KR100398417B1 - A method for treating electrogalvanizing wastewaters - Google Patents

A method for treating electrogalvanizing wastewaters Download PDF

Info

Publication number
KR100398417B1
KR100398417B1 KR10-1999-0032745A KR19990032745A KR100398417B1 KR 100398417 B1 KR100398417 B1 KR 100398417B1 KR 19990032745 A KR19990032745 A KR 19990032745A KR 100398417 B1 KR100398417 B1 KR 100398417B1
Authority
KR
South Korea
Prior art keywords
electrodialysis
wastewater
treating
electroplating
concentrate
Prior art date
Application number
KR10-1999-0032745A
Other languages
Korean (ko)
Other versions
KR20010017298A (en
Inventor
김시환
오재완
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-1999-0032745A priority Critical patent/KR100398417B1/en
Publication of KR20010017298A publication Critical patent/KR20010017298A/en
Application granted granted Critical
Publication of KR100398417B1 publication Critical patent/KR100398417B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Abstract

본 발명은 전기도금폐수를 처리하는 방법에 관한 것으로,The present invention relates to a method for treating electroplating wastewater,

(a)전기도금공장으로부터 배출된 전기도금폐수를 제1단계 전기투석장치로 처리하여 발생하는 농축액을 제2 단계 전기투석장치로 처리하고, 함께 발생하는 탈염액은 공업용수로서 재이용하는 단계;(a) treating the concentrate produced by treating the electroplating wastewater discharged from the electroplating plant with the first stage electrodialysis apparatus with the second stage electrodialysis apparatus, and the desalting solution generated together is reused as industrial water;

(b)상기 (a)단계에서 제2 단계 전기투석 처리한 결과 발생하는 탈염액은 도로 회수하여 상기 (a)단계를 반복하는 단계; 및(b) recovering the demineralized liquid generated as a result of the second step of electrodialysis in step (a) and repeating step (a); And

(c)상기 (b)단계에서 제2 단계 전기투석 처리한 결과 발생하는 농축액은 증발 농축기를 사용하여 재농축시켜 농축액으로부터 유가자원을 회수하고 응축수는 공업용수로 재이용하는 단계;로 이루어지는 방법이 제공된다.(c) the concentrate produced as a result of the second step of electrodialysis in step (b) is reconcentrated using an evaporator to recover valuable resources from the concentrate, and the condensate is reused as industrial water. do.

본 발명에 의하면, 전기도금폐수에 함유되어 있는 다량의 금속 이온을 전기 투석 및 증발 농축기를 차례로 통과시킴으로써 폐수중에 포함되어 있는 유가자원을 회수하고 처리된 폐수를 공업용수로 재이용할 수 있다.According to the present invention, by passing a large amount of metal ions contained in the electroplating wastewater through an electrodialysis and an evaporator, the valuable resources contained in the wastewater can be recovered and the treated wastewater can be reused as industrial water.

Description

전기도금폐수 처리방법{A METHOD FOR TREATING ELECTROGALVANIZING WASTEWATERS}Electroplating Wastewater Treatment Method {A METHOD FOR TREATING ELECTROGALVANIZING WASTEWATERS}

본 발명은 전기도금폐수를 처리하는 방법에 관한 것으로, 보다 상세하게는 전기도금공장에서 발생되는 폐수에 함유되어 있는 다량의 금속 이온을 전기투석장치와 증발농축기를 사용하여 처리함으로써 폐수중에 포함되어 있는 유가자원을 회수하고 처리된 폐수를 공업용수로 재이용할 수 있는 처리 방법에 관한 것이다.The present invention relates to a method for treating electroplating wastewater, and more particularly, by treating a large amount of metal ions contained in wastewater generated in an electroplating plant by using an electrodialysis apparatus and an evaporator. The present invention relates to a treatment method for recovering valuable resources and reusing treated wastewater as industrial water.

일반적으로 전기도금공장에서는 열연코일을 소재로 하여 산세, 냉간압연, 공기청정, 소둔 및 도금공정을 통하여 미려한 냉연 및 도금제품을 생산한다.In general, electroplating factories produce beautiful cold rolled and plated products using hot rolled coils through pickling, cold rolling, air cleaning, annealing, and plating processes.

도금공장에서 발생되는 폐수는 대부분 수세 공정에서 발생된 폐수이며, 다른 산업 폐수와는 달리 다량의 중금속을 포함하고 있으며, 산을 사용하기 때문에 pH가 2-3으로 매우 낮다. 따라서 도금폐수처리공정에서 이들 다량의 금속이온을 처리하고 pH를 높이기 위한 방법으로, 화학적으로 pH 조절제와 소석회 응집제를 함께 사용하여 pH를 중성이상으로 맞춘 다음, 응집 및 침전의 방법으로 금속 이온을 제거하여배출시키는 방법이 있으나, 이들 응집, 침전에 의한 방법에서는 금속이온의 제거 효율을 증가시키기 위하여 pH를 중성 이상으로 관리하기 때문에 그 사용량이 금속 이온보다 과량으로 사용되고 있다.Most of the wastewater generated in the plating plant is wastewater generated in the water washing process. Unlike other industrial wastewater, the wastewater contains a large amount of heavy metals, and since the acid is used, the pH is very low, 2-3. Therefore, in the plating wastewater treatment process, a large amount of metal ions are treated and the pH is increased by chemically adjusting the pH to a neutral phase by using a pH adjuster and a slaked lime coagulant, and then removing metal ions by a method of flocculation and precipitation. There is a method of discharging by using, but in these flocculation and sedimentation methods, since the pH is controlled to be neutral or higher in order to increase the removal efficiency of the metal ions, the amount thereof is used in excess of the metal ions.

그리고 미국 특허 62704255호, 60305781호 및 64910639호에 의하면 역삼투압 방법 및 이온교환법으로 도금폐수에서부터 금속이온을 제거하는 방법등이 알려져 있으나, 이들 방법들은 단지 도금폐수에서 금속 이온을 제거하기 위한 방법에 불과하며, 특히 이온교환법은 효율적으로 처리할 수 있는 범위가 제한적이다.In addition, US Pat. Nos. 62704255, 60305781, and 64910639 disclose methods for removing metal ions from plating wastewater by reverse osmosis and ion exchange, but these methods are merely methods for removing metal ions from plating wastewater. In particular, the ion exchange method has a limited range that can be efficiently processed.

따라서 이들에 의하면, 이들 처리 공정의 부산물인 슬러지가 다량으로 발생되어 슬러지 및 2차 오염물질의 발생으로 말미암아 도금폐수의 처리에 상당히 많은 비용이 소요되며, 활용성도 상당히 제한적이다.Therefore, according to them, a large amount of sludge as a by-product of these treatment processes is generated, and due to the generation of sludge and secondary pollutants, it is very expensive to treat the plating wastewater, and its utilization is also very limited.

이에 본 발명의 목적은 상기 제반 문제점을 감안하여 처리후 발생하는 농축액으로 부터 유가 성분을 회수하고 탈염액은 공업용수로 재이용할 수 있는 전기도금폐수 처리 방법을 제공하려는데 있다.Accordingly, an object of the present invention is to provide a method for treating electroplating wastewater in which valuable components are recovered from concentrated liquids generated after treatment in consideration of the above problems and the desalted liquids can be reused as industrial water.

도 1은 본 발명에 의한 전기도금폐수 처리를 위한 시스템을 도시한 흐름도이다.1 is a flowchart illustrating a system for electroplating wastewater treatment according to the present invention.

본 발명에 의하면,According to the invention,

(a)전기도금공장으로부터 배출된 전기도금폐수를 제1단계 전기투석장치로 처리하여 발생하는 농축액을 제2 단계 전기투석장치로 처리하고, 함께 발생하는 탈염액은 공업용수로서 재이용하는 단계;(a) treating the concentrate produced by treating the electroplating wastewater discharged from the electroplating plant with the first stage electrodialysis apparatus with the second stage electrodialysis apparatus, and the desalting solution generated together is reused as industrial water;

(b)상기 (a)단계에서 제2 단계 전기투석 처리한 결과 발생하는 탈염액은 도로 회수하여 상기 (a)단계를 반복하는 단계; 및(b) recovering the demineralized liquid generated as a result of the second step of electrodialysis in step (a) and repeating step (a); And

(c)상기 (b)단계에서 제2 단계 전기투석 처리한 결과 발생하는 농축액은 증발 농축기를 사용하여 재농축시켜 농축액으로부터 유가자원을 회수하고 응축수는 공업용수로 재이용하는 단계;로 이루어지는 전기도금폐수 처리 방법이 제공된다.(c) the concentrate produced as a result of the second step of electrodialysis in step (b) is reconcentrated using an evaporator to recover valuable resources from the concentrate, and condensate is reused as industrial water; electroplating wastewater consisting of A treatment method is provided.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 전기도금공정으로부터 발생된 도금폐수를 전기투석 및 증발기로 처리했을 때 발생되는 탈염수는 공업용수로 재이용하고 농축수중의 유가성분, 즉 K, Zn, Ni 및 Cl과 같은 이온 성분은 회수함으로써 결과적으로 폐수를 무방류시킬 수 있다는 것을 발견하고 본 발명을 완성하기에 이르렀다.The present inventors re-use demineralized water generated by treating the plating wastewater generated by the electroplating process with electrodialysis and evaporator as industrial water and recovering valuable components such as K, Zn, Ni and Cl in concentrated water. As a result, it has been found that the wastewater can be discharged freely, and the present invention has been completed.

보다 구체적으로 본 발명에서는 도금폐수에서 배출되는 원 폐수를 제1 단계 전기투석장치로 처리한다. 원폐수를 전기 투석장치로 처리하기 위해서는 SDI(silt Density Index:막오염지표)를 측정하여야 하며, 수질 분석을 통하여 Ca와 SO4의 농도를 적정하여야 한다.More specifically, in the present invention, the raw wastewater discharged from the plating wastewater is treated with the first stage electrodialysis apparatus. In order to treat raw wastewater by electrodialysis, SDI (silt density index) should be measured, and the concentration of Ca and SO 4 should be titrated through water quality analysis.

이 경우 막오염지표값을 4이하로 낮추어주는 것이 바람직하다. 이 지표값이 4이상이면 전기투석시 미세 입자 및 CaSO4에 의하여 막오염되게 되므로 바람직하지 않다.In this case, it is desirable to lower the membrane fouling indicator value to 4 or less. If the index value is 4 or more, the membrane is contaminated by fine particles and CaSO 4 during electrodialysis, which is not preferable.

따라서 상기 막오염지표값이 4이상이면 4이하로 낮추기 위해서, 모래여과기, 활성탄 여과기 및 미세 여과기로 구성된 전처리 시스템을 거쳐야 한다.Therefore, in order to lower the membrane fouling indicator value to 4 or less, the pretreatment system composed of a sand filter, an activated carbon filter, and a micro filter must be used.

이와 같이 전처리를 거친 원 폐수는 제1 단계 전기투석장치로 유입되어 운전되는데, 이때 전기투석장치에 투입되는 전류량은 원폐수의 전기전도도에 비례하여 투입하면 된다. 상기 전기투석 운전시 중요한 인자는 한계전류밀도이다. 한계전류밀도는 막사이즈 및 이온 농도에 따라 달라지므로, 미리 폐수내 총 이온 농도를 측정하여 결정하게 되며, 특히 전기투석장치의 운전중 전류량은 한계 전류에 근접하게 투입하는 것이 이론적으로 처리 시간을 단축하는 잇점이 있는 것처럼 보이나, 투입된 전류가 한계 전류를 넘게 되면 막 표면에서 국부적인 전기 분해 현상이 일어나게 되어 결과적으로 막을 손상시키는 원인이 되기도 하기 때문에, 실제 운전시에는 한계 전류의 80-90%정도를 운전하는 것이 보다 바람직하다.In this way, the raw wastewater that has been pretreated is introduced and operated in the first stage electrodialysis apparatus, and the amount of current input to the electrodialysis apparatus may be added in proportion to the electrical conductivity of the raw wastewater. An important factor in the electrodialysis operation is the limit current density. The limit current density depends on the membrane size and ion concentration, so it is determined by measuring the total ion concentration in the wastewater in advance, and in particular, it is theoretically shorter to process the amount of current during operation of the electrodialysis apparatus near the limit current. However, if the input current exceeds the limit current, local electrolysis occurs on the surface of the membrane, which may cause damage to the film. It is more preferable to drive.

이와 같이 제1 단계 전기투석처리에 의해 발생된 탈염액은 미리 설정한 탈염 목표치에 도달하면 자동 배출되게 되며, 농축액은 효율적인 처리시간, 농축액의 역확산 방지등 경제적인 운전 조건에 이를 때까지 운전하는 것이 바람직하다.As described above, the desalting liquid generated by the first stage electrodialysis treatment is automatically discharged when the predetermined desalting target is reached, and the concentrated liquid is operated until it reaches economical operating conditions such as efficient processing time and prevention of reverse diffusion of the concentrated liquid. It is preferable.

이때 1단계 전기투석에 의해 발생된 농축액은 2단계 전기투석장치로 유입되어 처리되고, 2단계 전기투석공정에서 발생된 탈염액은 1단계 전기투석장치로 이송되어 다시 처리되게 되며, 2단계에서 발생한 농축액은 증발 농축장치로 유입시켜 처리함으로써 전기도금공정에서 발생된 전기도금폐수를 전량 재활용가능하며 또한 폐수가 전혀 발생되지 않는 무방류를 실현할 수 있다.At this time, the concentrated liquid generated by the first stage electrodialysis is processed by being introduced into the second stage electrodialysis apparatus, and the desalted liquid generated in the second stage electrodialysis process is transferred to the first stage electrodialysis apparatus and is processed again. By treating the concentrate with an evaporation concentrator, the entire amount of electroplating wastewater generated in the electroplating process can be recycled, and no discharge can be achieved without any wastewater.

이때 2단계 전기투석공정으로 부터 발생된 농축액은 다시 3단계 전기투석공정에서 재처리시킬 수도 있으나, 경제적인 면을 고려할 때 전기투석보다는 증발 농축기로 처리하는 것이 보다 바람직하다.At this time, the concentrate generated from the two-stage electrodialysis process may be reprocessed again in the three-stage electrodialysis process, but in consideration of economics, it is more preferable to treat the evaporation concentrator than the electrodialysis.

상기 제2 단계 전기투석 처리한 결과 발생하는 농축액은 증발 농축기를 사용하여 재농축시켜 농축액으로부터 유가자원을 회수하고 응축수는 공업용수로 재이용한다.The concentrate produced as a result of the second step of electrodialysis is reconcentrated using an evaporator to recover valuable resources from the concentrate, and the condensate is reused as industrial water.

이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

<실시예><Example>

하기 실시예는 나아가 본 발명의 다양한 견지를 예시하는 것으로, 본 발명의 범위를 이에 한정하는 것은 아니다.The following examples further illustrate various aspects of the invention and do not limit the scope thereof.

실시예 1Example 1 : 전처리: Pretreatment

전기도금공정도중 발생되는 폐수의 총이온농도는 4250ppm, 전기전도도는 14.4mS/cm, 화학적 산소요구량은 35ppm이었으며, 막오염지표값은 20이상이었다.The total ion concentration of wastewater generated during the electroplating process was 4250ppm, the electrical conductivity was 14.4mS / cm, the chemical oxygen demand was 35ppm, and the membrane contamination index was over 20.

따라서 막오염지표값을 4이하로 낮추기 위하여 모래여과기, 활성탄 여과기 및 미세여과기로 이루어진 전처리 공정을 거쳤다.Therefore, in order to lower the membrane fouling index value to 4 or less, a pretreatment process consisting of a sand filter, an activated carbon filter, and a microfilter was performed.

여기서 각 여과 장치의 규모는 원 폐수의 처리 용량에 따라 달라지는데, 본 실시예의 경우에는 모래 여과기 및 활성탄 여과기가 지름 20cm, 높이 100cm인 수직원통형용기에 각각 모래와 활성탄을 60cm의 높이로 채운 것을 사용하였으며, 분당 처리량은 15ℓ이었다. 또한 미세 여과기는 세공이 0.5㎛인 카트리지형 여과기를 사용하였다.Here, the size of each filtration device depends on the treatment capacity of the raw wastewater. In this embodiment, the sand filter and the activated carbon filter were filled with sand and activated carbon in a vertical cylindrical container having a diameter of 20 cm and a height of 100 cm, respectively, with a height of 60 cm. The throughput per minute was 15 liters. In addition, the micro filter used the cartridge type filter which pore is 0.5 micrometer.

상기 전처리 공정을 거친 다음 원폐수의 막오염지표값을 측정해본 결과 3.3이었으며, 화학적 산소요구량은 5ppm이었다.After the pretreatment process, the membrane fouling index of the raw wastewater was measured and found to be 3.3. The chemical oxygen demand was 5 ppm.

따라서 이와 같은 성상을 가진 원폐수는 전기투석의 유입수로 사용하기에 충분함을 확인할 수 있다.Therefore, it can be confirmed that the raw wastewater having such a property is sufficient to be used as an inflow of electrodialysis.

실시예 2 : 전기투석Example 2 Electrodialysis

실시예 1에서의 전처리 시스템을 거친 원폐수의 총이온농도는 4200ppm, 전기전도도는 14.2mS/cm, 그리고 막오염지표값은 3.3이었으며, 이를 전기투석의 유입수로 사용하였다.The total ion concentration of the raw wastewater subjected to the pretreatment system in Example 1 was 4200 ppm, the electrical conductivity was 14.2 mS / cm, and the membrane contamination index value was 3.3, which was used as the influent of electrodialysis.

전기투석장치는 음이온 교환막과 양이온 교환막이 각각 15개로 구성되어 있으며, 음이온 선택막이 AMX이고 양이온 선택막이 CMX인 일본의 도코야마 소다(Tokuyama Soda Co.) 제품(TS-5-15)이었다. 이때 탈염 및 농축조의 용량은 30ℓ이었으며, 운전 초기에 걸어준 전류량은 한계전류밀도의 85% 정도인 12암페어였다.The electrodialysis apparatus was composed of 15 anion exchange membranes and 15 cation exchange membranes, each of Tokuyama Soda Co., Ltd. (TS-5-15) manufactured by Tokuyama Soda Co., Japan, in which the anion selective membrane was AMX and the cation selective membrane was CMX. At this time, the capacity of the desalination and concentrating tank was 30 ℓ, and the amount of current applied at the beginning of operation was 12 amp, which is about 85% of the limit current density.

탈염액 용액의 농도가 줄어듬에 따라 투입된 전류량도 점차 줄어들었으며, 1회 처리 시간은 30분이었다. 그리고 탈염 목표 농도는 공업용수의 수준인 전기전도도로 0.12mS/cm이 되도록 하였다.As the concentration of the desalting solution decreased, the amount of current introduced gradually decreased, and the single treatment time was 30 minutes. The desalination target concentration was 0.12mS / cm as the conductivity of the industrial water.

총10회 운전하여 운전이 종료된 시점에서의 탈염액의 전기전도도는 0.12mS/cm, 총이온농도는 90ppm이었으며, 농축액의 전기전도도는 102mS/cm, 총이온농도는 45,480ppm이었다.The electrical conductivity of the desalted solution was 0.12mS / cm, the total ion concentration was 90ppm, the conductivity was 102mS / cm, and the total ion concentration was 45,480ppm.

실시예 3 : 제2 단계 전기투석Example 3 Second Step Electrodialysis

실시예 2와 동일한 방법으로 1단계 전기투석공정으로 부터 발생한 농축수를 제2 단계 전기 투석처리한 결과 농축액의 전기전도도는 268mS/cm, 총이온농도는 141,020ppm이었다.As a result of the second step of electrodialysis of the concentrated water generated from the first step of electrodialysis in the same manner as in Example 2, the electrical conductivity of the concentrate was 268 mS / cm, and the total ion concentration was 141,020 ppm.

실시예 4 : 증발 농축Example 4 Evaporative Concentration

전기투석공정에서 발생된 농축액으로부터 유가자원을 회수하기 위해 필요한 총이온농도인 40%로 더 농축시키기 위해 증발 농축기를 사용하여 처리하였다.Treatment was carried out using an evaporator to further concentrate to 40%, the total ion concentration required to recover valuable resources from the concentrate produced in the electrodialysis process.

총 이온농도가 14%인 전기투석 농축액을 감압 상태로 -600mmHg, 온도는 60℃정도에서 증발 농축기를 사용하여 얻어진 최종 농축수의 총이온농도는 42%였으며, 이때 동시에 발생된 응축수내 금속 이온은 검출되지 않아 증발농축기에서 발생된 탈염 및 농축액을 모두 재활용할 수 있음을 확인하였다.The total ion concentration of the final concentrated water obtained by using the evaporative concentrator at -600mmHg and the temperature of about 60 ° C under reduced pressure of the electrodialysis concentrate having a total ion concentration of 14% was 42%. Since it was not detected, it was confirmed that both the desalination and the concentrate generated in the evaporator could be recycled.

상기한 바에 따르면, 전기도금폐수에 함유되어 있는 다량의 금속 이온을 전기 투석 및 증발 농축기를 차례로 통과시킴으로써 폐수중에 포함되어 있는 유가자원을 회수하고 처리된 폐수를 공업용수로 재이용할 수 있다.According to the above, a large amount of metal ions contained in the electroplating wastewater is sequentially passed through an electrodialysis and evaporator concentrator to recover valuable resources contained in the wastewater and to reuse the treated wastewater as industrial water.

Claims (2)

(a)전기도금공장으로부터 배출된 전기도금폐수를 제1단계 전기투석장치로 처리하여 발생하는 농축액을 제2 단계 전기투석장치로 처리하고, 함께 발생하는 탈염액은 공업용수로서 재이용하는 단계;(a) treating the concentrate produced by treating the electroplating wastewater discharged from the electroplating plant with the first stage electrodialysis apparatus with the second stage electrodialysis apparatus, and the desalting solution generated together is reused as industrial water; (b)상기 (a)단계에서 제2 단계 전기투석 처리한 결과 발생하는 탈염액은 도로 회수하여 상기 (a)단계를 반복하는 단계; 및(b) recovering the demineralized liquid generated as a result of the second step of electrodialysis in step (a) and repeating step (a); And (d)상기 (b)단계에서 제2 단계 전기투석 처리한 결과 발생하는 농축액은 증발 농축기를 사용하여 재농축시켜 농축액으로부터 유가자원을 회수하고 응축수는 공업용수로 재이용하는 단계;로 이루어지는 전기도금폐수 처리 방법(d) the concentrate produced as a result of the second step of electrodialysis in step (b) is reconcentrated using an evaporator to recover valuable resources from the concentrate, and condensate is reused as industrial water; electroplating wastewater consisting of Processing method 제1항에 있어서, 상기 (a)단계를 거치기 전에 측정한 전기도금폐수의 막오염지표(SDI)가 4이상이면 모래 여과기, 활성탄 여과기 및 미세 여과기를 차례로 거쳐 전처리시켜 막오염지표를 4이하로 낮추어 사용함을 특징으로 하는 방법According to claim 1, If the membrane fouling index (SDI) of the electroplating wastewater measured before the step (a) is 4 or more through a sand filter, activated carbon filter and fine filter in order to pre-treat the membrane fouling index to 4 or less Characterized by lowering use
KR10-1999-0032745A 1999-08-10 1999-08-10 A method for treating electrogalvanizing wastewaters KR100398417B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0032745A KR100398417B1 (en) 1999-08-10 1999-08-10 A method for treating electrogalvanizing wastewaters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0032745A KR100398417B1 (en) 1999-08-10 1999-08-10 A method for treating electrogalvanizing wastewaters

Publications (2)

Publication Number Publication Date
KR20010017298A KR20010017298A (en) 2001-03-05
KR100398417B1 true KR100398417B1 (en) 2003-09-19

Family

ID=19606693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0032745A KR100398417B1 (en) 1999-08-10 1999-08-10 A method for treating electrogalvanizing wastewaters

Country Status (1)

Country Link
KR (1) KR100398417B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445575B1 (en) * 2002-06-20 2004-08-25 한국전력공사 Device for removing the inorganic materials and ion of elecdtrode cell

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402824B1 (en) * 2001-04-03 2003-10-22 강봉규 The wastewater treatment method for lead removal process of pipe fitting made into bronze and brase
JP3742921B2 (en) * 2001-04-13 2006-02-08 日立造船株式会社 Treatment of leachate in a covered final disposal site
KR101434417B1 (en) * 2014-04-25 2014-08-26 주식회사 엘에이치이노베이션 Treatment method of wastewater from gilding process for reuse
KR101947311B1 (en) * 2018-02-05 2019-05-02 건국대학교 산학협력단 Treatment system and method for wastewater containing cyanide and heavy metal
KR102021719B1 (en) * 2019-03-20 2019-09-17 건국대학교 산학협력단 Treatment system and method for wastewater containing heavy metal
CN110294541A (en) * 2019-06-13 2019-10-01 湖南华菱涟源钢铁有限公司 Desalination water circulation utilization system and its method used in galvanized wire finishing, tension leveling segment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246070A1 (en) * 1986-05-16 1987-11-19 Electroplating Engineers of Japan Limited Process and apparatus for recovery of precious metal compound
KR880005287A (en) * 1986-10-27 1988-06-28 제랄드 케이.화이트 Apparatus and method for enhancing stability of plating bath and excluding bale out
KR940006939Y1 (en) * 1991-01-23 1994-10-07 지은상 Apparatus for treatment of waste water in gilding process of semiconductor factory
WO1997003284A1 (en) * 1995-07-12 1997-01-30 Societe Hispano Suiza Turbofan engine thrust reverser with asymmetrical doors
KR19980083856A (en) * 1997-05-19 1998-12-05 안덕기 Recycling method of wastewater by electrodialysis and reverse osmosis membrane and its device
KR19990079762A (en) * 1998-04-09 1999-11-05 김효근 Wastewater recovery method of electrodialysis process using pulse effect

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246070A1 (en) * 1986-05-16 1987-11-19 Electroplating Engineers of Japan Limited Process and apparatus for recovery of precious metal compound
KR880005287A (en) * 1986-10-27 1988-06-28 제랄드 케이.화이트 Apparatus and method for enhancing stability of plating bath and excluding bale out
KR940006939Y1 (en) * 1991-01-23 1994-10-07 지은상 Apparatus for treatment of waste water in gilding process of semiconductor factory
WO1997003284A1 (en) * 1995-07-12 1997-01-30 Societe Hispano Suiza Turbofan engine thrust reverser with asymmetrical doors
KR19980083856A (en) * 1997-05-19 1998-12-05 안덕기 Recycling method of wastewater by electrodialysis and reverse osmosis membrane and its device
KR19990079762A (en) * 1998-04-09 1999-11-05 김효근 Wastewater recovery method of electrodialysis process using pulse effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445575B1 (en) * 2002-06-20 2004-08-25 한국전력공사 Device for removing the inorganic materials and ion of elecdtrode cell

Also Published As

Publication number Publication date
KR20010017298A (en) 2001-03-05

Similar Documents

Publication Publication Date Title
Reig et al. Integration of nanofiltration and bipolar electrodialysis for valorization of seawater desalination brines: Production of drinking and waste water treatment chemicals
KR101563169B1 (en) Pure water production apparatus and pure water production method
KR100874269B1 (en) High efficiency seawater electrolysis apparatus and electrolysis method including pretreatment process
JP2001070989A (en) Method and apparatus for treating organic wastewater containing high concentration of salts
CN106430773B (en) Treatment method of high-salt-content industrial wastewater with different ion concentrations
US8119008B2 (en) Fluid purification methods and devices
WO2015012054A1 (en) Method and device for treating boron-containing water
WO2002026344A1 (en) Purification of produced water from coal seam natural gas wells using ion exchange and reverse osmosis
CN110683709A (en) Zero-discharge treatment method for fluorine-containing wastewater
WO2011065222A1 (en) Device and method for treating nitrogen compound-containing acidic solutions
US20230182078A1 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
KR100398417B1 (en) A method for treating electrogalvanizing wastewaters
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP2000051665A (en) Desalination method
RU2383498C1 (en) Method of obtaining desalinated water and high-purity water for nuclear power plants for research centres
JP2000317457A (en) Production of pure water
CN105948352A (en) Zero emission recycling process for treating power plant desulfurization high-salinity high-hardness wastewater
Yu et al. Impact of operating conditions on performance of capacitive deionisation for reverse osmosis brine recovery
Thampy et al. Concentration of sodium sulfate from pickle liquor of tannery effluent by electrodialysis
KR100398419B1 (en) A Method for Reusing BFG Scrubbing Wastewater
JPH07163845A (en) Treatment apparatus for ammonium nitrate-containing waste solution
JP3271744B2 (en) Desalting method using electrodialysis equipment
JP3385388B2 (en) Treatment method for wastewater containing ammonia nitrogen
US11608282B2 (en) Hybrid electrochemical and membrane-based processes for treating water with high silica concentrations

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120904

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130902

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140902

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee