JP2000317457A - Production of pure water - Google Patents

Production of pure water

Info

Publication number
JP2000317457A
JP2000317457A JP11131569A JP13156999A JP2000317457A JP 2000317457 A JP2000317457 A JP 2000317457A JP 11131569 A JP11131569 A JP 11131569A JP 13156999 A JP13156999 A JP 13156999A JP 2000317457 A JP2000317457 A JP 2000317457A
Authority
JP
Japan
Prior art keywords
water
electric regeneration
regeneration type
pure water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11131569A
Other languages
Japanese (ja)
Other versions
JP3656458B2 (en
Inventor
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP13156999A priority Critical patent/JP3656458B2/en
Publication of JP2000317457A publication Critical patent/JP2000317457A/en
Application granted granted Critical
Publication of JP3656458B2 publication Critical patent/JP3656458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method efficiently producing high purity of pure water with a stable operation for a long period by suppressing generations of slime and scale in an electric regeneration type deionizing device, and also suppressing a generation of the slime in the system, in a pure water production process built in the electric regeneration type deionizing device. SOLUTION: In a method for producing pure water by successively making raw water pass through an activated carbon tower 1, a deaeration device 2, a RO membrane separation device 3 and the electric regeneration type deionizimg device 4, acid is added to the feed water introduced into the activated carbon tower 1 such that pH of the feed water introduced into the electric regeneration type deionizing device 4 becomes 4.0-5.5, and the pH is adjusted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気再生型脱イオ
ン装置を組み込んだ純水製造プロセスで純水を製造する
方法に係り、詳しくは、このような純水製造に当り、経
時による系内のスライム汚染や電気再生型脱イオン装置
でのスケール発生を抑制して長期に亘り安定かつ効率的
な純水の製造を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pure water in a pure water production process incorporating an electric regeneration type deionization apparatus. The present invention relates to a method for stably and efficiently producing pure water for a long period of time by suppressing slime contamination and generation of scale in an electric regeneration type deionizer.

【0002】[0002]

【従来の技術】近年、半導体製造工場、液晶製造工場、
製薬工業、食品工業等の各種の産業ないし研究施設等に
おいて使用される純水や超純水の製造手段として、電極
を備える電極室(陽極室と陰極室)の間に複数のアニオ
ン交換膜及びカチオン交換膜を交互に配列して濃縮室と
脱塩室とを交互に形成した電気再生型脱イオン装置が用
いられるようになってきている。
2. Description of the Related Art In recent years, semiconductor manufacturing plants, liquid crystal manufacturing plants,
As a means for producing pure water or ultrapure water used in various industries or research facilities such as the pharmaceutical industry and the food industry, a plurality of anion exchange membranes are provided between an electrode chamber (anode chamber and a cathode chamber) having electrodes. An electric regeneration type deionization apparatus in which cation exchange membranes are alternately arranged to form a concentration chamber and a desalination chamber alternately has been used.

【0003】電気再生型脱イオン装置は効率的な脱塩処
理が可能であり、イオン交換樹脂のような再生を必要と
せず、完全な連続採水が可能で、極めて高純度の水が得
られるという優れた効果を奏する。なお、電気再生型脱
イオン装置には、脱塩室にアニオン交換樹脂とカチオン
交換樹脂とが混合して充填されているものと、脱塩室に
イオン交換樹脂が充填されていないものとがあるが、処
理水の水質向上の点では、脱塩室にイオン交換樹脂が充
填されたものの方が効果的である。
[0003] The electric regeneration type deionization apparatus is capable of efficient desalination treatment, does not require regeneration like an ion exchange resin, is capable of complete continuous water sampling, and can obtain extremely high purity water. It has an excellent effect. In the electric regeneration type deionization apparatus, there are a deionization chamber in which the anion exchange resin and the cation exchange resin are mixed and filled, and a deionization chamber in which the ion exchange resin is not filled. However, from the viewpoint of improving the quality of the treated water, the one in which the ion exchange resin is filled in the desalting chamber is more effective.

【0004】電気再生型脱イオン装置では、脱塩室に流
入した原水中のイオンが親和力、濃度及び移動度に基い
て電位をかけた電極の方向(被処理水の流れに対して直
角方向)に移動し、更に、脱塩室と濃縮室とを仕切るカ
チオン交換膜又はアニオン交換膜を横切って移動し、す
べての室において電荷の中和が保たれるようになる。そ
して、イオン交換膜の半浸透特性及び電位により、原水
中のイオンは脱塩室では減少し、隣りの濃縮室では濃縮
されることになる。このため、脱塩室から脱塩水が回収
される。
[0004] In the electric regeneration type deionization apparatus, the ions in the raw water flowing into the desalination chamber are applied to the electrode based on the affinity, concentration and mobility in the direction of the electrode (in the direction perpendicular to the flow of the water to be treated). , And further across a cation exchange or anion exchange membrane separating the desalting chamber and the concentration chamber, so that charge neutralization is maintained in all chambers. Then, due to the semi-osmotic characteristics and the potential of the ion exchange membrane, the ions in the raw water decrease in the desalting chamber and are concentrated in the adjacent concentrating chamber. Therefore, desalinated water is recovered from the desalination chamber.

【0005】一般に、この電気再生型脱イオン装置の原
水としては、市水等を活性炭処理した後、逆浸透(R
O)膜分離処理した水が用いられており、また、通常の
場合、水回収率を高めるために、濃縮室の流出水は、そ
の一部のみが系外へ排出され、残部は濃縮室の入口側へ
循環されている。
Generally, as raw water for the electric regeneration type deionizer, city water or the like is treated with activated carbon and then reverse osmosis (R).
O) Membrane-separated water is used, and in a normal case, only a part of the effluent from the concentrating chamber is discharged out of the system to increase the water recovery rate, and the rest is discharged from the concentrating chamber. Circulated to the inlet side.

【0006】このような電気再生型脱イオン装置を備え
る純水製造プロセスでは、経時による電気再生型脱イオ
ン装置内でのスケール発生、並びに電気再生型脱イオン
装置及びRO膜分離装置等でのスライム汚染による、処
理水水質や処理効率の低下により、長期に亘り高純度の
純水を安定に製造することができないという問題があ
る。
[0006] In the pure water production process provided with such an electric regeneration type deionizer, scale is generated in the electric regeneration type deionizer over time, and slime is generated in the electric regeneration type deionizer and the RO membrane separator. There is a problem in that high-purity pure water cannot be stably produced for a long period of time due to deterioration of treated water quality and treatment efficiency due to contamination.

【0007】即ち、電気再生型脱イオン装置でのスケー
ル発生は、内装されたイオン交換膜の有効膜面積を低減
して処理効率、処理水水質を低減させる。また、電気再
生型脱イオン装置でスライム汚染が生じた場合には、運
転を停止して煩雑な洗浄操作を行う必要がある。同様
に、RO膜分離装置におけるスライム汚染もRO膜閉塞
を引き起こし、水質低下、処理効率低下、膜洗浄、膜交
換の問題につながる。
That is, the generation of scale in the electric regeneration type deionizer reduces the effective membrane area of the installed ion exchange membrane, thereby reducing the treatment efficiency and the quality of treated water. Further, when slime contamination occurs in the electric regeneration type deionizer, it is necessary to stop the operation and perform a complicated washing operation. Similarly, slime contamination in the RO membrane separation apparatus also causes RO membrane blockage, leading to problems of water quality reduction, treatment efficiency reduction, membrane cleaning, and membrane replacement.

【0008】従来、電気再生型脱イオン装置のスケール
発生に対する対策としては、濃縮水循環水に酸を添加す
る方法が一般的に知られている。
Conventionally, as a countermeasure against generation of scale in an electric regeneration type deionization apparatus, a method of adding an acid to circulating water of concentrated water is generally known.

【0009】また、特開平5−309398号公報に
は、RO膜分離装置及び電気再生型脱イオン装置に順次
通水して処理するに当り、RO膜分離装置の前段に脱酸
素手段を設けることにより、スライムを抑制することが
記載されている。
Japanese Patent Application Laid-Open No. Hei 5-309398 discloses that a deoxygenating means is provided before a RO membrane separation apparatus when water is sequentially passed through an RO membrane separation apparatus and an electric regeneration type deionization apparatus for treatment. To suppress slime.

【0010】特開平9−294977号公報には、RO
膜分離装置の濃縮水を原水として純水を製造するに当
り、スケールを防止するために酸と分散剤を添加した
後、紫外線殺菌装置で生菌を抑制し、その後、RO膜分
離装置、脱気装置及び電気再生型脱イオン装置で順次処
理することが記載されている。
[0010] JP-A-9-294977 discloses RO
In producing pure water using the concentrated water of the membrane separation device as raw water, an acid and a dispersant are added to prevent scale, and viable bacteria are suppressed by an ultraviolet sterilization device. It describes that the treatment is performed sequentially by a gas apparatus and an electric regeneration type deionization apparatus.

【0011】特開平9−294988号公報には、原水
を脱炭酸手段、RO膜分離装置及び電気再生型脱イオン
装置に順次通水して純水を製造するに当り、電気再生型
脱イオン装置の電極水及び濃縮水を循環処理して水回収
率を高めるために、電気再生型脱イオン装置の濃縮水を
脱炭酸手段の前段に循環し、電極水は脱塩素処理した後
脱炭酸手段の前段に循環することで、これらを循環する
場合の処理水水質の低下を防止することが記載されてい
る。なお、脱炭酸のために、具体的には酸を添加した
後、脱炭酸塔に通水することが記載されている。
Japanese Patent Application Laid-Open No. 9-294988 discloses an electric regeneration type deionization apparatus for producing pure water by passing raw water sequentially through a decarbonation means, an RO membrane separator and an electric regeneration type deionization apparatus. In order to increase the water recovery rate by circulating the electrode water and concentrated water of the above, the concentrated water of the electric regeneration type deionizer is circulated before the decarbonation means, and the electrode water is dechlorinated and then supplied to the decarbonation means. It is described that by circulating in the preceding stage, a decrease in the quality of treated water when circulating them is prevented. In addition, for decarboxylation, specifically, it is described that water is passed through a decarbonation tower after an acid is added.

【0012】また、特開平3−26390号公報には、
RO膜分離装置及び電気再生型脱イオン装置に順次通水
して純水を製造するに当り、電気再生型脱イオン装置に
おけるシリカの除去率を高めるために、RO膜分離装置
の透過水に酸を添加してpH4〜6.5の弱酸性とした
後、電気再生型脱イオン装置に通水することが記載され
ている。
Japanese Patent Application Laid-Open No. 3-26390 discloses that
In producing pure water by sequentially passing water through the RO membrane separation apparatus and the electric regeneration type deionization apparatus, in order to increase the silica removal rate in the electroregeneration type deionization apparatus, acid is added to the permeated water of the RO membrane separation apparatus. Is added to make the mixture weakly acidic at a pH of 4 to 6.5, and then water is passed through an electric regeneration type deionization apparatus.

【0013】[0013]

【発明が解決しようとする課題】電気再生型脱イオン装
置の濃縮水に酸を添加してpHを低減した後循環するこ
とは、スケール発生抑制に効果はあるが、長期的には不
十分であり、また、このpH制御を損なうと処理水の水
質に直接影響し、水質が直ちに悪化するという不具合が
ある。
[0006] Circulation of the concentrated water of the electric regeneration type deionizer after adding the acid to reduce the pH is effective in suppressing the generation of scale, but is insufficient in the long term. In addition, if the pH control is impaired, the quality of the treated water is directly affected, and the water quality is immediately deteriorated.

【0014】また、特開平5−309398号公報に記
載される、脱酸素手段で溶存酸素を低減することにより
スライムを抑制する方法も、一応の効果は得られるが、
やはり十分な効果が達成されるとは言えない。
The method described in JP-A-5-309398, in which slime is suppressed by reducing dissolved oxygen by means of deoxygenation, can also provide a certain effect.
After all, it cannot be said that a sufficient effect is achieved.

【0015】特開平9−294977号公報に記載され
る酸及び分散剤と紫外線との併用は、RO膜分離装置の
濃縮水を原水とするための処理であり、通常の水にこの
ような処理を適用することは不経済である。
The combination use of an acid and a dispersant with ultraviolet light described in JP-A-9-294977 is a treatment for converting concentrated water of an RO membrane separation apparatus into raw water, and such treatment is carried out with ordinary water. Applying is uneconomical.

【0016】特開平9−294988号公報に記載され
るように脱炭酸処理を行うことにより、炭酸成分による
スケール発生の抑制効果は期待できるが、RO膜分離装
置におけるスライムの抑制効果を得ることはできない。
なお、この特開平9−294988号公報には脱炭酸処
理に脱気膜の使用も可能である旨の記載があるが、あく
までも脱炭酸処理が目的であるため、溶存酸素の除去に
ついては何ら示唆されていない。この場合、電気再生型
脱イオン装置の前段のRO膜分離装置でスライムが発生
すると、後段の電気再生型脱イオン装置にまで悪影響を
及ぼす上に、RO膜分離装置での処理効率が低下し、著
しい場合には、処理を継続し得なくなる。
By performing decarboxylation treatment as described in JP-A-9-294988, the effect of suppressing the generation of scale due to the carbonic acid component can be expected, but the effect of suppressing slime in the RO membrane separation apparatus cannot be obtained. Can not.
Although Japanese Patent Application Laid-Open No. 9-294988 discloses that a degassing membrane can be used for the decarboxylation treatment, since the purpose is decarboxylation treatment, no suggestion is made regarding the removal of dissolved oxygen. It has not been. In this case, when slime is generated in the RO membrane separator at the preceding stage of the electric regeneration type deionizer, the slime adversely affects the subsequent stage of the electric regeneration type deionizer, and the processing efficiency of the RO membrane separator decreases, If it is significant, processing cannot be continued.

【0017】特開平3−26390号公報では、電気再
生型脱イオン装置の入口側に酸を添加してpH4〜6.
5の弱酸性に調整しているが、このように電気再生型脱
イオン装置の入口側で酸を添加する方法では、前段か
らの生菌リークによるスライム汚染は防止できず、かつ
炭酸イオン(HCO3 -)の存在により水質が不安定と
なるため、好ましくない。
In JP-A-3-26390, an acid is added to the inlet side of an electric regeneration type deionization apparatus to adjust the pH to 4-6.
However, the method of adding an acid at the inlet side of the electro-regeneration type deionizer cannot prevent slime contamination due to live bacteria leak from the former stage, and the carbonate ion (HCO 3 - the presence of) for water quality becomes unstable, undesirably.

【0018】このように、従来において、RO膜分離装
置と電気再生型脱イオン装置とを組み込んだ純水製造プ
ロセスにおいて、電気再生型脱イオン装置のみならずR
O膜分離装置におけるスライムの発生を抑制すると共
に、電気再生型脱イオン装置におけるスケールの発生を
防止する工業的に有利な方法は提供されておらず、その
開発が望まれている。
As described above, in the conventional pure water production process incorporating the RO membrane separation apparatus and the electric regeneration type deionization apparatus, not only the electric regeneration type deionization apparatus but also the R
An industrially advantageous method for suppressing the generation of slime in the O membrane separation apparatus and preventing the generation of scale in the electric regeneration type deionization apparatus has not been provided, and its development is desired.

【0019】本発明は上記従来の問題点を解決し、電気
再生型脱イオン装置を組み込んだ純水製造プロセスにお
いて、電気再生型脱イオン装置におけるスライム及びス
ケールの発生を抑制すると共に系内のスライムの発生も
抑制することにより、長期に亘り安定した運転を行っ
て、高純度の純水を効率的に製造する方法を提供するこ
とを目的とする。
The present invention solves the above-mentioned conventional problems and suppresses the generation of slime and scale in the electric regeneration type deionization apparatus and the slime in the system in a pure water production process incorporating the electric regeneration type deionization apparatus. An object of the present invention is to provide a method for efficiently producing high-purity pure water by performing stable operation for a long period of time by suppressing generation of water.

【0020】[0020]

【課題を解決するための手段】本発明の純水の製造方法
は、原水を脱気装置及び逆浸透膜分離装置を備える前段
設備で処理した後、電気再生型脱イオン装置に通水して
純水を製造する方法において、該電気再生型脱イオン装
置に導入される給水のpHが4.0〜5.5になるよう
に前記前段設備に導入される給水のpH調整を行うこと
を特徴とする。
According to the method for producing pure water of the present invention, raw water is treated in a pre-stage facility equipped with a deaerator and a reverse osmosis membrane separator, and then passed through an electric regeneration type deionizer. In the method for producing pure water, the pH of the feedwater introduced into the pre-stage equipment is adjusted so that the pH of the feedwater introduced into the electric regeneration type deionizer becomes 4.0 to 5.5. And

【0021】請求項2の純水の製造方法は、原水を活性
炭塔、脱気装置、逆浸透膜分離装置及び電気再生型脱イ
オン装置に順次通水して純水を製造する方法において、
該電気再生型脱イオン装置に導入される給水のpHが
4.0〜5.5になるように前記活性炭塔に導入される
給水に酸を添加してpH調整することを特徴とする。
The method for producing pure water according to claim 2, wherein the raw water is sequentially passed through an activated carbon tower, a deaerator, a reverse osmosis membrane separator and an electric regeneration type deionizer to produce pure water.
The pH is adjusted by adding an acid to the feedwater introduced into the activated carbon tower so that the pH of the feedwater introduced into the electric regeneration type deionizer becomes 4.0 to 5.5.

【0022】請求項3の純水の製造方法は、原水を活性
炭塔、逆浸透膜分離装置、脱気装置及び電気再生型脱イ
オン装置に順次通水して純水を製造する方法において、
該電気再生型脱イオン装置に導入される給水のpHが
4.0〜5.5になるように前記活性炭塔に導入される
給水に酸を添加してpH調整することを特徴とする。
The method for producing pure water according to claim 3 is a method for producing pure water, wherein raw water is sequentially passed through an activated carbon tower, a reverse osmosis membrane separator, a deaerator and an electric regeneration type deionizer.
The pH is adjusted by adding an acid to the feedwater introduced into the activated carbon tower so that the pH of the feedwater introduced into the electric regeneration type deionizer becomes 4.0 to 5.5.

【0023】請求項4の純水の製造方法は、原水を活性
炭塔、及びH型カチオン交換樹脂塔及び脱炭酸装置に順
次通水して処理した後、該脱炭酸装置の処理水を、TO
C300ppb以下のプロセス排水又はTOC除去装置
でTOC300ppb以下に処理されたプロセス排水と
混合し、該混合水を脱気装置及び逆浸透膜分離装置で処
理した後電気再生型脱イオン装置に通水して純水を製造
する方法において、該電気再生型脱イオン装置に導入さ
れる給水のpHが4.0〜5.5になるように前記混合
水をpH調整することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for producing pure water, wherein raw water is sequentially passed through an activated carbon tower, an H-type cation exchange resin tower, and a decarbonator to treat the raw water.
It is mixed with process wastewater of C300ppb or less or process wastewater treated to a TOC of 300ppb or less with a TOC removal device, and the mixed water is treated with a deaerator and a reverse osmosis membrane separator, and then passed through an electric regeneration type deionizer. The method for producing pure water is characterized in that the pH of the mixed water is adjusted so that the pH of feed water introduced into the electric regeneration type deionization apparatus is 4.0 to 5.5.

【0024】請求項5の純水の製造方法は、原水とプロ
セス排水とを混合し、該混合水をTOC除去装置及びカ
チオン交換樹脂塔に順次通水した後、該カチオン交換樹
脂塔の処理水を脱気装置及び逆浸透膜分離装置で処理
し、その後、電気再生型脱イオン装置に通水して純水を
製造する方法において、該電気再生型脱イオン装置に導
入される給水のpHが4.0〜5.5になるように前記
カチオン交換樹脂塔の処理水をpH調整することを特徴
とする。
According to a fifth aspect of the present invention, there is provided a method for producing pure water, wherein raw water and process wastewater are mixed, and the mixed water is sequentially passed through a TOC removing device and a cation exchange resin tower. Is treated with a deaerator and a reverse osmosis membrane separator, and then passed through an electric regeneration type deionizer to produce pure water. The pH of the treated water of the cation exchange resin tower is adjusted so as to be 4.0 to 5.5.

【0025】本発明の純水の製造方法では、電気再生型
脱イオン装置に導入される給水のpHが4.0〜5.5
になるように前段設備に導入される給水に対してpH調
整を行うため、ROを含めた前段設備のスライム汚染防
止、つまり生菌リークが大幅に減少するという効果が奏
され、また、電気再生型脱イオン装置の濃縮水のpHも
低下し、電気再生型脱イオン装置におけるスケール発生
も確実に防止される。
In the method for producing pure water according to the present invention, the pH of the feedwater introduced into the electric regeneration type deionizer is adjusted to 4.0 to 5.5.
PH is adjusted for the feedwater introduced to the pre-stage equipment so that the slime contamination of the pre-stage equipment including the RO can be prevented, that is, the effect of greatly reducing live bacteria leakage can be achieved. The pH of the concentrated water of the type deionizer also decreases, and the generation of scale in the electric regeneration type deionizer is reliably prevented.

【0026】本発明において、電気再生型脱イオン装置
の給水のpHが5.5を超えるとpH調整することによ
る上記効果を十分に得ることができず、逆に、このpH
が4.0未満であるとRO膜分離装置や純水の水質低下
の問題がある。
In the present invention, if the pH of the feed water of the electric regeneration type deionizer exceeds 5.5, the above-mentioned effect by adjusting the pH cannot be sufficiently obtained.
Is less than 4.0, there is a problem of an RO membrane separation device and a decrease in the quality of pure water.

【0027】請求項2,3の方法では、このpH調整を
活性炭塔に導入される原水に対して行うため、活性炭塔
内のスライム発生を防止するという効果が奏される。
According to the method of claims 2 and 3, since this pH adjustment is performed on the raw water introduced into the activated carbon tower, the effect of preventing the generation of slime in the activated carbon tower is exhibited.

【0028】また、請求項4の方法では、このpH調整
を脱気装置及びRO膜分離装置で処理される混合水に対
して行うため、混合前の処理工程に影響を及ぼさず、p
H調整も比較的容易にできるという効果が奏される。
In the method of claim 4, since the pH adjustment is performed on the mixed water treated by the degassing device and the RO membrane separation device, the pH is adjusted without affecting the treatment process before mixing.
There is an effect that the H adjustment can be relatively easily performed.

【0029】また、請求項5の方法では、このpH調整
を、脱気装置及びRO膜分離装置での処理に供されるカ
チオン交換樹脂塔の処理水に対して行うため、カチオン
交換樹脂塔以前の処理工程に影響を及ぼすことなくpH
調整ができるという効果が奏される。
In the method of claim 5, the pH is adjusted with respect to the treated water of the cation exchange resin tower used for the treatment in the deaerator and the RO membrane separation apparatus. PH without affecting the treatment process
The effect that adjustment is possible is produced.

【0030】請求項2,3の方法において、RO膜分離
装置及び脱気装置による処理は、RO膜分離装置を先行
し、RO膜分離装置、脱気装置及び電気再生型脱イオン
装置の順で通水して処理しても良いが、RO膜分離装置
及び電気再生型脱イオン装置の前段に脱気装置を設け、
脱気装置でDOを除去した後、RO膜分離装置及び電気
再生型脱イオン装置で処理することが、電気再生型脱イ
オン装置のみならずRO膜分離装置でのスライム発生を
抑制する上で好ましい。
In the method according to the second or third aspect, the treatment by the RO membrane separation device and the degassing device precedes the RO membrane separation device, and the RO membrane separation device, the degassing device, and the electric regeneration type deionization device in this order. Although it may be treated by passing water, a deaerator is provided before the RO membrane separation device and the electric regeneration type deionization device,
After removing DO with a deaerator, it is preferable to perform treatment with an RO membrane separator and an electric regeneration type deionizer in order to suppress slime generation in the RO membrane separator as well as the electric regeneration type deionizer. .

【0031】また、本発明においては、電気再生型脱イ
オン装置に導入される給水の溶存酸素(DO)、好まし
くはRO膜分離装置に導入される給水のDOが100p
pb以下となるように前段の脱気装置で処理すること
が、スライムの抑制の面で好ましい。
In the present invention, the dissolved oxygen (DO) of the feedwater introduced into the electric regeneration type deionization apparatus, preferably the DO of the feedwater introduced into the RO membrane separation apparatus is 100 p.
It is preferable from the viewpoint of slime suppression that the treatment is performed by a deaerator at the preceding stage so as to be pb or less.

【0032】[0032]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0033】図1〜4は各々本発明の純水の製造方法の
実施の形態を示す系統図である。図1〜4において、同
一機能を奏する部材には同一符号を付してある。
FIGS. 1 to 4 are system diagrams each showing an embodiment of the method for producing pure water of the present invention. 1 to 4, members having the same function are denoted by the same reference numerals.

【0034】図1に示す方法は、原水を活性炭塔1、脱
気装置2及びRO膜分離装置3に順次通水し、RO膜分
離装置3の透過水を電気再生型脱イオン装置4に通水し
て処理することにより純水を製造する方法において、電
気再生型脱イオン装置4の給水のpHが4.0〜5.5
となるように、原水に酸を添加してpH調整する。
In the method shown in FIG. 1, raw water is sequentially passed through an activated carbon tower 1, a deaerator 2 and an RO membrane separator 3, and the permeated water of the RO membrane separator 3 is passed through an electric regeneration type deionizer 4. In the method for producing pure water by treating with water, the pH of the feedwater of the electric regeneration type deionizer 4 is set to 4.0 to 5.5.
PH is adjusted by adding an acid to the raw water so that

【0035】この方法において、処理対象となる原水と
しては工業用水、市水、井水などが挙げられ、原水は、
活性炭塔1で残留塩素がほぼ完全に除去された後、脱気
装置2で脱酸素処理され、次いで、RO膜分離装置3で
処理され、電気再生型脱イオン装置4に供給される。
In this method, the raw water to be treated includes industrial water, city water, well water and the like.
After the residual chlorine is almost completely removed in the activated carbon tower 1, the residual chlorine is deoxygenated in the deaerator 2, then processed in the RO membrane separator 3, and supplied to the electric regeneration type deionizer 4.

【0036】ここで用いられる活性炭塔1の型式や流速
等の処理条件には特に制限はない。
There are no particular restrictions on the processing conditions such as the type and the flow rate of the activated carbon tower 1 used here.

【0037】また、脱気装置2としては、N2脱気装
置、真空脱気装置、膜脱気装置等の脱酸素能力を有する
ものを用い、本発明においては、後段のRO膜分離装置
3や電気再生型脱イオン装置4におけるスライムの発生
をより一層確実に防止するために、このような脱気装置
で処理することにより、脱気処理水のDOが100pp
b以下となるように処理するのが好ましい。
As the deaerator 2, an N 2 deaerator, a vacuum deaerator, a membrane deaerator or the like having a deoxidizing ability is used. In the present invention, a RO membrane separator 3 in a later stage is used. In order to more reliably prevent the generation of slime in the electric regeneration type deionization apparatus 4, the DO in the deaeration treatment water is reduced to 100 pp by treating with such a deaeration apparatus.
Preferably, the treatment is performed so as to be b or less.

【0038】RO膜分離装置3についても、その型式や
性能、膜の種類や運転圧力等の処理条件には特に制限は
ない。
There are no particular restrictions on the processing conditions of the RO membrane separation device 3, such as the type and performance, the type of membrane, and the operating pressure.

【0039】電気再生型脱イオン装置4としても、陽極
を備える陽極室と陰極を備える陰極室との間に、複数の
アニオン交換膜及びカチオン交換膜を交互に配列して濃
縮室と脱塩室とを交互に形成し、脱塩室にイオン交換樹
脂やイオン交換繊維が充填されているものであれば良
く、特に制限はない。
In the electric regeneration type deionization apparatus 4, a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode. Are formed alternately and the desalting chamber is filled with ion exchange resin or ion exchange fiber, and there is no particular limitation.

【0040】図2に示す方法は、脱気装置2とRO膜分
離装置3とを入れ換え、原水をpH調整した後、活性炭
塔1、RO膜分離装置3、脱気装置2及び電気再生型脱
イオン装置4に順次通水して処理する点が図1に示す方
法と異なり、その他、処理条件や各装置の仕様等は、図
1における方法と同様である。
In the method shown in FIG. 2, after the deaerator 2 and the RO membrane separator 3 are exchanged and the raw water is adjusted to pH, the activated carbon tower 1, the RO membrane separator 3, the deaerator 2, and the electric regeneration type deaerator are used. The difference from the method shown in FIG. 1 is that water is sequentially passed through the ion device 4 for processing, and other processing conditions and specifications of each device are the same as those in the method shown in FIG.

【0041】図1に示す如く、脱気装置2で処理した
後、RO膜分離装置3で処理する方法であれば、DO減
少により、RO膜分離装置のスライム汚染防止効果が大
になるという効果が奏され、図2に示す如く、RO膜分
離装置3で処理した後脱気装置2で処理する方法であれ
ば脱気装置の汚れ防止ができ、安定した脱気装置の運転
が可能になるという効果が奏される。
As shown in FIG. 1, if the treatment is carried out by the RO membrane separation device 3 after the treatment by the deaeration device 2, the effect of preventing the slime contamination of the RO membrane separation device by the reduction of DO becomes large. As shown in FIG. 2, if the treatment is performed by the RO membrane separation device 3 and then by the deaeration device 2, contamination of the deaeration device can be prevented, and stable operation of the deaeration device becomes possible. The effect is achieved.

【0042】図3,4に示す方法は、半導体、液晶製造
工程等から排出されるプロセス排水を混合して処理する
方法であり、図3に示す方法では、原水をスクリーン等
の除濁装置5で処理した後、活性炭塔1、H型カチオン
交換樹脂塔6及び脱炭酸塔7に順次通水して処理する。
一方、プロセス排水については、該排水のTOCが30
0ppbを超える場合には、TOC除去装置8で処理し
てTOCを300ppb以下にした後、また、該排水の
TOCが300ppb以下の場合にはそのまま、上記の
脱炭酸塔7の処理水と混合し、混合水を脱気装置2、R
O膜分離装置3及び電気再生型脱イオン装置4に順次通
水して処理する。
The method shown in FIGS. 3 and 4 is a method of mixing and treating process wastewater discharged from a semiconductor, a liquid crystal manufacturing process or the like, and the method shown in FIG. After that, water is sequentially passed through the activated carbon tower 1, the H-type cation exchange resin tower 6, and the decarbonation tower 7 for treatment.
On the other hand, for process wastewater, the TOC of the wastewater is 30
If it exceeds 0 ppb, it is treated with the TOC removing device 8 to reduce the TOC to 300 ppb or less, and if the TOC of the wastewater is 300 ppb or less, it is mixed with the treated water of the decarbonation tower 7 as it is. , Mixed water deaerator 2, R
Water is sequentially passed through the O membrane separation device 3 and the electric regeneration type deionization device 4 for treatment.

【0043】このようにして処理を行うに当り、本発明
では、上記混合水に酸又はアルカリのpH調整剤を添加
して電気再生型脱イオン装置4に導入される給水のpH
が4.0〜5.5となるようにpH調整する。なお、こ
の方法においても、脱気装置2とRO膜分離装置3とを
入れ換えRO膜分離装置3で処理した後、脱気装置2で
処理するようにしても良く、前述の如く、脱気装置2に
先立ちRO膜分離装置3で処理した場合には、脱気装置
の汚れが防止でき、安定した脱気装置の運転が可能にな
るという効果が奏され、RO膜分離装置3に先立ち脱気
装置2で処理した場合にはDO減少により、RO膜分離
装置のスライム汚染防止効果が大になるという効果が奏
される。
In carrying out the treatment as described above, according to the present invention, an acid or alkali pH adjuster is added to the above-mentioned mixed water, and the pH of the feed water introduced into the electric regeneration type deionizer 4 is adjusted.
Is adjusted to be 4.0 to 5.5. In this method, the deaerator 2 and the RO membrane separator 3 may be replaced with each other, and after the treatment with the RO membrane separator 3, the treatment may be performed with the deaerator 2. In the case where the treatment is performed by the RO membrane separation device 3 prior to 2, the effect of preventing contamination of the deaeration device and enabling stable operation of the deaeration device is achieved. When the treatment is performed by the apparatus 2, the effect of preventing slime contamination of the RO membrane separation apparatus is increased due to the reduction of DO.

【0044】図4に示す方法は、原水をスクリーン等の
除濁装置5で処理した後、プロセス排水と混合し、混合
水をTOC除去装置8、カチオン交換樹脂塔9、脱気装
置2、RO膜分離装置3及び電気再生型脱イオン装置4
に順次通水して処理する。
In the method shown in FIG. 4, raw water is treated with a turbidity removing device 5 such as a screen, mixed with process waste water, and the mixed water is subjected to a TOC removing device 8, a cation exchange resin tower 9, a deaerator 2, a RO Membrane separation device 3 and electric regeneration type deionization device 4
The water is sequentially passed through to treat.

【0045】このようにして処理を行うに当り、本発明
では、カチオン交換樹脂塔9の処理水にアルカリのpH
調整剤を添加して電気再生型脱イオン装置4に導入され
る給水のpHが4.0〜5.5となるようにpH調整す
る。
In carrying out the treatment in this manner, in the present invention, the pH of the treated water in the cation exchange resin tower 9 is adjusted to an alkaline pH.
The adjusting agent is added to adjust the pH of the feedwater introduced into the electric regeneration type deionization device 4 so as to be 4.0 to 5.5.

【0046】なお、この方法においても、脱気装置2と
RO膜分離装置3とを入れ換えRO膜分離装置3で処理
した後、脱気装置2で処理するようにしても良く、前述
の如く、脱気装置2に先立ちRO膜分離装置3で処理し
た場合には、脱気装置の汚れ防止ができ、安定した脱気
装置の運転が可能になるという効果が奏され、RO膜分
離装置3に先立ち脱気装置2で処理した場合にはDO減
少により、RO膜分離装置のスライム汚染防止効果が大
になるという効果が奏される。
In this method as well, the deaerator 2 and the RO membrane separator 3 may be replaced with each other and processed by the RO membrane separator 3 and then processed by the deaerator 2. As described above, When the treatment is performed by the RO membrane separation device 3 prior to the degassing device 2, the deaeration device can be prevented from being stained, and the operation of the deaeration device can be stably performed. When the treatment is performed in the deaerator 2 beforehand, the effect of preventing the slime contamination of the RO membrane separation device is increased due to the reduction of DO.

【0047】図3,4に示す方法において、脱気装置
2、RO膜分離装置3、電気再生型脱イオン装置4とし
ては、前述の図1,2に示す方法と同様のものを用いる
ことができる。また、TOC除去装置8としては、生物
処理装置(例えば生物処理槽とその後段の固液分離手段
との組み合せ)や紫外線照射と酸化剤とを組み合せた有
機物分解手段等を用いることができる。
In the method shown in FIGS. 3 and 4, the deaerator 2, the RO membrane separator 3, and the electric regeneration type deionizer 4 may be the same as those shown in FIGS. it can. In addition, as the TOC removing device 8, a biological treatment device (for example, a combination of a biological treatment tank and a solid-liquid separation unit at the subsequent stage), an organic matter decomposing unit combining ultraviolet irradiation and an oxidizing agent, or the like can be used.

【0048】また、カチオン交換樹脂塔9のカチオン交
換樹脂としては強酸性型でも弱酸性型でも良く、H型、
Na型、NH4型を問わないが、図3で用いているよう
なH型で強,弱混合型のものを用いるのが好ましい。
The cation exchange resin of the cation exchange resin tower 9 may be a strongly acidic type or a weakly acidic type, and may be an H type,
It does not matter whether it is an Na type or an NH 4 type, but it is preferable to use an H type as shown in FIG. 3 and a strong and weak mixed type.

【0049】図3の方法で用いる脱炭酸塔7は、前述の
脱気装置であっても良い。
The decarbonation tower 7 used in the method of FIG. 3 may be the above-described deaerator.

【0050】図3,4に示す方法においても、脱気処理
水のDOが100ppb以下となるように脱気装置2で
処理を行うのが好ましい。
Also in the method shown in FIGS. 3 and 4, it is preferable to perform the treatment in the deaerator 2 so that the DO of the deaerated treatment water is 100 ppb or less.

【0051】なお、本発明においてpH調整に用いられ
る酸としては、特に制限はなく、HCl,H2SO4,H
NO3等の鉱酸やクエン酸等の有機酸を用いることがで
きる。また、pH調整のためにアルカリを使用する際に
おいて、用いるアルカリにも特に制限はなく、NaO
H,KOH,Ca(OH)2等を用いることができる。
The acid used for adjusting the pH in the present invention is not particularly limited, and HCl, H 2 SO 4 , H
Mineral acids such as NO 3 and organic acids such as citric acid can be used. When using an alkali for pH adjustment, there is no particular limitation on the alkali used.
H, KOH, Ca (OH) 2 and the like can be used.

【0052】[0052]

【実施例】以下に実施例、比較例及び参考例を挙げて本
発明をより具体的に説明する。
The present invention will be described more specifically with reference to examples, comparative examples and reference examples.

【0053】実施例1 図1に示す方法に従って、市水(pH7.4,DO7.
8ppm,電気伝導度160μs/cm)を処理して純
水を製造した。各装置の仕様及び処理条件は下記の通り
である。なお、市水には電気再生型脱イオン装置4の給
水のpHが5になるように活性炭塔1の入口側で酸(H
Cl)を添加した。
Example 1 According to the method shown in FIG. 1, city water (pH 7.4, DO7.
(8 ppm, electrical conductivity: 160 μs / cm) to produce pure water. The specifications and processing conditions of each device are as follows. The city water is supplied with an acid (H) at the inlet side of the activated carbon tower 1 so that the pH of the feed water of the electric regeneration type deionizer 4 becomes 5.
Cl) was added.

【0054】 活性炭塔1 栗田工業(株)製「クリコールKW」を100L充填
し、2.7m3/hrで下向流通水した。
Activated carbon tower 1 100 l of "Crycol KW" manufactured by Kurita Kogyo Co., Ltd. was filled, and downward flowing water was supplied at 2.7 m 3 / hr.

【0055】 脱気装置2 膜脱気装置:ヘキストジャパン製「Liqu−Cel」
4インチ1本の2段通水とした。膜脱気装置の真空度は
50Torrとし、スイープN2ガス量は200N−L
/hrとした。これにより脱気処理水のDOは40pp
bに低減された。
Deaerator 2 Membrane deaerator: “Liqu-Cel” manufactured by Hoechst Japan
The water flow was two steps of one 4-inch. The degree of vacuum of the membrane deaerator is set to 50 Torr, and the sweep N 2 gas amount is set to 200 N-L.
/ Hr. As a result, the DO of the degassed water is 40 pp.
b.

【0056】 RO膜分離装置3 日東電工(株)製「ES−20」8インチ2本を2段通
水した。処理条件は入口圧力10.5kg/cm2、処
理水量2.0m3/hr、水回収率75%とした。
RO Membrane Separation Device 3 Two 8-inch “ES-20” manufactured by Nitto Denko Corporation were passed through in two stages. The treatment conditions were an inlet pressure of 10.5 kg / cm 2 , a treated water volume of 2.0 m 3 / hr, and a water recovery of 75%.

【0057】 電気再生型脱イオン装置4 栗田工業(株)製「H060型」を用いた。処理条件は
下記の通りとした。 給水量 : 2.0m3/hr 処理水量 : 1.75m3/hr 濃縮水循環水量 : 0.9m3/hr 電極室水量 : 50L/hr 排出水(濃縮水+電極水)量: 0.25m3/hr 操作電圧 : 250V 操作電流 : 0.6〜0.7A 上記の条件で125日間運転を行った後、電気再生型脱
イオン装置の濃縮室の差圧、処理水の水質を調べ、結果
を表1に示した。また、運転開始から30日目と105
日目の濃縮水中の生菌数を測定し、結果を表1に示し
た。
Electric regeneration type deionizer 4 “H060 type” manufactured by Kurita Water Industries Ltd. was used. The processing conditions were as follows. Water supply: 2.0 m 3 / hr Treated water: 1.75 m 3 / hr Concentrated water circulating water: 0.9 m 3 / hr Electrode room water: 50 L / hr Discharged water (concentrated water + electrode water): 0.25 m 3 / Hr Operating voltage: 250 V Operating current: 0.6-0.7 A After operating for 125 days under the above conditions, the differential pressure of the enrichment room of the electric regeneration type deionization device and the quality of the treated water were examined, and the results were obtained. The results are shown in Table 1. On the 30th day from the start of operation, 105
The number of viable bacteria in the concentrated water on the day was measured, and the results are shown in Table 1.

【0058】比較例1,2 実施例1において電気再生型脱イオン装置の給水のpH
が表1に示すpHとなるようにpH調整したこと以外は
同様にして運転を行い、結果を表1に示した。
Comparative Examples 1 and 2 The pH of the feed water of the electric regeneration type deionizer in Example 1
The operation was carried out in the same manner except that the pH was adjusted to the pH shown in Table 1, and the results are shown in Table 1.

【0059】比較例3 実施例1において、電気再生型脱イオン装置の給水のp
Hが5となるように、RO膜分離装置の処理水に酸を添
加したこと以外は同様にして運転を行い、結果を表1に
示した。
Comparative Example 3 In Example 1, the feed water p of the electric regeneration type deionizer was changed.
The operation was carried out in the same manner except that an acid was added to the treated water of the RO membrane separation apparatus so that H became 5, and the results are shown in Table 1.

【0060】参考例1 実施例1において、膜脱気装置の真空度を120Tor
rとしたこと以外は同様にして運転を行い、結果を表1
に示した。なお、この参考例1では、膜脱気処理水のD
Oは580ppbであった。
Reference Example 1 In Example 1, the degree of vacuum of the membrane deaerator was set to 120 Torr.
The operation was performed in the same manner except that r was used.
It was shown to. In Reference Example 1, the membrane degassed water D
O was 580 ppb.

【0061】[0061]

【表1】 [Table 1]

【0062】電気再生型脱イオン装置の給水のpHを
3.8とした比較例1では、通水開始初期から水質が悪
かった。また、電気再生型脱イオン装置の給水のpHを
6.0とした比較例2では、通水開始後80〜90日目
からわずかに濃縮室の差圧が上昇する傾向が認められ、
生菌の増殖も認められた。そして、それに伴なって差圧
上昇が大きくなり、処理水の水質の変動も大きくなっ
た。このため、比較例1では、表1に示す如く、処理水
の水質に問題があり、比較例2では差圧上昇、生菌の増
殖、処理水水質の低下の問題があった。
In Comparative Example 1 in which the supply water pH of the electric regeneration type deionizer was 3.8, the water quality was poor from the beginning of the passage of water. In Comparative Example 2 in which the supply water pH of the electric regeneration type deionization device was 6.0, a slight increase in the differential pressure in the concentration chamber was observed from 80 to 90 days after the start of water supply,
Proliferation of live bacteria was also observed. As a result, the differential pressure rise increased, and the quality of the treated water also fluctuated. Therefore, in Comparative Example 1, as shown in Table 1, there was a problem with the water quality of the treated water, and in Comparative Example 2, there were problems with an increase in the differential pressure, the growth of viable bacteria, and a decrease in the quality of the treated water.

【0063】これに対して電気再生型脱イオン装置の給
水のpHを5とした実施例1では、生菌の増殖、差圧の
上昇の問題もなく、処理水の水質も著しく良好であっ
た。
On the other hand, in Example 1 in which the pH of the feed water of the electric regeneration type deionization apparatus was 5, there was no problem of the growth of viable bacteria and the increase of the differential pressure, and the quality of the treated water was remarkably good. .

【0064】なお、電気再生型脱イオン装置の給水のp
Hを5とした場合でも、pH調整を電気再生型脱イオン
装置の入口側で行った比較例3では、差圧上昇、生菌の
増殖は長期的に問題が生じる可能性があり、水質が不安
定である。また、炭酸除去性も悪く、水質に影響する。
It should be noted that the water supply p of the electric regeneration type deionizer
Even when H was set to 5, in Comparative Example 3 in which the pH was adjusted on the inlet side of the electric regeneration type deionization device, the differential pressure rise and the growth of viable bacteria could cause long-term problems, and the water quality was poor. It is unstable. In addition, the carbonic acid removal property is poor, which affects water quality.

【0065】参考例1は、電気再生型脱イオン装置の給
水のpHを5に調整したものの、脱気装置によるDO除
去が十分でなく、DOが残留するために、通水開始後1
10日目頃から差圧がわずかに上昇した。
In Reference Example 1, although the feedwater pH of the electric regeneration type deionizer was adjusted to 5, the removal of DO by the deaerator was not sufficient, and the DO remained, so that 1 hour after the start of water supply.
From around the 10th day, the differential pressure rose slightly.

【0066】[0066]

【発明の効果】以上詳述した通り、本発明の純水の製造
方法によれば、電気再生型脱イオン装置を組み込んだ純
水製造プロセスにおいて、電気再生型脱イオン装置にお
けるスライム及びスケールの発生を抑制すると共に系内
のスライムの発生も抑制することにより、長期に亘り安
定した運転を行って、高純度の純水を効率的に製造する
ことができる。
As described above in detail, according to the method for producing pure water of the present invention, in the pure water production process incorporating the electric regeneration type deionization apparatus, the generation of slime and scale in the electric regeneration type deionization apparatus is performed. In addition, by suppressing the generation of slime in the system, stable operation can be performed for a long time, and high-purity pure water can be efficiently produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の請求項2の純水の製造方法の実施の形
態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method for producing pure water according to claim 2 of the present invention.

【図2】本発明の請求項3の純水の製造方法の実施の形
態を示す系統図である。
FIG. 2 is a system diagram showing an embodiment of a method for producing pure water according to claim 3 of the present invention.

【図3】本発明の請求項4の純水の製造方法の実施の形
態を示す系統図である。
FIG. 3 is a system diagram showing an embodiment of a method for producing pure water according to claim 4 of the present invention.

【図4】本発明の請求項5の純水の製造方法の実施の形
態を示す系統図である。
FIG. 4 is a system diagram showing an embodiment of a method for producing pure water according to claim 5 of the present invention.

【符号の説明】[Explanation of symbols]

1 活性炭塔 2 脱気装置 3 RO膜分離装置 4 電気再生型脱イオン装置 5 除濁装置 6 H型カチオン交換樹脂塔 7 脱炭酸塔 8 TOC除去装置 9 カチオン交換樹脂塔 DESCRIPTION OF SYMBOLS 1 Activated carbon tower 2 Deaerator 3 RO membrane separation apparatus 4 Electric regeneration type deionization apparatus 5 Clarification apparatus 6 H type cation exchange resin tower 7 Decarbonation tower 8 TOC removal apparatus 9 Cation exchange resin tower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 H J 9/00 501 9/00 501 502 502F 502H 502K 502Z 503 503B 504 504E Fターム(参考) 4D006 GA03 GA17 HA42 KA02 KA52 KA72 KB01 KB11 KB12 KB14 KB17 KB21 KD19 KE02Q KE02R KE07Q KE07R KE15P PB06 PC01 PC02 PC11 PC42 4D024 AA03 AB01 AB02 BA02 CA01 DA03 DA04 DB05 DB19 4D025 AA04 BA09 BA10 BA11 BA12 BB02 CA03 DA01 DA03 DA05 DA06 4D037 AA03 AB11 BA23 BB05 BB07 CA01 CA03 CA04 CA07 CA14 CA15 4D061 DA03 DB13 EA09 EB13 EB37 EB39 FA03 FA06 FA08 FA09 FA11 FA13 FA15 GA07 GC02 GC12 GC14 GC19 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/44 C02F 1/44 H J 9/00 501 9/00 501 502 502F 502H 502K 502Z 503 503B 504 504E F-term (reference) 4D006 GA03 GA17 HA42 KA02 KA52 KA72 KB01 KB11 KB12 KB14 KB17 KB21 KD19 KE02Q KE02R KE07Q KE07R KE15P PB06 PC01 PC02 PC11 PC42 4D024 AA03 AB01 AB02 BA02 CA01 DA03 DA04 DB05 DB19 BA03 DA03 DA03 DA06 4D037 AA03 AB11 BA23 BB05 BB07 CA01 CA03 CA04 CA07 CA14 CA15 4D061 DA03 DB13 EA09 EB13 EB37 EB39 FA03 FA06 FA08 FA09 FA11 FA13 FA15 GA07 GC02 GC12 GC14 GC19

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 原水を脱気装置及び逆浸透膜分離装置を
備える前段設備で処理した後、電気再生型脱イオン装置
に通水して純水を製造する方法において、 該電気再生型脱イオン装置に導入される給水のpHが
4.0〜5.5になるように前記前段設備に導入される
給水のpH調整を行うことを特徴とする純水の製造方
法。
1. A method for producing pure water by treating raw water in a pre-stage facility comprising a deaerator and a reverse osmosis membrane separator, and then passing the water through an electric regeneration deionizer to produce pure water. A method for producing pure water, wherein the pH of the feedwater introduced into the preceding stage equipment is adjusted so that the pH of the feedwater introduced into the apparatus becomes 4.0 to 5.5.
【請求項2】 原水を活性炭塔、脱気装置、逆浸透膜分
離装置及び電気再生型脱イオン装置に順次通水して純水
を製造する方法において、 該電気再生型脱イオン装置に導入される給水のpHが
4.0〜5.5になるように前記活性炭塔に導入される
給水に酸を添加してpH調整することを特徴とする請求
項1に記載の純水の製造方法。
2. A method for producing pure water by passing raw water sequentially through an activated carbon tower, a degassing device, a reverse osmosis membrane separation device and an electric regeneration type deionization device, wherein the raw water is introduced into the electric regeneration type deionization device. The method for producing pure water according to claim 1, wherein an acid is added to the feedwater introduced into the activated carbon tower to adjust the pH so that the pH of the feedwater becomes 4.0 to 5.5.
【請求項3】 原水を活性炭塔、逆浸透膜分離装置、脱
気装置及び電気再生型脱イオン装置に順次通水して純水
を製造する方法において、 該電気再生型脱イオン装置に導入される給水のpHが
4.0〜5.5になるように前記活性炭塔に導入される
給水に酸を添加してpH調整することを特徴とする請求
項1に記載の純水の製造方法。
3. A method for producing pure water by sequentially passing raw water through an activated carbon tower, a reverse osmosis membrane separator, a deaerator and an electric regeneration type deionizer, wherein the raw water is introduced into the electric regeneration type deionizer. The method for producing pure water according to claim 1, wherein an acid is added to the feedwater introduced into the activated carbon tower to adjust the pH so that the pH of the feedwater becomes 4.0 to 5.5.
【請求項4】 原水を活性炭塔、及びH型カチオン交換
樹脂塔及び脱炭酸装置に順次通水して処理した後、該脱
炭酸装置の処理水を、TOC300ppb以下のプロセ
ス排水又はTOC除去装置でTOC300ppb以下に
処理されたプロセス排水と混合し、該混合水を脱気装置
及び逆浸透膜分離装置で処理した後電気再生型脱イオン
装置に通水して純水を製造する方法において、 該電気再生型脱イオン装置に導入される給水のpHが
4.0〜5.5になるように前記混合水をpH調整する
ことを特徴とする請求項1に記載の純水の製造方法。
4. After treating raw water by sequentially passing it through an activated carbon tower, an H-type cation exchange resin tower and a decarbonation apparatus, the treated water of the decarbonation apparatus is treated with a process wastewater having a TOC of 300 ppb or less or a TOC removal apparatus. A method for producing pure water by mixing with a process wastewater treated to a TOC of 300 ppb or less, treating the mixed water with a deaerator and a reverse osmosis membrane separator, and then passing the mixed water through an electric regeneration type deionizer. The method for producing pure water according to claim 1, wherein the pH of the mixed water is adjusted so that the pH of feedwater introduced into the regenerative deionization apparatus is 4.0 to 5.5.
【請求項5】 原水とプロセス排水とを混合し、該混合
水をTOC除去装置及びカチオン交換樹脂塔に順次通水
した後、該カチオン交換樹脂塔の処理水を脱気装置及び
逆浸透膜分離装置で処理し、その後、電気再生型脱イオ
ン装置に通水して純水を製造する方法において、 該電気再生型脱イオン装置に導入される給水のpHが
4.0〜5.5になるように前記カチオン交換樹脂塔の
処理水をpH調整することを特徴とする請求項1に記載
の純水の製造方法。
5. The raw water and the process wastewater are mixed, and the mixed water is sequentially passed through a TOC removal device and a cation exchange resin tower, and then the treated water of the cation exchange resin tower is degassed and subjected to reverse osmosis membrane separation. In the method for producing pure water by treating with an apparatus and then passing the water through an electric regeneration type deionizer, the pH of feed water introduced into the electric regeneration type deionizer becomes 4.0 to 5.5. The method for producing pure water according to claim 1, wherein the pH of the treated water of the cation exchange resin tower is adjusted as described above.
【請求項6】 請求項4において、前記pH調整した混
合水を脱気装置で処理した後、逆浸透膜分離装置で処理
し、その後電気再生型脱イオン装置に通水することを特
徴とする純水の製造方法。
6. The method according to claim 4, wherein the pH-adjusted mixed water is treated by a deaerator, then treated by a reverse osmosis membrane separator, and then passed through an electric regeneration type deionizer. Pure water production method.
【請求項7】 請求項5において、前記カチオン交換樹
脂塔の処理水を脱気装置で処理した後、逆浸透膜分離装
置で処理し、その後電気再生型脱イオン装置に通水する
ことを特徴とする純水の製造方法。
7. The method according to claim 5, wherein the treated water of the cation exchange resin tower is treated by a deaerator, then treated by a reverse osmosis membrane separator, and then passed through an electric regeneration type deionizer. Pure water production method.
JP13156999A 1999-05-12 1999-05-12 Pure water production method Expired - Fee Related JP3656458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13156999A JP3656458B2 (en) 1999-05-12 1999-05-12 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13156999A JP3656458B2 (en) 1999-05-12 1999-05-12 Pure water production method

Publications (2)

Publication Number Publication Date
JP2000317457A true JP2000317457A (en) 2000-11-21
JP3656458B2 JP3656458B2 (en) 2005-06-08

Family

ID=15061137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13156999A Expired - Fee Related JP3656458B2 (en) 1999-05-12 1999-05-12 Pure water production method

Country Status (1)

Country Link
JP (1) JP3656458B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2003047950A (en) * 2001-08-01 2003-02-18 Kurita Water Ind Ltd Deoxygenation and decarboxylation treatment apparatus and treatment method
JP2003190979A (en) * 2001-10-18 2003-07-08 Kurita Water Ind Ltd Apparatus for manufacturing ultrapure water and method
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2006255651A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Pure water producing system
JP2006255650A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Apparatus for producing pure water
JP2007289887A (en) * 2006-04-26 2007-11-08 Kurita Water Ind Ltd Pure water production apparatus
US7955503B2 (en) 2005-03-18 2011-06-07 Kurita Water Industries Ltd. Pure water producing apparatus
JP2016041412A (en) * 2014-08-19 2016-03-31 Jfeエンジニアリング株式会社 Water desalination processing method and apparatus
WO2021240967A1 (en) * 2020-05-28 2021-12-02 栗田工業株式会社 Reverse osmosis membrane processing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2003047950A (en) * 2001-08-01 2003-02-18 Kurita Water Ind Ltd Deoxygenation and decarboxylation treatment apparatus and treatment method
JP2003190979A (en) * 2001-10-18 2003-07-08 Kurita Water Ind Ltd Apparatus for manufacturing ultrapure water and method
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2006255651A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Pure water producing system
JP2006255650A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Apparatus for producing pure water
US7955503B2 (en) 2005-03-18 2011-06-07 Kurita Water Industries Ltd. Pure water producing apparatus
JP2007289887A (en) * 2006-04-26 2007-11-08 Kurita Water Ind Ltd Pure water production apparatus
JP2016041412A (en) * 2014-08-19 2016-03-31 Jfeエンジニアリング株式会社 Water desalination processing method and apparatus
WO2021240967A1 (en) * 2020-05-28 2021-12-02 栗田工業株式会社 Reverse osmosis membrane processing method
JP2021186727A (en) * 2020-05-28 2021-12-13 栗田工業株式会社 Reverse osmosis membrane treatment method

Also Published As

Publication number Publication date
JP3656458B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
JP3426072B2 (en) Ultrapure water production equipment
KR100976903B1 (en) Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP3575271B2 (en) Pure water production method
JP2004283710A (en) Pure water producer
JP3656458B2 (en) Pure water production method
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
JP3137831B2 (en) Membrane processing equipment
JP2007307561A (en) High-purity water producing apparatus and method
JP3565098B2 (en) Ultrapure water production method and apparatus
JP2000051665A (en) Desalination method
JP2000015257A (en) Apparatus and method for making high purity water
JP3952127B2 (en) Electrodeionization treatment method
JP2001170630A (en) Pure water production device
JP2021102200A (en) Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
KR100398417B1 (en) A method for treating electrogalvanizing wastewaters
JP4505965B2 (en) Pure water production method
JP4599668B2 (en) Operation method of electrodeionization equipment
JPH11114576A (en) Deionized water producing device
JPH11262771A (en) Production of pure water
JPH09294977A (en) Water purifying apparatus
JP2001179262A (en) Pure water making apparatus
JP2001198578A (en) Method and device for electrically desalting treatment
JPH1128482A (en) Production of pure water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees