JP2003266097A - Ultrapure water making apparatus - Google Patents

Ultrapure water making apparatus

Info

Publication number
JP2003266097A
JP2003266097A JP2002068781A JP2002068781A JP2003266097A JP 2003266097 A JP2003266097 A JP 2003266097A JP 2002068781 A JP2002068781 A JP 2002068781A JP 2002068781 A JP2002068781 A JP 2002068781A JP 2003266097 A JP2003266097 A JP 2003266097A
Authority
JP
Japan
Prior art keywords
water
pure water
primary pure
electric deionization
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002068781A
Other languages
Japanese (ja)
Inventor
Kiminobu Osawa
公伸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002068781A priority Critical patent/JP2003266097A/en
Publication of JP2003266097A publication Critical patent/JP2003266097A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrapure water making apparatus capable of highly removing weak electrolytes such as silica and, boron in a primary pure water system suitable for a field of a semiconductor, or the like, requiring high water quality. <P>SOLUTION: This ultrapure water making apparatus has a pretreatment system 1, a primary pure water system 2 and a sub-system 3. The primary pure water system 2 is constituted by successively connecting a reverse osmosis membrane separator 22, a degassing device 21, an electrodeionizing device 23, an ultraviolet oxidation device 24 and a non-regeneration type ion exchanger 25 in this order or by connecting the degassing device 21, the reverse osmosis membrane separator 22, the electrodeionizing device 23, the ultraviolet oxidation device 24 and the non-regeneration type ion exchanger 25 in this order. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体、液晶、製
薬、食品、電力等の分野の各種産業、民生用又は研究設
備で利用される超純水を製造する超純水製造装置に係
る。特に、シリカ、ホウ素、TOCなどの弱電解物質に
おいて高い水質を要求される超純水製造装置の一次純水
システムの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrapure water production system for producing ultrapure water used in various industries such as semiconductors, liquid crystals, pharmaceuticals, foods, electric power, and for consumer or research facilities. In particular, it relates to improvement of a primary pure water system for an ultrapure water producing apparatus that requires high water quality in weak electrolytic substances such as silica, boron and TOC.

【0002】[0002]

【従来の技術】従来、半導体等の分野で用いられている
超純水は、前処理システム、前処理水を処理する一次純
水システム及び一次純水を処理するサブシステムで構成
される超純水製造装置で、原水(工業用水、市水、井水
等)を処理することにより製造されている。
2. Description of the Related Art Conventionally, ultrapure water used in the field of semiconductors is an ultrapure water consisting of a pretreatment system, a primary pure water system for treating the pretreated water, and a subsystem for treating the primary pure water. It is produced by treating raw water (industrial water, city water, well water, etc.) with a water production device.

【0003】凝集、加圧浮上(沈殿)、濾過(膜濾過)
装置などよりなる前処理システムでは、原水中の懸濁物
質やコロイド物質の除去を行う。また、この過程では高
分子系有機物、疎水性有機物などの除去も可能である。
Coagulation, pressure floating (precipitation), filtration (membrane filtration)
A pretreatment system consisting of equipment removes suspended substances and colloidal substances in raw water. Further, in this process, it is also possible to remove high molecular weight organic substances, hydrophobic organic substances and the like.

【0004】逆浸透(RO)膜分離装置、脱ガス装置及
び再生型イオン交換装置(混床式又は4床5塔式など)
を備える一次純水系システムでは、原水中のイオンや有
機成分の除去を行う。なお、RO膜分離装置では、塩類
を除去すると共に、イオン性、コロイド性のTOCを除
去する。イオン交換装置では、塩類を除去すると共にイ
オン交換樹脂によって吸着又はイオン交換されるTOC
成分の除去を行う。脱ガス装置では無機系炭素(I
C)、溶存酸素の除去を行う。
Reverse osmosis (RO) membrane separation device, degassing device and regenerative ion exchange device (mixed bed type or 4 bed 5 tower type, etc.)
In the primary pure water system equipped with, the ions and organic components in the raw water are removed. In addition, in the RO membrane separator, not only salts but also ionic and colloidal TOC are removed. In the ion exchange device, TOC that removes salts and is adsorbed or ion exchanged by the ion exchange resin
Remove components. In the degasser, inorganic carbon (I
C), dissolved oxygen is removed.

【0005】非再生型イオン交換装置、低圧紫外線(U
V)酸化装置及び限外濾過(UF)膜分離装置を備える
サブシステムでは、水の純度をより一層高め超純水にす
る。なお、低圧UV酸化装置では、低圧紫外線ランプよ
り出される185nmの紫外線によりTOCを有機酸、
さらにはCOまで分解する。分解により生成した有機
物及びCOは後段のイオン交換樹脂で除去される。U
F膜分離装置では、微粒子が除去され、イオン交換樹脂
の流出粒子も除去される。
Non-regeneration type ion exchange device, low-pressure ultraviolet ray (U
V) A subsystem equipped with an oxidizer and an ultrafiltration (UF) membrane separator further enhances the water purity to ultrapure water. In the low-pressure UV oxidizer, TOC was converted into organic acid by ultraviolet rays of 185 nm emitted from a low-pressure ultraviolet lamp.
Furthermore, it decomposes to CO 2 . The organic matter and CO 2 generated by the decomposition are removed by the ion exchange resin in the subsequent stage. U
In the F membrane separation device, fine particles are removed, and outflow particles of the ion exchange resin are also removed.

【0006】近年、このような超純水製造装置の一次純
水システムの中心工程である脱塩装置としては、再生型
イオン交換装置に代って、電気脱イオン装置が多用され
るようになってきた。
In recent years, an electric deionization device has been widely used instead of a regenerative ion exchange device as a deionization device, which is a central step of the primary pure water system of such an ultrapure water production device. Came.

【0007】電気脱イオン装置は、図2に示す如く、電
極(陽極11、陰極12)の間に複数のアニオン交換膜
13及びカチオン交換膜14を交互に配列して濃縮室1
5と脱塩室16とを交互に形成し、脱塩室16にイオン
交換樹脂、イオン交換繊維もしくはグラフト交換体等か
らなるアニオン交換体とカチオン交換体とを混合もしく
は複層状に充填して構成される(特許第1782943
号公報、特許第2751090号公報、特許第2699
256号公報、EP1038837A2)。なお、図2
において17は陽極室、18は陰極室である。
As shown in FIG. 2, the electric deionization apparatus has a concentrating chamber 1 in which a plurality of anion exchange membranes 13 and a plurality of cation exchange membranes 14 are alternately arranged between electrodes (anode 11 and cathode 12).
5 and the desalting chambers 16 are alternately formed, and the desalting chambers 16 are mixed or filled in a multi-layered manner with an anion exchanger and a cation exchanger made of an ion exchange resin, an ion exchange fiber, a graft exchange or the like. (Patent No. 1782943)
Japanese Patent, Japanese Patent No. 2751090, Japanese Patent No. 2699
256, EP1038837A2). Note that FIG.
In the figure, 17 is an anode chamber and 18 is a cathode chamber.

【0008】電気脱イオン装置は、水解離によってH
イオンとOHイオンとを生成させ、脱塩室内に充填さ
れているイオン交換体を連続して再生することによっ
て、効率的な脱塩処理が可能である。電気脱イオン装置
は、従来から脱塩処理に広く用いられてきたイオン交換
樹脂装置のような薬品を用いた再生処理を必要とせず、
完全な連続採水が可能であり、高純度の水を得ることが
できるという優れた特長を有する。
The electric deionization apparatus uses H + by water dissociation.
Efficient desalting treatment is possible by generating ions and OH ions and continuously regenerating the ion exchanger filled in the desalting chamber. The electric deionization device does not require a regeneration treatment using a chemical such as an ion exchange resin device which has been widely used for desalination treatment, and
It has an excellent feature that it enables complete continuous water sampling and obtains highly pure water.

【0009】また、電気脱イオン装置では、下記のよう
なイオン化反応を脱塩室内で生起させ、イオンを発生さ
せることにより、シリカ、ホウ素などの弱電解物質をも
ある程度除去することができる。 SiO+OH→HSiO (pKa=9.86) HBO+OH→B(OH) (pKa=9.24)
Further, in the electric deionization apparatus, the weak electrolytic substances such as silica and boron can be removed to some extent by causing the following ionization reaction in the desalting chamber to generate ions. SiO 2 + OH → HSiO 3 (pKa = 9.86) H 3 BO 3 + OH → B (OH) 4 (pKa = 9.24)

【0010】しかしながら、一般的な電気脱イオン装置
は、装置によって差はあるものの、シリカ、ホウ素の除
去率は30〜99%であり、多床型(3床4塔、4床5
塔型)イオン交換装置のように、分析下限値以下までに
完全にかつ安定した除去を期待することはできない。
However, a general electric deionization apparatus has a removal rate of silica and boron of 30 to 99%, though it varies depending on the apparatus, and is a multi-bed type (3 beds 4 towers, 4 beds 5 beds).
It is not possible to expect complete and stable removal up to the lower limit of analysis as in the case of (column type) ion exchanger.

【0011】ところで、超純水の要求水質は、これが使
用される分野で異なり、従って、超純水製造装置、特に
一次純水システムは、その分野毎に、この要求水質を満
たす超純水が得られるように構築されている。表1に代
表的な分野での超純水の要求水質を示す。
By the way, the required water quality of ultrapure water differs depending on the field in which it is used. Therefore, the ultrapure water production apparatus, especially the primary pure water system, has an ultrapure water satisfying the required water quality for each field. It is built to be obtained. Table 1 shows the required water quality of ultrapure water in typical fields.

【0012】[0012]

【表1】 [Table 1]

【0013】液晶、医薬用水分野では、シリカ、ホウ素
の要求水質がないか、もしくは緩いため、精製水製造シ
ステム、一次純水システムの脱塩部に電気脱イオン装置
が用いられるようになり、主にRO膜分離装置と電気脱
イオン装置で脱塩部が構成される。
In the fields of liquid crystals and medicinal water, since the required water quality of silica and boron is not present or is loose, an electric deionization device has come to be used in the desalting section of the purified water production system and the primary pure water system. In addition, the desalting section is composed of the RO membrane separation device and the electric deionization device.

【0014】一方、半導体分野で使用される超純水の要
求水質は最も厳しく、特にシリカ、ホウ素、TOCは現
在の分析のレベルの下限値以下まで要求される。シリ
カ、ホウ素の超微量域までの除去は、電気脱イオン装置
では達成し得ず、多床型イオン交換装置を用いることに
よって可能となる。しかし、イオン交換樹脂のシリカ、
ホウ素等の交換容量(除去量)は極めて低く、我々の知
見ではアニオン交換樹脂当たり0.05〜0.1meq
/mLであり、Clイオンなどの交換容量に比べ、1/
10〜1/20である。
On the other hand, the required water quality of ultrapure water used in the semiconductor field is the most severe, and silica, boron, and TOC are required to be below the lower limit of the current level of analysis. The removal of silica and boron to an ultratrace amount cannot be achieved by an electric deionization device, and is possible by using a multibed ion exchange device. However, silica, an ion exchange resin,
The exchange capacity (removal amount) of boron and the like is extremely low, and according to our knowledge, it is 0.05 to 0.1 meq per anion exchange resin.
/ ML, which is 1 / mL compared to the exchange capacity for Cl ions, etc.
It is 10 to 1/20.

【0015】このことから、超純水のシリカ、ホウ素を
保証する場合、一次純水システムでこれらの物質を完全
に除去することが重要である。即ち、サブシステムにシ
リカ、ホウ素が持ち込まれると、サブシステム内の非再
生型イオン交換装置が直ちに破過してしまい、安定水質
を保証できなくなるからである。
From the above, when guaranteeing silica and boron in ultrapure water, it is important to completely remove these substances with the primary pure water system. That is, when silica and boron are brought into the subsystem, the non-regenerative ion exchange device in the subsystem immediately breaks through, and stable water quality cannot be guaranteed.

【0016】従来のように、一次純水システムの脱塩部
が再生型イオン交換装置で構成されている場合は、再生
頻度を高くすることによってシリカ、ホウ素の高度除去
への対応が比較的容易に達成できた。しかし、再生を頻
繁に行うことは、大量の再生排水の排出につながり、地
球環境、資源保護の点から好ましくない。このようなこ
とから、半導体分野の超純水製造装置の一次純水システ
ムにおいても、高純度な水質を維持しつつ、環境に優し
い電気脱イオン装置を脱塩手段として採用することが強
く望まれてきているが、電気脱イオン装置では、シリ
カ、ホウ素除去率が他のイオンに比べ低いため、被処理
水中に1ppm以上のシリカやホウ素が含まれている場
合には、RO膜分離装置と電気脱イオン装置との組み合
わせでは、これらを半導体分野の要求水質レベルにまで
低減させることはできなかった。
When the desalting section of the primary pure water system is composed of a regenerative ion exchange device as in the prior art, it is relatively easy to deal with advanced removal of silica and boron by increasing the frequency of regeneration. Was achieved. However, frequent regeneration leads to the discharge of a large amount of recycled wastewater, which is not preferable from the viewpoint of global environment and resource protection. Therefore, even in the primary pure water system of the ultrapure water production system in the semiconductor field, it is strongly desired to adopt an environmentally friendly electric deionization system as a desalination means while maintaining high purity water quality. However, since the removal rate of silica and boron in an electrodeionization device is lower than that of other ions, when the treated water contains 1 ppm or more of silica or boron, the RO membrane separation device and In combination with a deionization device, these could not be reduced to the required water quality level in the semiconductor field.

【0017】電気脱イオン装置へのシリカ負荷を低減さ
せるために、前段のRO膜分離装置を2段以上にする方
法が考えられるが、この方法により、シリカ濃度<0.
1ppbを達成するためには3段以上のRO膜分離装置
が必要となり、装置が複雑となる上に、高圧ポンプの容
量が大きくなり、経済的とは言えない。また、RO膜分
離装置を一段又は2段として、電気脱イオン装置からリ
ークしたシリカやホウ素を、一次純水システム内に設置
した非再生型イオン交換装置で除去する方法も考えられ
るが、前述のようにイオン交換樹脂の交換容量が極めて
低いため、樹脂の交換頻度が20日〜3ヶ月に1回と、
通常の1年〜3年に1回という交換頻度に比べて極めて
高い交換頻度となり、交換費が増大して経済的とは言え
ない。
In order to reduce the silica load on the electrodeionization device, a method of using two or more RO membrane separators in the preceding stage can be considered. With this method, silica concentration <0.
In order to achieve 1 ppb, an RO membrane separation device with three or more stages is required, which complicates the device and increases the capacity of the high-pressure pump, which is not economical. In addition, a method of removing silica and boron leaked from the electric deionization device by a non-regeneration type ion exchange device installed in the primary deionized water system by using one or two RO membrane separators is also conceivable. Since the exchange capacity of the ion exchange resin is extremely low, the frequency of resin exchange is once every 20 days to 3 months.
The replacement frequency is extremely high as compared with the usual replacement frequency of once every one to three years, and the replacement cost increases, which is not economical.

【0018】このようなことから、半導体分野等の超純
水のシリカ、ホウ素濃度が極微量域まで要求される分野
では、他の分野に比べて電気脱イオン装置の導入が遅れ
ているのが現状である。
For this reason, the introduction of the electric deionization device is delayed compared to other fields in fields such as the semiconductor field where ultrapure water silica and boron concentrations are required to be in extremely small amounts. The current situation.

【0019】[0019]

【発明が解決しようとする課題】本発明は、シリカ、ホ
ウ素等の弱電解物質において、高い水質を要求される半
導体等の分野に好適な、一次純水システムにおいてこれ
らを高度に除去することができる超純水製造装置を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is capable of highly removing weak electrolytic substances such as silica and boron in a primary pure water system suitable for the field of semiconductors and the like which require high water quality. It is an object of the present invention to provide an ultrapure water production apparatus that can be used.

【0020】[0020]

【課題を解決するための手段】本発明の超純水製造装置
は、前処理システムと、該前処理システムによって処理
された前処理水を処理して一次純水とする一次純水シス
テムと、一次純水を処理するサブシステムとを有する超
純水製造装置に関する。請求項1の超純水製造装置で
は、該一次純水システムが、逆浸透膜分離装置、脱ガス
装置、電気脱イオン装置、紫外線酸化装置、及び非再生
型イオン交換装置の順にて配置されている。
An ultrapure water producing system of the present invention comprises a pretreatment system, a primary pure water system for treating the pretreated water treated by the pretreatment system to obtain primary pure water, The present invention relates to an ultrapure water production system having a subsystem for treating primary pure water. In the ultrapure water production system according to claim 1, the primary pure water system is arranged in the order of a reverse osmosis membrane separation device, a degassing device, an electric deionization device, an ultraviolet oxidation device, and a non-regenerative ion exchange device. There is.

【0021】請求項2の超純水製造装置では、該一次純
水システムが、脱ガス装置、逆浸透膜分離装置、電気脱
イオン装置、紫外線酸化装置、及び非再生型イオン交換
装置の順にて配置されている。
In the ultrapure water producing system of claim 2, the primary pure water system comprises a degasser, a reverse osmosis membrane separator, an electric deionizer, an ultraviolet oxidizer, and a non-regenerative ion exchanger in this order. It is arranged.

【0022】このように、電気脱イオン装置の前段にR
O膜分離装置及び脱ガス装置を設けることにより、電気
脱イオン装置におけるシリカ及びホウ素の除去率を高め
ることができる。また、更にUV酸化装置及び非再生型
イオン交換装置で処理することにより、要求水質を十分
に満たすことができるようになる。
In this way, the R
By providing the O membrane separation device and the degassing device, the removal rate of silica and boron in the electrodeionization device can be increased. Further, by further treating with a UV oxidation device and a non-regeneration type ion exchange device, the required water quality can be sufficiently satisfied.

【0023】本発明によれば、シリカ、ホウ素濃度の要
求水質が厳しい分野において、一次純水システムに必須
とされていた再生型イオン交換装置、又は多段RO膜分
離装置を不要とし、脱ガス装置、RO膜分離装置、電気
脱イオン装置、UV酸化装置及び非再生型イオン交換装
置の装置構成で高純度の水を製造することができる。
According to the present invention, in the field where the required water quality of silica and boron concentration is strict, the regenerative ion exchange device or the multi-stage RO membrane separation device, which is indispensable for the primary pure water system, is unnecessary, and the degassing device is eliminated. , RO membrane separation device, electric deionization device, UV oxidation device and non-regeneration type ion exchange device can be used to produce high purity water.

【0024】[0024]

【発明の実施の形態】以下に図面を参照して本発明の超
純水製造装置の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an ultrapure water producing system of the present invention will be described in detail below with reference to the drawings.

【0025】図1(a),(b)に示す超純水製造装置
は、前処理システム1、一次純水システム2及びサブシ
ステム3で構成される。図1(a)の超純水製造装置の
一次純水システム2は、脱ガス装置21、RO膜分離装
置22、電気脱イオン装置23、UV酸化装置24及び
非再生型イオン交換装置25がこの順で接続されて構成
されている。図1(b)の超純水製造装置の一次純水シ
ステム2は、RO膜分離装置22、脱ガス装置21、電
気脱イオン装置23、UV酸化装置24及び非再生型イ
オン交換装置25がこの順で接続されて構成されてい
る。
The ultrapure water production system shown in FIGS. 1 (a) and 1 (b) comprises a pretreatment system 1, a primary pure water system 2 and a subsystem 3. The primary deionized water system 2 of the ultrapure water production system shown in FIG. 1A includes a degasser 21, an RO membrane separator 22, an electric deionizer 23, a UV oxidizer 24, and a non-regenerative ion exchanger 25. It is configured to be connected in order. The primary pure water system 2 of the ultrapure water production system of FIG. 1 (b) includes an RO membrane separation device 22, a degassing device 21, an electric deionization device 23, a UV oxidation device 24 and a non-regenerative ion exchange device 25. It is configured to be connected in order.

【0026】次に、本発明に係る一次純水システムの各
装置の機能について説明する。
Next, the function of each device of the primary pure water system according to the present invention will be described.

【0027】脱ガス装置21は、被処理水中の溶存酸素
(DO)及び炭酸ガス(CO)を除去するために設置
される。DOが電気脱イオン装置23に流入すると、イ
オン交換部材が劣化する。また、COが存在すると、
電気脱イオン装置23における脱イオン効率が低下す
る。このため、脱ガス装置21により、被処理水中のD
O及びCOを予め除去しておく。電気脱イオン装置2
3におけるイオン交換部材の劣化防止及び脱イオン効率
の向上のためには、脱ガス装置21の処理水のDO濃度
が1ppm未満、CO濃度が1.0ppm未満となる
ように除去することが好ましい。脱ガス装置としては、
膜脱気装置、真空脱気装置、窒素脱気装置等を用いるこ
とができる。
The degassing device 21 is installed to remove dissolved oxygen (DO) and carbon dioxide (CO 2 ) in the water to be treated. When DO flows into the electrodeionization device 23, the ion exchange member deteriorates. Also, if CO 2 is present,
The deionization efficiency in the electric deionization device 23 decreases. Therefore, the degassing device 21 is used to
O and CO 2 are removed beforehand. Electrodeionization device 2
In order to prevent the deterioration of the ion exchange member in 3 and improve the deionization efficiency, it is preferable to remove the treated water in the degassing device 21 so that the DO concentration is less than 1 ppm and the CO 2 concentration is less than 1.0 ppm. . As a degasser,
A membrane deaerator, a vacuum deaerator, a nitrogen deaerator, etc. can be used.

【0028】RO膜分離装置22は、被処理水中の塩
類、シリカ、ホウ素、TOC、微粒子等を分離除去する
ために設置される。RO膜分離装置22によるこれらの
不純物の除去率には限界があり、一般的な市水、工水を
原水として処理した場合、RO膜分離装置22の処理水
の比抵抗値は約0.5MΩ・cm、シリカ濃度は約50
0ppb、ホウ素濃度は約10ppb、TOC濃度は約
100ppbであるため、要求水質を満たすためには、
後段に電気脱イオン装置23等が更に必要となる。
The RO membrane separation device 22 is installed for separating and removing salts, silica, boron, TOC, fine particles and the like in the water to be treated. There is a limit to the removal rate of these impurities by the RO membrane separation device 22, and when general city water or industrial water is treated as raw water, the specific resistance value of the treated water of the RO membrane separation device 22 is about 0.5 MΩ.・ Cm, silica concentration is about 50
Since 0 ppb, boron concentration is about 10 ppb, and TOC concentration is about 100 ppb, in order to satisfy the required water quality,
An electric deionization device 23 or the like is further required in the subsequent stage.

【0029】RO膜分離装置22のRO膜としては、N
aCl除去率98%以上を有する膜であれば特に限定す
るものではないが、ポリアミド膜が好ましい。
The RO membrane of the RO membrane separator 22 is N
The film is not particularly limited as long as the film has an aCl removal rate of 98% or more, but a polyamide film is preferable.

【0030】前述の如く、RO膜分離装置を直列に多段
に設けると、後段の電気脱イオン装置の負荷は低減する
が、装置の構成の複雑化、高圧ポンプ容量の増大を招く
ため、本発明ではRO膜分離装置を1段で構成する。
As described above, when the RO membrane separators are provided in multiple stages in series, the load of the electric deionization device at the latter stage is reduced, but the structure of the device is complicated and the high-pressure pump capacity is increased. Then, the RO membrane separation device is composed of one stage.

【0031】このRO膜分離装置22と脱ガス装置21
の接続順序に制限はなく、図1(a)に示す如く、脱ガ
ス装置21を前段としRO膜分離装置22を後段として
も良く、また、図1(b)に示す如く、RO膜分離装置
22を前段とし、脱ガス装置21を後段としても良い
が、初期設備費を低減する、例えば脱ガス装置21とし
ての膜脱気装置の膜本数を抑えるために、図1(b)に
示す如く、RO膜分離装置22の後段に脱ガス装置21
を設けることが好ましい。
The RO membrane separation device 22 and the degassing device 21
There is no limitation on the connection order of the RO membrane separation device, as shown in FIG. 1A, the degassing device 21 may be the first stage and the RO membrane separation device 22 may be the second stage. Further, as shown in FIG. 22 may be the first stage and the degassing device 21 may be the latter stage, but in order to reduce the initial equipment cost, for example, to suppress the number of membranes of the membrane degassing device as the degassing device 21, as shown in FIG. , The RO membrane separation device 22 is followed by a degassing device 21.
Is preferably provided.

【0032】電気脱イオン装置23としては、シリカ除
去率が99%以上の電気脱イオン装置が好ましい。これ
は、本発明ではRO膜分離装置を一段処理としているた
めである。即ち、RO膜分離装置22の被処理水のシリ
カ濃度が1ppmの場合、RO膜分離装置22の処理水
のシリカ濃度は100ppb程度であり、この水を電気
脱イオン装置23で処理してシリカ濃度1ppb未満と
するためには、99%以上のシリカ除去率が要求され
る。
The electrodeionization device 23 is preferably an electrodeionization device having a silica removal rate of 99% or more. This is because in the present invention, the RO membrane separation device is a one-stage process. That is, when the silica concentration of the treated water of the RO membrane separation device 22 is 1 ppm, the silica concentration of the treated water of the RO membrane separation device 22 is about 100 ppb, and this water is treated by the electric deionization device 23 to obtain the silica concentration. In order to make it less than 1 ppb, a silica removal rate of 99% or more is required.

【0033】シリカ除去率が99%以上の電気脱イオン
装置としては特に制限はないが、特開2001−113
281に開示される、pH8.5以下の被処理水(電気
脱イオン装置の給水)にアルカリ薬剤を添加することな
く処理した場合において、被処理水よりもpHが1.0
以上、好ましくは1.3〜3.0程度高い処理水(脱イ
オン水)を得ることができるよう構成されているものを
好適に用いることができる。
There is no particular limitation as to the electric deionization apparatus having a silica removal rate of 99% or more, but there is no limitation.
281, the treated water having a pH of 8.5 or less (feed water of the electric deionization device) is treated without adding an alkaline chemical and has a pH of 1.0 than the treated water.
As described above, it is preferable to use the one configured so as to obtain the treated water (deionized water) which is preferably 1.3 to 3.0 higher.

【0034】この電気脱イオン装置では、電気脱イオン
装置内において、水のpHが上昇することにより、シリ
カやホウ素等の弱電解物質及び硬度成分が効率よく除去
される。
In this electric deionization apparatus, the weak electrolytic substance such as silica and boron and the hardness component are efficiently removed by raising the pH of water in the electric deionization apparatus.

【0035】このような高シリカ除去率の電気脱イオン
装置は、次のi),ii)の構成を採用することが好まし
い。 i) 脱塩室の厚さは7mm以上が好ましく、処理水の
pHを効率良く上げるために、脱塩室の厚さは8〜30
mmがより好ましい。脱塩室の厚みとは、図2のWで示
す如く、陽極11と陰極12との間の脱塩室16の厚み
を指す。 ii) 脱塩室のイオン交換体はアニオン交換体とカチ
オン交換体との混合層が最も良い。印加電圧が高いとき
には、アニオン交換体の単独層でもよい。一部の脱塩室
に混合層が充填され、他の脱塩室にアニオン交換体層が
充填されてもよい。
Such an electrodeionization device having a high silica removal rate preferably employs the following configurations i) and ii). i) The thickness of the desalination chamber is preferably 7 mm or more, and the thickness of the desalination chamber is 8 to 30 in order to efficiently raise the pH of the treated water.
mm is more preferable. The thickness of the deionization chamber refers to the thickness of the deionization chamber 16 between the anode 11 and the cathode 12, as indicated by W in FIG. ii) The ion exchanger in the desalting chamber is best composed of a mixed layer of anion exchanger and cation exchanger. When the applied voltage is high, it may be a single layer of anion exchanger. Some desalting chambers may be filled with the mixed layer and other desalting chambers may be filled with the anion exchanger layer.

【0036】本発明において、上記i)又はii)の電気
脱イオン装置と、従来の通常の電気脱イオン装置とを直
列に接続して用いても良く、例えば、上記i)の電気脱
イオン装置を前段電気脱イオン装置とし、後段電気脱イ
オン装置として、前段電気脱イオン装置の脱塩室よりも
厚みの薄い脱塩室を有する電気脱イオン装置、例えば、
2.0〜6.0mm程度の厚みの脱塩室を有する電気脱
イオン装置を設けても良い。
In the present invention, the electric deionization apparatus of the above i) or ii) and a conventional ordinary electric deionization apparatus may be connected in series and used. For example, the above electric deionization apparatus of i) may be used. As a pre-stage electric deionization device, as the post-stage electric deionization device, an electric deionization device having a deionization chamber having a thinner thickness than the deionization chamber of the pre-stage electric deionization device, for example,
An electric deionization device having a deionization chamber having a thickness of about 2.0 to 6.0 mm may be provided.

【0037】前段電気脱イオン装置の脱塩室の厚みが7
mm以上、特に8〜30mmであり、後段電気脱イオン
装置の脱塩室の厚みが2.0〜6.0mmであると、前
段電気脱イオン装置でシリカ、ホウ素等の弱電解物質及
び硬度成分が除去され、後段電気脱イオン装置でシリカ
及びホウ素がさらに除去される。
The thickness of the deionization chamber of the former-stage electric deionization device is 7
mm or more, particularly 8 to 30 mm, and the thickness of the deionization chamber of the latter-stage electric deionization device is 2.0 to 6.0 mm, the weak electrolytic substance and hardness component such as silica and boron in the first-stage electric deionization device. Are removed, and silica and boron are further removed in the latter stage electrodeionization device.

【0038】このような電気脱イオン装置を用いること
により、電気脱イオン装置の処理水として、当該一次純
水システムで製造される一次純水或いはこの一次純水を
更にサブシステムで処理して得られる超純水に要求され
るシリカ濃度及びホウ素濃度と同等或いはそれ以下の水
質の水を得ることが可能となる。
By using such an electric deionization apparatus, as the treated water of the electric deionization apparatus, the primary pure water produced by the primary pure water system or the primary pure water is further processed by the subsystem to obtain the treated water. It is possible to obtain water having a water quality equal to or lower than the silica concentration and the boron concentration required for the ultrapure water.

【0039】本発明では、RO膜分離装置を一段とする
ため、TOCをより高度に除去するために、有機物分解
装置としてのUV酸化装置24と、UV酸化装置24で
の分解により生成した有機酸等のイオン状物質を除去す
るための非再生型イオン交換装置25を設ける。UV酸
化装置24としては低圧UV酸化装置が好ましいが、何
らこれに限定されるものではない。UV酸化装置24の
被処理水にオゾンや過酸化水素等の酸化促進剤を添加し
ても良い。UV酸化装置24の後段の非再生型イオン交
換装置25は、前段のRO膜分離装置22及び電気脱イ
オン装置23でシリカが高度に除去され、シリカ負荷が
殆どないため、交換頻度は1〜3年に1回程度で良い。
In the present invention, since the RO membrane separation device is provided in a single stage, in order to remove TOC to a higher degree, a UV oxidizer 24 as an organic substance decomposer, an organic acid produced by decomposition in the UV oxidizer 24, etc. A non-regeneration type ion exchange device 25 for removing the ionic substances is provided. The UV oxidizer 24 is preferably a low pressure UV oxidizer, but is not limited thereto. An oxidation accelerator such as ozone or hydrogen peroxide may be added to the water to be treated in the UV oxidation device 24. In the non-regeneration type ion exchange device 25 at the rear stage of the UV oxidation device 24, silica is highly removed by the RO membrane separation device 22 and the electric deionization device 23 at the front stage, and there is almost no silica load. It is enough once a year.

【0040】このような一次純水システムで得られた一
次純水は、更にサブシステムで処理されて超純水が製造
される。このサブシステムとしては特に制限はなく、例
えば、非再生型イオン交換装置、低圧UV酸化装置及び
UF膜分離装置をこの順で接続して構成される一般的な
ものを用いることができる。
The primary pure water obtained by such a primary pure water system is further processed by the subsystem to produce ultrapure water. The subsystem is not particularly limited, and for example, a general one configured by connecting a non-regeneration type ion exchange device, a low pressure UV oxidation device and a UF membrane separation device in this order can be used.

【0041】本発明の超純水製造装置では、一次純水シ
ステムにおいて、シリカ及びホウ素を極低濃度にまで除
去することができるため、サブシステムの非再生型イオ
ン交換装置のイオン負荷が低く、非再生型イオン交換装
置の交換頻度を十分に低くすることができる。
In the ultrapure water production system of the present invention, since silica and boron can be removed to an extremely low concentration in the primary pure water system, the ion load of the non-regeneration type ion exchange system of the subsystem is low, The exchange frequency of the non-regeneration type ion exchange device can be sufficiently reduced.

【0042】[0042]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0043】なお、以下の実施例及び比較例で用いた各
装置の仕様は次の通りである。 活性炭装置:栗田工業(株)製「クリコールKW10−30」 通水SV;20/hr RO膜分離装置:栗田工業(株)製「膜エースKN200」 脱ガス装置:脱気膜モジュール;大日本インキ化学工業(株)製 電気脱イオン装置:栗田工業(株)製 処理量;100L/hr 低圧UV酸化装置:(株)日本フォトサイエンス社製 UL−UVoxランプ「AZ26」1本 非再生型イオン交換装置:栗田工業(株)製「DZ−50」
The specifications of each device used in the following examples and comparative examples are as follows. Activated carbon device: Kurita Water Industries Co., Ltd. "Curicol KW10-30" Water SV; 20 / hr RO Membrane separation device: Kurita Water Industries Co., Ltd. "Membrane Ace KN200" Degassing device: Degassing membrane module; Dainippon Ink Chemical Industry Co., Ltd. Electrodeionization equipment: Kurita Water Industries Co., Ltd. throughput: 100 L / hr Low-pressure UV oxidation equipment: Nippon Photoscience Co., Ltd. UL-UVox lamp “AZ26” 1 non-regenerative ion exchange Device: Kurita Water Industries Co., Ltd. "DZ-50"

【0044】また、処理した原水の水質は表2に示す通
りであった。
The water quality of the treated raw water was as shown in Table 2.

【0045】[0045]

【表2】 [Table 2]

【0046】実施例1 原水を、活性炭装置→RO膜分離装置→脱ガス装置→電
気脱イオン装置→低圧UV酸化装置→非再生型イオン交
換装置の順で処理して一次純水を得、得られた一次純水
の水質を表5に示した。
Example 1 Raw water was treated in the order of activated carbon device → RO membrane separation device → degassing device → electric deionization device → low pressure UV oxidation device → non-regenerative ion exchange device to obtain primary pure water. The water quality of the obtained primary pure water is shown in Table 5.

【0047】ただし、電気脱イオン装置としては、イオ
ン交換膜としては下記のものを用い、また、脱塩室に充
填するイオン交換樹脂としては下記のアニオン交換樹脂
とカチオン交換樹脂とをアニオン交換樹脂:カチオン交
換樹脂=6:4(体積比)で混合したものを用い、脱塩
室セル枚数を3枚として、脱塩室厚み10mmとした前
段電気脱イオン装置と、同様の構成で脱塩室セル枚数を
12枚として脱塩室厚み2.5mmとした後段電気脱イ
オン装置とを2段に直列に設け、表3に示す通水条件と
した。 アニオン交換膜 :(株)トクヤマ製「ネオセプタAH
A」 カチオン交換膜 :(株)トクヤマ製「ネオセプタCM
B」 アニオン交換樹脂:三菱化学(株)製「SA10A」 カチオン交換樹脂:三菱化学(株)製「SK1B」
However, the following is used as the ion exchange membrane in the electric deionization apparatus, and the following anion exchange resin and cation exchange resin are used as the ion exchange resin to be filled in the desalting chamber. : Cation exchange resin = 6: 4 (volume ratio) is used, the desalting chamber has three cells, and the desalting chamber has a thickness of 10 mm. The water passage conditions shown in Table 3 were established by providing two cells in series with a second-stage electric deionization device having a desalting chamber thickness of 2.5 mm and having 12 cells. Anion Exchange Membrane: “Neoceptor AH” manufactured by Tokuyama Corporation
A "cation exchange membrane:" Neoceptor CM "manufactured by Tokuyama Corporation
B "Anion exchange resin:" SA10A "manufactured by Mitsubishi Chemical Co., Ltd. Cation exchange resin:" SK1B "manufactured by Mitsubishi Chemical Co., Ltd.

【0048】[0048]

【表3】 [Table 3]

【0049】実施例2 実施例1において、RO膜分離装置と脱ガス装置とを入
れかえ、原水を、活性炭装置→脱ガス装置→RO膜分離
装置→電気脱イオン装置→低圧UV酸化装置→非再生型
イオン交換装置の順で処理したこと以外は同様にして処
理を行い、得られた一次純水の水質を表5に示した。
Example 2 In Example 1, the RO membrane separation device and the degassing device were replaced with each other, and raw water was replaced with activated carbon device → degassing device → RO membrane separating device → electric deionization device → low pressure UV oxidation device → non-regeneration. Table 5 shows the water quality of the primary pure water obtained by performing the same treatment except that the treatment was performed in the order of the type ion exchange apparatus.

【0050】比較例1 実施例1において、RO膜分離装置を省略し、原水を活
性炭装置→脱ガス装置→電気脱イオン装置→低圧UV酸
化装置→非再生型イオン交換装置の順で処理したこと以
外は同様にして処理を行い、得られた一次純水の水質を
表5に示した。
Comparative Example 1 In Example 1, the RO membrane separation device was omitted, and raw water was treated in the order of activated carbon device → degassing device → electric deionization device → low pressure UV oxidation device → non-regeneration type ion exchange device. Other than that, the same treatment was performed, and the quality of the primary pure water obtained is shown in Table 5.

【0051】比較例2 実施例1において、脱ガス装置を省略し、原水を活性炭
装置→RO膜分離装置→電気脱イオン装置→低圧UV酸
化装置→非再生型イオン交換装置の順で処理したこと以
外は同様にして処理を行い、得られた一次純水の水質を
表5に示した。
Comparative Example 2 In Example 1, the degassing device was omitted, and the raw water was treated in the order of activated carbon device → RO membrane separation device → electric deionization device → low pressure UV oxidation device → non-regeneration type ion exchange device. Other than that, the same treatment was performed, and the quality of the primary pure water obtained is shown in Table 5.

【0052】比較例3 実施例1において、脱ガス装置の代りにRO膜分離装置
を用い、電気脱イオン装置とUV酸化装置を省略して、
原水を活性炭装置→RO膜分離装置→RO膜分離装置→
非再生型イオン交換装置の順で処理したこと以外は同様
にして処理を行い、得られた一次純水の水質を表5に示
した。
Comparative Example 3 In Example 1, an RO membrane separator was used instead of the degasser, and the electric deionizer and UV oxidizer were omitted.
Raw water is activated carbon device → RO membrane separation device → RO membrane separation device →
Table 5 shows the water quality of the primary pure water obtained by performing the same treatment except that the treatment was performed in the order of the non-regeneration type ion exchange device.

【0053】比較例4 比較例3において、非再生型イオン交換装置の代りに電
気脱イオン装置を用い、原水を活性炭装置→RO膜分離
装置→RO膜分離装置→電気脱イオン装置の順で処理し
たこと以外は同様にして処理を行い、得られた一次純水
の水質を表5に示した。
Comparative Example 4 In Comparative Example 3, an electric deionization device was used instead of the non-regeneration type ion exchange device, and raw water was treated in the order of activated carbon device → RO membrane separation device → RO membrane separation device → electric deionization device. Table 5 shows the water quality of the primary pure water obtained by the same treatment except the above.

【0054】なお、電気脱イオン装置としては、実施例
1で後段電気脱イオン装置として用いたもののみを1段
で用い、下記表4に示す条件で通水した。
As the electrodeionization device, only the one used as the latter stage electrodeionization device in Example 1 was used in one stage, and water was passed under the conditions shown in Table 4 below.

【0055】[0055]

【表4】 [Table 4]

【0056】[0056]

【表5】 [Table 5]

【0057】表5より、本発明によれば、一次純水シス
テムにおいて、シリカ、ホウ素、TOCを極低濃度に除
去して、高純度の超純水を長期に亘り安定に製造するこ
とができることがわかる。
From Table 5, according to the present invention, silica, boron, and TOC can be removed to an extremely low concentration in the primary pure water system, and highly pure ultrapure water can be stably produced over a long period of time. I understand.

【0058】[0058]

【発明の効果】以上詳述した通り、本発明の超純水製造
装置によれば、脱ガス装置、RO膜分離装置、電気脱イ
オン装置、UV酸化装置及び非再生型イオン交換装置の
装置構成の一次純水システムにおいて、シリカ、ホウ素
等の弱電解物質を高度に除去することができ、後段のサ
ブシステムへの負荷を軽減することができる。
As described above in detail, according to the ultrapure water production system of the present invention, the degassing system, the RO membrane separation system, the electric deionization system, the UV oxidation system and the non-regenerative ion exchange system are constructed. In the primary pure water system, the weak electrolytic substances such as silica and boron can be highly removed, and the load on the subsystem in the subsequent stage can be reduced.

【0059】本発明によれば、半導体等の、シリカ、ホ
ウ素濃度の要求水質の厳しい分野において、一次純水シ
ステムに必須とされていた再生型イオン交換装置又は多
段RO膜分離装置を不要として、1段のRO膜分離装置
と電気脱イオン装置とを組み合わせてシリカ及びホウ素
を極低濃度にまで除去することができるため、 従来装置のようにイオン交換装置の再生工程を必要
としない。 非再生型イオン交換装置の交換頻度も大幅に低減す
ることができる。 イオン交換装置の再生操作が不要で交換頻度が低い
ため、長期連続稼動が可能である。 多段RO膜分離装置を用いないため、操作が容易で
電気代を大幅に削減することができる。 といった優れた効果のもとに、高純度の超純水を長期に
亘り安定かつ効率的に製造することができる。
According to the present invention, the regenerative ion exchange device or the multi-stage RO membrane separation device, which is indispensable for the primary pure water system, is not required in the field where the required water quality of silica and boron concentration is high, such as semiconductors, Silica and boron can be removed to an extremely low concentration by combining a one-stage RO membrane separation device and an electric deionization device, and thus a regeneration process of an ion exchange device unlike the conventional device is not required. The replacement frequency of the non-regenerative ion exchange device can also be significantly reduced. Since the ion exchange device does not need to be regenerated and the frequency of replacement is low, continuous operation is possible for a long period of time. Since the multi-stage RO membrane separation device is not used, the operation is easy and the electricity bill can be greatly reduced. Based on such an excellent effect, highly pure ultrapure water can be produced stably and efficiently over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超純水製造装置の実施の形態を示す系
統図である。
FIG. 1 is a system diagram showing an embodiment of an ultrapure water production system of the present invention.

【図2】一般的な電気脱イオン装置の構成を示す模式的
な断面図である。
FIG. 2 is a schematic cross-sectional view showing the configuration of a general electric deionization apparatus.

【符号の説明】[Explanation of symbols]

1 前処理システム 2 一次純水システム 3 サブシステム 10 イオン交換体 11 陽極 12 陰極 13 アニオン交換膜 14 カチオン交換膜 15 濃縮室 16 脱塩室 17 陽極室 18 陰極室 21 脱ガス装置 22 RO膜分離装置 23 電気脱イオン装置 24 UV酸化装置 25 非再生型イオン交換装置 1 Pretreatment system 2 Primary pure water system 3 subsystems 10 Ion exchanger 11 Anode 12 cathode 13 Anion exchange membrane 14 Cation exchange membrane 15 Concentration room 16 Desalination chamber 17 Anode chamber 18 Cathode chamber 21 Degassing device 22 RO membrane separator 23 Electrodeionization device 24 UV oxidizer 25 Non-regenerative ion exchanger

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 C02F 9/00 502Z 4D061 504 504B 504D B01D 19/00 B01D 19/00 H 61/48 61/48 C02F 1/20 C02F 1/20 A 1/32 1/32 1/42 1/42 A 1/44 1/44 J 1/469 1/72 101 1/72 101 1/46 103 Fターム(参考) 4D006 GA03 GA17 GA32 JA30Z KA01 KA31 KA72 KB04 KB11 KB17 MA12 MC54 PA01 PB02 PB23 PB70 PC02 4D011 AA14 AA16 AA17 AD03 4D025 AA04 AB17 AB33 BB07 DA01 DA04 DA05 DA06 4D037 AA03 AB01 BA18 BA23 CA03 CA04 CA11 CA15 4D050 AA05 AB07 BB02 BB09 BC09 BD06 CA03 CA08 CA09 CA10 4D061 DA02 DB18 DC18 DC19 EA09 EB01 EB04 EB13 EB37 GA20 GA21 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 9/00 C02F 9/00 502Z 4D061 504 504 504B 504D B01D 19/00 B01D 19/00 H 61/48 61/48 C02F 1 / 20 C02F 1/20 A 1/32 1/32 1/42 1/42 A 1/44 1/44 J 1/469 1/72 101 1/72 101 1/46 103 F term (reference) 4D006 GA03 GA17 GA32 JA30Z KA01 KA31 KA72 KB04 KB11 KB17 MA12 MC54 PA01 PB02 PB23 PB70 PC02 4D011 AA14 AA16 AA17 AD03 4D025 AA04 AB17 AB33 BB07 DA01 DA04 DA05 DA06 CA08 CA1 CA08 CA1 CA08 CA10 CA02 CA01 CA05 CA04 CA11 CA15 4D011 A1814 DA02 DB18 DC18 DC19 EA09 EB01 EB04 EB13 EB37 GA20 GA21

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 前処理システムと、該前処理システムに
よって処理された前処理水を処理して一次純水とする一
次純水システムと、一次純水を処理するサブシステムと
を有する超純水製造装置において、 該一次純水システムが、逆浸透膜分離装置、脱ガス装
置、電気脱イオン装置、紫外線酸化装置、及び非再生型
イオン交換装置の順で接続された構成とされていること
を特徴とする超純水製造装置。
1. Ultra pure water having a pretreatment system, a primary pure water system for treating the pretreated water treated by the pretreatment system to obtain primary pure water, and a subsystem for treating the primary pure water. In the manufacturing apparatus, the primary pure water system is configured such that a reverse osmosis membrane separation device, a degassing device, an electric deionization device, an ultraviolet oxidation device, and a non-regenerative ion exchange device are connected in this order. Characteristic ultrapure water production equipment.
【請求項2】 前処理システムと、該前処理システムに
よって処理された前記処理水を処理して一次純水とする
一次純水システムと、一次純水を処理するサブシステム
とを有する超純水製造装置において、 該一次純水システムが、脱ガス装置、逆浸透膜分離装
置、電気脱イオン装置、紫外線酸化装置、及び非再生型
イオン交換装置の順で接続された構成とされていること
を特徴とする超純水製造装置。
2. Ultra pure water having a pretreatment system, a primary pure water system for treating the treated water treated by the pretreatment system to obtain primary pure water, and a subsystem for treating the primary pure water. In the manufacturing apparatus, the primary pure water system is configured such that a degassing device, a reverse osmosis membrane separation device, an electric deionization device, an ultraviolet oxidation device, and a non-regenerative ion exchange device are connected in this order. Characteristic ultrapure water production equipment.
【請求項3】 請求項1又は2において、該電気脱イオ
ン装置の処理水のシリカ濃度及びホウ素濃度が、該一次
純水システムで得られる一次純水又は該サブシステムで
得られる超純水に要求されるシリカ濃度及びホウ素濃度
と同等或いはそれよりも低いことを特徴とする超純水製
造装置。
3. The silica concentration and the boron concentration of the treated water of the electric deionization apparatus according to claim 1 or 2, wherein the pure water obtained in the primary pure water system or the ultrapure water obtained in the subsystem is A device for producing ultrapure water, which is equal to or lower than the required silica concentration and boron concentration.
【請求項4】 請求項1ないし3のいずれか1項におい
て、該前処理水のシリカ濃度が1ppm as SiO
以上であり、該電気脱イオン装置の処理水のシリカ濃
度が1ppb as SiO未満であることを特徴と
する超純水製造装置。
4. The silica concentration according to any one of claims 1 to 3, wherein the pretreated water has a silica concentration of 1 ppm as SiO 2.
2. The ultrapure water production system, wherein the treated water of the electric deionization system has a silica concentration of 2 or more and less than 1 ppba as SiO 2 .
JP2002068781A 2002-03-13 2002-03-13 Ultrapure water making apparatus Pending JP2003266097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068781A JP2003266097A (en) 2002-03-13 2002-03-13 Ultrapure water making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068781A JP2003266097A (en) 2002-03-13 2002-03-13 Ultrapure water making apparatus

Publications (1)

Publication Number Publication Date
JP2003266097A true JP2003266097A (en) 2003-09-24

Family

ID=29199797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068781A Pending JP2003266097A (en) 2002-03-13 2002-03-13 Ultrapure water making apparatus

Country Status (1)

Country Link
JP (1) JP2003266097A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288410A (en) * 2004-04-05 2005-10-20 Japan Organo Co Ltd Water treating system for manufacturing device of electronic parts and members
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
JP2015073923A (en) * 2013-10-07 2015-04-20 野村マイクロ・サイエンス株式会社 Ultrapure water production method and system
KR20160033119A (en) * 2013-07-22 2016-03-25 쿠리타 고교 가부시키가이샤 Method and device for treating boron-containing water
JP2016117001A (en) * 2014-12-19 2016-06-30 栗田工業株式会社 Super pure water production device and super pure water production method
JP6119886B1 (en) * 2016-01-28 2017-04-26 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP2018079447A (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Water treatment method and device
JP2018086657A (en) * 2018-02-21 2018-06-07 野村マイクロ・サイエンス株式会社 Pure water production apparatus, ultrapure water production system, and pure water producing method
WO2018105188A1 (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Ultrapure water production apparatus and operation method for ultrapure water production apparatus
JP2020110744A (en) * 2019-01-08 2020-07-27 栗田工業株式会社 Method of operating ultrapure water production system
WO2022024815A1 (en) * 2020-07-30 2022-02-03 オルガノ株式会社 Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747364A (en) * 1993-06-22 1995-02-21 Japan Organo Co Ltd Extrapure water producing device
JP2000051845A (en) * 1998-08-06 2000-02-22 Kurita Water Ind Ltd Method for producing pure water
JP2000167567A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2000317457A (en) * 1999-05-12 2000-11-21 Kurita Water Ind Ltd Production of pure water
JP2001232368A (en) * 2000-02-22 2001-08-28 Kurita Water Ind Ltd Electric deionizing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747364A (en) * 1993-06-22 1995-02-21 Japan Organo Co Ltd Extrapure water producing device
JP2000051845A (en) * 1998-08-06 2000-02-22 Kurita Water Ind Ltd Method for producing pure water
JP2000167567A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2000317457A (en) * 1999-05-12 2000-11-21 Kurita Water Ind Ltd Production of pure water
JP2001232368A (en) * 2000-02-22 2001-08-28 Kurita Water Ind Ltd Electric deionizing device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508701B2 (en) * 2004-04-05 2010-07-21 オルガノ株式会社 Water treatment system for electronic component parts manufacturing equipment
JP2005288410A (en) * 2004-04-05 2005-10-20 Japan Organo Co Ltd Water treating system for manufacturing device of electronic parts and members
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
KR20160033119A (en) * 2013-07-22 2016-03-25 쿠리타 고교 가부시키가이샤 Method and device for treating boron-containing water
KR102047155B1 (en) 2013-07-22 2019-11-20 쿠리타 고교 가부시키가이샤 Method and device for treating boron-containing water
JP2015073923A (en) * 2013-10-07 2015-04-20 野村マイクロ・サイエンス株式会社 Ultrapure water production method and system
KR20170097036A (en) 2014-12-19 2017-08-25 쿠리타 고교 가부시키가이샤 Ultrapure water production apparatus and ultrapure water production method
JP2016117001A (en) * 2014-12-19 2016-06-30 栗田工業株式会社 Super pure water production device and super pure water production method
US10526226B2 (en) 2014-12-19 2020-01-07 Kurita Water Industries Ltd. Ultrapure water production apparatus and ultrapure water production method
JP6119886B1 (en) * 2016-01-28 2017-04-26 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
WO2017130454A1 (en) * 2016-01-28 2017-08-03 栗田工業株式会社 Ultrapure water production apparatus and method for operating ultrapure water production apparatus
TWI710529B (en) * 2016-01-28 2020-11-21 日商栗田工業股份有限公司 Ultrapure water production device and operation method of ultrapure water production device
CN108602705A (en) * 2016-01-28 2018-09-28 栗田工业株式会社 The method of operation of Ultrapure Water Purifiers and Ultrapure Water Purifiers
JP2017131846A (en) * 2016-01-28 2017-08-03 栗田工業株式会社 Apparatus for producing ultrapure water, and method for operating the same
WO2018092831A1 (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Water treatment method and device
KR102248156B1 (en) * 2016-11-18 2021-05-04 오르가노 코포레이션 Water treatment method and apparatus
JP2018079447A (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Water treatment method and device
KR20190066055A (en) * 2016-11-18 2019-06-12 오르가노 코포레이션 Water treatment method and apparatus
WO2018105188A1 (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Ultrapure water production apparatus and operation method for ultrapure water production apparatus
JP2018089587A (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Apparatus for producing ultrapure water and method for operating the same
JP2018086657A (en) * 2018-02-21 2018-06-07 野村マイクロ・サイエンス株式会社 Pure water production apparatus, ultrapure water production system, and pure water producing method
JP2020110744A (en) * 2019-01-08 2020-07-27 栗田工業株式会社 Method of operating ultrapure water production system
JP7305960B2 (en) 2019-01-08 2023-07-11 栗田工業株式会社 Operation method of ultrapure water production equipment
WO2022024815A1 (en) * 2020-07-30 2022-02-03 オルガノ株式会社 Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method

Similar Documents

Publication Publication Date Title
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
TWI408107B (en) Extra-pure water production equipment and operating method thereof
US10442708B2 (en) Method and appliance for treating water
JP3575271B2 (en) Pure water production method
JP2011110515A (en) Method and apparatus for purifying ion exchange resin
TW201532977A (en) Method and apparatus for manufacturing pure water
JP4599803B2 (en) Demineralized water production equipment
JP2003266097A (en) Ultrapure water making apparatus
JP2004283710A (en) Pure water producer
WO2020184045A1 (en) Apparatus for removing boron, method for removing boron, apparatus for producing pure water and method for producing pure water
WO2004110939A1 (en) Pure water production system
JP2007307561A (en) High-purity water producing apparatus and method
JP3656458B2 (en) Pure water production method
WO2021131360A1 (en) Pure water production method, pure water production system, ultra-pure water production method, and ultra-pure water production system
JP2002210494A (en) Device for manufacturing extrapure water
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
US20230183115A1 (en) Boron removal device and boron removal method, and pure water production device and pure water production method
JPH0747364A (en) Extrapure water producing device
JPH10216749A (en) Ultrapure water making apparatus
JP2002001069A (en) Method for producing pure water
JPH1128482A (en) Production of pure water
JP3674475B2 (en) Pure water production method
CN112424128A (en) Pure water production system and pure water production method
JP3528287B2 (en) Pure water production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306