JP3727156B2 - Desalination equipment - Google Patents

Desalination equipment Download PDF

Info

Publication number
JP3727156B2
JP3727156B2 JP28963597A JP28963597A JP3727156B2 JP 3727156 B2 JP3727156 B2 JP 3727156B2 JP 28963597 A JP28963597 A JP 28963597A JP 28963597 A JP28963597 A JP 28963597A JP 3727156 B2 JP3727156 B2 JP 3727156B2
Authority
JP
Japan
Prior art keywords
ozone
water
membrane
raw water
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28963597A
Other languages
Japanese (ja)
Other versions
JPH11123390A (en
Inventor
真紀夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP28963597A priority Critical patent/JP3727156B2/en
Publication of JPH11123390A publication Critical patent/JPH11123390A/en
Application granted granted Critical
Publication of JP3727156B2 publication Critical patent/JP3727156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、純水の製造に用いられる脱塩装置に関するものである。
【0002】
【従来の技術】
半導体の製造工程で使用される洗浄用の超純水や、火力発電や原子力発電の復水として使用される純水は、原水をイオン交換樹脂、逆浸透膜あるいは限外濾過膜等の膜濾過手段、紫外線酸化手段、ポリシャーなど組み合わせて脱塩して製造されている。
【0003】
純水や超純水の製造における脱塩工程では、前処理として、原水中の懸濁物質を取り除くために、凝集濾過、凝集沈澱濾過、膜除濁等の手段が用いられてきた。前処理として原水から懸濁物質を取り除く目的は、脱塩装置に懸濁物質が流入することにより引き起こされる通水差圧の上昇や脱塩性能の低下を防止するためである。前処理として膜除濁手段を採用した従来例を、図1(a)に示す。図1(a)に示したように、原水を膜除濁手段としての分離膜で処理して原水中の懸濁物質を取り除き、その後通常の純水製造装置で用いられる2床3塔型のイオン交換樹脂塔により原水中のイオンを吸着除去し、さらに逆浸透膜(RO)で処理し脱塩している。
【0004】
一方、原水にオゾンまたはオゾンから発生するヒドロキシルラジカルを利用することにより、原水中に含まれる有機物の酸化分解、殺菌、コロイド状物質の酸化等を行い、水質を向上させる方法も一般的に採用されている。
【0005】
【発明が解決しようとする課題】
脱塩工程の前処理としての膜除濁手段は、透過水量が比較的小さく、その結果使用する膜モジュールの本数が多くなり、設置面積やコスト面での問題が多かった。
【0006】
オゾン処理は、酸化力が不十分で脱塩装置出口での水質向上効果、特に金属に対する効果が小さい。またオゾンから発生するヒドロキシルラジカルを利用する方法は酸化力は充分であるが、全ての物質を酸化してしまうために、目的の物質以外の物質も酸化してしまうためヒドロキシルラジカルが無駄に消費されてしまって結果的に水質向上効果が小さいとの問題点があった。
【0007】
本発明が解決しようとする課題は、純水を製造する脱塩装置において、脱塩工程の前処理としての膜除濁装置を小型化でき、脱塩処理後の水質を向上できる脱塩装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らが、鋭意研究を重ねた結果、脱塩工程の前処理としてオゾン処理と耐オゾン性分離膜による膜除濁処理を組み合わせることにより、上記課題を解決できることを見いだし、本発明を完成するに至った。
【0009】
すなわち、請求項1に記載した本発明は、原水にオゾンを添加するオゾン添加手段と、オゾンが溶解した原水中の懸濁物質を耐オゾン性分離膜により除去する膜除濁手段と、除濁された原水中の溶存オゾンをヒドロキシルラジカル化するヒドロキシルラジカル発生手段と、ヒドロキシルラジカルで処理された原水を脱塩する脱塩手段を備えたことを特徴とする一次純水系システムに使用される脱塩装置に関するものである。
【0010】
請求項2に記載した本発明は、前記原水が、工業用水、水道水又は回収水であることを特徴とする請求項1に記載の脱塩装置に関するものである。
【0012】
【発明の実施の形態】
本発明における原水とは、純水の原料となる水であれば特に限定されないが、例えば工業用水、水道水、回収水等を挙げることができる。
【0013】
本発明における膜除濁手段に用いられる分離膜としては、耐オゾン性のある精密濾過膜や限外濾過膜等を用いることができる。膜材質としては、ポリ二フッ化ビニリデン(PVDF)、ポリ四フッ化エチレン(PTFE)等のフッ素系ポリマーを主体とする分離膜、アルミナ、ジルコニア、金属等の無機膜を用いることができる。耐オゾン性のない分離膜では、分離膜がオゾンによって酸化され、劣化するので好ましくない。
【0014】
本発明におけるオゾン添加手段とは、原水中にオゾンを添加できる手段であれば特に限定されないが、例えばオゾン溶解ポンプ、気泡塔、充填塔、ガス溶解膜等を挙げることができる。
【0015】
本発明におけるヒドロキシルラジカル発生手段とは、オゾンからヒドロキシルラジカルを発生させることができる手段であれば特に限定されないが、例えば、オゾンと紫外線照射との組合せ(オゾン溶解後に紫外線を照射するか、あるいはオゾン添加と同時に紫外線照射を行なう方法)、オゾンと過酸化水素との組合せ(過酸化水素の存在下にオゾンを添加するか、あるいは溶存オゾンの存在下に過酸化水素を添加する方法)、オゾンと活性炭の組合せ(オゾン溶解水を活性炭と接触させる方法)、オゾンとアルカリ剤との組合せ(アルカリ存在下でオゾンを添加するか、あるいはオゾン溶解水にアルカリ剤を添加してアルカリ性に調整する方法)を挙げることができる。さらには、これらのヒドロキシルラジカル発生手段の二つ以上を組合せた方法、例えばオゾンと過酸化素の組合せ処理の後に、さらにその処理水を活性炭と接触させる方法等を挙げることができる。
【0016】
膜除濁後にヒドロキシルラジカルを発生させる場合は、膜除濁後に残存するオゾンからヒドロキシルラジカルを発生させる方法でもよいし、膜除濁後の原水に新たにオゾンを溶解させてからヒドロキシルラジカルを発生させてもよい。
【0017】
脱塩手段としては、純水の製造に用いられるものであれば特に限定されないが、例えば、イオン交換樹脂を用いた脱塩装置、逆浸透膜装置(RO)、電気透析装置(ED)、電気再生式純水装置(EDI)等の公知の手段を採用することができる。
【0018】
なお、本発明においては、上記脱塩手段の前段で脱塩手段に流入する被処理水を活性炭と接触させることにより、脱塩手段に流入する被処理水中に残留するオゾンや過酸化水素等の酸化剤を予め分解してから脱塩手段に流入させるようにするのが望ましい。
【0019】
オゾンを原水に溶解させることにより、原水中の有機物、コロイド等を酸化することができる。その結果、膜除濁装置の透過水量を高く保つことができ、膜装置の小型化が可能になる。また、オゾンの酸化力、殺菌力により、脱塩装置出口の生菌数、金属濃度も低く保つことができる。その理由として、原水中の高分子有機物が酸化されて低分子化され、結果として膜の表面に蓄積しにくくなったためと思われる。
【0020】
オゾンから発生させたヒドロキシルラジカルは、オゾンと比較してさらに酸化力が高く、有機物、コロイド等を有効に酸化分解することができる。コロイド等は核に金属等を含有することがあり、また電気的にも安定状態にあり、イオン交換や逆浸透膜で充分除去することが難しかった。これらをヒドロキシルラジカルで強力に酸化処理することにより、イオン化することが可能になり、イオン交換、逆浸透膜で除去しやすくなると推定される。
【0021】
また、膜除濁後にヒドロキシルラジカルを発生させた方が、膜除濁前にヒドロキシルラジカルを発生させる場合よりもさらに脱塩水の水質が向上する。これは以下の理由によるものと思われる。すなわち、ラジカル反応は非選択的な反応であり、ヒドロキシルラジカルが発生した近傍にある物質を何でも酸化すると考えられる。したがって、水中に濁質等が残っていると、本来ヒドロキシルラジカルと反応させたい有機物、コロイド等に反応するだけでなく、濁質等にも反応してしまい、結果的に有効に反応するヒドロキシルラジカルが減少してしまう。これに対し、膜除濁処理後であれば、濁質は完全に除去されているので、発生したヒドロキシルラジカルが有効に、有機物、コロイドと反応し、効果的にイオン化が起こるために、イオン交換、RO膜で除去されると思われる。またヒドロキシルラジカルの酸化力が高いことから、膜除濁後にヒドロキシルラジカルを発生させた方が、分離膜がヒドロキシルラジカルに接しないため、分離膜の酸化劣化を防止することができ、寿命の観点からも優れている。
