JP2723422B2 - Production method of domestic water - Google Patents
Production method of domestic waterInfo
- Publication number
- JP2723422B2 JP2723422B2 JP15936792A JP15936792A JP2723422B2 JP 2723422 B2 JP2723422 B2 JP 2723422B2 JP 15936792 A JP15936792 A JP 15936792A JP 15936792 A JP15936792 A JP 15936792A JP 2723422 B2 JP2723422 B2 JP 2723422B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- reverse osmosis
- ions
- nitrate
- electrodialysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/163—Nitrates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/05—Conductivity or salinity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F7/00—Aeration of stretches of water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、逆浸透膜法と特定され
た陰イオン交換膜を用いた電気透析法によって、種々の
陰イオンが混在する水溶液中から硝酸イオンを除去し、
特に飲料水に適した生活用水を製造する方法に関する。The present invention relates to a reverse osmosis membrane method and an electrodialysis method using a specified anion exchange membrane to remove nitrate ions from an aqueous solution containing various anions.
Particularly, the present invention relates to a method for producing domestic water suitable for drinking water.
【0002】[0002]
【従来の技術】硝酸イオンは、飲料水中に含まれている
人体に有害なイオン種である。特に近年、産業排気ガス
に基づく酸性雨の問題、雨の少ない地域における農業用
肥料あるいは家畜物の排せつ物に基づく地下水中に含ま
れる硝酸イオンの増大が深刻な問題となっている。特に
降雨量の少ないヨーロッパにおいては、その現象が顕著
となっている。また、産業廃棄物中に硝酸イオンを含ん
だものが増加しており、これも地球の環境保全の観点か
ら重要な問題である。2. Description of the Related Art Nitrate ion is a harmful ionic species contained in drinking water. Particularly in recent years, the problem of acid rain based on industrial exhaust gas and the increase of nitrate ions contained in groundwater based on agricultural fertilizer or livestock excreta in low-rain areas have become serious problems. This phenomenon is particularly noticeable in Europe where rainfall is low. In addition, industrial waste containing nitrate ions is increasing, and this is also an important problem from the viewpoint of environmental protection of the earth.
【0003】従来、これらの硝酸イオンを除去するため
に各種の方法が知られている。例えば、硝酸イオンのN
O3 -をN2とO2に分解してしまう方法、イオン交換樹脂
によって吸着除去する方法、嫌気性発酵により分解する
方法、そのほか多くの技術が開発されている。また、分
離膜を用いる方法としては、例えば、逆浸透膜法、イオ
ン交換膜による電気透析法などがあり、それぞれ目的に
よって使い分けられ、工業化されている重要な技術であ
る。Conventionally, various methods have been known for removing these nitrate ions. For example, the nitrate ion N
A number of techniques have been developed, including a method of decomposing O 3 - into N 2 and O 2 , a method of adsorbing and removing with an ion exchange resin, a method of decomposing by anaerobic fermentation, and many others. Examples of the method using a separation membrane include a reverse osmosis membrane method and an electrodialysis method using an ion-exchange membrane. These are important technologies that are properly used for each purpose and industrialized.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記し
た従来技術により地下水のような希薄な塩溶液中に存在
する硝酸イオンを除去するには、それぞれ解決すべき問
題を有する。例えばイオン交換樹脂による硝酸イオンの
吸着除去は該樹脂の再生操作を必要とし、煩雑であるば
かりでなく、再生後の廃液の処理が必要となる。また、
膜分離法は、再生の必要がなく、連続的に操作できる点
で微量の硝酸イオンを除去するために極めて有用である
が、硝酸イオンだけを選択的に膜透過させることが極め
て困難である。However, removing nitrate ions present in a dilute salt solution such as groundwater by the above-mentioned prior art has problems to be solved. For example, adsorption and removal of nitrate ions by an ion exchange resin requires a regeneration operation of the resin, which is not only complicated, but also requires disposal of a waste liquid after regeneration. Also,
The membrane separation method is very useful for removing a small amount of nitrate ions in that it can be operated continuously without the need for regeneration, but it is extremely difficult to selectively allow only nitrate ions to permeate the membrane.
【0005】例えば、逆浸透膜法は、単に加圧するとい
う簡単な操作によるだけで溶存しているイオンが膜によ
って排除され、また、エネルギーが消費量も少ないが、
得られる脱塩水は、程度の差はあってもほとんどのイオ
ン性物質が除去され、純水に近い場合が多い。従って、
このような脱塩水は生活用水、特に飲料に供する場合に
はミネラル分が無い状態の水となり好ましくない。[0005] For example, in the reverse osmosis membrane method, dissolved ions are eliminated by a simple operation of simply applying pressure by a membrane, and energy consumption is small.
The resulting demineralized water has almost all ionic substances removed to varying degrees, and is often close to pure water. Therefore,
Such demineralized water is not preferable because it becomes water free of minerals when used for domestic use, especially for drinking.
【0006】他方、イオン交換膜を用いた電気透析法
(以下、単に電気透析法という)は、陽イオン交換膜
種、陰イオン交換膜種の選択によって、膜を透過するイ
オン種を制御することが可能である。例えば、硝酸イオ
ンを選択的に透過する陰イオン交換膜は、既に特開平2-
298396号公報に開示されている。即ち、これらの陰イオ
ン交換膜を用いれば、硝酸イオンを選択的に膜透過によ
り除去して脱塩水を得ることが出来る。しかし、電気透
析法では、イオンの膜透過が電流によって行われるた
め、塩濃度が極度に低い水を処理する場合には、運転電
流密度が著しく低下する。したがって、このような電気
透析法により硝酸イオンを含む一定量の希薄な塩水溶液
を処理する場合には、大きな電気透析設備を必要として
設備費の増大を招くことになる。On the other hand, an electrodialysis method using an ion exchange membrane (hereinafter simply referred to as an electrodialysis method) involves controlling the ion species passing through the membrane by selecting a cation exchange membrane type and an anion exchange membrane type. Is possible. For example, an anion exchange membrane that selectively permeates nitrate ions has already been disclosed in
It is disclosed in Japanese Patent Publication No. 298396. That is, if these anion exchange membranes are used, nitrate ions can be selectively removed through the membrane to obtain demineralized water. However, in the electrodialysis method, since the permeation of ions is carried out by an electric current, the operating current density is significantly reduced when treating water having an extremely low salt concentration. Therefore, when a certain amount of a dilute salt aqueous solution containing nitrate ions is treated by such an electrodialysis method, a large electrodialysis facility is required, resulting in an increase in facility costs.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記した
課題に鑑み、硝酸イオンを含む希薄な塩水溶液から硝酸
イオンのみを所定量まで除去して、かつ所望のミネラル
分を含有する飲料水に適した生活用水の製造について、
鋭意研究を重ねた。その結果、逆浸透膜法とイオン交換
膜を用いる電気透析法とを組み合わせた簡便な方法によ
り、本発明を完成するに至ったものである。DISCLOSURE OF THE INVENTION In view of the above-mentioned problems, the present inventors have found that a beverage containing only a predetermined amount of nitrate ions from a dilute salt aqueous solution containing nitrate ions and containing a desired mineral component can be obtained. For the production of domestic water suitable for water,
We continued our research. As a result, the present invention has been completed by a simple method combining a reverse osmosis membrane method and an electrodialysis method using an ion exchange membrane.
【0008】即ち、本発明は、硝酸イオンを含む希薄な
塩水溶液を別途に(1)逆浸透膜法による脱塩と(2)
硝酸イオンを選択的に透過するイオン交換膜を用いた電
気透析法による脱塩とに供し、逆浸透膜法による脱塩に
より殆どのイオン性物質が除去された脱塩水を得、電気
透析法による脱塩により硝酸イオンが50ppm以下に
低下していない脱塩水を得、次いで、それぞれの脱塩水
を混合するにあたり、該混合水の硝酸イオンを50pp
m以下かつ電導度を50μs(マイクロジーメンス)以
上にモニターして制御することを特徴とする生活用水の
製造方法である。That is, according to the present invention, a dilute salt aqueous solution containing nitrate ions is separately prepared by (1) desalting by a reverse osmosis membrane method and (2)
Subjected to a desalting by electrodialysis using an ion exchange membrane which is selectively permeable to nitric acid ions, the desalination by reverse osmosis
Demineralized water from which most of the ionic substances have been removed
Nitrate ion below 50ppm by dialysis desalination
Undiluted demineralized water is obtained, and then, in mixing each demineralized water, nitrate ions of the mixed water are reduced by 50 pp.
m and a conductivity of 50 μs (microsiemens) or more.
【0009】本発明の対象となる硝酸イオンを含んだ希
薄な塩水溶液(以下、単に塩水という)は、一般に全可
溶塩分(Total Disolbed Salts :TDS)が2000p
pm以下、特に1000ppm以下である飲料を始めと
する生活用水に用いられる水、硝酸イオンが50ppm
以上含まれているものである。The dilute aqueous salt solution containing nitrate ions (hereinafter simply referred to as “salt water”) which is the object of the present invention generally has a total soluble salt (TDS) of 2000 p.
pm, especially water used for domestic water including beverages of 1000 ppm or less, nitrate ion is 50 ppm
The above is included.
【0010】本発明の逆浸透法(RO)においては、従
来公知の逆浸透装置が何ら制限なく用いられる。例え
ば、酢酸セルローズ系非対称膜を用いた平膜型、スパイ
ラル型、チューブ状型、縮合系ポリマーを用いたホロー
ファイバー型等の膜モジュール、膜としては膜構造の緻
密さによって分離を行うもの、正または負の荷電を有す
る荷電型逆浸透膜、低圧で操作するルーズRO膜なども
好適に用いられるが、好ましくは出来るだけ塩排除率の
高い逆浸透膜を用いた装置が好ましい。一般に海水淡水
化において用いられている塩排除率が95%以上、特に
98%以上の逆浸透膜を用いることが好ましい。従っ
て、このような逆浸透法によって得られる脱塩水は原水
の組成、濃度、逆浸透膜の種類、操作条件によって若干
異なるが殆ど純水に近い水である。[0010] In the reverse osmosis method (RO) of the present invention, a conventionally known reverse osmosis apparatus is used without any limitation. For example, a membrane module such as a flat membrane type using a cellulose acetate type asymmetric membrane, a spiral type, a tubular type, a hollow fiber type using a condensed polymer, etc. Alternatively, a charged reverse osmosis membrane having a negative charge, a loose RO membrane operated at a low pressure, and the like are preferably used, but an apparatus using a reverse osmosis membrane having a salt rejection as high as possible is preferable. It is preferable to use a reverse osmosis membrane having a salt rejection of 95% or more, particularly 98% or more, which is generally used in seawater desalination. Therefore, the desalinated water obtained by such a reverse osmosis method is almost pure water although it slightly varies depending on the composition and concentration of the raw water, the type of the reverse osmosis membrane, and the operating conditions.
【0011】他方、本発明の電気透析法においては、陽
イオン交換膜とともに、硝酸イオンを選択的に透過する
陰イオン交換膜を用いる。一般に強塩基性陰イオン交換
基と弱塩基性陰イオン交換基が共存し、比較的交換容量
が低く、架橋密度が高く、かつ陰イオン交換基に炭素鎖
2以上の疎水性アルキル鎖が結合した陰イオン交換膜が
好ましく用いられる。即ち、このような陰イオン交換膜
は硫酸イオン、炭酸イオンを殆ど透過させず、塩素イオ
ンに比較して硝酸イオンを選択的に透過する。従って、
原料水の全可溶塩分中で陰イオンとしては、硝酸イオン
だけが主に減少し、他のイオンは殆ど変化しない。な
お、陽イオンは使用する陽イオン交換膜によって異な
り、通常の陽イオン交換膜では、カルシウムイオン、マ
グネシウムイオン等の多価陽イオンが選択的に通過する
が、一価陽イオン選択通過性イオン交換膜を用いること
により、一価陽イオンが選択的に膜透過除去される。On the other hand, in the electrodialysis method of the present invention, an anion exchange membrane which selectively permeates nitrate ions is used together with a cation exchange membrane. Generally, a strongly basic anion exchange group and a weakly basic anion exchange group coexist, the exchange capacity is relatively low, the crosslink density is high, and a hydrophobic alkyl chain having two or more carbon chains is bonded to the anion exchange group. An anion exchange membrane is preferably used. That is, such an anion exchange membrane hardly permeates sulfate ions and carbonate ions, and selectively permeates nitrate ions as compared with chloride ions. Therefore,
As anions in all the soluble salts of the raw water, only the nitrate ion mainly decreases, and the other ions hardly change. The cations vary depending on the cation exchange membrane to be used. In a normal cation exchange membrane, multivalent cations such as calcium ions and magnesium ions selectively pass. By using the membrane, monovalent cations are selectively removed through the membrane.
【0012】本発明の逆浸透法と電気透析法とにより得
られた脱塩水の混合割合は、それぞれ脱塩水の組成によ
り一概に決定されないが一般に電気透析法の脱塩水に対
して逆浸透法の脱塩水を一般に0.5〜5倍の割合に混
合して、該混合液の硝酸イオンを50ppm以下かつ電
導度を50μm以上になるように維持すればよい。The mixing ratio of the demineralized water obtained by the reverse osmosis method and the electrodialysis method of the present invention is not unconditionally determined by the composition of the demineralized water. Demineralized water is generally mixed at a ratio of 0.5 to 5 times to maintain the nitrate ion of the mixture at 50 ppm or less and the conductivity at 50 μm or more.
【0013】本発明によれば、逆浸透法と電気透析法と
により得られる脱塩水を単に混合することにより、特に
飲料水として人体に有害な硝酸イオンを基準値である5
0ppm以下、好ましくは25ppm以下かつ電導度を
50μs以上として必要量のミネラル分を有する生活用
水を容易に得ることができる。According to the present invention, by simply mixing the desalted water obtained by the reverse osmosis method and the electrodialysis method, nitrate ions which are harmful to the human body as the drinking water are set as the reference value.
Domestic water having a necessary amount of minerals can be easily obtained by setting the electric conductivity to 0 ppm or less, preferably 25 ppm or less and the electric conductivity to 50 μs or more.
【0014】即ち、本発明の逆浸透法においては、ミネ
ラル分の損失を考慮することなく、硝酸イオンとともに
殆どのイオン性物質が除去された脱塩水を得ることがで
きるため、加圧という簡単な操作により消費エネルギー
も極めて少なくできる。That is, in the reverse osmosis method of the present invention, demineralized water from which almost all ionic substances have been removed together with nitrate ions can be obtained without considering the loss of minerals. Energy consumption can be extremely reduced by the operation.
【0015】また、本発明の電気透析法においては、逆
浸透法による脱塩水の混合割合に応じて、希薄な塩水溶
液の限定量が処理されるために、大きな電気透析設備を
必要とせずに脱塩を実施できる。そして、本発明におい
ては、電気透析は、脱塩水の硝酸イオンを50ppm以
下に低下させることなく実施される。こうした電気透析
では、電導度を50μs以上において脱塩できるために
要する電気エネルギーを少なくできる。Further, in the electrodialysis process of the present invention, depending on the mixing ratio of demineralized water that by the reverse osmosis method, since the amount of limitation of dilute salt solution is processed, the need for large electrodialysis equipment Desalination can be carried out without any need . And, in the present invention,
In electrodialysis, the nitrate ion of deionized water should be 50 ppm or less.
Performed without lowering down. Such electrodialysis
Thus, the electric energy required for desalting at an electric conductivity of 50 μs or more can be reduced.
【0016】本発明について、製法(プロセス)の概要
を図1において説明する。井戸(1)より汲み上げられ
た水は、タンク(2)に貯えられ、前処理工程(3)を
経たのち、一部は電気透析槽(4)に供給され、硫酸イ
オンの除去された水が混合タンク(5)に貯えられる。
他方、逆浸透装置(6)で得られた脱塩水はタンク
(5)に同様に供給される。タンク(5)混合水の硝酸
イオンをモニターして50ppm以下とし全塩濃度を電
導計によってモニターして50μs以上となるように電
気透析槽(4)または逆浸透装置(6)を自動的に運転
し、硝酸イオン濃度を50ppm以下に保ちながら、最
大の生産水を得られるように運転する。The outline of the manufacturing method (process) of the present invention will be described with reference to FIG. The water pumped from the well (1) is stored in a tank (2), and after a pretreatment step (3), a part is supplied to an electrodialysis tank (4) to remove water from which sulfate ions have been removed. It is stored in the mixing tank (5).
On the other hand, the desalinated water obtained in the reverse osmosis unit (6) is similarly supplied to the tank (5). Tank (5) Automatically operates the electrodialysis tank (4) or reverse osmosis device (6) so that the nitrate ion of the mixed water is monitored to be 50 ppm or less and the total salt concentration is monitored by a conductivity meter to be 50 μs or more. Then, while maintaining the nitrate ion concentration at 50 ppm or less, the operation is performed so as to obtain the maximum product water.
【0017】上記したような逆浸透法において脱塩水の
生産量を制御するには、一般に操作圧力を変化すればよ
く、また電気透析法においては運転の電流密度を変化さ
せることにより、生産量を変えることができる。即ち、
本発明におけるプロセスの運転は、混合した生産水中の
硝酸イオン濃度は50ppm以下、全ミネラル量は電導
度で検知して50μs以上であるように設計されるが、
原水組成に変動が生じた場合、該生産水の硝酸イオン濃
度を50ppm以下に保ち、全ミネラル分を50μs以
上に保つためには、逆浸透法または電気透析法の運転条
件、脱塩水の生産量を制御する必要がある。例えば、生
産水中の硝酸イオンの濃度が50ppmを越えて電導度
が50μs以上あるときには、電気透析法からの生産水
量に対して逆浸透装置からの生産水量を増加して上記し
た所定の数値を維持する必要がある。また、生産水中の
硝酸イオン濃度は50ppm以下であるが、電導度が5
0μs以下である場合には、電気透析法からの生産水量
を増加して、逆浸透法からの生産水量を減少して上記し
た所定数値を維持する必要がある。さらに、生産水中の
硝酸イオン濃度が50ppmを越え、電導度も50μs
以下となった場合は、電気透析法における電流密度を下
げて単位時間に脱塩されるイオン量を減らし、電導度を
高くし、かつ逆浸透法からの生産水量を多くすることに
よって目的を達することができる。In order to control the production amount of the desalinated water in the reverse osmosis method as described above, it is generally sufficient to change the operating pressure. In the electrodialysis method, the production amount is changed by changing the current density of the operation. Can be changed. That is,
The operation of the process in the present invention is designed so that the nitrate ion concentration in the mixed production water is 50 ppm or less, and the total mineral amount is 50 μs or more as detected by conductivity,
When the raw water composition fluctuates, the operating conditions of the reverse osmosis method or the electrodialysis method, the production amount of demineralized water, and the like, in order to keep the nitrate ion concentration of the production water at 50 ppm or less and the total mineral content at 50 μs or more, Need to be controlled. For example, when the concentration of nitrate ions in the production water exceeds 50 ppm and the conductivity is 50 μs or more, the production amount of the reverse osmosis device is increased with respect to the production amount of the electrodialysis method to maintain the above-mentioned predetermined value. There is a need to. The nitrate ion concentration in the production water is 50 ppm or less, but the conductivity is 5 ppm.
If it is 0 μs or less, it is necessary to increase the amount of water produced from the electrodialysis method and decrease the amount of water produced from the reverse osmosis method to maintain the above-mentioned predetermined value. Further, the nitrate ion concentration in the production water exceeds 50 ppm, and the conductivity is 50 μs.
In the following cases, the purpose is achieved by lowering the current density in the electrodialysis method, reducing the amount of ions desalted per unit time, increasing the conductivity, and increasing the amount of water produced from the reverse osmosis method be able to.
【0018】上記のような操作は、電導度計によって生
産水の電導度を検知し、且つ硝酸イオン濃度を適切な硝
酸イオン電極によって検知し、自動的に逆浸透装置と電
気透析装置からの生産水量を止めたり、稼働したり、或
いは運転条件を制御したりすることが好ましい。勿論、
定期的に生産水をサンプリングして、化学分析により、
イオンクロマトグラフィーによる分析で硝酸イオン濃
度、電導度を知り、これによって運転を制御してもよ
い。The above operation is performed by detecting the conductivity of the produced water by a conductivity meter and detecting the nitrate ion concentration by an appropriate nitrate ion electrode , and automatically producing the product from the reverse osmosis device and the electrodialysis device. It is preferable to stop the amount of water, operate, or control operating conditions. Of course,
We regularly sample the production water and use chemical analysis to
The operation may be controlled by knowing the nitrate ion concentration and the conductivity by analysis by ion chromatography.
【0019】[0019]
【発明の作用及び効果】本発明の水処理方法によって有
害な硝酸イオンを含む水から、適当なミネラルを含んだ
硝酸イオンの除去された飲料水に用いうる生活用水を大
量に極めて安価に製造することができる。According to the water treatment method of the present invention, a large amount of domestic water which can be used as drinking water from which nitrate ions containing appropriate minerals are removed can be produced inexpensively from water containing harmful nitrate ions. be able to.
【0020】[0020]
【実施例】以下、本発明の内容を具体的に実施例によっ
て説明するが、本発明はこれらの実施例によって何ら制
限されるものではない。The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.
【0021】実施例1 硝酸イオン 153ppm、塩素イオン 88.5pp
m、硫酸イオン 120ppm、重炭酸イオン 152.
5ppm、ナトリウム 230ppm(TDS744p
pm)を含む中性の希薄塩水溶液(原水)を第1図のプ
ロセスに従って、それぞれ下記する逆浸透法(1)と電
気透析法(2)とによって処理した後、(3)得られる
生成水(脱塩水)を混合して生活用水を製造した。な
お、原水は、予め砂ろ過器によってろ過し、懸独物を除
去して実施した。Example 1 Nitrate ion: 153 ppm, chlorine ion: 88.5 pp
m, sulfate ion 120 ppm, bicarbonate ion 152.
5 ppm, sodium 230 ppm (TDS744p
pm) is treated by the following reverse osmosis method (1) and electrodialysis method (2) according to the process of FIG. 1, respectively. (Desalinated water) was mixed to produce domestic water. The raw water was filtered beforehand with a sand filter to remove suspended substances.
【0022】(1)逆浸透法 塩排除率 98.5%の酢酸セルローズ系の非対称構造
の平膜をスパイラル状にした有効面積24m2のモジュ
ールを用いて脱塩した。得られた生成水中のTDSは6
ppmであり、ミネラル分が殆ど除去された水が得られ
た。生成量は1m3/hrであった。(1) Reverse Osmosis Method A flat membrane having an asymmetric structure of a cellulose acetate system having a salt rejection of 98.5% was desalted using a spiral-shaped module having an effective area of 24 m 2 . The TDS in the resulting product water is 6
ppm, and water from which minerals were almost completely removed was obtained. The production amount was 1 m 3 / hr.
【0023】(2)電気透析法 徳山曹達(株)の陽イオン交換膜(NEOSEPTA CMX)と
硝酸イオン選択透過性の陰イオン交換膜(NEOSEPTA AN
R-2)を対にして脱塩した。(2) Electrodialysis method Cation exchange membrane (NEOSEPTA CMX) manufactured by Tokuyama Soda Co., Ltd. and anion exchange membrane (NEOSEPTA AN) selectively permeating nitrate ion
R-2) was desalted in pairs.
【0024】電気透析層は、有効通電面積20cm2の
膜を10対組み込んだものを用いた。上記した塩水(原
水)の脱塩は、部分循環方式によって脱塩水を抜き出し
ながら2mA/cm2の電流密度で脱塩を実施した。得
られた脱塩水中の硝酸イオンは52ppmで、TDSは
540ppmであった。脱塩水の生成量は、0.5m3
/hrであった。なお、脱塩に要する電気エネルギーは
0.3KwH/m3であった。The electrodialysis layer used was one in which 10 pairs of membranes having an effective current-carrying area of 20 cm 2 were incorporated. The desalination of the salt water (raw water) was performed at a current density of 2 mA / cm 2 while extracting the desalinated water by a partial circulation method. The nitrate ion in the obtained deionized water was 52 ppm, and the TDS was 540 ppm. Demineralized water production is 0.5m 3
/ Hr. The electric energy required for desalination was 0.3 KwH / m 3 .
【0025】(3)生活用水の製造 上記した逆浸透膜法と電気透析法とより生成する脱塩水
を混合して1.5m3/hrの用水を得た。この混合液
中には、硝酸イオン電極を設けて硝酸イオンを検知し、
また電導度計によってモニター、電気透析槽からの生成
水と逆浸透膜装置からの供給量を制御した。その結果、
生成水中の硝酸イオン濃度を50ppm以下に保ち、電
導度を50μs以上900μsの間にある生成水を得る
ことが出来た。一例を示すと、硝酸イオン濃度は17p
pmで、電導度は450μsであり、TDSは185p
pmであった。なお、原水中の硝酸イオンを始め全ての
イオン種の濃度が上昇したときは、電気透析槽をそのま
まにして運転し逆浸透膜装置の操作圧力を増加して逆浸
透膜装置からの生成水の量を増し、これを電気透析槽か
ら得られた水と混合した。(3) Production of Domestic Water Demineralized water produced by the reverse osmosis membrane method and the electrodialysis method was mixed to obtain 1.5 m 3 / hr of service water. In this mixture, a nitrate ion electrode is provided to detect nitrate ions,
Also, the amount of water produced from the monitor and the electrodialysis tank and the amount supplied from the reverse osmosis membrane device were controlled by a conductivity meter. as a result,
The nitrate ion concentration in the produced water was kept at 50 ppm or less, and produced water having an electric conductivity between 50 μs and 900 μs was obtained. As an example, the nitrate ion concentration is 17p
pm, conductivity is 450 μs, TDS is 185p
pm. In addition, when the concentration of all ion species including nitrate ion in the raw water rises, the electrodialysis tank is operated as it is, the operation pressure of the reverse osmosis membrane device is increased, and the water generated from the reverse osmosis membrane device is increased. The volume was increased and this was mixed with the water obtained from the electrodialysis cell.
【図1】本発明のプロセスを示す模式図である。FIG. 1 is a schematic diagram illustrating the process of the present invention.
1.井戸 2.タンク 3.前処理工程 4.電気透析槽 5.混合タンク 6.逆浸透装置 7.モニター装置 1. Well 2. Tank 3. Pretreatment step 4. Electrodialysis tank 5. Mixing tank 6. Reverse osmosis device 7. Monitor device
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 502 C02F 9/00 503A 503 504E 504 1/46 103 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location C02F 9/00 502 C02F 9/00 503A 503 504E 504 1/46 103
Claims (1)
(1)逆浸透膜法による脱塩と(2)硝酸イオンを選択
的に透過するイオン交換膜を用いた電気透析法による脱
塩とに供し、逆浸透膜法による脱塩により殆どのイオン
性物質が除去された脱塩水を得、電気透析法による脱塩
により硝酸イオンが50ppm以下に低下していない脱
塩水を得、次いで、それぞれの脱塩水を混合するにあた
り、該混合水の硝酸イオンを50ppm以下かつ電導度
を50μs以上にモニターして制御することを特徴とす
る生活用水の製造方法。A dilute salt solution containing nitrate ions is separately desalted by (1) a reverse osmosis membrane method and (2) an electrodialysis method using an ion exchange membrane selectively passing nitrate ions. And most of the ions are desalted by reverse osmosis membrane method.
Demineralized water from which toxic substances have been removed
The nitrate ion does not drop below 50 ppm
A method for producing domestic water, comprising obtaining salt water and then mixing and mixing each of the demineralized water with monitoring and controlling nitrate ions of the mixed water to 50 ppm or less and conductivity to 50 μs or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15936792A JP2723422B2 (en) | 1992-06-18 | 1992-06-18 | Production method of domestic water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15936792A JP2723422B2 (en) | 1992-06-18 | 1992-06-18 | Production method of domestic water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06339A JPH06339A (en) | 1994-01-11 |
JP2723422B2 true JP2723422B2 (en) | 1998-03-09 |
Family
ID=15692292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15936792A Expired - Fee Related JP2723422B2 (en) | 1992-06-18 | 1992-06-18 | Production method of domestic water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2723422B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100390007B1 (en) * | 2002-02-05 | 2003-07-04 | 주식회사 엔비자인 | The mineral preservation was the water Purification method which a namo filtration |
US10252923B2 (en) | 2006-06-13 | 2019-04-09 | Evoqua Water Technologies Llc | Method and system for water treatment |
US8114259B2 (en) | 2006-06-13 | 2012-02-14 | Siemens Industry, Inc. | Method and system for providing potable water |
US8277627B2 (en) | 2006-06-13 | 2012-10-02 | Siemens Industry, Inc. | Method and system for irrigation |
WO2007145785A1 (en) * | 2006-06-13 | 2007-12-21 | Siemens Water Technologies Corp. | Method and system for irrigation |
US10213744B2 (en) | 2006-06-13 | 2019-02-26 | Evoqua Water Technologies Llc | Method and system for water treatment |
US20080067069A1 (en) | 2006-06-22 | 2008-03-20 | Siemens Water Technologies Corp. | Low scale potential water treatment |
MX2010005876A (en) | 2007-11-30 | 2010-06-15 | Siemens Water Tech Corp | Systems and methods for water treatment. |
CN109336309A (en) * | 2018-11-30 | 2019-02-15 | 佛山市云米电器科技有限公司 | A kind of household water purifier and domestic water purifying machine that water quality is controllable |
CN109336306A (en) * | 2018-11-30 | 2019-02-15 | 佛山市云米电器科技有限公司 | A kind of circulating household water purifier in part and domestic water purifying machine |
CN113960116B (en) * | 2021-10-21 | 2023-06-20 | 常州博瑞电力自动化设备有限公司 | Device and method for testing dynamic performance of ion exchange resin of converter valve cooling system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61175296U (en) * | 1985-04-17 | 1986-10-31 | ||
JPS63224793A (en) * | 1987-03-14 | 1988-09-19 | Noboru Fujimura | Production of mineral water |
CH677325A5 (en) * | 1989-04-28 | 1991-05-15 | Asea Brown Boveri |
-
1992
- 1992-06-18 JP JP15936792A patent/JP2723422B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06339A (en) | 1994-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Damtie et al. | Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review | |
Al Abdulgader et al. | Hybrid ion exchange–Pressure driven membrane processes in water treatment: A review | |
Arora et al. | Use of membrane technology for potable water production | |
JP3244689B2 (en) | Electrodeionization and UV treatment method for purifying water | |
AU2008331796B2 (en) | Systems and methods for water treatment | |
EP3634608B1 (en) | Water treatment of sodic, high salinity, or high sodium waters for agricultural applications | |
WO1999050184A1 (en) | Water treatment system and process comprising ph-adjustment | |
GB2249307A (en) | Process for purifying water by means of a combination of electrodialysis and reverse osmosis | |
JP2723422B2 (en) | Production method of domestic water | |
AU2003248687A1 (en) | Methods for reducing boron concentration in high salinity liquid | |
Hilal et al. | A combined ion exchange–nanofiltration process for water desalination: III. Pilot scale studies | |
US10766800B2 (en) | Removal of nitrates from ground water | |
Touir et al. | The comparison of electrodialysis and nanofiltration in nitrate removal from groundwater | |
López-Ramı́rez et al. | Pre-treatment optimisation studies for secondary effluent reclamation with reverse osmosis | |
JP2677384B2 (en) | Treatment method of recycled waste liquid of ion exchange device | |
RU2383498C1 (en) | Method of obtaining desalinated water and high-purity water for nuclear power plants for research centres | |
JP4110604B2 (en) | Fluorine-containing water treatment method | |
KR100398417B1 (en) | A method for treating electrogalvanizing wastewaters | |
Mehenktaş et al. | Application of Membrane Processes for Nitrate (NO3-) Removal | |
JP3271744B2 (en) | Desalting method using electrodialysis equipment | |
JP2002205070A (en) | Method of making mineral water from marine deep water and system of making for the same | |
JP7163274B2 (en) | How to obtain iodine-based substances | |
CN210974236U (en) | Water treatment system | |
Rajca | The removal of anionic contaminants from water by means of MIEX (R) DOC process enhanced with membrane filtration | |
Hoinkis et al. | Sustainable small-scale, membrane based arsenic remediation for developing countries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |