JP3528287B2 - Pure water production method - Google Patents

Pure water production method

Info

Publication number
JP3528287B2
JP3528287B2 JP31647094A JP31647094A JP3528287B2 JP 3528287 B2 JP3528287 B2 JP 3528287B2 JP 31647094 A JP31647094 A JP 31647094A JP 31647094 A JP31647094 A JP 31647094A JP 3528287 B2 JP3528287 B2 JP 3528287B2
Authority
JP
Japan
Prior art keywords
water
toc
persulfate
pure water
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31647094A
Other languages
Japanese (ja)
Other versions
JPH08168784A (en
Inventor
博志 森田
嘉修 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP31647094A priority Critical patent/JP3528287B2/en
Publication of JPH08168784A publication Critical patent/JPH08168784A/en
Application granted granted Critical
Publication of JP3528287B2 publication Critical patent/JP3528287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は純水(超純水を含む。)
の製造方法に係り、特に製造される純水中のTOC(全
有機体炭素)を現状より大幅に低減化することができる
純水の製造方法に関する。
The present invention relates to pure water (including ultrapure water).
More particularly, the present invention relates to a method for producing pure water capable of significantly reducing the TOC (total organic carbon) in pure water to be produced, compared with the current situation.

【0002】[0002]

【従来の技術及び先行技術】主に半導体基盤洗浄用に用
いられる超純水において、TOCの除去は他の不純物
(微粒子、イオンなど)の除去と同様に極めて重要であ
る。このため、目標水準にまでTOCを低減させた処理
水を得るべく、現在、2段逆浸透膜分離処理やイオン交
換塔を併用した低圧紫外線酸化処理などが行われている
が、いずれも装置建設及び運転に要する費用が高く、超
純水製造システム全体のコストアップの要因となってい
る。しかも、より一層のTOCの低減を図る場合、これ
らの手段では対応し得ないことも判明した。
2. Description of the Related Art In ultrapure water mainly used for cleaning semiconductor substrates, the removal of TOC is very important, as is the removal of other impurities (fine particles, ions, etc.). For this reason, in order to obtain treated water whose TOC has been reduced to the target level, a two-stage reverse osmosis membrane separation treatment and a low-pressure ultraviolet oxidation treatment using an ion exchange tower are currently being performed. In addition, the cost required for operation is high, and this is a factor in increasing the cost of the entire ultrapure water production system. Moreover, it has been found that these means cannot cope with further reduction of TOC.

【0003】このような状況のもとに、本出願人は、先
に過硫酸塩などの酸化剤を添加して原水中のTOCを加
熱分解する方法を提案した(PCT/JP94/001
52。以下「先願」という。)。この方法によれば、原
水のTOC濃度に応じた適当量以上の酸化剤を添加する
ことにより、所定時間、所定温度の反応によってTOC
を1段階で5ppb以下にまで低減することができ、し
かも加熱工程を含むため、バイオファウリングも軽減す
ることができる。
[0003] Under such circumstances, the present applicant has previously proposed a method of thermally decomposing TOC in raw water by adding an oxidizing agent such as persulfate (PCT / JP94 / 001).
52. Hereinafter, it is referred to as “first application”. ). According to this method, by adding an oxidizing agent in an appropriate amount or more according to the TOC concentration of the raw water, the TOC is reacted for a predetermined time at a predetermined temperature.
Can be reduced to 5 ppb or less in one step, and since the heating step is included, biofouling can also be reduced.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記先願の加
熱分解法では、加熱分解処理水中に、添加した酸化剤が
残留する可能性があるという不具合があった。この残留
酸化剤をそのまま後段の処理工程に通水すると脱イオン
部のイオン交換樹脂や逆浸透膜等を酸化劣化させること
となり、劣化した樹脂の溶出でTOCが増加するなどの
問題が生じる。この酸化剤の残留を完全になくすために
は、反応器内の滞留時間(反応時間)を十分長くとるた
めに反応容器を大きくするか、或いは、反応温度を十分
高めに設定する必要があるが、反応容器の増大や反応温
度の上昇は工業上好ましいことではない。
However, in the above-mentioned pyrolysis method of the prior application, there is a problem that the added oxidizing agent may remain in the pyrolysis-treated water. If this residual oxidizing agent is passed through the subsequent processing step as it is, the ion exchange resin and the reverse osmosis membrane in the deionized portion will be oxidatively degraded, causing a problem such as an increase in TOC due to elution of the degraded resin. In order to completely eliminate the residual oxidizing agent, it is necessary to increase the size of the reaction vessel or to set the reaction temperature sufficiently high in order to obtain a sufficiently long residence time (reaction time) in the reactor. However, an increase in the number of reaction vessels and an increase in the reaction temperature are not industrially preferable.

【0005】本発明は上記先願の問題点を解決し、原水
に酸化剤として過硫酸塩を添加して原水中のTOC成分
を加熱分解除去した後脱イオン処理する純水の製造方法
において、過硫酸塩の残留を防止して、後工程の脱イオ
ン部への悪影響を防止すると共に、加熱分解反応条件の
緩和が可能な純水の製造方法を提供することを目的とす
る。
The present invention solves the above-mentioned problems of the prior application and provides a method for producing pure water in which a persulfate is added as an oxidizing agent to raw water to thermally decompose and remove the TOC component in the raw water and then deionize. It is an object of the present invention to provide a method for producing pure water that prevents persulfate from remaining, prevents adverse effects on a deionized part in a subsequent step, and enables relaxation of heat decomposition reaction conditions.

【0006】[0006]

【課題を解決するための手段】本発明の純水の製造方法
は、原水に過硫酸塩を原水中のTOC1重量部当りS
2- として50〜300重量部添加し、85〜100
℃で加熱処理して原水中のTOC成分を分解した後、加
熱処理した水に含まれる残留過硫酸塩を除去して残留過
硫酸塩濃度を1ppm以下とし、次いで脱イオン処理す
ることを特徴とする。
According to the method for producing pure water of the present invention , persulfate is added to raw water in a ratio of S 2 per part by weight of TOC in raw water.
O 8 2-a were added 50 to 300 parts by weight, 85 to 100
After heat treatment to to decompose TOC components in raw water at ° C., the residual peroxide residual persulfate contained in heated water to remove
The sulfate concentration is set to 1 ppm or less , followed by deionization.

【0007】以下に図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the drawings.

【0008】図1は本発明の純水の製造方法の一実施例
方法を示す系統図である。
FIG. 1 is a system diagram showing a method of producing pure water according to an embodiment of the present invention.

【0009】本実施例の方法においては、原水を前処理
工程1、加熱分解処理工程2、酸化剤除去工程3、脱イ
オン処理工程4及び後処理工程5で順次処理する。な
お、加熱分解処理工程2の流入側には、酸化剤添加手段
が設けられている。
In the method of this embodiment, raw water is sequentially treated in a pretreatment step 1, a thermal decomposition treatment step 2, an oxidizing agent removing step 3, a deionization treatment step 4, and a post-treatment step 5. Note that an oxidizing agent adding means is provided on the inflow side of the thermal decomposition process step 2.

【0010】原水としては、一般に半導体洗浄工程から
の回収水及びこれに工水、市水、井水等の補給水を混合
したものが用いられ、半導体洗浄工程からの回収水につ
いては、適当な前処理工程を経た後、加熱分解処理工程
に導入するのが好ましい。
As the raw water, generally used is water recovered from the semiconductor cleaning process and a mixture thereof with replenishment water such as industrial water, city water, well water and the like. After passing through the pretreatment step, it is preferable to introduce it into the heat decomposition treatment step.

【0011】前処理工程1としては、原水水質に応じて
任意の手段を設けることができ、例えば、凝集、濾過、
浮上、吸着、イオン交換などの手段を採用することがで
きる。具体的な前処理工程としては、次の(1)(3)が挙
げられる。特に、半導体洗浄工程からの回収水について
は、下記(3)の前処理により、活性炭吸着塔で含有され
るHを除去した後、強アニオン交換塔でフッ素の
除去を行って加熱分解処理工程に導入するのが好まし
い。(1) 凝集・加圧浮上・濾過装置(2) イオン交換塔(3) 活性炭吸着塔→アニオン交換塔
In the pretreatment step 1, any means can be provided according to the quality of the raw water.
Means such as levitation, adsorption, and ion exchange can be employed. Specific pretreatment steps include the following (1) to (3) . In particular, with respect to the recovered water from the semiconductor cleaning step, after the H 2 O 2 contained in the activated carbon adsorption tower is removed by the pretreatment of the following (3) , fluorine is removed in the strong anion exchange tower to perform thermal decomposition. Preferably, it is introduced into the processing step. (1) Coagulation / pressure flotation / filtration equipment (2) Ion exchange tower (3) Activated carbon adsorption tower → anion exchange tower

【0012】本発明において、加熱分解処理に当り、原
水に添加する酸化剤としては、パーオキシ二硫酸ナトリ
ウム(Na)、パーオキシ二硫酸カリウム
(K)等の過硫酸塩を用いる。
In the present invention, the oxidizing agent to be added to the raw water in the thermal decomposition treatment includes sodium peroxydisulfate (Na 2 S 2 O 8 ), potassium peroxydisulfate (K 2 S 2 O 8 ) and the like. Ru using sulfuric acid salt.

【0013】過硫酸塩の添加量は、原水水質や要求され
る処理水水質に応じて任意に決定されるが、本発明にお
いては、加熱分解処理工程2の後段に酸化剤除去工程3
を設けるため、過硫酸塩添加量を多くすることもでき、
過硫酸塩添加量を多くすることにより、加熱分解処理条
件の緩和、即ち、加熱分解処理温度の低下を図ることも
できる。通常の場合、過硫酸塩は、原水中のTOC1重
量部当り、S 2-として50〜300重量部添加す
る。
The amount of the persulfate to be added is arbitrarily determined according to the quality of the raw water and the required quality of the treated water. In the present invention, the oxidizing agent removing step 3
To increase the amount of persulfate added,
By increasing the amount of persulfate added, the conditions for the thermal decomposition treatment can be relaxed, that is, the temperature of the thermal decomposition treatment can be lowered. Normally, persulfate, TOC1 parts by weight per the raw water, 50 to 300 parts by weight of added pressure to the 2-S 2 O 8
You.

【0014】加熱分解処理工程2における加熱温度は
5〜100℃とする。加熱温度を5〜100℃とし
た場合には、常圧で処理可能であるという利点がある。
The heating temperature in the thermal decomposition treatment step 2 is as follows :
And 8 5~100 ℃. When pressurized heat temperature of 8 5 to 100 ° C. has the advantage that it can be processed at normal pressure.

【0015】この加熱分解処理の反応時間は、加熱温度
過硫酸塩の添加量によっても異なるが、通常の場合1
〜15分、特に、2〜15分とするのが好ましい。
[0015] The reaction time of the thermal decomposition treatment varies depending on the heating temperature and the amount of persulfate added.
It is preferably from 15 to 15 minutes, especially from 2 to 15 minutes.

【0016】この加熱分解処理に際しては、触媒として
白金担持触媒、白金メッキ触媒等の白金系の酸化触媒に
接触させても良い。
In the thermal decomposition treatment, a platinum-based oxidation catalyst such as a platinum-supported catalyst or a platinum plating catalyst may be brought into contact with the catalyst.

【0017】本発明において、酸化剤除去工程3として
は、活性炭及び/又は適当な触媒を充填した充填塔を採
用することができる。
In the present invention, as the oxidizing agent removing step 3, a packed column filled with activated carbon and / or a suitable catalyst can be employed.

【0018】活性炭としては、粒状、粉状、繊維状のい
ずれでも良いが、特に粒状か繊維状のものが通水効率の
面で有利である。活性炭のタイプ(ヤシガラ系、石炭
系、その他)には特に制限はない。一方、触媒として
は、一般に用いられている白金系、パラジウム系のもの
など、多様なものを用いることができる。
The activated carbon may be granular, powdery or fibrous, but granular or fibrous is particularly advantageous in terms of water flow efficiency. There is no particular limitation on the type of activated carbon (coconut shell, coal, etc.). On the other hand, as the catalyst, various catalysts such as generally used platinum-based catalyst and palladium-based catalyst can be used.

【0019】上記活性炭及び触媒は、そのいずれか一方
を用いるだけでも目的は達せられるが、場合によって、
両者を併用しても良い。その他、酸化剤除去手段として
は、紫外線照射も採用可能である。
Although the above-mentioned activated carbon and catalyst can achieve their purpose only by using either one of them, in some cases,
You may use both together. In addition, as the oxidizing agent removing means, ultraviolet irradiation can be adopted.

【0020】酸化剤除去工程3の通水条件は、加熱分解
処理工程の処理水中に残留する過硫酸塩が後段の脱イオ
ン処理工程4のイオン交換樹脂や逆浸透膜を酸化劣化さ
せない程度の、1ppm以下の低濃度にまで除去できる
ような条件であれば良く、加熱分解処理工程の処理水中
の残留過硫酸塩濃度や、酸化剤除去工程の仕様、即ち、
活性炭や触媒の形状、粒径、充填量等によって適宜決定
される。例えば、10ppmの残留Naを含
む加熱分解処理工程の処理水を、20/40メッシュの
粒状活性炭充填塔で処理する場合、SV=40hr-1
度以下とするのが好ましい。
The water passing conditions in the oxidizing agent removing step 3 are such that the persulfate remaining in the treated water in the thermal decomposition step does not oxidatively degrade the ion exchange resin or the reverse osmosis membrane in the subsequent deionizing step 4. may be a condition that can be removed to a low concentration of less 1 ppm, and residual persulfate concentration in the treated water heating decomposition process, specification of oxidizing agent removing step, i.e.,
It is appropriately determined according to the shape, particle size, filling amount and the like of the activated carbon and the catalyst. For example, when treated water in a thermal decomposition treatment step containing 10 ppm of residual Na 2 S 2 O 5 is treated in a 20/40 mesh granular activated carbon packed tower, it is preferable that the SV be about 40 hr −1 or less.

【0021】なお、加熱分解処理水は、通常pH4以下
の酸性であるので、このような残留酸化剤除去装置を腐
食から保護するために、加熱分解処理工程と酸化剤除去
工程との間にpH調整のためのアルカリ注入手段を設
け、酸性水を中和した後、酸化剤除去工程に導入するの
が好ましい。
Since the heat-decomposed water is usually acidic with a pH of 4 or less, in order to protect such a residual oxidant removing device from corrosion, a pH between the heat-decomposition treatment step and the oxidant removal step is reduced. It is preferable to provide an alkali injection means for adjustment, neutralize the acidic water, and then introduce it to the oxidizing agent removing step.

【0022】本発明においては、このような酸化剤除去
工程における残留過硫酸塩の除去により、残留過硫酸塩
濃度を1ppm以下の低濃度にまで除去する。
In the present invention, the removal of residual persulfate in such oxidizing agent removing step, you remove residual persulfate <br/> concentration to a low concentration of less 1 ppm.

【0023】脱イオン処理工程4としては、イオン交換
塔、逆浸透膜分離装置等を必要に応じて組み合せて用い
ることができる。即ち、例えば、イオン交換塔→逆浸透
膜分離装置、逆浸透膜分離装置→イオン交換塔、或い
は、逆浸透膜分離装置→逆浸透膜分離装置とすることが
できる。
In the deionization treatment step 4, an ion exchange tower, a reverse osmosis membrane separation device, and the like can be used in combination as needed. That is, for example, an ion exchange tower → a reverse osmosis membrane separator, a reverse osmosis membrane separator → an ion exchange tower, or a reverse osmosis membrane separator → a reverse osmosis membrane separator can be used.

【0024】また、後処理工程5としては、要求される
処理水水質に応じて、任意の手段を採用することがで
き、紫外線酸化による殺菌、TOC分解、或いは、イオ
ン交換、逆浸透膜分離、精密濾過膜分離、限外濾過膜分
離装置等、一般には超純水製造における二次純水製造工
程(サブシステム)に相当する工程、即ち、低圧紫外線
照射装置(有機物分解)→混床式イオン交換塔(非再生
型イオン交換器:分解有機物の除去)→限外濾過膜分離
装置(イオン交換塔から流出するイオン交換樹脂の微粒
子の分離)が採用される。
As the post-treatment step 5, any means can be adopted depending on the required quality of the treated water, such as sterilization by ultraviolet oxidation, TOC decomposition, ion exchange, reverse osmosis membrane separation, or the like. Microfiltration membrane separation, ultrafiltration membrane separation equipment, etc., generally corresponding to the secondary pure water production process (subsystem) in ultrapure water production, that is, low-pressure ultraviolet irradiation equipment (organic matter decomposition) → mixed bed ion An exchange tower (non-regenerative ion exchanger: removal of decomposed organic matter) → an ultrafiltration membrane separator (separation of fine particles of ion exchange resin flowing out of the ion exchange tower) is employed.

【0025】脱イオン処理工程及び後処理工程の具体例
としては、次の(1)(5)が挙げられる。(1) 脱炭酸塔→アニオン交換塔→逆浸透膜分離装置→
二次純水製造工程(2) 逆浸透膜分離装置→低圧逆浸透膜分離装置→二次
純水製造工程(3) アニオン交換塔→脱炭酸塔→カチオン交換塔→ア
ニオン交換塔→逆浸透膜分離装置→二次純水製造工程(4) 弱アニオン交換塔→強カチオン交換塔→強アニオ
ン交換塔→二次純水製造工程(5) 逆浸透膜分離装置→イオン交換塔(混床式イオン
交換塔又は(強カチオン交換塔→強アニオン交換塔))
→二次純水製造工程
The following (1) to (5) are specific examples of the deionization step and the post-treatment step. (1) Decarbonation tower → anion exchange tower → reverse osmosis membrane separation device →
Secondary pure water production process (2) Reverse osmosis membrane separator → Low pressure reverse osmosis membrane separator → Secondary pure water production process (3) Anion exchange tower → Decarbonation tower → Cation exchange tower → Anion exchange tower → Reverse osmosis membrane Separation equipment → secondary pure water production process (4) Weak anion exchange tower → strong cation exchange tower → strong anion exchange tower → secondary pure water production process (5) Reverse osmosis membrane separation equipment → ion exchange tower (mixed bed type ion Exchange tower or (strong cation exchange tower → strong anion exchange tower))
→ Secondary pure water production process

【0026】そして、脱イオン処理工程及び後処理工程
の装置は予め加熱処理によりTOC成分を除去している
ので、負荷が軽減されて小容量小型装置を採用できる。
Since the TOC component is previously removed by heat treatment in the deionization treatment process and the post-treatment treatment device, the load is reduced and a small-capacity compact device can be adopted.

【0027】[0027]

【作用】過硫酸塩の存在下に加熱処理することにより、
原水中のTOCを効率的に分解除去することができる。
[Action] By heat treatment in the presence of persulfate ,
TOC in raw water can be efficiently decomposed and removed.

【0028】本発明によれば、この加熱分解処理水中の
残留過硫酸塩を除去した後、脱イオン処理を行うため、
脱イオン処理工程のイオン交換樹脂や逆浸透膜等は残留
過硫酸塩による酸化劣化から効果的に保護される。この
ため、脱イオン効率が高く維持されると共に、酸化劣化
に起因するTOCの増加の問題もなく、高純度純水を安
定に得ることができる。
According to the present invention, after removing the residual persulfate in the pyrolysis water, the deionization is performed.
Ion exchange resin and reverse osmosis membrane in the deionization process remain
It is effectively protected from oxidative degradation by persulfate . Therefore, high deionization efficiency can be maintained, and high-purity pure water can be stably obtained without a problem of an increase in TOC due to oxidative deterioration.

【0029】ところで、前述の如く、先願の方法では、
残留酸化剤の問題を回避するためには、加熱分解処理温
度を低くすることはできず、高温で加熱分解処理する必
要があったが、本発明においては、酸化剤除去手段を設
けたことにより、先願においては実用不適と考えられて
いた10℃以下の低温条件での加熱分解処理も可能と
なり、加熱分解処理温度の下限を85℃程度にまで引き
下げることができる。
By the way, as described above, in the method of the prior application,
In order to avoid the problem of the residual oxidant, the thermal decomposition treatment temperature could not be lowered, and it was necessary to perform the thermal decomposition treatment at a high temperature, but in the present invention, by providing the oxidant removal means, , thermal decomposition treatment at 1 0 0 ° C. or less of the low-temperature conditions has been considered practical unsuitable in the prior application also becomes possible, the lower limit of the thermal decomposition treatment temperature can be lowered to about 85 ° C..

【0030】なお、加熱分解処理に当り、原水に添加さ
れた過硫酸塩は、例えば130℃以上で5分以上といっ
た十分に高い温度で十分に長い時間加熱分解処理を行う
場合には、その濃度によらず殆どすべて加熱分解処理工
程において分解するが、この場合においても、本発明に
係る酸化剤除去手段は過硫酸塩のリークを確実に防止す
るための手段として有効に機能する。
[0030] Note that hits the thermal decomposition treatment, persulfate added to raw water, in the case of a sufficiently long time thermal decomposition treatment at a temperature sufficiently high such 5 minutes or more, for example 130 ° C. or higher, the concentration Irrespective of this, almost all of them are decomposed in the heat decomposition process, but also in this case, the oxidizing agent removing means according to the present invention effectively functions as a means for reliably preventing persulfate leakage.

【0031】[0031]

【実施例】以下に参考例、実施例、比較例及び実験例を
挙げて本発明をより具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Reference Examples, Examples, Comparative Examples and Experimental Examples.

【0032】参考例1 イソプロピルアルコール由来のTOCを1000ppb
含有する水を原水として、処理を行った。
Reference Example 1 TOP derived from isopropyl alcohol was 1000 ppb
Water containing as raw water, was subjected to treatment.

【0033】まず、原水に酸化剤としてNa
を70ppm添加し、反応温度130℃,反応時間2分
間の加熱分解処理を行った。この加熱分解処理水の水質
は下記の通りであった。 加熱分解処理水水質 TOC:約5ppb Na:約10ppm pH:3.3
First, Na 2 S 2 O 8 was added to raw water as an oxidizing agent.
Was added, and a thermal decomposition treatment was performed at a reaction temperature of 130 ° C. for a reaction time of 2 minutes. The water quality of this pyrolysis treatment water was as follows. Thermal decomposition water quality TOC: about 5 ppb Na 2 S 2 O 8 : about 10 ppm pH: 3.3

【0034】この加熱分解処理水を下記仕様の活性炭カ
ラムにSV=10hr-1で通水した後、下記仕様のイオ
ン交換樹脂カラムにSV=30hr-1で通水した。 活性炭カラム仕様 ヤシガラ活性炭(クラレケミカル(株)製「クラレコー
ルGW 10/32」)を300ml充填したガラスカラム イオン交換樹脂カラム仕様 強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂と
を混合したもの(三菱化学(株)製ダイヤイオンSMN
−UP)を100ml充填したガラスカラム
[0034] After passed through at SV = 10 hr -1 the thermal decomposition treated water activated charcoal column of the following specifications was passed through at SV = 30 hr -1 to an ion exchange resin column following specifications. Activated carbon column specification A glass column filled with 300 ml of coconut shell activated carbon (“Kuraray Coal GW 10/32” manufactured by Kuraray Chemical Co., Ltd.) Column specification A mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin Diaion SMN manufactured by Mitsubishi Chemical Corporation
-UP) glass column packed with 100 ml

【0035】通水を10日間継続して行った後、イオン
交換樹脂カラムからの流出水を採取してTOCを分析し
た。結果を表1に示す。
After continuous water passage for 10 days, the effluent from the ion exchange resin column was collected and analyzed for TOC. Table 1 shows the results.

【0036】比較例1参考 例1において、活性炭カラムを通水せずに、加熱分
解処理水を直接イオン交換樹脂カラムに通水したこと以
外は同様にして通水を10日間継続して行い、イオン交
換樹脂カラムからの流出水を採取してTOCを分析し
た。結果を表1に示す。
Comparative Example 1 In Reference Example 1, water was continuously supplied for 10 days in the same manner as in Reference Example 1 except that the pyrolysis water was directly passed through the ion exchange resin column without passing through the activated carbon column. The effluent from the ion exchange resin column was collected and analyzed for TOC. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】表1より次のことが明らかである。即ち、
イオン交換樹脂カラムに通水する前に活性炭カラムに通
水しなかった比較例1では、イオン交換樹脂が加熱分解
処理水中の残留Naによって酸化を受け、有
機物を溶出したため、流出水TOCが流入水TOCより
も高いのに対し、活性炭カラムに通水した後、イオン交
換樹脂カラムに通水した参考例1では、残留Na
が活性炭カラムで除去されたため、イオン交換樹脂
が酸化を受けなかったことから、TOCが著しく低減さ
れた。
The following is clear from Table 1. That is,
In Comparative Example 1 in which water was not passed through the activated carbon column before water was passed through the ion-exchange resin column, the ion-exchange resin was oxidized by residual Na 2 S 2 O 8 in the heat-decomposed water and eluted organic substances, so that the outflow occurred. While the water TOC was higher than the influent TOC, in Reference Example 1 in which water was passed through the activated carbon column and then through the ion exchange resin column, residual Na 2 S 2
TOC was significantly reduced because the ion exchange resin was not oxidized because O 8 was removed on the activated carbon column.

【0039】実験例1 石炭系活性炭(クラレケミカル(株)製「クラレコール
GW 10/32」)を充填したカラムに、Na
を超純水に溶かして濃度670ppmに調整した水を通
水し、活性炭カラム流出水のNa濃度を測定
してその吸着容量を求めた。結果を表2に示す。
Experimental Example 1 Na 2 S 2 O 8 was charged into a column packed with coal-based activated carbon (“Kuraray Coal GW 10/32” manufactured by Kuraray Chemical Co., Ltd.).
Was dissolved in ultrapure water, and water adjusted to a concentration of 670 ppm was passed therethrough. The concentration of Na 2 S 2 O 8 in the effluent of the activated carbon column was measured to determine the adsorption capacity. Table 2 shows the results.

【0040】[0040]

【表2】 [Table 2]

【0041】表2より、1300〜1500Bed Volum
e程度の通水まで吸着が可能で、Na<1p
pmに処理できることが確認された。
From Table 2, 1300 to 1500 Bed Volum
e can be adsorbed up to about e, and Na 2 S 2 O 8 <1p
pm.

【0042】実験例2 TOCを500ppb(イソプロピルアルコール由来)
含む水を原水として、Naによる加熱分解実
験を行った。反応時間を6分間に固定し(ただし、No.
12においては反応時間12分とした。)、反応温度、
Na添加量を表3に示す如く適宜変えて行
い、結果を表3に示した。
Experimental Example 2 TOC was 500 ppb (derived from isopropyl alcohol)
A thermal decomposition experiment with Na 2 S 2 O 8 was performed using the contained water as raw water. The reaction time was fixed at 6 minutes (however, no.
In No. 12, the reaction time was 12 minutes. ), Reaction temperature,
The results were shown in Table 3 by appropriately changing the amount of added Na 2 S 2 O 8 as shown in Table 3.

【0043】[0043]

【表3】 [Table 3]

【0044】表3より、反応温度110℃未満であって
もNa添加量を増せば、TOC10ppb以
下(分解率98%以上)の処理水が得られることが明ら
かである。
It is apparent from Table 3 that even when the reaction temperature is lower than 110 ° C., when the amount of Na 2 S 2 O 8 added is increased, treated water having a TOC of 10 ppb or less (decomposition rate of 98% or more) can be obtained.

【0045】実施例 実験例1のNo.9の処理水(97℃,Na
2ppm添加の加熱分解処理水)を、石炭系活性炭(ク
ラレケミカル(株)製「クラレコールKW 20/40」)
を充填したカラムにSV=10hr-1で通水した後、更
に、参考例1で用いたと同様のイオン交換樹脂カラムに
SV=30hr-1で通水した。要所で採取したサンプル
水のTOC、NaNa濃度等を分析し、結果
を表4に示した。
Example 1 No. 1 of Experimental Example 1 9 the treated water (97 ℃, Na 2 S 2 O 8 5
Coal-based activated carbon ("Kuraray Coal KW 20/40" manufactured by Kuraray Chemical Co., Ltd.)
After passing through a column packed with, at SV = 10 hr -1 , water was further passed through the same ion exchange resin column as used in Reference Example 1 at SV = 30 hr -1 . The TOC, NaNa 2 S 2 O 8 concentration and the like of the sample water collected at important points were analyzed, and the results are shown in Table 4.

【0046】[0046]

【表4】 [Table 4]

【0047】表4より、100℃未満の温度での加熱分
解とその後段の活性炭及びイオン交換樹脂との組み合せ
で、イオン交換樹脂の酸化劣化を引き起こすことなく、
TOC10ppb以下の高純度純水を得ることができる
ことが明らかである。
From Table 4, it can be seen that the thermal decomposition at a temperature lower than 100 ° C. and the combination of the activated carbon and the ion exchange resin at the subsequent stage do not cause the oxidative deterioration of the ion exchange resin.
It is clear that highly pure water having a TOC of 10 ppb or less can be obtained.

【0048】[0048]

【発明の効果】以上詳述した通り、本発明の純水の製造
方法によれば、原水に過硫酸塩を添加して原水中のTO
C成分を加熱分解除去した後、脱イオン処理する純水の
製造方法において、(1) 残留過硫酸塩による脱イオン工程への悪影響を防
止して、TOCが著しく低減された高純度純水を長期に
わたり、安定かつ効率的に製造することができる。 (2) 加熱分解工程で過硫酸塩を完全に加熱分解させる
必要がないことから、加熱分解反応温度を低く設定する
ことができる。 等の効果が奏され、工業的に極めて有
利である。
As described above in detail, according to the method for producing pure water of the present invention, persulfate is added to raw water to reduce the TO
In the method for producing pure water in which the C component is decomposed by heating and then deionized, (1) high-purity pure water having significantly reduced TOC by preventing the adverse effect of the residual persulfate on the deionization step. It can be manufactured stably and efficiently for a long time. (2) Since the persulfate does not need to be completely thermally decomposed in the heat decomposition step, the heat decomposition reaction temperature can be set low. This is extremely advantageous industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の純水の製造方法の一実施例方法を示す
系統図である。
FIG. 1 is a system diagram showing a method for producing pure water according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 前処理工程 2 加熱分解処理工程 3 酸化剤除去工程 4 脱イオン処理工程 5 後処理工程 1 Pretreatment process 2 Heat decomposition process 3 Oxidant removal process 4 Deionization process 5 Post-processing steps

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 1/58 CDV C02F 1/58 CDVA CDX CDXQ (56)参考文献 特開 昭57−1497(JP,A) 特開 昭63−270596(JP,A) 特開 昭58−223482(JP,A) 国際公開94/018127(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C02F 1/72 - 1/78,1/58 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C02F 1/58 CDV C02F 1/58 CDVA CDX CDXQ (56) References JP-A-57-1497 (JP, A) JP-A-63 -270596 (JP, A) JP-A-58-223482 (JP, A) WO 94/018127 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/72-1 / 78,1 / 58

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原水に過硫酸塩を原水中のTOC1重量
部当りS 2- として50〜300重量部添加し、8
5〜100℃で加熱処理して原水中のTOC成分を分解
した後、加熱処理した水に含まれる残留過硫酸塩を除去
て残留過硫酸塩濃度を1ppm以下とし、次いで脱イ
オン処理することを特徴とする純水の製造方法。
1. Persulfate in raw water 1 weight of TOC in raw water
50 to 300 parts by weight as S 2 O 8 2- per part,
After decomposing the TOC component in the raw water by heat treatment at 5 to 100 ° C., remove the residual persulfate contained in the heat-treated water to reduce the residual persulfate concentration to 1 ppm or less, and then perform deionization treatment. A method for producing pure water.
JP31647094A 1994-12-20 1994-12-20 Pure water production method Expired - Lifetime JP3528287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31647094A JP3528287B2 (en) 1994-12-20 1994-12-20 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31647094A JP3528287B2 (en) 1994-12-20 1994-12-20 Pure water production method

Publications (2)

Publication Number Publication Date
JPH08168784A JPH08168784A (en) 1996-07-02
JP3528287B2 true JP3528287B2 (en) 2004-05-17

Family

ID=18077461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31647094A Expired - Lifetime JP3528287B2 (en) 1994-12-20 1994-12-20 Pure water production method

Country Status (1)

Country Link
JP (1) JP3528287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573043B2 (en) * 2005-09-30 2010-11-04 栗田工業株式会社 Sulfuric acid recycling cleaning system
JP6128964B2 (en) * 2013-05-31 2017-05-17 オルガノ株式会社 Apparatus and method for treating water containing organic matter

Also Published As

Publication number Publication date
JPH08168784A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
EP0634364B1 (en) Pure water manufacturing method
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JPH0790219B2 (en) Pure water production apparatus and production method
TWI640482B (en) Ultrapure water manufacturing method and ultrapure water manufacturing equipment
JP4599803B2 (en) Demineralized water production equipment
JP3864934B2 (en) Pure water production equipment
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP4552327B2 (en) Ultrapure water production equipment
JP2003266097A (en) Ultrapure water making apparatus
JP3546548B2 (en) Ultrapure water production equipment
CN114616212A (en) Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system
JP4447212B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP3528287B2 (en) Pure water production method
JPH05115B2 (en)
WO2022024815A1 (en) Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method
JP3259557B2 (en) How to remove organic matter
JP3858359B2 (en) How to remove organic matter
JPH10309588A (en) Water treatment, water treating device and pure water producing device
JP3992996B2 (en) Wastewater treatment method and apparatus
JP3727156B2 (en) Desalination equipment
JP3794113B2 (en) Method for removing TOC component and dissolved oxygen
JPH0630794B2 (en) Ultrapure water production system for semiconductor cleaning
WO2022190608A1 (en) Method and apparatus for treating water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term