【0022】
なお、本発明の脱塩装置は各種産業分野に適用することができるが、特に半導体製造等の電子産業分野において使用される超純水の製造装置に好適に用いられる。すなわち、前記超純水製造装置は、通常、市水、工業用水等の原水を処理して一次純水を製造する一次純水系システムと、一次純水系システムで得られた一次純水をさらに浄化する二次系純水システム(サブシステム)とから構成されているが、本発明の脱塩装置は前記一次純水系システムに好適に使用される。
【0023】
【実施例】
参考例1
図1(a)〜(d)に示した脱塩処理装置を用い、表1に示した分離膜を使用して原水を処理し、安定fluxと末端の処理水(最終処理水)の水質を測定した。その結果を表1に示す。
【0024】
なお、各従来例および参考例で使用した装置等は、以下の通りである。
【0025】
・O3添加装置:オゾン溶解ポンプ 流量:1m3/hr、オゾナイザー 住友精密工業(株)製
・分離膜
A膜(耐オゾン性分離膜):日東電工(株)製精密濾過膜「SAF12020」(膜材質:PTFE、孔径:0.2μ、膜面積:1.2m2
B膜:メムテック(株)製精密濾過膜「メムコアフィルターM2」(膜材質:PP、孔径:0.2μ、膜面積:2.0m2
・EDI(電気再生式純水装置):オルガノ(株)製 処理量:1m3/hr
・RO:日東電工(株)製「ES−10−D8」(処理量:1m3/hr)
【0026】
【表1】
【0027】
表1に示した結果から明らかなように、従来例(図1(a)および図1(b))においては、分離膜として耐オゾン性分離膜(A膜)を使用したものと通常の分離膜(B膜)を使用したものでは安定fluxに差がなかったのに対し、耐オゾン性分離膜を使用し、オゾンを注入した参考例では、安定fluxは従来例の2倍に向上した。したがって、除濁処理に必要な膜を約半分に減らすことができる。また、末端の処理水質においても、従来例と参考例の差は明かである。脱塩装置として、2床3塔式(2B3T)のイオン交換樹脂塔とROを組み合わせた例(図1(c))でも、ROとEDIとCP(混床式カートリッジポリッシャー)を組み合わせた例(図1(d))であっても、末端処理水中の金属の低減効果が認められた。ただし、安定fluxの増大傾向はオゾン注入濃度が5ppmで頭打ちなのに対し、末端水質向上効果はオゾン注入濃度10ppmまで改善傾向が認められた。
【0028】
実施例
オゾン処理に加えてヒドロキシルラジカルを発生する手段を加えた例として、図1(c)、図1(e)および図1(f)に示した脱塩処理装置を用い、参考例1と同じ耐オゾン性の分離膜を使用して原水を処理し、安定fluxと末端の処理水の水質を測定した。その結果を表2に示す。なお、ヒドロキシルラジカル発生手段は注入オゾン量の0.3倍モル量の過酸化水素を添加することにより行った。
【0029】
【表2】
【0030】
表2に示した結果から明らかなようにヒドロキシルラジカル発生手段のない参考例1(図1(c))に対し、ヒドロキシルラジカル発生手段のある参考例3(図1(e)),実施例1(図1(f))は明らかにオゾン注入濃度がより低い濃度で末端水質向上が観察された。特に膜除濁後にヒドロキシルラジカルを発生させた実施例1においては、顕著な効果が認められた。
【0031】
なお、本発明は上記実施例の図1(f)の構成に何ら限定されるものではなく、例えば、図1(f)のROの後段にさらにカートリッジポリッシャー(CP)を設けた構成としてもよく、また、図1(f)の「2B3T」→「RO」の代わりに、「RO」→「EDI」→「CP」の構成を配置してもよい。
【0032】
【発明の効果】
本発明により、純水を製造する脱塩装置において、脱塩工程の前処理としての膜除濁装置を小型化でき、脱塩処理後の水質を向上できる
【図面の簡単な説明】
【図1】 (a)〜(b)は、従来の脱塩装置のシステム構成を示すブロック図、(c)〜(は参考例(f)は本発明の脱塩装置のシステム構成を示すブロック図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desalting apparatus used for producing pure water.
[0002]
[Prior art]
Ultrapure water for cleaning used in semiconductor manufacturing processes and pure water used as condensate for thermal power generation and nuclear power generation use raw water as a membrane filter such as ion exchange resin, reverse osmosis membrane or ultrafiltration membrane. means, ultraviolet oxidation unit, is manufactured desalted by combining like polisher.
[0003]
In the desalting step in the production of pure water or ultrapure water, means such as coagulation filtration, coagulation precipitation filtration, and membrane turbidity have been used as a pretreatment to remove suspended substances in the raw water. The purpose of removing suspended substances from raw water as a pretreatment is to prevent an increase in water flow differential pressure and a decrease in desalting performance caused by the suspension substances flowing into the desalting apparatus. FIG. 1A shows a conventional example in which a membrane turbidity removing unit is used as a pretreatment. As shown in FIG. 1 (a), raw water is treated with a separation membrane as a membrane turbidity removing means to remove suspended substances in the raw water, and then a two-bed, three-column type used in a normal pure water production apparatus. Ions in the raw water are adsorbed and removed by an ion exchange resin tower, and further treated with a reverse osmosis membrane (RO) for desalting.
[0004]
On the other hand, by utilizing ozone or hydroxyl radicals generated from ozone in the raw water, a method of improving the water quality by oxidative degradation of organic substances contained in the raw water, sterilization, oxidation of colloidal substances, etc. is generally adopted. ing.
[0005]
[Problems to be solved by the invention]
The membrane turbidity means as the pretreatment of the desalting step has a relatively small amount of permeate, resulting in an increase in the number of membrane modules to be used, and there are many problems in terms of installation area and cost.
[0006]
Ozone treatment is insufficient in oxidizing power and has little effect on improving water quality at the outlet of the desalting apparatus, particularly on metals. In addition, the method using hydroxyl radicals generated from ozone has sufficient oxidizing power, but since all substances are oxidized, substances other than the target substance are also oxidized, so that hydroxyl radicals are wasted. As a result, there was a problem that the water quality improvement effect was small.
[0007]
The problem to be solved by the present invention is to provide a desalination apparatus that can reduce the size of a membrane turbidity apparatus as a pretreatment in a desalination process and improve the water quality after the desalination process in a desalination apparatus that produces pure water. It is to provide.
[0008]
[Means for Solving the Problems]
As a result of intensive research, the inventors have found that the above problems can be solved by combining ozone treatment and membrane turbidity treatment with an ozone-resistant separation membrane as a pretreatment for the desalting step, and the present invention has been completed. It came to do.
[0009]
That is, the present invention described in claim 1 includes an ozone addition means for adding ozone to raw water, a membrane turbidity removal means for removing suspended substances in raw water in which ozone is dissolved by an ozone-resistant separation membrane, A desalin used for a primary pure water system characterized by comprising hydroxyl radical generating means for converting dissolved ozone in the raw water into hydroxyl radicals and desalting means for desalting raw water treated with hydroxyl radicals It relates to the device .
[0010]
The present invention described in claim 2 relates to the desalination apparatus according to claim 1 , wherein the raw water is industrial water, tap water or recovered water .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The raw water in the present invention is not particularly limited as long as it is water that is a raw material of pure water, and examples thereof include industrial water, tap water, and recovered water.
[0013]
As a separation membrane used for the membrane turbidity means in the present invention, an ozone-resistant microfiltration membrane, an ultrafiltration membrane, or the like can be used. As a membrane material, a separation membrane mainly composed of a fluorine-based polymer such as polyvinylidene difluoride (PVDF) or polytetrafluoroethylene (PTFE), or an inorganic membrane such as alumina, zirconia, or metal can be used. A separation membrane having no ozone resistance is not preferable because the separation membrane is oxidized and deteriorated by ozone.
[0014]
The ozone addition means in the present invention is not particularly limited as long as it can add ozone to the raw water, and examples thereof include an ozone dissolution pump, a bubble tower, a packed tower, and a gas dissolution film.
[0015]
The hydroxyl radical generating means in the present invention is not particularly limited as long as it is a means capable of generating hydroxyl radical from ozone. For example, a combination of ozone and ultraviolet irradiation (irradiating ultraviolet rays after ozone dissolution or ozone irradiation) UV irradiation at the same time as addition), a combination of ozone and hydrogen peroxide (method of adding ozone in the presence of hydrogen peroxide or hydrogen peroxide in the presence of dissolved ozone), ozone and Combination of activated carbon (method of bringing ozone-dissolved water into contact with activated carbon), combination of ozone and alkali agent (method of adding ozone in the presence of alkali or adding alkali agent to ozone-dissolved water to make it alkaline) Can be mentioned. Furthermore, a method that combines two or more of these hydroxyl radical generating means, for example, after the combined treatment of ozone and peroxide Hydrogen may include further methods such as contacting the treated water and the activated carbon.
[0016]
When hydroxyl radicals are generated after membrane turbidity, hydroxyl radicals may be generated from ozone remaining after membrane turbidity, or hydroxyl radicals are generated after newly dissolving ozone in the raw water after membrane turbidity. May be.
[0017]
The desalting means is not particularly limited as long as it is used for the production of pure water. For example, a desalting apparatus using an ion exchange resin, a reverse osmosis membrane apparatus (RO), an electrodialysis apparatus (ED), an electric Known means such as a regenerative pure water device (EDI) can be employed.
[0018]
In the present invention, by contacting the water to be treated flowing into the desalting means before the desalting means with the activated carbon, ozone, hydrogen peroxide, etc. remaining in the water to be treated flowing into the desalting means. It is desirable that the oxidant is decomposed in advance before flowing into the desalting means.
[0019]
By dissolving ozone in raw water, organic substances, colloids, etc. in the raw water can be oxidized. As a result, the amount of permeated water of the membrane turbidity device can be kept high, and the membrane device can be downsized. Moreover, the viable cell count and metal concentration at the outlet of the desalting apparatus can be kept low by the oxidizing power and sterilizing power of ozone. The reason seems to be that the high-molecular organic substances in the raw water are oxidized and reduced in molecular weight, and as a result, it is difficult to accumulate on the surface of the film.
[0020]
Hydroxyl radicals generated from ozone have higher oxidizing power than ozone, and can effectively oxidize and decompose organic substances, colloids and the like. Colloids and the like sometimes contain metals and the like in their nuclei and are electrically stable, and it has been difficult to remove them sufficiently by ion exchange or reverse osmosis membranes. By strongly oxidizing these with hydroxyl radicals, it is possible to ionize them, and it is estimated that they can be easily removed by ion exchange and reverse osmosis membranes.
[0021]
In addition, the quality of demineralized water is further improved when hydroxyl radicals are generated after membrane turbidity than when hydroxyl radicals are generated before membrane turbidity. This is probably due to the following reasons. That is, the radical reaction is a non-selective reaction and is considered to oxidize anything in the vicinity where the hydroxyl radical is generated. Therefore, if turbidity remains in the water, it reacts not only with organic substances, colloids, etc. that are originally intended to react with hydroxyl radicals, but also with turbidity, resulting in effective reaction of hydroxyl radicals. Will decrease. On the other hand, since the turbidity is completely removed after the membrane turbidity treatment, the generated hydroxyl radicals effectively react with organic matter and colloids, and ionization occurs effectively. It seems to be removed by RO membrane. In addition, since the oxidizing power of hydroxyl radicals is high, it is possible to prevent oxidative degradation of the separation membrane because the separation membrane does not come into contact with the hydroxyl radical when the hydroxyl radical is generated after the membrane turbidity. Is also excellent.
[0022]
The desalination apparatus of the present invention can be applied to various industrial fields, but is particularly preferably used for an ultrapure water manufacturing apparatus used in the electronic industry field such as semiconductor manufacturing. That is, the ultrapure water production apparatus normally purifies the primary pure water system that produces primary pure water by treating raw water such as city water and industrial water, and the primary pure water obtained by the primary pure water system. However, the desalination apparatus of the present invention is preferably used for the primary pure water system.
[0023]
【Example】
Reference example 1
Using the desalination treatment apparatus shown in FIGS. 1 (a) to 1 (d), raw water is treated using the separation membrane shown in Table 1, and the quality of the stable flux and the treated water (final treated water) at the end is determined. It was measured. The results are shown in Table 1.
[0024]
The devices used in the conventional examples and the reference examples are as follows.
[0025]
・ O 3 addition device: ozone dissolution pump Flow rate: 1 m 3 / hr, Ozonizer Sumitomo Seimitsu Kogyo Co., Ltd. Separation membrane A membrane (ozone-resistant separation membrane): Nitto Denko Co., Ltd. micro filtration membrane “SAF12020” ( (Membrane material: PTFE, pore size: 0.2μ, membrane area: 1.2m 2 )
B membrane: Microfiltration membrane “Memcore filter M2” manufactured by Memtech Co., Ltd. (membrane material: PP, pore size: 0.2 μ, membrane area: 2.0 m 2 )
-EDI (Electric Regenerative Pure Water Device): manufactured by Organo Corporation, throughput: 1 m 3 / hr
RO: “ES-10-D8” manufactured by Nitto Denko Corporation (processing amount: 1 m 3 / hr)
[0026]
[Table 1]
[0027]
As is apparent from the results shown in Table 1, in the conventional example (FIGS. 1 (a) and 1 (b)), an ozone-resistant separation membrane (A membrane) is used as the separation membrane and a normal separation is performed. In the case of using the membrane (B membrane), there was no difference in the stable flux, whereas in the reference example in which ozone-resistant separation membrane was used and ozone was injected, the stable flux was improved to twice that of the conventional example. Therefore, the film required for the turbidity treatment can be reduced to about half. Also, the difference between the conventional example and the reference example is clear in the quality of the treated water at the end. As an example of a combination of RO, EDI, and CP (mixed bed type cartridge polisher) in the example (Fig. 1 (c)) in which a two-bed, three-column (2B3T) ion-exchange resin tower and RO are combined as a desalinator. Even in FIG. 1 (d)), the effect of reducing metals in the end-treated water was recognized. However, while the increasing tendency of the stable flux reached a peak at the ozone injection concentration of 5 ppm, the terminal water quality improvement effect was improved to the ozone injection concentration of 10 ppm.
[0028]
Example 1
As an example of adding a means for generating hydroxyl radicals in addition to the ozone treatment, the desalination treatment apparatus shown in FIGS. 1 (c), 1 (e) and 1 (f) was used, and the same resistance as in Reference Example 1 was used. Raw water was treated using an ozone separation membrane, and the quality of stable flux and treated water at the end was measured. The results are shown in Table 2. The hydroxyl radical generating means was performed by adding hydrogen peroxide in an amount 0.3 times the amount of injected ozone.
[0029]
[Table 2]
[0030]
Table 2 without the hydroxyl radical generating means as a result from the apparent described in Reference Example 1 to (FIG. 1 (c)), reference example of the hydroxyl radical generating means 3 (Fig. 1 (e)), Example 1 (FIG. 1 (f)) clearly showed improved terminal water quality at lower ozone injection concentrations. In particular, in Example 1 in which hydroxyl radicals were generated after membrane turbidity, a remarkable effect was observed.
[0031]
The present invention is not intended to be limited to the configuration of Figure 1 of Example 1 (f), for example, have a structure in which a further cartridge polisher (CP) to the subsequent RO in FIG. 1 (f) In addition, instead of “2B3T” → “RO” in FIG. 1 ( f), a configuration of “RO” → “EDI” → “CP” may be arranged.
[0032]
【The invention's effect】
According to the present invention, in a desalination apparatus for producing pure water, the membrane turbidity apparatus as a pretreatment in the desalting process can be reduced in size, and the water quality after the desalination treatment can be improved.
FIGS. 1A to 1B are block diagrams showing a system configuration of a conventional desalination apparatus, FIGS. 1C to 1E are reference examples , and FIG. 1F is a system configuration of a desalination apparatus of the present invention. FIG.

Claims (2)

原水にオゾンを添加するオゾン添加手段と、オゾンが溶解した原水中の懸濁物質を耐オゾン性分離膜により除去する膜除濁手段と、除濁された原水中の溶存オゾンをヒドロキシルラジカル化するヒドロキシルラジカル発生手段と、ヒドロキシルラジカルで処理された原水を脱塩する脱塩手段を備えたことを特徴とする一次純水系システムに使用される脱塩装置。Ozone addition means for adding ozone to raw water, membrane turbidity removal means for removing suspended substances in raw water in which ozone is dissolved by ozone-resistant separation membrane, and hydroxyl radical of dissolved ozone in turbidized raw water A desalting apparatus for use in a primary pure water system comprising a hydroxyl radical generating means and a desalting means for desalting raw water treated with the hydroxyl radical. 前記原水が、工業用水、水道水又は回収水であることを特徴とする請求項1に記載の脱塩装置。The desalination apparatus according to claim 1, wherein the raw water is industrial water, tap water, or recovered water.
JP28963597A 1997-10-22 1997-10-22 Desalination equipment Expired - Fee Related JP3727156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28963597A JP3727156B2 (en) 1997-10-22 1997-10-22 Desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28963597A JP3727156B2 (en) 1997-10-22 1997-10-22 Desalination equipment

Publications (2)

Publication Number Publication Date
JPH11123390A JPH11123390A (en) 1999-05-11
JP3727156B2 true JP3727156B2 (en) 2005-12-14

Family

ID=17745798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28963597A Expired - Fee Related JP3727156B2 (en) 1997-10-22 1997-10-22 Desalination equipment

Country Status (1)

Country Link
JP (1) JP3727156B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012691A1 (en) * 2004-08-04 2006-02-09 U.S. Filter Wastewater Group, Inc. Chemical and process for cleaning membranes
JP4909648B2 (en) * 2006-06-06 2012-04-04 クロリンエンジニアズ株式会社 Circulating ozone water production apparatus and method of operating the apparatus
JP2011117903A (en) * 2009-12-07 2011-06-16 Sekisui Chem Co Ltd Analysis pretreatment method of environmental sample and analysis method of environmental sample

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149688A (en) * 1979-05-08 1980-11-21 Mitsubishi Electric Corp Disposal plant for waste water
JPS62237907A (en) * 1986-04-09 1987-10-17 Kurita Water Ind Ltd Membrane separation method
JPH0645037B2 (en) * 1986-07-31 1994-06-15 三菱電機株式会社 Ultrapure water production method
JP3242983B2 (en) * 1992-05-19 2001-12-25 旭化成株式会社 Fluorine-based hydrophilic microporous membrane and method for producing the same
JPH06343843A (en) * 1993-06-04 1994-12-20 Asahi Chem Ind Co Ltd Fluorinated hydrophilic fine porous membrane and water treating method using the same
FR2713220B1 (en) * 1993-11-30 1996-03-08 Omnium Traitement Valorisa Installation of water purification with submerged filter membranes.
JPH08267077A (en) * 1995-03-31 1996-10-15 Mitsubishi Electric Corp High degree treating method of waste water
JPH10309577A (en) * 1997-05-08 1998-11-24 Asahi Chem Ind Co Ltd Water purifying method by ozone resistant membrane
JP3771684B2 (en) * 1997-08-20 2006-04-26 旭化成ケミカルズ株式会社 Ultrapure water production method

Also Published As

Publication number Publication date
JPH11123390A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
JP3426072B2 (en) Ultrapure water production equipment
JPH0490885A (en) Apparatus and method for making pure water
JP3575271B2 (en) Pure water production method
JP2009028695A (en) Apparatus and method for manufacturing pure water
JP2009172462A (en) Water quality modifying apparatus, water treating system, and recycling system of drainage
JP2004283710A (en) Pure water producer
TW201801789A (en) Ultrapure water manufacturing system
JP3864934B2 (en) Pure water production equipment
JP2004000919A (en) Apparatus for producing desalted water
JP2007307561A (en) High-purity water producing apparatus and method
JP4635827B2 (en) Ultrapure water production method and apparatus
JP2000015257A (en) Apparatus and method for making high purity water
JP2002210494A (en) Device for manufacturing extrapure water
JPH10216721A (en) Ultrapure water producing device
JP3727156B2 (en) Desalination equipment
JPH09253638A (en) Ultrapure water making apparatus
JPH10309588A (en) Water treatment, water treating device and pure water producing device
WO2022024815A1 (en) Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method
JP2004181364A (en) Ultrapure water making method and apparatus therefor
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JPH0747364A (en) Extrapure water producing device
JP2002355683A (en) Ultrapure water making method and apparatus
JP2006239617A (en) Water treatment method and water treatment apparatus
JPH0929251A (en) Ultrapure water preparing apparatus
JP3259557B2 (en) How to remove organic matter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees