JPH10272495A - Treatment of organic waste water containing salts of high concentration - Google Patents
Treatment of organic waste water containing salts of high concentrationInfo
- Publication number
- JPH10272495A JPH10272495A JP9078182A JP7818297A JPH10272495A JP H10272495 A JPH10272495 A JP H10272495A JP 9078182 A JP9078182 A JP 9078182A JP 7818297 A JP7818297 A JP 7818297A JP H10272495 A JPH10272495 A JP H10272495A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- water
- electrodialysis
- reverse osmosis
- salts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高濃度の塩類を含
有する有機性廃水からその塩類を脱塩し、有機物を除去
する処理方法に関するものであり、特にし尿やごみ浸出
水などような塩類濃度の高い有機性廃水の高度処理、脱
塩処理、塩類物質の濃縮回収、処理水の回収・再利用な
どに用いることができる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment method for desalinating organic wastewater containing high concentration of salts and removing organic substances, and more particularly, to a method for removing salts such as night soil and leachate leachate. It can be used for advanced treatment of organic wastewater with a high concentration, desalination treatment, concentration and recovery of salt substances, and recovery and reuse of treated water.
【0002】[0002]
【従来の技術】し尿や浸出水などの塩類濃度が高い有機
性廃水は、一般に、カルシウムイオンなどの塩類や有機
物などの汚濁物質を高濃度に含んでいる。しばしば、生
化学的酸素要求量(BOD)や化学的酸素要求量(CO
D)が高く、多くの懸濁固体(SS)を含み、さらにコ
ロイド物質などに原因する色度を有している。そのた
め、通常これらを何らかの用途に直接再利用したり河川
などに直接放流したりすることはできない。このような
有機性廃水の処理方法としては、従来では、有機汚濁物
の除去を主体とした処理方法が用いられている。主な処
理方法としては、例えば、BOD除去を目的とした生物
処理、色度、COD及びSSなどの除去を目的とした凝
集沈殿処理、SSなど濁質の除去を目的とした砂ろ過や
精密ろ過膜(MF膜)処理がある。さらに、高度処理方
法として一般的にオゾンや活性炭を用いる方法などがあ
る。2. Description of the Related Art Generally, organic wastewater having a high salt concentration such as human waste and leachate contains a high concentration of pollutants such as salts such as calcium ions and organic substances. Often, biochemical oxygen demand (BOD) or chemical oxygen demand (CO
D) is high, contains many suspended solids (SS), and has a chromaticity attributed to colloidal substances and the like. For this reason, they cannot usually be directly reused for some purpose or directly discharged to rivers. As a method for treating such organic wastewater, a treatment method mainly for removing organic pollutants has been conventionally used. The main treatment methods are, for example, biological treatment for removing BOD, coagulation sedimentation treatment for removing chromaticity, COD and SS, sand filtration and microfiltration for removing turbidity such as SS. There is a film (MF film) treatment. Further, as an advanced treatment method, there is generally a method using ozone or activated carbon.
【0003】[0003]
【発明が解決しようとする課題】前記した有機性廃水の
処理方法においては、それらの処理を組み合わせること
により、BOD、CODなどの有機性成分を十分に除去
することができるような技術水準に達している。しか
し、有機性廃水は一般に有機物の他にも様々な塩類を含
んでおり、場合によってはかなりの高い濃度の塩類を含
有する場合がある。このような廃水を処理して河川など
に放水する場合には、放流水域の水質保護、あるいは農
業用水への影響も考慮しなければならず、近来、有機汚
濁成分だけでなく特にそのような塩類も廃水中から一緒
に除去する必要性が高まってきている。従来の有機性廃
水の浄化方法は、いずれも主にその中の有機汚濁成分を
除去することを目的としているため、塩類を除去する効
果がなく、その処理水の塩類濃度は流入原水とほぼ同程
度となっている。In the above-mentioned method for treating organic wastewater, a combination of these treatments has reached a state of the art in which organic components such as BOD and COD can be sufficiently removed. ing. However, organic wastewater generally contains a variety of salts in addition to organic matter, and in some cases can contain significantly higher concentrations of salts. When treating such wastewater and discharging it to rivers, etc., it is necessary to consider the impact on the water quality protection of the discharge water area and agricultural water, and recently, not only organic pollutants but also such salts There is an increasing need to remove them together from wastewater. Since the conventional methods of purifying organic wastewater are mainly intended to remove organic pollutants therein, there is no effect of removing salts, and the salt concentration of the treated water is almost the same as that of the influent raw water. It has become about.
【0004】塩類を含む水相中から塩類を除去する処理
方法はそれ自体では良く知られている技術であって、例
えば逆浸透法、電気透析法、蒸発法などを挙げることが
できる。逆浸透法は、半透膜(RO膜)で仕切られた室
中の塩類水に浸透圧以上の機械的圧力を加えて、半透膜
を通して水を室外に出すことにより脱塩した水を得ると
いう方法である。この方法の場合、効率は塩類水の塩類
濃度に左右されるという欠点がある。塩類水の濃度が高
い場合には脱塩水の回収率は低い。例えば、3.5wt
%NaCl水溶液を脱塩処理する場合、処理圧力を60
kgf/cm2 としても、水回収率は高くても35〜4
0%である。水の回収率を50%以上にするには操作圧
力を70kgf/cm2 以上にしなければならない。し
かし、このような高圧では、処理コストの増加となるだ
けではなく、逆浸透処理装置の寿命などを考えるとその
限界がある。さらに、塩類水が高い濃度でカルシウムイ
オンを含んでいると半透膜表面にカルシウムスケールが
析出する危険性がある。塩類濃度が比較的低くても、半
透膜表面でのカルシウムスケールの析出により透過水量
の低下で処理水の高い回収率での処理が困難となる。[0004] A treatment method for removing salts from an aqueous phase containing salts is a well-known technique per se, and examples thereof include a reverse osmosis method, an electrodialysis method, and an evaporation method. In the reverse osmosis method, a salt water in a room partitioned by a semi-permeable membrane (RO membrane) is applied with a mechanical pressure equal to or higher than an osmotic pressure, and water is discharged outside the room through the semi-permeable membrane to obtain desalted water. That is the method. This method has the disadvantage that the efficiency depends on the salt concentration of the saline water. When the concentration of saline water is high, the recovery rate of demineralized water is low. For example, 3.5wt
When desalinating an aqueous solution of NaCl at a rate of 60%
Even if the water recovery rate is as high as 35 to 4 kgf / cm 2 ,
0%. To achieve a water recovery of 50% or more, the operating pressure must be 70 kgf / cm 2 or more. However, such a high pressure not only increases the processing cost, but also has a limit in consideration of the life of the reverse osmosis treatment apparatus and the like. Further, when the salt water contains calcium ions at a high concentration, there is a risk that calcium scale is deposited on the surface of the semipermeable membrane. Even when the salt concentration is relatively low, the amount of permeated water decreases due to the precipitation of calcium scale on the surface of the semipermeable membrane, and it becomes difficult to treat the treated water at a high recovery rate.
【0005】電気透析法では、基本的に水の回収率を高
く得ることができる。しかし、電気透析される被処理水
がカルシウムイオンを高い濃度で含んでいる場合にはカ
ルシウムスケールが装置内に析出する。特に、電気透析
法では、陽極からの水素イオン及び陰極からの水酸イオ
ンの移動に伴うpH変化などによりカルシウムスケール
が生成しやすい。カルシウムスケールが析出すれば水を
高い回収率を得ることはできない点は、逆浸透法の場合
と同様である。しかも、この方法ではCODなどの有機
物を除去することができないため、良質の処理水を得る
ためには活性炭処理法などの他の処理法による有機物の
除去が必要となる。また、蒸発法は、系の相変化を伴う
方法であるため、必要エネルギーが大きく、処理コスト
を非常に増大させるという問題点がある。さらに、廃水
が揮発性の有機物や窒素−アンモニウム塩化合物(NH
4 −N)などを含んでいればそれらも処理水中に混入す
ることがあり、良質な処理水は得にくいという問題点も
ある。[0005] In the electrodialysis method, basically, a high water recovery rate can be obtained. However, if the water to be electrodialyzed contains calcium ions at a high concentration, calcium scale precipitates in the apparatus. In particular, in the electrodialysis method, calcium scale is easily generated due to a change in pH caused by the movement of hydrogen ions from the anode and hydroxyl ions from the cathode. As with the case of the reverse osmosis method, it is impossible to obtain a high water recovery rate if calcium scale is precipitated. In addition, since organic matter such as COD cannot be removed by this method, it is necessary to remove organic matter by another treatment method such as an activated carbon treatment method in order to obtain high quality treated water. Further, since the evaporation method involves a phase change of the system, there is a problem that the required energy is large and the processing cost is greatly increased. Further, the wastewater is a volatile organic substance or a nitrogen-ammonium salt compound (NH
If 4- N) or the like is contained, they may be mixed into the treated water, and there is a problem that it is difficult to obtain high-quality treated water.
【0006】本発明は、塩類を高い濃度で含む有機性廃
水を処理して、再利用したり河川などに直接放流するこ
とができる程にまで効率よく浄化する際に、有機性成分
を十分除去できるだけではなく、塩類を十分に除去する
ことができ、かつその処理に際してカルシウムスケール
の析出などの処理効果を低下させるという問題を起こさ
ないで、浄化を行い、塩濃度の低い処理水を高い効率で
得ることができる処理方法を提供することを目的とする
ものである。[0006] The present invention sufficiently removes organic components when treating and efficiently purifying organic wastewater containing a high concentration of salts so that it can be reused or discharged directly to rivers and the like. In addition, it is possible to sufficiently remove salts, and to purify the treated water with low salt concentration with high efficiency without causing the problem of reducing the treatment effect such as precipitation of calcium scale during the treatment. It is an object to provide a processing method that can be obtained.
【0007】[0007]
【課題を解決するための手段】即ち本発明の目的は下記
の構成によって達成される。 (1)高濃度の塩類を含有した有機性廃水の処理方法で
あって、前記有機性廃水に前処理として、生物処理、凝
集沈殿処理、砂ろ過処理、精密ろ過膜処理のいずれか、
又は2以上の組合せからなる処理を行い、次いで逆浸透
膜により脱塩処理して、逆浸透濃縮水と逆浸透処理水と
に分離し、前記逆浸透処理水を回収し、前記逆浸透濃縮
水をカルシウムを除去するための軟化処理を行った後、
電気透析処理を施して電気透析濃縮水と電気透析脱塩水
とに分離し、前記電気透析脱塩水を再び逆浸透処理の供
給側に戻すことを特徴とする高濃度の塩類を含有する有
機性廃水の処理方法。 (2)前記軟化処理は、処理水中のカルシウム濃度を1
00mg/リットル以下にすることを特徴とする前記
(1)記載の高濃度の塩類を含有する有機性廃水の処理
方法。That is, the object of the present invention is achieved by the following constitutions. (1) A method for treating organic wastewater containing a high concentration of salts, wherein any one of biological treatment, coagulation sedimentation treatment, sand filtration treatment, and microfiltration membrane treatment is used as a pretreatment for the organic wastewater.
Or a treatment comprising a combination of two or more, followed by a desalination treatment with a reverse osmosis membrane, separating into a reverse osmosis concentrated water and a reverse osmosis treated water, collecting the reverse osmosis treated water, and After performing a softening treatment to remove calcium,
An organic wastewater containing a high concentration of salts, wherein the organic wastewater is subjected to electrodialysis treatment to separate the electrodialysis concentrated water and the electrodialysis demineralized water, and the electrodialysis demineralized water is returned to the reverse osmosis treatment supply side. Processing method. (2) In the softening treatment, the calcium concentration in the treated water is reduced to 1
The method for treating an organic wastewater containing high concentration of salts according to the above (1), wherein the concentration is not more than 00 mg / liter.
【0008】(3)前記電気透析処理は脱塩率が98%
以上で、電気透析脱塩水の蒸発残留物が1000mg/
リットル以下となるように行うことを特徴とする前記
(1)又は(2)記載の高濃度の塩類を含有する有機性
廃水の処理方法。 (4)前記電気透析処理後の電気透析濃縮水は蒸発残留
物が13wt%以上となることを特徴とする前記(1)
〜(3)のいずれか1項記載の高濃度の塩類を含有する
有機性廃水の処理方法。(3) The electrodialysis treatment has a desalination rate of 98%.
Thus, the evaporation residue of the electrodialysis demineralized water is 1000 mg /
The method for treating an organic wastewater containing a high concentration of salts according to the above (1) or (2), wherein the treatment is carried out so as to be less than 1 liter. (4) The electrodialysis concentrated water after the electrodialysis treatment has an evaporation residue of 13% by weight or more.
The method for treating an organic wastewater containing a high concentration of salts according to any one of claims 1 to 3.
【0009】[0009]
【発明の実施の形態】次に、本発明の実施の形態を図面
により説明する。図1は、本発明にかかる廃水の処理方
法を行う処理装置の一実施態様を示す概略図である。図
1に示す有機性廃水の処理装置は、図示外の有機物の除
去処理装置から延びる被処理水流入管1の出口を逆浸透
処理供給槽2内に開口させている。逆浸透処理供給槽2
から逆浸透処理供給配管3が逆浸透処理装置4に連結し
ている。この逆浸透処理装置4からは逆浸透処理水配管
5と逆浸透濃縮水配管6とが別々に延びており、逆浸透
濃縮水配管6から逆浸透濃縮水が軟化処理装置7へ導い
ている。逆浸透処理水は逆浸透処理水管5から系外に回
収される。前記軟化処理装置7は軟化処理した処理水を
導く軟化処理水配管9を電気透析処理供給槽10に通じ
ており、また生成した泥状物を排出する排泥管8を有す
る。この電気透析処理供給槽10からは電気透析処理供
給配管11が電気透析処理装置12につながっている。
この電気透析処理装置12から電気透析濃縮水を送る電
気透析濃縮水配管14が蒸発乾燥処理装置15に接続さ
れ、また電気透析脱塩水を送る電気透析脱塩水配管13
が前記逆浸透処理供給槽2に接続されている。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing one embodiment of a treatment apparatus for performing the wastewater treatment method according to the present invention. In the apparatus for treating organic wastewater shown in FIG. 1, the outlet of a treated water inflow pipe 1 extending from an organic matter removal treatment apparatus (not shown) is opened in a reverse osmosis treatment supply tank 2. Reverse osmosis treatment supply tank 2
The reverse osmosis treatment supply pipe 3 is connected to the reverse osmosis treatment device 4. A reverse osmosis treatment water pipe 5 and a reverse osmosis concentrate water pipe 6 extend separately from the reverse osmosis treatment apparatus 4, and the reverse osmosis concentrate water pipe 6 leads the reverse osmosis concentrate to a softening treatment apparatus 7. The reverse osmosis treatment water is recovered from the reverse osmosis treatment water pipe 5 outside the system. The softening device 7 has a softening treatment water pipe 9 for leading the softened treated water to an electrodialysis treatment supply tank 10 and has a sludge discharge pipe 8 for discharging generated mud. An electrodialysis processing supply pipe 11 is connected to the electrodialysis processing apparatus 12 from the electrodialysis processing supply tank 10.
An electrodialysis concentrated water pipe 14 for sending the electrodialysis concentrated water from the electrodialysis processing apparatus 12 is connected to the evaporating and drying processing apparatus 15, and an electrodialysis demineralized water pipe 13 for sending the electrodialysis demineralized water.
Are connected to the reverse osmosis treatment supply tank 2.
【0010】本発明では、その処理の対象とする有機性
廃水としては、有機性成分としてはそれほど高くないも
のでも処理できるものであって、有機性成分が電気透析
処理にまで入ると悪影響を及ぼすので、それを逆浸透処
理において除去することができる。また、その有機性廃
水中の塩類濃度については、かならずしも著しく高い濃
度のものを対象とするものではなく、前記したように放
流するには支障となる程度に高い濃度のもの、乃至はそ
れよりも高い濃度のものを対象とするに適しているもの
である。本発明の有機性廃水の処理方法は、このような
装置を使用して例えば次のようにして実施するとよい。
有機性廃水は、まず前処理として、生物処理、凝集沈殿
処理、砂ろ過処理または精密ろ過膜(MF膜)処理のい
ずれか、又は2つ以上の処理を組合せの処理を行うが、
有機性物質の濃度を低下させる上で生物処理を組み合わ
せた処理を行うことが好ましい。この前処理を行った廃
水を被処理水流入管1を通じて逆浸透処理供給槽2にい
ったん貯蔵する。前記した生物処理方法としては、具体
的には標準的な活性汚泥法の他に、生物学的硝化脱窒素
法なども挙げることができる。これらの方法を利用すれ
ばBODも低下する。凝集精密ろ過(凝集MF膜ろ過)
方法としては、具体的には凝集剤、例えば無機凝集剤を
添加して凝集させたものを精密ろ過膜でろ過する、とい
う方法を挙げることができる。このような方法を使用す
ると、特にSSなどの濁質を廃水中から除去することが
できる。凝集沈殿処理方法は、凝集剤を添加した後、沈
殿槽で凝集物を沈殿させる方法である。色度やSSなど
を除去し、CODも下げることができる。砂ろ過方法
は、SSなど濁質を除去することができる。In the present invention, the organic wastewater to be treated can be treated even if it is not so high as an organic component. If the organic component enters the electrodialysis treatment, it has an adverse effect. So it can be removed in the reverse osmosis treatment. In addition, the salt concentration in the organic wastewater is not always intended to be a remarkably high concentration, but as described above, a concentration high enough to hinder the discharge, or a higher concentration. It is suitable for high concentration objects. The method for treating organic wastewater of the present invention may be implemented using such an apparatus, for example, as follows.
Organic wastewater is firstly treated as biological treatment, coagulation sedimentation treatment, sand filtration treatment or microfiltration membrane (MF membrane) treatment, or a combination of two or more treatments.
In order to reduce the concentration of the organic substance, it is preferable to perform a treatment in combination with a biological treatment. The pretreated wastewater is temporarily stored in the reverse osmosis treatment supply tank 2 through the treated water inflow pipe 1. Examples of the biological treatment method include a biological activated nitrification denitrification method in addition to the standard activated sludge method. The use of these methods also reduces BOD. Coagulation microfiltration (coagulation MF membrane filtration)
Specific examples of the method include a method of adding an aggregating agent, for example, an inorganic aggregating agent, and aggregating the resultant, followed by filtration with a microfiltration membrane. Using such a method, especially turbid substances such as SS can be removed from wastewater. The coagulation-sedimentation treatment method is a method of adding coagulants and then precipitating aggregates in a sedimentation tank. COD can be reduced by removing chromaticity and SS. The sand filtration method can remove suspended matter such as SS.
【0011】このようにして主として有機物の除去を行
う前処理が終わった廃水は、逆浸透処理供給槽2から逆
浸透処理供給配管3を通じて逆浸透処理装置4に導入
し、ここで逆浸透処理(「RO処理」ともいう)を行
う。逆浸透処理では、半透膜(「RO膜」ともいう)で
仕切られた前記廃水に5Mpa以上の機械的な圧力を加
え廃水中の水をRO膜を通すことにより、逆浸透濃縮水
(「RO濃縮水」ともいう)と逆浸透処理水とに分離
し、逆浸透処理水は逆浸透処理水配管5を通じて回収す
る。なお、有機物の除去処理操作の中で十分除去できな
かった有機物は更にこの半透膜でろ過することとなり、
回収する脱塩水中に汚濁有機物成分が流れ込むことはほ
とんどない。The wastewater which has been subjected to the pretreatment for mainly removing organic substances in this way is introduced into the reverse osmosis treatment apparatus 4 from the reverse osmosis treatment supply tank 2 through the reverse osmosis treatment supply pipe 3, where the reverse osmosis treatment ( "RO processing"). In the reverse osmosis treatment, a mechanical pressure of 5 Mpa or more is applied to the wastewater partitioned by a semipermeable membrane (also referred to as an “RO membrane”) to pass water in the wastewater through the RO membrane, thereby obtaining reverse osmosis concentrated water (“ RO concentrated water) and reverse osmosis treatment water, and the reverse osmosis treatment water is recovered through the reverse osmosis treatment water pipe 5. In addition, organic substances that could not be sufficiently removed during the organic substance removal treatment operation will be further filtered through this semipermeable membrane,
Contaminated organic components hardly flow into the recovered desalted water.
【0012】前記逆浸透濃縮水は、逆浸透濃縮水配管6
を通って軟化処理装置7に導入する。軟化処理は、例え
ば、石灰ソーダ軟化法やイオン交換硬水軟化法によっ
て、水中のカルシウムやマグネシウムの硬水成分(難溶
性塩形成成分)をナトリウムのような易溶性塩形成成分
に置換するなどのような方法で行うことができる。この
ような軟化処理においては、逆浸透濃縮水中のカルシウ
ム濃度を100mg/リットル以下にすることが好まし
い。カルシウム濃度が100mg/リットル以下にする
ことにより、電気透析処理装置12でカルシウムスケー
ルが発生することを効果的に防止することができるの
で、好ましい。軟化処理に伴って生じるスラッジは排泥
管8を通して系外に排出する。The reverse osmosis concentrated water is supplied to a reverse osmosis concentrated water pipe 6.
And introduced into the softening device 7. The softening treatment is, for example, such as replacing a hard water component (poorly soluble salt forming component) of calcium or magnesium in water with a readily soluble salt forming component such as sodium by a lime soda softening method or an ion-exchange hard water softening method. Can be done in a way. In such a softening treatment, the calcium concentration in the reverse osmosis concentrated water is preferably set to 100 mg / liter or less. When the calcium concentration is 100 mg / liter or less, it is possible to effectively prevent the generation of calcium scale in the electrodialysis treatment device 12, so that it is preferable. Sludge generated by the softening treatment is discharged out of the system through a sludge pipe 8.
【0013】カルシウムイオンを除去した高濃度塩類を
含む軟化処理水は、軟化処理水配管9を通じて電気透析
処理供給槽10にいったん貯蔵し、さらに電気透析処理
供給配管11を通じて電気透析処理装置12に導入す
る。その導入と電気透析処理は回分式に行うことが好ま
しい。電気透析処理(「ED処理」ともいう)は、多数
の電気透析膜を配列し、交互に形成した濃縮室と希釈室
に、或いはそれらの中の希釈室のみに前記の軟化処理水
を供給して通電して、濃縮室に高濃度の電気透析濃縮水
を得、希釈室に電気透析脱塩水を得るものである。The softened water containing high-concentration salts from which calcium ions have been removed is temporarily stored in an electrodialysis treatment supply tank 10 through a softened water pipe 9, and further introduced into an electrodialysis treatment apparatus 12 through an electrodialysis treatment supply pipe 11. I do. The introduction and the electrodialysis treatment are preferably performed in a batch system. In the electrodialysis treatment (also referred to as “ED treatment”), a large number of electrodialysis membranes are arranged, and the above-mentioned softened water is supplied to a concentration chamber and a dilution chamber which are alternately formed, or to only a dilution chamber among them. To obtain high concentration electrodialysis concentrated water in the concentration chamber and electrodialysis demineralized water in the dilution chamber.
【0014】電気透析脱塩水は電気透析脱塩水配管13
を通して逆浸透処理供給槽2に還流する。還流水に有機
物が残存していても逆浸透処理装置4でろ過するため、
これが逆浸透処理水中に漏洩することが防止される。電
気透析濃縮水は蒸発乾燥処理装置15に導いて蒸発乾燥
して、水分と塩類とに分離し、塩類を単離する。この方
法では、カルシウムを含有する被処理水に対し、逆浸透
膜を用いて脱塩処理して、カルシウムスケールが析出し
ない範囲の水回収率で、被処理水の塩分及び有機物を同
時に除去するようにすることにより、良質の処理水(逆
浸透処理水)を得る。さらに、カルシウム濃度が高くな
った逆浸透濃縮水に対して、カルシウムの除去を目的と
した軟化処理を行い、カルシウム濃度が十分に低減され
た軟化処理水を電気透析処理、好ましくは回分式に電気
透析処理することにより、高脱塩率、高水回収率で処理
してもカルシウムスケールの析出がなく、塩類濃度の低
い電気透析脱塩水及び塩類濃度の高い電気透析濃縮水を
得ることができる。The electrodialysis demineralized water is supplied to the electrodialysis demineralized water pipe 13.
To the reverse osmosis treatment supply tank 2. Even if organic matter remains in the reflux water, it is filtered by the reverse osmosis treatment device 4,
This is prevented from leaking into the reverse osmosis treatment water. The electrodialysis concentrated water is guided to the evaporating and drying treatment device 15 to be evaporated and dried, and separated into water and salts, and the salts are isolated. In this method, the water to be treated containing calcium is desalted using a reverse osmosis membrane, and the salinity of the water to be treated and organic substances are simultaneously removed at a water recovery rate within a range in which calcium scale does not precipitate. By doing so, high quality treated water (reverse osmosis treated water) is obtained. Further, the reverse osmosis concentrated water having a high calcium concentration is subjected to a softening treatment for the purpose of removing calcium, and the softened water having a sufficiently reduced calcium concentration is subjected to an electrodialysis treatment, preferably in a batchwise manner. By the dialysis treatment, even if the treatment is performed at a high desalting rate and a high water recovery rate, calcium scale is not precipitated, and electrodialysis demineralized water having a low salt concentration and electrodialysis concentrated water having a high salt concentration can be obtained.
【0015】通常、電気透析処理において、回分式に行
うと、連続式よりも脱塩率及び処理効率が高く、塩類濃
度が高い(蒸発残留物成分濃度で13wt%以上(13
000mg/リットル以上))の塩類濃縮水が得られ、
かつ脱塩水と濃縮水との塩類濃度比は150以上とする
ことができる。蒸発残留物とは、水分を蒸発させれば固
形成分として蒸発缶中に残留する成分をいう。この濃度
での変化を判り易く表現すると、濃縮水から分離した脱
塩水においては、98wt%以上の塩類が減少し、塩類
濃度は1000mg/リットル以下に低下したことにな
る。Normally, in the electrodialysis treatment, when the batch treatment is carried out, the desalting rate and the treatment efficiency are higher and the salt concentration is higher than in the continuous treatment (13% by weight or more (13% by
000 mg / liter or more))
In addition, the salt concentration ratio between the desalted water and the concentrated water can be 150 or more. The evaporation residue refers to a component remaining in the evaporator as a solid component when water is evaporated. Expressing the change in this concentration in an easily understandable manner, in the demineralized water separated from the concentrated water, salts of 98 wt% or more are reduced, and the salt concentration is reduced to 1000 mg / liter or less.
【0016】上記した実施の形態では電気透析処理で生
じた低濃度の電気透析脱塩水を逆浸透処理供給槽2に還
流される。このように戻すことにより電気透析処理で除
去できなかったCODなどの有機物を逆浸透処理で除去
できる。また、この電気透析脱塩水の塩類濃度、特にカ
ルシウムイオン濃度は逆浸透処理供給槽2からの被処理
水よりもそれらの濃度が低いものである。したがって、
その逆浸透処理は通常の廃水より塩類濃度の低い状態で
行うことができる。逆浸透処理ではその透過流束(透過
水量)は基本的に被処理水の塩類濃度増加に伴う浸透圧
の増加があると減少する関係にあるが、このように脱塩
水の還流により被処理水の塩類濃度が低くなるため、逆
浸透処理の透過流束の低下はなく、このため逆浸透処理
コストの増加も少なく、高い水回収率で良質な逆浸透脱
塩水を得ることができる。さらに、被処理水にカルシウ
ムイオンが混在していてもその濃度は低く、これが逆浸
透膜の表面などにスケールとして析出するトラブルはほ
とんど生じない。In the above embodiment, the electrodialysis demineralized water having a low concentration generated in the electrodialysis treatment is returned to the reverse osmosis treatment supply tank 2. By returning in this manner, organic substances such as COD that could not be removed by the electrodialysis treatment can be removed by the reverse osmosis treatment. The salt concentration of the electrodialysis demineralized water, particularly the calcium ion concentration, is lower than that of the water to be treated from the reverse osmosis treatment supply tank 2. Therefore,
The reverse osmosis treatment can be performed in a state where the salt concentration is lower than that of ordinary wastewater. In the reverse osmosis treatment, the permeation flux (permeate amount) basically decreases when the osmotic pressure increases with an increase in the salt concentration of the water to be treated. , The permeation flux of the reverse osmosis treatment does not decrease, and therefore the cost of the reverse osmosis treatment does not increase much, and high-quality reverse osmosis demineralized water can be obtained with a high water recovery rate. Furthermore, even if calcium ions are mixed in the water to be treated, the concentration thereof is low, and there is almost no trouble that the calcium ions are deposited as scale on the surface of the reverse osmosis membrane.
【0017】電気透析処理は、逆浸透処理で大量の逆浸
透脱塩水を除去した後で行うことから、電気透析処理を
受ける全体の容量は縮小しており、高濃度に濃縮した塩
類濃縮水を効率よく得ることができる。しかも、電気透
析処理に先立って予め軟化処理を行い、カルシウム溶解
濃度を下げている。したがって、電気透析処理装置12
内でカルシウムイオンがスケールとして析出してこれが
トラブルを起こすということもほとんどない。電気透析
処理に続いて塩類濃縮水には蒸発乾燥処理を行い、ここ
で塩類を単離する。蒸発乾燥処理は電気透析処理で更に
容積が縮小した高濃度の塩類濃縮水をその対象とする。
したがって、相変化をともなって大量のエネルギーを要
する処理であっても効率よく行うことができ、塩類成分
を固形成分として容易に単離することができる。Since the electrodialysis treatment is carried out after removing a large amount of the reverse osmosis demineralized water by the reverse osmosis treatment, the whole volume subjected to the electrodialysis treatment is reduced. It can be obtained efficiently. In addition, prior to the electrodialysis treatment, a softening treatment is performed in advance to reduce the concentration of dissolved calcium. Therefore, the electrodialysis treatment device 12
It is unlikely that calcium ions will precipitate as scales inside and this will cause trouble. Subsequent to the electrodialysis treatment, the salt-concentrated water is subjected to an evaporative drying treatment, where the salts are isolated. The evaporative drying process is intended for high-concentration salt-concentrated water whose volume has been further reduced by electrodialysis.
Therefore, even a treatment that requires a large amount of energy with a phase change can be performed efficiently, and the salt component can be easily isolated as a solid component.
【0018】[0018]
【実施例】以下、本発明の実施例を説明するが、本発明
はこれらに限定されることはない。 (実施例)し尿について生物処理、凝集沈殿処理及び精
密ろ過膜処理の各処理を行って出てきた被処理水を、図
1に示す処理装置を用いて処理を行った。なお、逆浸透
処理での操作圧力は5〜6MPaの高圧条件であり、軟
化処理装置7からは軟化処理後のスラッジを排泥管8か
ら排出する。有機物の除去処理後の処理対象の被処理
水、逆浸透処理して得た処理水(「RO処理水」とい
う)、軟化処理して得た処理水(「軟化処理水」)、電
気透析処理して得た濃縮水(「ED濃縮水」)、それぞ
れについて水質を測定した。測定結果は第1表に示す。EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples. (Example) Water to be treated, which was obtained by subjecting human waste to biological treatment, coagulation sedimentation treatment and microfiltration membrane treatment, was treated using the treatment apparatus shown in FIG. The operating pressure in the reverse osmosis treatment is a high pressure condition of 5 to 6 MPa, and the sludge after the softening treatment is discharged from the softening treatment device 7 from the drainage pipe 8. Water to be treated after removal of organic substances, treated water obtained by reverse osmosis treatment (referred to as “RO treated water”), treated water obtained by softening treatment (“softened treated water”), electrodialysis treatment The water quality of each of the concentrated waters ("ED concentrated waters") obtained was measured. The measurement results are shown in Table 1.
【0019】[0019]
【表1】 [Table 1]
【0020】カルシウムスケールの析出の有無は、化学
分析と各装置の処理性能を基に判断した。以上の結果か
ら次のことが分かった。被処理水、すなわち前処理を行
った廃水の色度が150度、CODが50mg/リット
ル、カルシウム濃度が60mg/リットル、蒸発残留物
成分濃度が5600mg/リットルであるのに対し、逆
浸透処理して得た処理水すなわちRO処理水は色度が4
度、CODが5.0mg/リットル、蒸発残留物成分濃
度が380mg/リットルとなり、良好な水質の処理水
が得られた。The presence or absence of calcium scale was determined based on the chemical analysis and the processing performance of each device. The following was found from the above results. Although the chromaticity of the water to be treated, that is, the wastewater subjected to the pretreatment is 150 degrees, the COD is 50 mg / l, the calcium concentration is 60 mg / l, and the concentration of the evaporation residue component is 5600 mg / l, the reverse osmosis treatment is performed. The treated water obtained by the treatment, ie, the RO treated water,
As a result, the COD was 5.0 mg / L, and the concentration of the evaporation residue component was 380 mg / L. Thus, treated water having good water quality was obtained.
【0021】また、逆浸透処理して得たRO濃縮水を軟
化処理をすることことにより、カルシウム濃度が処理前
の600mg/リットルから65mg/リットル程度に
低減した結果、軟化処理水に対して電気透析処理による
塩類濃縮を行っても、ED濃縮水のカルシウム濃度は1
80mg/リットルであり、カルシウムスケールの生成
はまったく認められなかった。ED濃縮水は電気伝導率
を約130000μS/cm、蒸発残留物を16500
0mg/リットルにすることができた。電気透析脱塩水
を逆浸透処理に返送していることから、被処理水量に対
する処理水量の割合を示す水回収率は96.8%とな
り、濃縮水の水量は被処理水量に対して約30分の1以
下に減少することができた。Further, by subjecting the RO concentrated water obtained by the reverse osmosis treatment to a softening treatment, the calcium concentration was reduced from 600 mg / L before the treatment to about 65 mg / L, and as a result, the electric power was reduced with respect to the softened water. Even when the salt concentration by dialysis treatment is performed, the calcium concentration of the ED concentrated water is 1
80 mg / liter, and no formation of calcium scale was observed. The ED concentrate has an electrical conductivity of about 130,000 μS / cm and an evaporation residue of 16500
0 mg / liter could be achieved. Since the electrodialysis demineralized water is returned to the reverse osmosis treatment, the water recovery rate indicating the ratio of the treated water amount to the treated water amount is 96.8%, and the concentrated water amount is about 30 minutes relative to the treated water amount. Of 1 or less.
【0022】(比較例1)実施例と同様の被処理水に対
し、逆浸透処理のみを行った。すなわち、前処理を行
い、軟化処理、電気透析処理を省略した他は実施例と同
様にした。前処理した対象の廃水(被処理水)、逆浸透
処理によって得たRO処理水、RO濃縮水についてそれ
ぞれ水質を測定した。測定結果を第2表に示す。(Comparative Example 1) Only the reverse osmosis treatment was performed on the same water to be treated as in the example. That is, the procedure was the same as that of the example except that the pretreatment was performed and the softening treatment and the electrodialysis treatment were omitted. The water quality was measured for each of the pretreated wastewater (water to be treated), RO treated water obtained by reverse osmosis treatment, and RO concentrated water. Table 2 shows the measurement results.
【0023】[0023]
【表2】 [Table 2]
【0024】第2表の結果から次のことが分かった。前
処理を行った被処理水に逆浸透処理を単独で行った場
合、被処理水量に対するRO処理水量(処理水量)割合
を示す水回収率が90.9%に止どまり、96.8%を
示した実施例より5.9%少なくなった。さらに、逆浸
透処理によって得たRO濃縮水の蒸発残留物成分濃度が
58000mg/リットルしかなく、実施例の電気透析
濃縮水(ED濃縮水)に比べて約3分の1程度に止どま
った。すなわち、濃縮水量は前記のおよそ3倍に増加
し、これを蒸発乾燥処理に用いた場合、前記より処理コ
ストの増大となる。また、RO濃縮水中のカルシウム濃
度は610mg/リットルとなり、それ以上の濃縮を行
うとカルシウムスケールの析出という危険性が考えられ
る。From the results in Table 2, the following was found. When the reverse osmosis treatment is performed solely on the pre-treated water to be treated, the water recovery rate indicating the ratio of the RO treated water amount (the treated water amount) to the treated water amount is limited to 90.9%, and 96.8% 5.9% less than the example shown. Furthermore, the concentration of the evaporation residue component of the RO concentrated water obtained by the reverse osmosis treatment was only 58,000 mg / liter, which was only about one-third as compared with the electrodialyzed concentrated water (ED concentrated water) of the example. . That is, the amount of the concentrated water is increased about three times as described above, and when this is used for the evaporative drying treatment, the treatment cost is increased as compared with the above. Further, the calcium concentration in the RO concentrated water is 610 mg / liter, and if the concentration is further increased, there is a risk that calcium scale is deposited.
【0025】(比較例2)実施例と同様な有機物の除去
の前処理を行った被処理水に対し、電気透析処理のみを
行い、逆浸透処理や軟化処理を省略した。被処理水、電
気透析処理によって得たED脱塩水、電気透析処理によ
って得たED濃縮水についてそれぞれ水質を測定した。
測定結果を第3表に示す。(Comparative Example 2) Only the electrodialysis treatment was performed on the water to be treated which had been subjected to the same pretreatment for removing organic substances as in the example, and the reverse osmosis treatment and the softening treatment were omitted. The water quality was measured for the water to be treated, the ED demineralized water obtained by the electrodialysis treatment, and the ED concentrated water obtained by the electrodialysis treatment.
Table 3 shows the measurement results.
【0026】[0026]
【表3】 [Table 3]
【0027】第3表に示すように、被処理水に対し、電
気透析の単独処理を行って逆浸透処理や軟化処理を行わ
ないと、電気透析処理によって得た電気透析濃縮水のカ
ルシウム濃度が1800mg/リットルに増加し、カル
シウムスケールの発生が顕著であると認められた。第3
表には示していないが、実施例に比べると電気透析処理
の回分処理回数の増加に伴い、処理効率が顕著に低下し
た。これはカルシウムスケールの生成による影響であ
る。処理水の水質では、電気透析処理の前後の色度およ
びCODについては変化がなかった。また、被処理水、
電気透析脱塩水(ED脱塩水)、ED濃縮水いずれも色
度150度、COD50mg/リットルであり、有機物
の除去は全くなかった。このため、実施例と同程度の処
理水を得るには更に他の処理方法で有機物を除去する必
要があり、例えば、活性炭吸着処理を用いた場合、設備
の増加や活性炭交換が必要なことから、処理コストの増
加要因となる。As shown in Table 3, if the water to be treated is subjected to a single treatment of electrodialysis and not subjected to reverse osmosis treatment or softening treatment, the calcium concentration of the electrodialysis concentrated water obtained by the electrodialysis treatment is reduced. It increased to 1800 mg / liter, and the occurrence of calcium scale was recognized to be remarkable. Third
Although not shown in the table, the treatment efficiency was significantly reduced as the number of batch treatments of the electrodialysis treatment was increased as compared with the examples. This is due to the formation of calcium scale. Regarding the quality of the treated water, there was no change in chromaticity and COD before and after the electrodialysis treatment. Also, the water to be treated,
Both electrodialysis demineralized water (ED demineralized water) and ED concentrated water had a chromaticity of 150 degrees and a COD of 50 mg / liter, and there was no removal of organic matter at all. For this reason, it is necessary to remove organic substances by another treatment method in order to obtain treated water of the same level as in the examples.For example, when activated carbon adsorption treatment is used, an increase in equipment or exchange of activated carbon is necessary. This causes an increase in processing cost.
【0028】[0028]
【発明の効果】本発明は、高濃度の塩類を含有する有機
性廃水である被処理水に対し、逆浸透処理を行うことに
より、良質な脱塩水(処理水)が得られる一方、逆浸透
濃縮水についてカルシウム除去の軟化処理を行うことに
より、カルシウム濃度を100mg/リットル以下に低
減させた後、その軟化処理水をさらに電気透析処理を行
っても、その処理においてカルシウムスケールの生成が
まったくなく、きわめて高い濃縮率及び脱塩率で電気透
析処理を行うことができる。特に、電気透析処理を回分
式に行うときには、脱塩率が高く、塩類濃度の低い電気
透析脱塩水(蒸発残留物1000mg/リットル以下)
と、塩類濃度の高い電気透析濃縮水(蒸発残留物130
000mg/リットル以上)を得ることができる。さら
に、COD、色度などの有機物を含有する電気透析脱塩
水を逆浸透処理に返送して再度逆浸透処理を行うことに
より、COD、色度などの有機物が除去される。この結
果、電気透析濃縮水量は、被処理水量の約30分の1以
下に減量でき、蒸発乾燥処理での必要エネルギーは逆浸
透濃縮水について蒸発乾燥処理を行う場合よりも、少な
くなるという利点がある。According to the present invention, high quality demineralized water (treated water) can be obtained by subjecting treated water, which is an organic wastewater containing a high concentration of salts, to reverse osmosis. After reducing the calcium concentration to 100 mg / liter or less by performing a softening treatment for removing calcium from the concentrated water, even if the softened water is further subjected to electrodialysis treatment, no calcium scale is generated in the treatment. The electrodialysis treatment can be performed at an extremely high concentration and desalination rate. In particular, when the electrodialysis treatment is carried out batchwise, the electrodialysis demineralized water having a high desalting rate and a low salt concentration (evaporation residue 1000 mg / liter or less)
And electrodialysis concentrated water having a high salt concentration (evaporation residue 130
000 mg / liter or more). Further, the electrodialysis demineralized water containing organic substances such as COD and chromaticity is returned to the reverse osmosis treatment and the reverse osmosis treatment is performed again, whereby the organic substances such as COD and chromaticity are removed. As a result, the amount of the electrodialysis concentrated water can be reduced to about 1/30 or less of the amount of the water to be treated, and the energy required in the evaporative drying treatment is smaller than in the case where the reverse osmosis concentrated water is subjected to the evaporative drying treatment. is there.
【図1】本発明の一実施例を行う廃水の処理装置の概略
図FIG. 1 is a schematic diagram of a wastewater treatment apparatus that performs one embodiment of the present invention.
1 被処理水流入管 2 逆浸透処理供給槽 3 逆浸透処理供給配管 4 逆浸透処理装置 5 逆浸透処理水配管 6 逆浸透濃縮水配管 7 軟化処理装置 8 排泥管 9 軟化処理水配管 10 電気透析処理供給槽 11 電気透析処理供給配管 12 電気透析処理装置 13 電気透析脱塩水配管 14 電気透析濃縮水配管 15 蒸発乾燥処理装置 Reference Signs List 1 Inflow pipe for treated water 2 Reverse osmosis treatment supply tank 3 Reverse osmosis treatment supply pipe 4 Reverse osmosis treatment apparatus 5 Reverse osmosis treatment water pipe 6 Reverse osmosis concentrated water pipe 7 Softening treatment apparatus 8 Drainage pipe 9 Softening treatment water pipe 10 Electrodialysis Processing supply tank 11 Electrodialysis processing supply pipe 12 Electrodialysis processing apparatus 13 Electrodialysis desalinated water pipe 14 Electrodialysis concentrated water pipe 15 Evaporation drying processing apparatus
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 9/00 502 C02F 9/00 502L 502P 504 504A 504E ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 9/00 502 C02F 9/00 502L 502P 504 504A 504E
Claims (4)
理方法であって、前記有機性廃水に前処理として、生物
処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理のい
ずれか、又は2以上の組合せからなる処理を行い、次い
で逆浸透膜により脱塩処理して、逆浸透濃縮水と逆浸透
処理水とに分離し、前記逆浸透処理水を回収し、前記逆
浸透濃縮水をカルシウムを除去するための軟化処理を行
った後、電気透析処理を施して電気透析濃縮水と電気透
析脱塩水とに分離し、前記電気透析脱塩水を再び逆浸透
処理の供給側に戻すことを特徴とする高濃度の塩類を含
有する有機性廃水の処理方法。1. A method for treating organic wastewater containing a high concentration of salts, wherein the organic wastewater is pretreated as one of biological treatment, coagulation sedimentation treatment, sand filtration treatment, and microfiltration membrane treatment. Or a treatment comprising a combination of two or more, followed by a desalination treatment with a reverse osmosis membrane, separating into a reverse osmosis concentrated water and a reverse osmosis treated water, collecting the reverse osmosis treated water, and After performing a softening treatment for removing calcium, electrodialysis treatment is performed to separate electrodialysis concentrated water and electrodialysis demineralized water, and the electrodialysis demineralized water is returned to the supply side of the reverse osmosis treatment again. A method for treating an organic wastewater containing a high concentration of salts, characterized by comprising:
濃度を100mg/リットル以下にすることを特徴とす
る請求項1記載の高濃度の塩類を含有する有機性廃水の
処理方法。2. The method for treating organic wastewater containing high concentrations of salts according to claim 1, wherein the softening treatment reduces the calcium concentration in the treated water to 100 mg / liter or less.
で、電気透析脱塩水の蒸発残留物が1000mg/リッ
トル以下とするように行うことを特徴とする請求項1又
は請求項2記載の高濃度の塩類を含有する有機性廃水の
処理方法。3. The electrodialysis treatment according to claim 1, wherein the desalting rate is 98% or more, and the evaporation residue of the electrodialyzed demineralized water is 1000 mg / L or less. A method for treating organic wastewater containing a high concentration of salts.
蒸発残留物が13wt%以上となることを特徴とする請
求項1〜3のいずれか1項記載の高濃度の塩類を含有す
る有機性廃水の処理方法。4. The organic solution containing a high concentration of salts according to claim 1, wherein the concentrated electrodialysis water after the electrodialysis treatment has an evaporation residue of 13% by weight or more. Wastewater treatment method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07818297A JP3800450B2 (en) | 1997-03-28 | 1997-03-28 | Method and apparatus for treating organic wastewater containing high concentrations of salts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07818297A JP3800450B2 (en) | 1997-03-28 | 1997-03-28 | Method and apparatus for treating organic wastewater containing high concentrations of salts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10272495A true JPH10272495A (en) | 1998-10-13 |
JP3800450B2 JP3800450B2 (en) | 2006-07-26 |
Family
ID=13654838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07818297A Expired - Lifetime JP3800450B2 (en) | 1997-03-28 | 1997-03-28 | Method and apparatus for treating organic wastewater containing high concentrations of salts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3800450B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100463251B1 (en) * | 2002-09-11 | 2004-12-23 | 웅진코웨이주식회사 | Purified system having electro dialysis |
JP2007528781A (en) * | 2003-03-28 | 2007-10-18 | ケミトリート ピーティーイー リミテッド | Continuous electrodeionization apparatus and method |
CN102030437A (en) * | 2010-11-04 | 2011-04-27 | 河北省首钢迁安钢铁有限责任公司 | Method for comprehensive wastewater desalination and zero release in steel production |
CN103508602A (en) * | 2013-07-23 | 2014-01-15 | 南京九思高科技有限公司 | Membrane and evaporative crystallization integrated high-salinity industrial wastewater zero-discharge process |
CN103739132A (en) * | 2014-01-02 | 2014-04-23 | 杭州深瑞水务有限公司 | High-salinity industrial wastewater reusing treatment process |
JP2014198300A (en) * | 2013-03-29 | 2014-10-23 | 株式会社クラレ | Treatment method of organic effluent |
CN104276709A (en) * | 2014-09-30 | 2015-01-14 | 深圳能源资源综合开发有限公司 | Coal chemical industry concentrated brine zero discharge technique and special equipment thereof |
CN105174545A (en) * | 2015-09-23 | 2015-12-23 | 江苏省科建成套设备有限公司 | Multi-membrane-method sea water desalination integrated device |
CN106145532A (en) * | 2016-08-03 | 2016-11-23 | 广州市迈源科技有限责任公司 | A kind of percolate is biochemical, evaporate joint processing system and technique |
CN107804936A (en) * | 2017-12-07 | 2018-03-16 | 深圳恒通源环保科技有限公司 | A kind of board wastewater recycles system |
CN107857438A (en) * | 2017-12-02 | 2018-03-30 | 浙江碧源环保科技有限公司 | A kind of chemical enterprise and garden zero emission of wastewater treatment technique |
CN108218087A (en) * | 2015-12-23 | 2018-06-29 | 倍杰特国际环境技术股份有限公司 | A kind of system based on multistage electrically-driven ion film process high slat-containing wastewater |
CN110127906A (en) * | 2019-06-12 | 2019-08-16 | 兖州煤业股份有限公司 | It is the method for reverse osmosis concentrated water desalination using benzyltriethylammoinium chloride |
CN110255766A (en) * | 2019-06-27 | 2019-09-20 | 广东埃力生高新科技有限公司 | The processing system and processing method of aeroge production post-processing waste water |
CN114163062A (en) * | 2021-07-07 | 2022-03-11 | 恩宜瑞(江苏)环境发展有限公司 | Anti-osmosis concentrated water for avoiding COD, Si and CaF2Accumulation method and application thereof |
CN114538675A (en) * | 2022-01-11 | 2022-05-27 | 安徽普朗膜技术有限公司 | Landfill leachate treatment system and treatment method |
CN118184067A (en) * | 2024-04-17 | 2024-06-14 | 优口净水科技集团(广东)有限公司 | Water treatment system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105130066A (en) * | 2015-08-19 | 2015-12-09 | 杭州上拓环境科技有限公司 | Combined processing method for salts and COD generated during production of cellulose ether |
-
1997
- 1997-03-28 JP JP07818297A patent/JP3800450B2/en not_active Expired - Lifetime
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100463251B1 (en) * | 2002-09-11 | 2004-12-23 | 웅진코웨이주식회사 | Purified system having electro dialysis |
JP2007528781A (en) * | 2003-03-28 | 2007-10-18 | ケミトリート ピーティーイー リミテッド | Continuous electrodeionization apparatus and method |
JP4648307B2 (en) * | 2003-03-28 | 2011-03-09 | シーメンス ピーティーイー リミテッド | Continuous electrodeionization apparatus and method |
CN102030437A (en) * | 2010-11-04 | 2011-04-27 | 河北省首钢迁安钢铁有限责任公司 | Method for comprehensive wastewater desalination and zero release in steel production |
JP2014198300A (en) * | 2013-03-29 | 2014-10-23 | 株式会社クラレ | Treatment method of organic effluent |
CN103508602A (en) * | 2013-07-23 | 2014-01-15 | 南京九思高科技有限公司 | Membrane and evaporative crystallization integrated high-salinity industrial wastewater zero-discharge process |
CN103739132A (en) * | 2014-01-02 | 2014-04-23 | 杭州深瑞水务有限公司 | High-salinity industrial wastewater reusing treatment process |
CN104276709A (en) * | 2014-09-30 | 2015-01-14 | 深圳能源资源综合开发有限公司 | Coal chemical industry concentrated brine zero discharge technique and special equipment thereof |
CN105174545A (en) * | 2015-09-23 | 2015-12-23 | 江苏省科建成套设备有限公司 | Multi-membrane-method sea water desalination integrated device |
CN108218087A (en) * | 2015-12-23 | 2018-06-29 | 倍杰特国际环境技术股份有限公司 | A kind of system based on multistage electrically-driven ion film process high slat-containing wastewater |
CN106145532A (en) * | 2016-08-03 | 2016-11-23 | 广州市迈源科技有限责任公司 | A kind of percolate is biochemical, evaporate joint processing system and technique |
CN107857438B (en) * | 2017-12-02 | 2023-12-12 | 浙江碧源环保科技有限公司 | Zero-emission process for wastewater treatment of chemical enterprises and parks |
CN107857438A (en) * | 2017-12-02 | 2018-03-30 | 浙江碧源环保科技有限公司 | A kind of chemical enterprise and garden zero emission of wastewater treatment technique |
CN107804936A (en) * | 2017-12-07 | 2018-03-16 | 深圳恒通源环保科技有限公司 | A kind of board wastewater recycles system |
CN110127906A (en) * | 2019-06-12 | 2019-08-16 | 兖州煤业股份有限公司 | It is the method for reverse osmosis concentrated water desalination using benzyltriethylammoinium chloride |
CN110255766A (en) * | 2019-06-27 | 2019-09-20 | 广东埃力生高新科技有限公司 | The processing system and processing method of aeroge production post-processing waste water |
CN114163062A (en) * | 2021-07-07 | 2022-03-11 | 恩宜瑞(江苏)环境发展有限公司 | Anti-osmosis concentrated water for avoiding COD, Si and CaF2Accumulation method and application thereof |
CN114163062B (en) * | 2021-07-07 | 2023-07-18 | 恩宜瑞(江苏)环境发展有限公司 | COD, si, caF is avoided to reverse osmosis dense water 2 Accumulating method and application thereof |
CN114538675A (en) * | 2022-01-11 | 2022-05-27 | 安徽普朗膜技术有限公司 | Landfill leachate treatment system and treatment method |
CN118184067A (en) * | 2024-04-17 | 2024-06-14 | 优口净水科技集团(广东)有限公司 | Water treatment system |
Also Published As
Publication number | Publication date |
---|---|
JP3800450B2 (en) | 2006-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3909793B2 (en) | Method and apparatus for treating organic wastewater containing high-concentration salts | |
JP5873771B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JP5567468B2 (en) | Method and apparatus for treating organic wastewater | |
RU2342330C2 (en) | System and method for treatment of acid sewage waters | |
JP3800450B2 (en) | Method and apparatus for treating organic wastewater containing high concentrations of salts | |
CN105540967A (en) | Processing method for reducing and recycling organic waste water and processing system | |
EP2421798A2 (en) | Water treatment | |
JP3698093B2 (en) | Water treatment method and water treatment apparatus | |
JP3800449B2 (en) | Method and apparatus for treating organic wastewater containing high concentrations of salts | |
JP2007021457A (en) | Wastewater treatment method and wastewater treatment apparatus | |
JP3137831B2 (en) | Membrane processing equipment | |
JP4110604B2 (en) | Fluorine-containing water treatment method | |
JP2002096068A (en) | Treating method and device for waste water of desalting | |
JPH1199389A (en) | Treatment of water containing organic component and manganese | |
JP3376639B2 (en) | Pure water recovery method from semiconductor cleaning wastewater | |
JPH03270800A (en) | Treatment of organic sewage | |
CN113087197A (en) | Method for treating and recycling circulating water and sewage | |
CN112939368A (en) | Circulating water sewage treatment and recycling method with high desalting rate | |
WO2011155282A1 (en) | Fresh water-generating device and fresh water-generating method | |
JPH09294977A (en) | Water purifying apparatus | |
JP3321058B2 (en) | Water treatment method and water treatment device | |
JPH05277492A (en) | Method for treatment of reclamation drained water | |
KR100345725B1 (en) | A Method for Purifying Wastewater Using Reverse Osmosis and Nanofiltration System | |
JP7350886B2 (en) | water treatment equipment | |
JPH0839058A (en) | Treatment of semiconductor washing waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050520 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060420 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |