JP4110604B2 - Fluorine-containing water treatment method - Google Patents

Fluorine-containing water treatment method Download PDF

Info

Publication number
JP4110604B2
JP4110604B2 JP02451698A JP2451698A JP4110604B2 JP 4110604 B2 JP4110604 B2 JP 4110604B2 JP 02451698 A JP02451698 A JP 02451698A JP 2451698 A JP2451698 A JP 2451698A JP 4110604 B2 JP4110604 B2 JP 4110604B2
Authority
JP
Japan
Prior art keywords
water
fluorine
calcium
membrane
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02451698A
Other languages
Japanese (ja)
Other versions
JPH11221579A (en
Inventor
直樹 松渓
忠 高土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP02451698A priority Critical patent/JP4110604B2/en
Publication of JPH11221579A publication Critical patent/JPH11221579A/en
Application granted granted Critical
Publication of JP4110604B2 publication Critical patent/JP4110604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフッ素含有水を逆浸透膜で脱塩する処理方法、特にフッ素を含有する用水を逆浸透膜で脱塩して飲料水に処理する方法に関するものである。
【0002】
【従来の技術】
逆浸透膜(以下、RO膜という)は、水を透過させ、塩分の透過を阻止する細孔を有する半透膜であり、原水側から加圧することにより水を透過させ、脱塩を行うために用いられている。このような逆浸透膜による脱塩技術は塩分除去手段として一般に適用されているが、カルシウムとフッ素を含む系では濃縮度を上げるとフッ化カルシウムがスケールとなって膜面に析出して水の透過を阻止するため、フッ化カルシウムのスケールが生成しない程度の濃縮度で運転することとなり、水回収率は低くなる。このようにRO法では膜へのスケール付着による膜交換費増大、洗浄頻度の増大、水回収率が低いために造水コストの高揚などの問題があった。
【0003】
一方地下水や河川水からフッ素を除去して飲料水にする従来技術としては、水道施設設計指針・解説(日本水道協会誌(1990)第313〜314頁)には、アルミニウム系の凝集剤により水酸化アルミニウムのフロックを生成させ、この生成フロックにフッ素を吸着させて固液分離する方法が示されている。しかしこの方法では、水酸化アルミニウムのフッ素吸着量が少ないために多量の薬品添加が必要となり、その結果水酸化アルミニウムの汚液が多く発生し、その処分に過大な費用を要する。
【0004】
また他の従来法として活性アルミナや骨炭を濾材としてフッ素を吸着する方法が提案されているが、活性アルミナ法では濾材の再生に硫酸アルミニウムを用いるので、再生排液の中和によって過大な汚泥が発生する。また骨炭法では再生の繰り返しによって性能低下(吸着量の低下)が生じ、長期の使用に耐えるものではない。
このほか従来法として原水に炭酸カルシウムを添加して電解しフッ化カルシウムとして不溶化分離する方法が提案されているが、この方法では電解処理の際に、MgCl2やNaClをも添加するので処理水の硬度や塩類増加が生じ、飲料水としては不適当である。
【0005】
【発明が解決しようとする課題】
本発明の課題は、RO膜の目詰まりなしにフッ素含有水をRO膜により効率よく処理して水回収率を高めることができ、原水中に含まれるフッ素は少ない薬品量で効率よく処理して不溶化することができるフッ素含有水の処理方法を得ることである。
【0006】
【課題を解決するための手段】
本発明は、フッ素1〜20mg/l、カルシウム2〜50mg/lのフッ素含有水をNa形強酸性カチオン交換樹脂と接触させて、原水中のカルシウムイオンを交換吸着除去して軟化処理水を得るイオン交換工程、
カルシウムイオンを交換吸着したカチオン交換樹脂を5〜20重量%塩化ナトリウム水溶液と接触させてNa形に再生する再生工程、
イオン交換工程の軟化処理水を逆浸透膜分離して透過液と濃縮液とに分離する逆浸透工程、
逆浸透工程の濃縮液と再生工程から排出される再生排液とを反応させ、濃縮液中のフッ素をフッ化カルシウムとして不溶化する不溶化工程、ならびに
不溶化工程の反応液を固液分離する固液分離工程
を含むフッ素含有水の処理方法である。
【0007】
本発明において処理の対象となるフッ素含有水はフッ素を主としてフッ化物イオンとして含有する水であり、河川水、湖沼水、地下水などがあげられるが、これらに限定されない。処理の対象として適したフッ素含有水は河川水、湖沼水、地下水などのフッ素1〜20mg/l、カルシウム2〜50mg/lの淡水があげられ、本発明はこれらの原水を処理して飲用水その他の用水を得る系に適用するのに適している。
【0008】
一般にこのような淡水はフッ素1〜10mg/l、カルシウム2〜50mg/l程度含有しており、これをRO膜により濃縮すると、フッ化カルシウムが析出してRO膜が目詰まりする。本発明ではこれを防ぐために、カルシウムを除去する。上記のような低濃度のフッ素を除去することは困難であるが、カルシウムはイオン交換することにより、フッ化カルシウムの析出を防止できる程度に除去することができる。
【0009】
そこで本発明ではイオン交換工程において、フッ素含有水(原水)をNa形強酸性カチオン交換樹脂と接触させて、原水中のカルシウムイオンを交換吸着除去して軟化処理水を得る。
【0010】
原水とカチオン交換樹脂との接触方法は特に制限されず、例えば塔内にNa形強酸性カチオン交換樹脂を充填した軟化塔が使用でき、この軟化塔に原水を通水することにより行うことができる。通水は上向流でも下向流でもよい。通水によりイオン交換反応が生じ、カルシウムイオンがイオン交換樹脂に吸着除去され、処理水として脱カルシウム水(軟化処理水)が得られる。
【0011】
イオン交換工程の継続により、イオン交換樹脂へのカルシウムイオンの吸着量が飽和に近づき、カルシウムイオンがリークし始める(貫流点)。この時点で、あるいは定期的にイオン交換樹脂の再生工程に移る。
【0012】
再生は、カルシウムイオンを交換吸着したカチオン交換樹脂を再生剤と接触させることにより行うことができる。Na形に再生する再生剤としては、5〜20重量%塩化ナトリウム水溶液が使用できる。再生剤の塩化ナトリウム濃度は、好ましくは10重量%前後がよい。このようにして再生することにより、カルシウムイオンを含んだ再生排液が得られる。
【0013】
前記イオン交換工程の軟化処理水はRO膜装置に供給して膜分離を行い、透過液と濃縮液に分離する。RO膜はイオン交換工程の軟化処理水を脱塩してフッ素を除去するもので、0.5〜100nmの細孔を有する酢酸セルロース、ポリアミド、ポリスルホン等、一般に脱塩に使用されているRO膜を用いる。RO膜の形態も、平膜、スパイラル、中空糸、チューブラ形など、一般に脱塩に用いられているものが用いられる。
【0014】
イオン交換工程の軟化処理水をRO膜で膜分離することにより、フッ素その他の塩分は濃縮液側に濃縮され、フッ素を含まない透過液が得られる。このとき酸で濃縮液をpH4〜6、好ましくはpH4.5〜5.5に調整することにより、RO膜へのフッ化カルシウムその他の不溶化物の析出を防止する。膜分離は分離液の80〜95%を透過させ、5〜20%を濃縮液として残すように運転する。透過液は最終処理水として飲用その他の用水に用いられる。
【0015】
濃縮液は不溶化工程において、前記再生工程の再生排液を反応させることにより、濃縮液中のフッ素をフッ化カルシウムとして不溶化する。反応は濃縮液と再生排液とを混合することにより行うことができ、これにより濃縮中のフッ素が再生排液中のカルシウムと反応してフッ化カルシウムとして不溶化する。
【0016】
不溶化工程の反応液は固液分離工程において固液分離を行い、分離液と汚泥に分離する。固液分離手段としては沈殿が一般的であるが、遠心分離、濾過分離、膜分離などを用いることができる。分離液は処理液として系外に排出してもよく、また原水と混合して再度処理を行ってもよい。分離汚泥は、脱水等の後処理は容易であり、カルシウム源あるいはフッ素源として利用することができる。
【0017】
このように本発明ではフッ素含有水をRO膜で膜分離する際、膜濃縮で生成するフッ化カルシウムのスケール化を防ぐために、あらかじめ原水中のカルシウムイオンを軟化処理でイオン交換吸着し、この再生排液中のカルシウムを膜濃縮液中のフッ素とを反応させてフッ化カルシウムとして不溶化処理しているので、原水中のカルシウムが再利用でき、薬品使用量の節減と汚泥発生の減量化が図られる。
【0018】
【発明の効果】
以上の通り本発明によれば、フッ素1〜20mg/l、カルシウム2〜50mg/lのフッ素含有水をNa形強酸性カチオン交換樹脂と接触させて、原水中のカルシウムイオンを交換吸着除去して軟化処理水を得るイオン交換工程、カルシウムイオンを交換吸着したカチオン交換樹脂を5〜20重量%塩化ナトリウム水溶液と接触させてNa形に再生する再生工程、イオン交換工程の軟化処理水を逆浸透膜分離して透過液と濃縮液とに分離する逆浸透工程、逆浸透工程の濃縮液と再生工程から排出される再生排液とを反応させ、濃縮液中のフッ素をフッ化カルシウムとして不溶化する不溶化工程、ならびに不溶化工程の反応液を固液分離する固液分離工程を含むので、RO膜の目詰まりなしにフッ素含有水をRO膜により効率よく処理して水回収率を高めることができ、原水中に含まれるフッ素は少ない薬品量で効率よく処理して不溶化することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面により説明する。
図1は実施形態のフッ素含有水の処理方法を示す系統図である。図1において、1は軟化塔であり、内部にNa形強酸性カチオン交換樹脂が充填され、カチオン交換樹脂層2が形成されている。3は循環槽、4はRO膜装置、5は反応槽、6は沈殿槽である。
【0020】
処理方法はイオン交換工程として、原水路11から原水(フッ素含有水)を軟化塔1に導入し、カチオン交換樹脂層2を下向流で通水してカルシウムイオンを交換吸着し、原水中からカルシウムを除去して軟化する。これにより、カルシウム濃度がほぼゼロになった軟化処理水が得られる。
【0021】
原水中のカルシウムイオンの形態は一次硬度〔Ca(HCO3)2〕と二次硬度〔CaCl2、CaSO4、Ca(NO3)2〕があるが、これらがカチオン交換樹脂層2を通過する際、Na形強酸性カチオン交換樹脂に交換吸着する。この反応は(1)式で表される。
【化1】
2R−Na+ + Ca2+ → R2−Ca2+ + Na+ ・・・(1)
【0022】
イオン交換処理した軟化処理水は系路12から循環槽3に導入して一時貯留した後、系路13からRO膜装置4に供給してRO膜14により脱塩処理する。RO膜装置4ではRO膜14を透過した透過液が脱塩された処理水として処理水路15から取り出され、フッ素が濃縮された濃縮液は循環路16から循環槽3に循環される。
【0023】
RO膜14では流入水の80〜95%が透過液(処理水)となり、残り5〜20%が濃縮液となる。RO膜14の膜材質、型式、形状は限定されるものではない。
濃縮液はフッ素濃度として原水フッ素濃度の5〜20倍程度に濃縮される。
【0024】
軟化塔1によるイオン交換処理の継続により、イオン交換樹脂層2へのカルシウムイオンの吸着量が飽和に近づき、カルシウムイオンがリークし始める貫通点に達するか、あるいは所定期間が経過した後、イオン交換樹脂層2を形成するNa形強酸性カチオン交換樹脂の再生を行う。
【0025】
再生は薬注路21から再生剤として塩化ナトリウム水溶液を軟化塔1に導入し、イオン交換樹脂層2を下向流で通水して行う。この再生処理により、カルシウムイオンを吸着したカチオン交換樹脂がNa形に再生され、カルシウムイオンが濃縮された再生排液が排出される。再生排液はカルシウム濃度として原水カルシウム濃度の5〜20倍程度に濃縮される。再生反応は式(2)で表される。
【化2】
2−Ca2+ + 2NaCl → 2R−Na+ + Ca2+ + 2Cl-
・・・(2)
【0026】
軟化塔1から排出される再生排液は系路22から反応槽5に導入し、循環槽3から系路23を通して反応槽5に導入する循環槽槽内液と混合し、攪拌機24で攪拌する。
反応槽5では再生排液中に高濃度で含まれているカルシウムイオンと循環槽槽内液中に高濃度で含まれているフッ素イオンとが反応し、不溶性のフッ化カルシウムが生成して析出する。この反応は式(3)で表される。
【化3】
Ca2+ + 2F- → CaF2↓ ・・・(3)
【0027】
反応槽5の反応液は系路25から沈殿槽6に入って固液分離され、上澄液は処理水として処理水路26から取り出され、分離汚泥は汚泥路27から取り出される。
再生の終了したカチオン交換樹脂層2には、前記と同様に原水を通水して処理を再開する。
【0028】
【実施例】
以下、本発明の実施例について説明する。
実施例1
フッ素濃度4mg/l、Caイオン濃度7mg/l、pH7.8の地下水を、Na形強酸性カチオン交換樹脂を充填した軟化塔にSV=8 liter/hrで通水し、Caイオン濃度検出限界以下の軟化処理水を得た。この軟化処理水を回収率90%でポリアミド系RO膜に通水し、フッ素濃度0.2mg/lの透過水と、フッ素濃度39mg/lの濃縮水を得た。
【0029】
樹脂容積の200ベッドボリューム(Bed Volume)を通水した時点でCaリークが発生し、食塩水による再生を実施した。再生排液中のCa濃度は75mg/lであった。
この再生排液と前記膜濃縮水とを混合、攪拌した後静置し、上澄水と沈殿汚泥を得た。
上澄水のフッ素濃度は11mg/l、Ca濃度は45mg/lとなり、28mg/lのフッ素がCaと反応し、CaF2として沈殿、除去することができた。
【図面の簡単な説明】
【図1】実施形態のフッ素含有水の処理方法を示す系統図である。
【符号の説明】
1 軟化塔
2 カチオン交換樹脂層
3 循環槽
4 RO膜装置
5 反応槽
6 沈殿槽
11 原水路
12、13、22、23、25 系路
14 RO膜
15、26 処理水路
16 循環路
21 薬注路
24 攪拌機
27 汚泥路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a treatment method for desalinating fluorine-containing water with a reverse osmosis membrane, and more particularly to a method for desalting fluorine-containing water with a reverse osmosis membrane to treat it into drinking water.
[0002]
[Prior art]
A reverse osmosis membrane (hereinafter referred to as RO membrane) is a semipermeable membrane having pores that allow water to permeate and block the permeation of salt. To press water from the raw water side and permeate water to perform desalting. It is used for. Such a desalting technique using a reverse osmosis membrane is generally applied as a means for removing salt. However, in a system containing calcium and fluorine, when the concentration is increased, calcium fluoride becomes a scale and precipitates on the membrane surface. In order to prevent the permeation, the operation is performed at a concentration that does not generate calcium fluoride scale, and the water recovery rate is low. As described above, the RO method has problems such as an increase in membrane replacement cost due to scale adhesion to the membrane, an increase in the frequency of washing, and a low water recovery rate, thereby raising the water production cost.
[0003]
On the other hand, as a conventional technology for removing fluorine from groundwater or river water to make drinking water, water supply facility design guidelines and explanations (Japan Water Works Association (1990), pages 313 to 314) include water with an aluminum-based flocculant. A method is shown in which flocs of aluminum oxide are generated, and fluorine is adsorbed on the generated flocs for solid-liquid separation. However, in this method, since the amount of fluorine adsorption of aluminum hydroxide is small, it is necessary to add a large amount of chemicals. As a result, a lot of aluminum hydroxide sewage is generated, and the disposal requires excessive cost.
[0004]
As another conventional method, a method of adsorbing fluorine using activated alumina or bone charcoal as a filter medium has been proposed. However, since activated sulfate method uses aluminum sulfate to regenerate the filter medium, excessive sludge is generated by neutralization of the regenerated wastewater. appear. Further, in the bone charcoal method, performance degradation (decrease in adsorption amount) occurs due to repeated regeneration, and it cannot withstand long-term use.
In addition, as a conventional method, there has been proposed a method in which calcium carbonate is added to raw water to be electrolyzed and insolubilized and separated as calcium fluoride. In this method, MgCl 2 and NaCl are also added during the electrolytic treatment. Increases in hardness and salt, and is unsuitable for drinking water.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to efficiently treat fluorine-containing water with the RO membrane without clogging the RO membrane to increase the water recovery rate, and to treat fluorine contained in the raw water efficiently with a small amount of chemicals. It is to obtain a method for treating fluorine-containing water that can be insolubilized.
[0006]
[Means for Solving the Problems]
In the present invention, fluorine- containing water having fluorine of 1 to 20 mg / l and calcium of 2 to 50 mg / l is brought into contact with a Na-type strongly acidic cation exchange resin, and calcium ions in raw water are exchanged and adsorbed to obtain softened treated water. Ion exchange process,
A regeneration step in which a cation exchange resin exchanged and adsorbed with calcium ions is brought into contact with a 5 to 20% by weight aqueous sodium chloride solution to regenerate it into Na form ;
A reverse osmosis process in which softened water in the ion exchange process is separated into a permeate and a concentrate by reverse osmosis membrane separation,
Reacting the concentrated liquid in the reverse osmosis process with the regenerated effluent discharged from the regenerating process to insolubilize the fluorine in the concentrated liquid as calcium fluoride, and the solid-liquid separation to separate the reaction liquid in the insolubilizing process into solid and liquid A process for treating fluorine-containing water comprising a step.
[0007]
In the present invention, the fluorine-containing water to be treated is water mainly containing fluorine as fluoride ions, and examples thereof include river water, lake water, and groundwater, but are not limited thereto. Fluorine-containing water suitable as a treatment target includes 1-20 mg / l fluorine such as river water, lake water, and groundwater, and 2-50 mg / l calcium fresh water, and the present invention treats these raw waters for drinking water. It is suitable to be applied to other systems for obtaining water.
[0008]
In general, such fresh water contains about 1 to 10 mg / l of fluorine and 2 to 50 mg / l of calcium. When this is concentrated by the RO membrane, calcium fluoride is precipitated and the RO membrane is clogged. In the present invention, calcium is removed to prevent this. Although it is difficult to remove the low-concentration fluorine as described above, calcium can be removed by ion exchange to such an extent that precipitation of calcium fluoride can be prevented.
[0009]
Therefore, in the present invention, in the ion exchange step, fluorine-containing water (raw water) is brought into contact with the Na-type strongly acidic cation exchange resin, and calcium ions in the raw water are exchanged and adsorbed to obtain softened treated water.
[0010]
The method for contacting the raw water with the cation exchange resin is not particularly limited. For example, a softening tower filled with Na-type strongly acidic cation exchange resin can be used in the tower, and can be carried out by passing the raw water through the softening tower. . The water flow may be upward or downward. By passing water, an ion exchange reaction occurs, calcium ions are adsorbed and removed from the ion exchange resin, and decalcified water (softened treated water) is obtained as treated water.
[0011]
As the ion exchange process continues, the amount of calcium ions adsorbed on the ion exchange resin approaches saturation, and calcium ions begin to leak (flow point). At this point of time or periodically, the process proceeds to an ion exchange resin regeneration step.
[0012]
Regeneration can be performed by bringing a cation exchange resin having exchanged and adsorbed calcium ions into contact with a regenerant. The regenerant to play Na form, 5 to 20 wt% aqueous sodium chloride solution can use. The sodium chloride concentration of the regenerant is preferably around 10% by weight . By playing as this, regeneration effluent is obtained which contains calcium ions.
[0013]
The softened water in the ion exchange step is supplied to the RO membrane device to perform membrane separation, and is separated into a permeate and a concentrate. RO membrane removes fluorine by desalting the softened water in the ion exchange process, and is generally used for desalting, such as cellulose acetate, polyamide, polysulfone, etc. having pores of 0.5 to 100 nm. Is used. As the form of the RO membrane, those generally used for desalting such as a flat membrane, a spiral, a hollow fiber, and a tubular shape are used.
[0014]
By subjecting the softened water in the ion exchange process to membrane separation with an RO membrane, fluorine and other salts are concentrated on the concentrate side, and a permeate containing no fluorine is obtained. At this time, the concentrated solution is adjusted to pH 4 to 6, preferably pH 4.5 to 5.5 with an acid to prevent precipitation of calcium fluoride and other insolubilized materials on the RO membrane. Membrane separation is operated to allow 80-95% of the separation liquid to permeate and leave 5-20% as a concentrate. The permeate is used for drinking and other irrigation water as the final treated water.
[0015]
In the insolubilization step, the concentrated solution is insolubilized as calcium fluoride by reacting the regenerated drainage liquid in the regenerating step with calcium fluoride. The reaction can be carried out by mixing the concentrated liquid and the regenerated waste liquid, whereby the fluorine being concentrated reacts with the calcium in the regenerated discharged liquid and is insolubilized as calcium fluoride.
[0016]
The reaction solution in the insolubilization step is subjected to solid-liquid separation in the solid-liquid separation step, and separated into a separation solution and sludge. As the solid-liquid separation means, precipitation is generally used, but centrifugation, filtration separation, membrane separation and the like can be used. The separation liquid may be discharged out of the system as a treatment liquid, or may be mixed with raw water and treated again. The separated sludge can be easily post-treated such as dehydration and used as a calcium source or a fluorine source.
[0017]
As described above, in the present invention, when the fluorine-containing water is separated by the RO membrane, the calcium ion in the raw water is previously ion-exchanged and adsorbed by the softening treatment in order to prevent the calcium fluoride generated by the membrane concentration from being scaled. Calcium in the effluent is insolubilized as calcium fluoride by reacting with fluorine in the membrane concentrate so that calcium in the raw water can be reused, reducing the amount of chemicals used and reducing sludge generation. It is done.
[0018]
【The invention's effect】
As described above, according to the present invention, fluorine-containing water having fluorine of 1 to 20 mg / l and calcium of 2 to 50 mg / l is brought into contact with the Na-type strongly acidic cation exchange resin to exchange and remove calcium ions in the raw water. An ion exchange process for obtaining softened treated water, a regeneration process for regenerating the cation exchange resin that has exchanged and adsorbed calcium ions with a 5 to 20 wt% sodium chloride aqueous solution to form Na, and a softened treated water for the ion exchange process in a reverse osmosis membrane Reverse osmosis process that separates and separates into permeate and concentrated liquid, and reacts the concentrated liquid in the reverse osmosis process with the regenerated effluent discharged from the regenerative process to insolubilize the fluorine in the concentrated liquid as calcium fluoride. step, and because it contains a solid-liquid separation step of the reaction solution to solid-liquid separation of insoluble step, the fluorine containing water without clogging of the RO membrane is treated efficiently by the RO membrane water Yield can be enhanced, fluorine can be insolubilized efficiently processed to a small chemical amount contained in the raw water.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram showing a method for treating fluorine-containing water according to an embodiment. In FIG. 1, reference numeral 1 denotes a softening tower, which is filled with Na-type strongly acidic cation exchange resin to form a cation exchange resin layer 2. 3 is a circulation tank, 4 is an RO membrane device, 5 is a reaction tank, and 6 is a precipitation tank.
[0020]
The treatment method is an ion exchange step, in which raw water (fluorine-containing water) is introduced from the raw water channel 11 into the softening tower 1, and the cation exchange resin layer 2 is passed in a downward flow to exchange and adsorb calcium ions. Removes and softens calcium. Thereby, the softening process water with which the calcium concentration became substantially zero is obtained.
[0021]
The form of calcium ions in the raw water has a primary hardness [Ca (HCO 3 ) 2 ] and a secondary hardness [CaCl 2 , CaSO 4 , Ca (NO 3 ) 2 ], which pass through the cation exchange resin layer 2. At the time, it is adsorbed and adsorbed on Na-type strongly acidic cation exchange resin. This reaction is represented by the formula (1).
[Chemical 1]
2R-Na + + Ca 2+ → R 2 -Ca 2+ + Na + (1)
[0022]
The softened water subjected to the ion exchange treatment is introduced into the circulation tank 3 from the system path 12 and temporarily stored, and then supplied from the system path 13 to the RO membrane device 4 to be desalted by the RO membrane 14. In the RO membrane device 4, the permeate that has passed through the RO membrane 14 is taken out from the treatment water channel 15 as desalted treated water, and the concentrated solution enriched with fluorine is circulated from the circulation channel 16 to the circulation tank 3.
[0023]
In the RO membrane 14, 80 to 95% of the inflow water becomes the permeate (treated water), and the remaining 5 to 20% becomes the concentrate. The membrane material, type, and shape of the RO membrane 14 are not limited.
The concentrated solution is concentrated to about 5 to 20 times the fluorine concentration of the raw water.
[0024]
After the ion exchange treatment by the softening tower 1 continues, the amount of calcium ions adsorbed on the ion exchange resin layer 2 approaches saturation and reaches a penetration point where calcium ions begin to leak, or after a predetermined period of time has passed, ion exchange The Na-type strongly acidic cation exchange resin that forms the resin layer 2 is regenerated.
[0025]
Regeneration is performed by introducing a sodium chloride aqueous solution as a regenerant from the chemical injection channel 21 to the softening tower 1 and passing the ion exchange resin layer 2 in a downward flow. By this regeneration treatment, the cation exchange resin having adsorbed calcium ions is regenerated into Na form, and the regenerated drainage liquid in which calcium ions are concentrated is discharged. The regenerated effluent is concentrated to a calcium concentration of about 5 to 20 times the raw water calcium concentration. The regeneration reaction is represented by the formula (2).
[Chemical formula 2]
R 2 −Ca 2+ + 2NaCl → 2R-Na + + Ca 2+ + 2Cl
... (2)
[0026]
The regenerated effluent discharged from the softening tower 1 is introduced into the reaction tank 5 from the system path 22, mixed with the solution in the circulation tank introduced into the reaction tank 5 from the circulation tank 3 through the system path 23, and stirred with the stirrer 24. .
In the reaction tank 5, calcium ions contained at a high concentration in the regeneration waste liquid react with fluorine ions contained at a high concentration in the liquid in the circulation tank, and insoluble calcium fluoride is generated and deposited. To do. This reaction is represented by Formula (3).
[Chemical 3]
Ca 2+ + 2F → CaF 2 ↓ (3)
[0027]
The reaction liquid in the reaction tank 5 enters the precipitation tank 6 from the system path 25 and is separated into solid and liquid, the supernatant liquid is taken out from the treatment water path 26 as treated water, and the separated sludge is taken out from the sludge path 27.
The raw water is passed through the regenerated cation exchange resin layer 2 in the same manner as above to restart the treatment.
[0028]
【Example】
Examples of the present invention will be described below.
Example 1
Groundwater with a fluorine concentration of 4 mg / l, a Ca ion concentration of 7 mg / l, and a pH of 7.8 is passed through a softening tower packed with Na-type strongly acidic cation exchange resin at SV = 8 liter / hr, and below the detection limit of Ca ion concentration. Softened water was obtained. This softened water was passed through the polyamide RO membrane at a recovery rate of 90% to obtain permeated water having a fluorine concentration of 0.2 mg / l and concentrated water having a fluorine concentration of 39 mg / l.
[0029]
Ca leak occurred at the time when 200 bed volume (Bed Volume) of the resin volume was passed through, and regeneration with saline was performed. The Ca concentration in the regenerated effluent was 75 mg / l.
The regenerated effluent and the membrane concentrated water were mixed, stirred, and allowed to stand to obtain supernatant water and precipitated sludge.
The supernatant water had a fluorine concentration of 11 mg / l and a Ca concentration of 45 mg / l, and 28 mg / l of fluorine reacted with Ca and could be precipitated and removed as CaF 2 .
[Brief description of the drawings]
FIG. 1 is a system diagram showing a method for treating fluorine-containing water according to an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Softening tower 2 Cation exchange resin layer 3 Circulation tank 4 RO membrane apparatus 5 Reaction tank 6 Precipitation tank 11 Raw water channel 12, 13, 22, 23, 25 System route 14 RO membrane 15, 26 Treatment water channel 16 Circulation channel 21 Chemical injection channel 24 Stirrer 27 Sludge path

Claims (1)

フッ素1〜20mg/l、カルシウム2〜50mg/lのフッ素含有水をNa形強酸性カチオン交換樹脂と接触させて、原水中のカルシウムイオンを交換吸着除去して軟化処理水を得るイオン交換工程、
カルシウムイオンを交換吸着したカチオン交換樹脂を5〜20重量%塩化ナトリウム水溶液と接触させてNa形に再生する再生工程、
イオン交換工程の軟化処理水を逆浸透膜分離して透過液と濃縮液とに分離する逆浸透工程、
逆浸透工程の濃縮液と再生工程から排出される再生排液とを反応させ、濃縮液中のフッ素をフッ化カルシウムとして不溶化する不溶化工程、ならびに
不溶化工程の反応液を固液分離する固液分離工程
を含むフッ素含有水の処理方法。
An ion exchange step of obtaining softened treated water by bringing fluorine-containing water of fluorine 1 to 20 mg / l and calcium 2 to 50 mg / l into contact with a Na-type strongly acidic cation exchange resin to exchange and remove calcium ions in raw water;
A regeneration step in which a cation exchange resin exchanged and adsorbed with calcium ions is brought into contact with a 5 to 20% by weight aqueous sodium chloride solution to regenerate Na form ;
A reverse osmosis process in which softened water in the ion exchange process is separated into a permeate and a concentrate by reverse osmosis membrane separation,
Reacting the concentrated liquid in the reverse osmosis process with the regenerated effluent discharged from the regenerating process to insolubilize the fluorine in the concentrated liquid as calcium fluoride, and the solid-liquid separation to separate the reaction liquid in the insolubilizing process into solid and liquid The processing method of fluorine-containing water including a process.
JP02451698A 1998-02-05 1998-02-05 Fluorine-containing water treatment method Expired - Fee Related JP4110604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02451698A JP4110604B2 (en) 1998-02-05 1998-02-05 Fluorine-containing water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02451698A JP4110604B2 (en) 1998-02-05 1998-02-05 Fluorine-containing water treatment method

Publications (2)

Publication Number Publication Date
JPH11221579A JPH11221579A (en) 1999-08-17
JP4110604B2 true JP4110604B2 (en) 2008-07-02

Family

ID=12140348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02451698A Expired - Fee Related JP4110604B2 (en) 1998-02-05 1998-02-05 Fluorine-containing water treatment method

Country Status (1)

Country Link
JP (1) JP4110604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107640860A (en) * 2017-10-09 2018-01-30 北京中科康仑环境科技研究院有限公司 A kind of saliferous industrial wastewater desalination reuse technology of calcic magnesium ion, sulfate ion

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131278A1 (en) * 2006-05-15 2007-11-22 Orica Australia Pty Ltd Process for treatment of water to reduce fluoride levels
JP4880656B2 (en) * 2008-09-30 2012-02-22 オルガノ株式会社 Water treatment apparatus and water treatment method
CN102906069B (en) * 2010-08-26 2014-05-28 东丽精细化工株式会社 Preparation method of dicyclohexyl disulfide
JP7137393B2 (en) * 2018-08-03 2022-09-14 オルガノ株式会社 Method and apparatus for treating water containing silica/hardness components
JP7106465B2 (en) * 2019-02-04 2022-07-26 株式会社東芝 Water treatment system and water treatment method
CN116655128B (en) * 2023-04-25 2024-05-07 同济大学 Low-pressure reverse osmosis defluorination method for high-fluorine underground water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107640860A (en) * 2017-10-09 2018-01-30 北京中科康仑环境科技研究院有限公司 A kind of saliferous industrial wastewater desalination reuse technology of calcic magnesium ion, sulfate ion

Also Published As

Publication number Publication date
JPH11221579A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
US8815096B2 (en) Sulfate removal from water sources
US6372143B1 (en) Purification of produced water from coal seam natural gas wells using ion exchange and reverse osmosis
KR101530571B1 (en) A desalination of cooling tower make-up water and effluent recycling system
CN105800846A (en) Method used for reverse osmosis concentrated water treatment and zero discharge, and apparatus thereof
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP3646900B2 (en) Apparatus and method for treating boron-containing water
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
CN110759570A (en) Treatment method and treatment system for dye intermediate wastewater
JP4110604B2 (en) Fluorine-containing water treatment method
JP3413883B2 (en) Pure water production equipment
US20120080376A1 (en) Use of desalination brine for ion exchange regeneration
JP2723422B2 (en) Production method of domestic water
JP2677384B2 (en) Treatment method of recycled waste liquid of ion exchange device
JP2003053390A (en) Clear water production system
KR100193785B1 (en) Wastewater Treatment and Reuse Method using Microfiltration and Reverse Osmosis Membrane and Its Apparatus
JPH1199389A (en) Treatment of water containing organic component and manganese
JP3376639B2 (en) Pure water recovery method from semiconductor cleaning wastewater
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
JPH10137757A (en) Water treatment and device therefor
JPH11165179A (en) Method for treating fluorine-containing water
JP3622407B2 (en) Water treatment method
KR19980083856A (en) Recycling method of wastewater by electrodialysis and reverse osmosis membrane and its device
JPH05220334A (en) Waste liquid treatment and equipment for flue gas desulfurizer
CN216472645U (en) Soaking type full-automatic regeneration soft water preparation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees