰精製乳(水酸化カルシウムスラリー)を、海水中のマグネシウム100モルに対してカルシウム量80モルとなる量にて添加して、水酸化マグネシウムを生成した。次いで、シックナーを用いて水酸化マグネシウムを沈降濃縮して、濃度35質量%の水酸化マグネシウムスラリーを得た。この水酸化マグネシウムスラリーを工業用水で洗浄し、再度シックナーにて濃度35質量%に濃縮した。この水酸化マグネシウムスラリーをろ過脱水した後、200℃の温度で乾燥して水酸化マグネシウム粉末を得た。得られた水酸化マグネシウム粉末は、一次粒子が六角板状(平均粒子径:0.2μm、平均アスペクト比:6)であって、1400℃の灼熱後の酸化マグネシウム含有量が99.5質量%であった。
【0027】
(2)酸化マグネシウム粉末の製造
上記の水酸化マグネシウム粉末をロータリー型間接キルンを用いて、420℃の温度で30分間焼成して酸化マグネシウム粉末を得た。得られた酸化マグネシウム粉末のペリクレース結晶粒子の平均粒子径、板状一次凝集体の平均粒子径、二次凝集体の最大粒子径、比表面積、及び1400℃で灼熱後の化学成分を、表1に示す。
【0028】
[実施例3]
(1)水酸化マグネシウム粉末の製造
海水(マグネシウム濃度:1300mg/L、炭酸濃度:80mg/L、ホウ素成分濃度(B23換算):13mg/L)を石灰乳(200メッシュ以下)で充填した層を通過させ、海水中の炭酸量を15mg/Lとした。この炭酸濃度を低減させた海水に、水酸化カルシウム(粒径:350メッシュ以下)の濃度が15質量%の石灰精製乳(水酸化カルシウムスラリー)を、海水中のマグネシウム100モルに対してカルシウム量88モルとなる量にて添加して、水酸化マグネシウムを生成した。次いで、シックナーを用いて水酸化マグネシウムを沈降濃縮して、濃度37質量%の水酸化マグネシウムスラリーを得た。この水酸化マグネシウムスラリーを工業用水で洗浄し、再度シックナーにて濃度37質量%に濃縮した。水酸化マグネシウムスラリーをろ過脱水した後、200℃の温度で乾燥して水酸化マグネシウム粉末を得た。得られた水酸化マグネシウム粉末は、一次粒子が六角板状(平均粒子径:0.8μm、平均アスペクト比:11)であって、1400℃の灼熱後の酸化マグネシウム含有量が98.2質量%であった。
【0029】
(2)酸化マグネシウム粉末の製造
上記の水酸化マグネシウム粉末をロータリー型間接キルンを用いて、550℃の温度で30分間焼成して酸化マグネシウム粉末を得た。得られた酸化マグネシウム粉末のペリクレース結晶粒子の平均粒子径、板状一次凝集体の平均粒子径、二次凝集体の最大粒子径、比表面積、及び1400℃で灼熱後の化学成分を、表1に示す。
【0030】
[比較例1]
(1)水酸化マグネシウム粉末の製造
海水(マグネシウム濃度:1300mg/L、炭酸濃度:80mg/L、ホウ素成分濃度(B23換算):13mg/L)を石灰乳(60メッシュ以下)で充填した層を通過させ、海水中の炭酸量を20mg/Lとした。この炭酸濃度を低減させた海水に、水酸化カルシウム(粒径:200メッシュ以下)の濃度が15質量%の石灰乳(水酸化カルシウムスラリー)を、海水中のマグネシウム100モルに対してカルシウム量88モルとなる量にて添加して、水酸化マグネシウムを生成した。次いで、シックナーを用いて水酸化マグネシウムを沈降濃縮して、濃度40質量%の水酸化マグネシウムスラリーを得た。この水酸化マグネシウムスラリーを工業用水で洗浄し、再度シックナーにて濃度40質量%に濃縮した。水酸化マグネシウムスラリーをろ過脱水した後、105℃の温度で乾燥して水酸化マグネシウム粉末を得た。得られた水酸化マグネシウム粉末は、一次粒子が六角板状(平均粒子径:5.3μm、平均アスペクト比:21)であって、1400℃の灼熱後の酸化マグネシウム含有量が97.3質量%であった。
【0031】
(2)酸化マグネシウム粉末の製造
上記の水酸化マグネシウム粉末をロータリー型間接キルンを用いて、500℃の温度で30分間焼成して酸化マグネシウム粉末を得た。得られた酸化マグネシウム粉末のペリクレース結晶粒子の平均粒子径、板状一次凝集体の平均粒子径、二次凝集体の最大粒子径、比表面積、及び1400℃で灼熱後の化学成分を、表1に示す。
【0032】
【表1】

Figure 0004336148
【0033】
[性能試験]
実施例1乃至3、及び比較例1にて製造した酸化マグネシウム粉末のフッ素吸着能力、及びホウ素吸着能を評価した。
【0034】
(1)フッ素吸着能力の評価
イオンクロマト用フッ素イオン標準液(フッ化ナトリウム溶液)を純水で希釈して、フッ素濃度40mg/Lの試験液を作成した。この試験液100mLに、8gの酸化マグネシウム粉末を添加し、マグネチックスターラを用いて所定の時間撹拌した。撹拌終了後、試験液をガラスフィルターでろ過し、そのろ液中のフッ素濃度を測定した。なお、試験は気温20℃の試験室内にて行なった。その結果を表2に示す。
【0035】
【表2】
Figure 0004336148
【0036】
(2)ホウ素吸着能力の評価
原子吸光分析用ホウ素標準液(ホウ酸溶液)を純水で希釈して、ホウ素濃度50mg/Lの試験液を作成した。この試験液100mLに、10gの酸化マグネシウム粉末を添加し、マグネチックスターラを用いて所定の時間撹拌した。撹拌終了後、試験液をガラスフィルターでろ過し、そのろ液中のホウ素濃度を測定した。なお、試験は気温20℃の試験室内にて行なった。その結果を表3に示す。
【0037】
【表3】
Figure 0004336148
【0038】
【発明の効果】
本発明の酸化マグネシウム粉末は、従来の酸化マグネシウム粉末と比べて、微細なペリクレース結晶子の凝集体を含んでいることからフッ素、ホウ素を効率よく吸着することができる。このため、本発明の酸化マグネシウム粉末は、吸着剤、特に排水処理剤として有利に使用することができる。また、本発明の酸化マグネシウム粉末の製造方法によれば、微細なペリクレース結晶子の凝集体を含む酸化マグネシウム粉末を製造することができる。本発明のフッ素及び/又はホウ素を含む排水の処理方法によれば、効率よく排水のフッ素濃度及び/又はホウ素濃度を低減することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnesium oxide powder useful as an adsorbent or a wastewater treatment agent, and a method for producing the same. The present invention also relates to a wastewater treatment method using the magnesium oxide powder.
[0002]
[Prior art]
Conventionally, a magnesium compound powder such as magnesium hydroxide is calcined to produce a magnesium oxide powder. Lowering the sintering temperature of the magnesium compound, small size of the periclase grain child, large magnesium oxide powder having a specific surface area is known to be obtained (Non-Patent Document 1).
[0003]
Non-Patent Document 1, when calcined at a temperature of about 500 ° C. The magnesium hydroxide powder, leaving the shape of the plate-like crystals of magnesium hydroxide, (called a crystal skeleton) aggregates of periclase grain terminal Is formed. In this Non-Patent Document 1, periclase grain child size 29 nm, specific surface area is described magnesium oxide powder 40~70m 2 / g.
[0004]
Small size of the periclase grain child, large magnesium oxide powder having a specific surface area will tend to have a generally higher adsorption capacity.
For example, Patent Document 1 discloses an adsorbent composed of magnesium oxide particles obtained by baking a magnesium compound capable of forming magnesium oxide particles by thermal decomposition at a temperature of 400 to 700 ° C. According to an embodiment of this patent document, the size of the periclase grain element magnesium and basic magnesium carbonate hydroxide obtained by firing at a temperature in the range of the small, large specific surface area magnesium oxide powder, drainage COD The removal rate and chromaticity removal rate are high.
[0005]
Patent Document 2 discloses fluorine ions dissolved in water by an adsorbent mainly composed of magnesium oxide particles obtained by calcining a magnesium compound capable of forming magnesium oxide particles by thermal decomposition at a temperature of 400 to 700 ° C. A technique for adsorbing is disclosed.
[0006]
In Patent Document 3, as an efficient treatment method for boron and / or fluorine-containing wastewater, magnesium oxide obtained by firing at a temperature of about 1400 ° C. or lower is added to the wastewater, and then treated at a temperature of 30 ° C. or higher. A method of solid-liquid separation is disclosed.
[0007]
[Non-Patent Document 1]
“New Ceramic Powder Handbook”, Science Forum, Inc., 1983, p. 119-121
[Patent Document 1]
Japanese Patent Publication No. 61-43089 [Patent Document 2]
Japanese Patent Publication No. 60-26595 [Patent Document 3]
JP 2001-340872 A
[Problems to be solved by the invention]
An object of the present invention is to provide a magnesium oxide powder useful as an adsorbent or a wastewater treatment agent and a method for producing the same. Another object of the present invention is to provide a wastewater treatment method using the magnesium oxide powder.
[0009]
[Means for Solving the Problems]
The present invention provides a magnesium hydroxide powder containing plate-like magnesium hydroxide particles having an average particle size in the range of 0.1 to 5 μm, and having a magnesium oxide content after heating at 1400 ° C. of 98.0% by mass or more. It was obtained by firing at a temperature of 350 to 900 ° C., a aggregate of periclase grain terminal having an average particle child size in the range of 1 to 20 nm, an average particle diameter of 0.1~5μm range In the magnesium oxide powder containing the plate-like primary aggregates, having a specific surface area of 80 m 2 / g or more and a magnesium oxide content after heating at 1400 ° C. of 98.0% by mass or more.
[0010]
Preferred embodiments of the magnesium oxide powder of the present invention are shown below.
(1) The average particle diameter of the periclase crystal particles is in the range of 1 to 10 nm.
(2) The average particle diameter of the plate-like primary aggregate is in the range of 0.1 to 3 μm.
(3) The specific surface area is in the range of 80 to 400 m 2 / g.
(4) The magnesium oxide content after heating at 1400 ° C. is in the range of 98.8 to 99.6% by mass.
(5) The plate-like primary aggregates form secondary aggregates.
(6) The secondary aggregate has a particle size of 30 μm or less.
(7) For fluorine and / or boron adsorbents.
(8) For waste water treatment agent of waste water containing fluorine and / or boron .
[0011]
The present invention also includes a magnesium hydroxide powder containing plate-like magnesium hydroxide particles having an average particle diameter in the range of 0.1 to 5 μm and having a magnesium oxide content of 98.0% by mass or more after heating at 1400 ° C. Is also calcined at a temperature of 350 to 900 ° C., and there is also a method for producing the magnesium oxide powder.
[0012]
The present invention further resides in a wastewater treatment method characterized by bringing the magnesium oxide powder into contact with wastewater containing fluorine and / or boron.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Magnesium oxide powder of the present invention, a plurality of periclase grain child includes a plate-shaped primary aggregates aggregated into a plate. The average particle diameter of periclase grain child in the range of 1 to 20 nm, preferably in the range of 1 to 10 nm. The average particle Ko径of periclase grain child can be measured by X-ray powder diffraction method using a silicon internal standard.
[0014]
The plate-like primary aggregate has an average particle diameter (average length in the major axis direction of the surface of the plate-like primary aggregate) in the range of 0.1 to 5 μm, preferably in the range of 0.1 to 3 μm. The average aspect ratio (length / thickness in the major axis direction) of the plate-like primary aggregate is preferably in the range of 5 to 20, and more preferably in the range of 5 to 12. The particle diameter and thickness of the plate-like primary aggregate can be measured from an enlarged image of an electron microscope.
[0015]
Magnesium oxide powder of the present invention has a specific surface area of 80 m 2 / g or more, preferably in the range of 80~400m 2 / g, more preferably in the range of 100 to 400 m 2 / g.
[0016]
The magnesium oxide powder of the present invention has a magnesium oxide content after heating at 1400 ° C. of 98.0% by mass or more, preferably 98.8 to 99.6% by mass. The magnesium oxide powder after heating at 1400 ° C. contains calcium oxide in the range of 0.2 to 0.6% by mass, and the total amount of silicon oxide and alumina in the range of 0.1 to 0.3% by mass. You may go out.
[0017]
The magnesium oxide powder of the present invention preferably contains 60% by mass or more, and more preferably 80% by mass or more of the plate-like primary aggregate. In the plate-like primary aggregate, the plate-like primary aggregate may form a secondary aggregate. The secondary aggregate preferably has a particle size of 30 μm or less, more preferably 10 μm or less, and particularly preferably 8 μm or less, as measured by a laser diffraction method.
[0018]
The magnesium oxide powder of the present invention includes, for example, plate-like magnesium hydroxide particles having an average particle diameter in the range of 0.1 to 5 μm, and the magnesium oxide content after heating at 1400 ° C. is 98.0% by mass or more. A certain magnesium hydroxide powder can be produced by firing at a temperature of 350 to 900 ° C. (preferably 400 to 600 ° C.).
As described above, by calcining at a temperature of about 500 ° C. The magnesium hydroxide powder, leaving the shape of the plate-like crystals of magnesium hydroxide, it is possible to obtain the aggregates of periclase grain child is known conventionally It has been. However, according to the study of the present inventor, even if magnesium hydroxide powder having a magnesium oxide content after heating at 1400 ° C. of less than 98.0% by mass is calcined, the average particle size of the magnesium oxide powder of the present invention it is difficult for the child size to form the following fine periclase grain child 20 nm. This cause is not necessarily clear, it is considered that the impurities contained in the magnesium hydroxide powder has some influence on the grain growth of periclase grain child.
[0019]
The magnesium hydroxide powder used for the production of the magnesium oxide powder can be produced, for example, by adding an alkali such as calcium hydroxide to water containing magnesium such as seawater, bitter juice and brine.
There is no particular limitation on the firing furnace for magnesium hydroxide powder. For example, a rotary kiln, a Heleshov furnace, and an electric furnace can be used.
[0020]
The magnesium oxide powder of the present invention can be advantageously used as an adsorbent for fluorine and / or boron or as a treatment agent for wastewater containing fluorine and / or boron. For example, fluorine chemical processes such as the manufacture of fluorine compounds and treatment with fluorine, cleaning processes for silicon wafers and electronic parts, aluminum electrolytic smelting processes, phosphate fertilizer manufacturing processes, pickling processes for metal products such as stainless steel, electrolytic plating processes, It is useful as a wastewater treatment agent for wastewater discharged from various processes such as an exhaust gas desulfurization process at a power plant using coal as fuel.
[0021]
When wastewater treatment containing fluorine and / or boron is performed using the magnesium oxide powder of the present invention, the mass ratio is 10 to 1000 times, particularly preferably 10 to 200 times, relative to the amount of fluorine and / or boron in the wastewater. It is preferable to add the amount of magnesium oxide powder.
[0022]
【Example】
Hereinafter, the present invention will be described with reference to examples.
In this example, the average particle diameter of the periclase crystal particles of magnesium oxide, the average particle diameter of the plate-like primary aggregate, the maximum particle diameter of the secondary aggregate, the specific surface area, and the chemical components after 1400 ° C. heating are as follows: It measured by the method of.
[0023]
(1) Average particle diameter of periclase crystal particles: measured by a powder X-ray diffraction method (silicon is used as an internal standard substance).
(2) Average particle diameter and aspect ratio of plate-like primary aggregates: measured by an image analysis method using an electron microscope.
(3) Maximum particle size of secondary aggregate: A sample was put into ethanol, and the sample was dispersed with ultrasonic waves, and then measured with a laser diffraction particle size distribution analyzer.
(4) Specific surface area: measured by the BET method.
(5) Chemical components after heating at 1400 ° C .: The sample is heated for 1 minute at a temperature of 1400 ° C., and magnesium oxide (MgO), calcium oxide (CaO), silica (SiO 2 ), and alumina (Al 2 O 3) ) Content was quantified.
[0024]
[Example 1]
(1) Manufacture of Magnesium Hydroxide Powder Seawater (magnesium concentration: 1300 mg / L, carbonic acid concentration: 80 mg / L, boron component concentration (converted to B 2 O 3 ): 13 mg / L) in a filtration tower packed with anthracite Water was passed through to remove seawater suspended matter. Next, sulfuric acid was added to seawater to make it weakly acidic, followed by decarboxylation by aeration, so that the carbonic acid concentration in seawater was 1 mg / L. Further, seawater was passed through an adsorption tower packed with boron-selective ion exchange resin at a space velocity of SV = 60 (/ H), so that the boron component concentration in the seawater was 5 mg / L. Lime refined milk (calcium hydroxide slurry) with a calcium hydroxide (particle size: 350 mesh or less) concentration of 15% by mass is added to 100 mol of magnesium in the seawater to the seawater with reduced carbonate and boron component concentrations. On the other hand, calcium hydroxide was added in an amount of 84 mol to produce magnesium hydroxide. Next, magnesium hydroxide was precipitated and concentrated using a thickener to obtain a magnesium hydroxide slurry having a concentration of 35% by mass. This magnesium hydroxide slurry was washed with industrial water and again concentrated to a concentration of 35% by mass with a thickener. The magnesium hydroxide slurry was dewatered by filtration and then dried at a temperature of 200 ° C. to obtain a magnesium hydroxide powder. The obtained magnesium hydroxide powder has hexagonal plate-like primary particles (average particle size: 0.5 μm, average aspect ratio: 8), and the magnesium oxide content after heating at 1400 ° C. is 99.1% by mass. Met.
[0025]
(2) Production of magnesium oxide powder The magnesium hydroxide powder was fired at a temperature of 530 ° C for 30 minutes using a rotary indirect kiln to obtain a magnesium oxide powder. Table 1 shows the average particle diameter of the periclase crystal particles of the obtained magnesium oxide powder, the average particle diameter of the plate-like primary aggregate, the maximum particle diameter of the secondary aggregate, the specific surface area, and the chemical composition after heating at 1400 ° C. Shown in
[0026]
[Example 2]
(1) Manufacture of Magnesium Hydroxide Powder Seawater (magnesium concentration: 1300 mg / L, carbonic acid concentration: 80 mg / L, boron component concentration (converted to B 2 O 3 ): 13 mg / L) in a filtration tower packed with anthracite Water was passed through to remove seawater suspended matter. Next, sulfuric acid was added to seawater to make it weakly acidic, followed by decarboxylation by aeration, so that the carbonic acid concentration in seawater was 1 mg / L. Then, seawater was passed through an adsorption tower filled with boron-selective ion exchange resin at a space velocity of SV = 20 (/ H), so that the boron component concentration in seawater was 1 mg / L. Lime refined milk (calcium hydroxide slurry) with a calcium hydroxide (particle size: 350 mesh or less) concentration of 15% by mass is added to 100 mol of magnesium in the seawater to the seawater with reduced carbonate and boron component concentrations. On the other hand, magnesium hydroxide was produced by adding calcium in an amount of 80 mol. Next, magnesium hydroxide was precipitated and concentrated using a thickener to obtain a magnesium hydroxide slurry having a concentration of 35% by mass. This magnesium hydroxide slurry was washed with industrial water and again concentrated to a concentration of 35% by mass with a thickener. The magnesium hydroxide slurry was dewatered by filtration and then dried at a temperature of 200 ° C. to obtain a magnesium hydroxide powder. The obtained magnesium hydroxide powder has a primary particle hexagonal plate shape (average particle size: 0.2 μm, average aspect ratio: 6), and the magnesium oxide content after heating at 1400 ° C. is 99.5% by mass. Met.
[0027]
(2) Production of magnesium oxide powder The magnesium hydroxide powder was fired at a temperature of 420 ° C for 30 minutes using a rotary indirect kiln to obtain a magnesium oxide powder. Table 1 shows the average particle diameter of the periclase crystal particles of the obtained magnesium oxide powder, the average particle diameter of the plate-like primary aggregate, the maximum particle diameter of the secondary aggregate, the specific surface area, and the chemical composition after heating at 1400 ° C. Shown in
[0028]
[Example 3]
(1) Manufacture of magnesium hydroxide powder Filled with seawater (magnesium concentration: 1300 mg / L, carbonate concentration: 80 mg / L, boron component concentration (B 2 O 3 conversion): 13 mg / L) with lime milk (200 mesh or less) The amount of carbonic acid in the seawater was 15 mg / L. Lime refined milk (calcium hydroxide slurry) in which the concentration of calcium hydroxide (particle size: 350 mesh or less) is 15% by mass is added to the seawater in which the carbonic acid concentration is reduced. An amount of 88 mol was added to produce magnesium hydroxide. Subsequently, the magnesium hydroxide was precipitated and concentrated using a thickener to obtain a magnesium hydroxide slurry having a concentration of 37% by mass. This magnesium hydroxide slurry was washed with industrial water and again concentrated to a concentration of 37% by mass with a thickener. The magnesium hydroxide slurry was filtered and dehydrated, and then dried at a temperature of 200 ° C. to obtain a magnesium hydroxide powder. The obtained magnesium hydroxide powder has a primary particle hexagonal plate shape (average particle diameter: 0.8 μm, average aspect ratio: 11), and the magnesium oxide content after heating at 1400 ° C. is 98.2% by mass. Met.
[0029]
(2) Production of magnesium oxide powder The magnesium hydroxide powder was fired at a temperature of 550 ° C for 30 minutes using a rotary indirect kiln to obtain a magnesium oxide powder. Table 1 shows the average particle diameter of the periclase crystal particles of the obtained magnesium oxide powder, the average particle diameter of the plate-like primary aggregate, the maximum particle diameter of the secondary aggregate, the specific surface area, and the chemical composition after heating at 1400 ° C. Shown in
[0030]
[Comparative Example 1]
(1) Manufacture of magnesium hydroxide powder Filled with seawater (magnesium concentration: 1300 mg / L, carbonate concentration: 80 mg / L, boron component concentration (B 2 O 3 conversion): 13 mg / L) with lime milk (60 mesh or less) The amount of carbonic acid in seawater was 20 mg / L. Lime milk (calcium hydroxide slurry) having a calcium hydroxide (particle size: 200 mesh or less) concentration of 15 mass% is added to the seawater in which the carbonic acid concentration is reduced, and the calcium amount is 88 with respect to 100 mol of magnesium in the seawater. Addition in a molar amount produced magnesium hydroxide. Subsequently, the magnesium hydroxide was precipitated and concentrated using a thickener to obtain a magnesium hydroxide slurry having a concentration of 40% by mass. This magnesium hydroxide slurry was washed with industrial water and again concentrated to a concentration of 40% by mass with a thickener. The magnesium hydroxide slurry was filtered and dehydrated, and then dried at a temperature of 105 ° C. to obtain a magnesium hydroxide powder. The obtained magnesium hydroxide powder has a primary particle hexagonal plate shape (average particle size: 5.3 μm, average aspect ratio: 21), and the magnesium oxide content after heating at 1400 ° C. is 97.3% by mass. Met.
[0031]
(2) Production of magnesium oxide powder The magnesium hydroxide powder was fired at a temperature of 500 ° C for 30 minutes using a rotary indirect kiln to obtain a magnesium oxide powder. Table 1 shows the average particle diameter of the periclase crystal particles of the obtained magnesium oxide powder, the average particle diameter of the plate-like primary aggregate, the maximum particle diameter of the secondary aggregate, the specific surface area, and the chemical composition after heating at 1400 ° C. Shown in
[0032]
[Table 1]
Figure 0004336148
[0033]
[performance test]
The fluorine adsorption ability and the boron adsorption ability of the magnesium oxide powder produced in Examples 1 to 3 and Comparative Example 1 were evaluated.
[0034]
(1) Evaluation of fluorine adsorption capacity A fluorine ion standard solution (sodium fluoride solution) for ion chromatography was diluted with pure water to prepare a test solution having a fluorine concentration of 40 mg / L. To 100 mL of this test solution, 8 g of magnesium oxide powder was added and stirred for a predetermined time using a magnetic stirrer. After the stirring, the test solution was filtered with a glass filter, and the fluorine concentration in the filtrate was measured. The test was conducted in a test room at an air temperature of 20 ° C. The results are shown in Table 2.
[0035]
[Table 2]
Figure 0004336148
[0036]
(2) Evaluation of boron adsorption ability A boron standard solution (boric acid solution) for atomic absorption analysis was diluted with pure water to prepare a test solution having a boron concentration of 50 mg / L. To 100 mL of this test solution, 10 g of magnesium oxide powder was added and stirred for a predetermined time using a magnetic stirrer. After completion of stirring, the test solution was filtered with a glass filter, and the boron concentration in the filtrate was measured. The test was conducted in a test room at an air temperature of 20 ° C. The results are shown in Table 3.
[0037]
[Table 3]
Figure 0004336148
[0038]
【The invention's effect】
Magnesium oxide powder of the present invention, as compared with conventional magnesium oxide powder, fluorine because it contains the agglomerates of fine periclase grain child can be adsorbed efficiently boron. For this reason, the magnesium oxide powder of the present invention can be advantageously used as an adsorbent, particularly as a wastewater treatment agent. According to the manufacturing method of the magnesium oxide powder of the present invention, it is possible to produce the magnesium oxide powder containing agglomerates of fine periclase grain child. According to the method for treating wastewater containing fluorine and / or boron of the present invention, the fluorine concentration and / or boron concentration of wastewater can be efficiently reduced.

Claims (11)

平均粒子径が0.1〜5μmの範囲にある板状水酸化マグネシウム粒子を含み、1400℃で灼熱後の酸化マグネシウム含有量が98.0質量%以上にある水酸化マグネシウム粉末を、350〜900℃の温度で焼成することにより得られた、平均子径が1〜20nmの範囲にあるペリクレース結晶子の凝集体であって、平均粒子径が0.1〜5μmの範囲にある板状一次凝集体を含み、比表面積が80m2/g以上であって、1400℃で灼熱後の酸化マグネシウム含有量が98.0質量%以上である酸化マグネシウム粉末。 Magnesium hydroxide powder containing plate-like magnesium hydroxide particles having an average particle diameter in the range of 0.1 to 5 μm and having a magnesium oxide content after heating at 1400 ° C. of 98.0% by mass or more is 350 to 900 obtained by firing ℃ temperature, a aggregate of periclase grain terminal having an average particle child size in the range of 1 to 20 nm, plate-like having an average particle diameter in the range of 0.1~5μm Magnesium oxide powder containing primary aggregates, having a specific surface area of 80 m 2 / g or more and a magnesium oxide content after heating at 1400 ° C. of 98.0% by mass or more. ペリクレース結晶粒子の平均粒子径が、1〜10nmの範囲にある請求項1に記載の酸化マグネシウム粉末。  The magnesium oxide powder according to claim 1, wherein the periclase crystal particles have an average particle diameter in the range of 1 to 10 nm. 板状一次凝集体の平均粒子径が、0.1〜3μmの範囲にある請求項1に記載の酸化マグネシウム粉末。  The magnesium oxide powder according to claim 1, wherein the plate-like primary aggregate has an average particle size in the range of 0.1 to 3 µm. 比表面積が80〜400m2/gの範囲にある請求項1に記載の酸化マグネシウム粉末。The magnesium oxide powder according to claim 1, wherein the specific surface area is in the range of 80 to 400 m 2 / g. 1400℃で灼熱後の酸化マグネシウム含有量が、98.8〜99.6質量%の範囲にある請求項1に記載の酸化マグネシウム粉末。  Magnesium oxide powder according to claim 1, wherein the magnesium oxide content after heating at 1400 ° C is in the range of 98.8 to 99.6% by mass. 板状一次凝集体が二次凝集体を形成していることを特徴とする請求項1に記載の酸化マグネシウム粉末。  2. The magnesium oxide powder according to claim 1, wherein the plate-like primary aggregate forms a secondary aggregate. 二次凝集体の粒子径が30μm以下であることを特徴とする請求項6に記載の酸化マグネシウム粉末。  The magnesium oxide powder according to claim 6, wherein the secondary aggregate has a particle size of 30 μm or less. フッ素及び/又はホウ素の吸着剤用である請求項1に記載の酸化マグネシウム粉末。 The magnesium oxide powder according to claim 1, which is used for an adsorbent of fluorine and / or boron . フッ素及び/又はホウ素を含む排水の排水処理剤用である請求項1に記載の酸化マグネシウム粉末。 The magnesium oxide powder according to claim 1, which is used for a wastewater treatment agent for wastewater containing fluorine and / or boron . 平均粒子径が0.1〜5μmの範囲にある板状水酸化マグネシウム粒子を含み、1400℃で灼熱後の酸化マグネシウム含有量が98.0質量%以上にある水酸化マグネシウム粉末を、350〜900℃の温度で焼成することを特徴とする請求項1に記載の酸化マグネシウム粉末の製造方法。  Magnesium hydroxide powder containing plate-like magnesium hydroxide particles having an average particle diameter of 0.1 to 5 μm and having a magnesium oxide content after heating at 1400 ° C. of 98.0% by mass or more is 350 to 900 The method for producing a magnesium oxide powder according to claim 1, wherein firing is performed at a temperature of ° C. フッ素及び/又はホウ素を含む排水に、請求項1乃至7のうちのいずれかの項に記載の酸化マグネシウム粉末を接触させることを特徴とする排水処理方法。  A wastewater treatment method comprising contacting the magnesium oxide powder according to any one of claims 1 to 7 with wastewater containing fluorine and / or boron.
JP2003168369A 2003-06-12 2003-06-12 Magnesium oxide powder and method for producing the same Expired - Lifetime JP4336148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168369A JP4336148B2 (en) 2003-06-12 2003-06-12 Magnesium oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168369A JP4336148B2 (en) 2003-06-12 2003-06-12 Magnesium oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005001949A JP2005001949A (en) 2005-01-06
JP4336148B2 true JP4336148B2 (en) 2009-09-30

Family

ID=34093886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168369A Expired - Lifetime JP4336148B2 (en) 2003-06-12 2003-06-12 Magnesium oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4336148B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034255B2 (en) * 2005-06-17 2012-09-26 宇部興産株式会社 Dehydration and solidification method for highly hydrous soil
JP5037066B2 (en) * 2005-08-10 2012-09-26 宇部マテリアルズ株式会社 High specific surface area magnesium oxide powder and method for producing the same
JP4841912B2 (en) * 2005-09-20 2011-12-21 宇部マテリアルズ株式会社 Magnesium oxide powder for soil hardening material
JP4558633B2 (en) * 2005-11-22 2010-10-06 協和化学工業株式会社 Wastewater treatment method containing fluoride ions
CN101679058B (en) 2007-03-30 2012-11-14 宇部材料工业株式会社 Magnesium hydroxide powder and method for producing the same
JP2008255171A (en) * 2007-04-02 2008-10-23 Itochu Ceratech Corp Fixing agent for inorganic harmful component
KR100905746B1 (en) 2007-07-10 2009-07-01 에이취아이엠테크(주) Composition comprising micro particle of magnesium oxide for desulfurizating flue gas
JP5244368B2 (en) * 2007-11-05 2013-07-24 株式会社テルナイト Heavy metal insolubilizer and heavy metal contaminated soil treatment agent
JP5765724B2 (en) * 2010-06-11 2015-08-19 一般財団法人電力中央研究所 Gas processing method
CN102345141B (en) * 2011-09-05 2014-01-01 冯乃祥 Aluminum electrolytic tank anode carbon block of irregularly-shaped structure with exhaust passage and preparation method thereof
JP5992846B2 (en) * 2013-02-13 2016-09-14 タテホ化学工業株式会社 Rod-shaped magnesium hydroxide particles having a high specific surface area, rod-shaped magnesium oxide particles, and methods for producing them
JP2018149520A (en) * 2017-03-14 2018-09-27 オルガノ株式会社 Water treatment method, magnesium agen for water treatment, and method for producing magnesium agent for water treatment
CN109250735A (en) * 2017-07-13 2019-01-22 田利 A method of recycling trade waste boron mud
JP2019155216A (en) * 2018-03-07 2019-09-19 オルガノ株式会社 Water treatment method and water treatment equipment
JP7116395B2 (en) * 2018-03-07 2022-08-10 オルガノ株式会社 Water treatment method and water treatment equipment
CN109607971A (en) * 2019-01-16 2019-04-12 湖南农业大学 Acid wastewater in mine ecological treatment system and processing method
JP7207082B2 (en) * 2019-03-28 2023-01-18 日本製鉄株式会社 Magnesium oxide and its production method
JP2021016817A (en) * 2019-07-18 2021-02-15 オルガノ株式会社 Water treatment agent, water treatment agent raw material, water treatment agent manufacturing method, and water treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916200B1 (en) * 1970-12-15 1974-04-20
JPS5330489A (en) * 1976-09-01 1978-03-22 Agency Of Ind Science & Technol Magnesia adsorbent
JPS6026595B2 (en) * 1981-05-29 1985-06-24 工業技術院長 How to remove fluoride ions
JPS60176918A (en) * 1984-02-22 1985-09-11 Kyowa Chem Ind Co Ltd Magnesium hydroxide having high purity and dispersibility and production thereof
JPH02141418A (en) * 1988-11-21 1990-05-30 Kyowa Chem Ind Co Ltd Highly dispersible magnesium oxide and its production
JP2001340872A (en) * 2000-06-05 2001-12-11 Japan Organo Co Ltd Method for treating wastewater containing boron and/or fluorine

Also Published As

Publication number Publication date
JP2005001949A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4336148B2 (en) Magnesium oxide powder and method for producing the same
Deng et al. Formation of NaP zeolite from fused fly ash for the removal of Cu (II) by an improved hydrothermal method
WO2013143335A1 (en) Method for extracting aluminium oxide in fly ash by alkaline process
CN112169748B (en) Adsorbent and preparation method and application thereof
WO2013183742A1 (en) Aluminum silicate and method for producing same
EA023776B1 (en) Method for preparing a composition comprising amorphous iron oxyhydroxide
CN111498864B (en) Magnetic zeolite material and preparation method and application thereof
CN114225895A (en) La-Fe-Al composite metal oxide, preparation method and application
CN108367267A (en) Sorbing material particle
JP2007136424A (en) Method for treating waste water containing fluorine ion
CN109553121A (en) A kind of preparation method of high-purity low-sodium aluminum hydroxide
JP2005000840A (en) Treating method for fluorine-containing waste water
CN108014746A (en) A kind of preparation method of submicron order Fe-Al-Mg composite metal oxide de-fluoridation agent
JPS6026595B2 (en) How to remove fluoride ions
JP2011132107A (en) Method of manufacturing cerium oxide fine particle
JP2005162513A (en) Manufacturing method of zeoliting soil from soil derived from municipal waterworks, waste water treatment method and treatment method of used zeoliting soil
RU2719827C1 (en) Magnesium oxide for annealing separators and anisotropic electrotechnical sheet steel
JP4189652B2 (en) Adsorbent
WO2023190681A1 (en) Beta zeolite and method for producing same
CN113019315B (en) Method for preparing 4A zeolite molecular sieve by using opal shale and nitrogen removal application thereof
TWI745141B (en) Zeolite x, zeolite a and method of producing the same
JP4238111B2 (en) Fluorine ion recovery material manufacturing method and fluorine ion recovery method
JPH068169B2 (en) High density coarse grain magnesia clinker
RU2309897C2 (en) Method of cleaning zinc oxide from silicon admixture
JP5099348B2 (en) Adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090403

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4336148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term