JP3858359B2 - How to remove organic matter - Google Patents

How to remove organic matter Download PDF

Info

Publication number
JP3858359B2
JP3858359B2 JP17965397A JP17965397A JP3858359B2 JP 3858359 B2 JP3858359 B2 JP 3858359B2 JP 17965397 A JP17965397 A JP 17965397A JP 17965397 A JP17965397 A JP 17965397A JP 3858359 B2 JP3858359 B2 JP 3858359B2
Authority
JP
Japan
Prior art keywords
raw water
toc
water
persulfate
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17965397A
Other languages
Japanese (ja)
Other versions
JPH1119663A (en
Inventor
親男 田中
貴昭 佐藤
博志 森田
嘉修 小畠
良平 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP17965397A priority Critical patent/JP3858359B2/en
Publication of JPH1119663A publication Critical patent/JPH1119663A/en
Application granted granted Critical
Publication of JP3858359B2 publication Critical patent/JP3858359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機物の除去方法に係り、特に、超純水又は超純水製造工程におけるTOC(全有機体炭素)除去効率を大幅に改善した有機物の除去方法に関する。
【0002】
【従来の技術】
主に半導体基板や液晶基板の洗浄用に用いられる超純水の製造において、TOCの除去は他の不純物(微粒子、イオンなど)の除去と同様に極めて重要である。また、特に、半導体基板や液晶基板の洗浄、リンス排水の回収・再利用を行う場合、バクテリアファウリングから処理装置を守り、安定運転を続ける上でも、他のユニット装置による不純物除去の前段でTOCを低減しておくことは、極めて重要である。
【0003】
このため、目標水準までTOCを低減させた処理水を得るべく、2段式逆浸透膜分離処理やイオン交換塔を併用した低圧紫外線酸化処理、生物処理などが行われている。また、処理コストを低減し、より一層のTOC低減を図るために、本出願人により、酸化剤を併用した加熱分解型のTOC除去方法が出願されている(国際公開W094/18127号公報)。本方式によると、数ppmオーダーのTOCを含む原水を1段階の処理で数ppb−TOCにまで高度に処理することができる。本出願人はまた、このTOC除去法で用いる酸化剤としては過硫酸又は過硫酸塩が最適であること、そしてその添加量は原水中のTOC1重量部当たりS2 8 2- 換算で20〜45重量部とするのが適当であることを確認し、先に特許出願を行った(特開平8−173978号公報)。
【0004】
この加熱分解法によるTOCの除去方式においては、
(a) 簡単な装置でTOCを低レベルにまで除去できる。
(b) 原水のTOC濃度に応じて、酸化剤添加量を調整するだけで対応できる。
(c) 加熱工程があるので、菌の繁殖を防止し、また、栄養源である有機物が減少し、バクテリアファウリングを軽減できる。
といった優れた利点がある。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の加熱分解法では、TOC1ppm程度の原水を処理する場合にはさほど問題とはならないが、TOC4〜5ppm或いはそれ以上の原水を対象とした場合には、酸化剤添加量を相当に多くしないと目標水質までTOCを低減することができなかった。
【0006】
この方法で添加された酸化剤、例えば、過硫酸ナトリウムは、TOC成分の分解反応後、硫酸と硫酸ナトリウムとなって存在するため、加熱分解装置の後段で除去する必要がある。このため、多量の酸化剤を必要とすることは、薬剤コストの高騰のみならず、後段設備の負荷の増大の問題も引き起こすこととなる。
【0007】
本発明は上記従来の問題点を解決し、原水を酸化剤の存在下で加熱処理して原水中のTOC成分を分解した後、脱イオン処理することにより原水中の有機物を除去する方法において、酸化剤の使用量を大幅に低減する有機物の除去方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の有機物の除去方法は、超純水製造工程において、TOCが4〜5ppm或いはそれ以上の原水を酸化剤の存在下で加熱処理して原水中のTOC成分を分解した後、脱イオン処理することにより原水中のTOCを数十ppb以下にまで除去する方法において、原水に触媒を接触させることなく、原水に酸素と、酸化剤として過硫酸及び/又は過硫酸塩とを添加した後、110〜150℃に加熱処理する方法であって、前記酸化剤の添加量が酸素を添加しない場合の必要酸化剤添加量よりも少ない量であることを特徴とする。なお、以下において、過硫酸塩と過硫酸とを「過硫酸塩等」と称する場合がある。
【0009】
原水中のTOC成分がすべてイソプロピルアルコール(IPA:C3 7 OH,このIPAは、半導体洗浄廃水を回収し、これを原水として純水を得る場合に洗浄廃水に含まれている代表的な物質である。)であることを想定し、これを過硫酸塩としてNa2 2 8 を用いて加熱分解法で処理する場合、次のような反応式に従って分解反応が起こる。
【0010】
C3H7OH+9Na2S2O8+9H2 O →3CO2+4H2 O +9Na2SO4 +9H2 SO4
上記反応式より明らかなように、1モルのIPA(3モルの炭素)に対して9モルのNa2 2 8 が必要である。これを濃度で表すと、1ppmのTOCの酸化分解には59.5ppmのNa2 2 8 (K2 2 8 であれば67.5ppm)を要することとなる。従って、TOC1mg/L当り、過硫酸塩70mg/L程度の添加が好ましいと考えられている。
【0011】
しかしながら、通常の加熱分解処理においては、1ppmのTOCに対し、59.5ppmより低いおおよそ30ppm程度のNa2 2 8 (即ち、上述の理論量の50%程度)を添加すれば、良好な処理水が得られる。
【0012】
本発明者らは、この加熱分解法により、処理水中のTOCを数十ppbレベル以下に低減させるための過硫酸塩等の必要添加量/原水のTOC比についてより詳細に検討を行ったところ、この比は一定ではなく、原水中のTOC濃度がある範囲以上に上昇すると増加し、単位量のTOCを分解するために多くの過硫酸塩等の添加が必要になることを確認した。この現象について、更に鋭意解析を行った結果、加熱分解法によるTOC分解では、酸化剤としての過硫酸塩等だけでなく原水中の溶存酸素も寄与していることを見出した。
【0013】
この知見をもとに、本発明者らは、原水中のTOCの加熱分解処理においては、原水の溶存酸素濃度を予め高めることによって、過硫酸塩等の必要添加量/原水のTOC比を、低濃度TOCの原水の処理の場合と同等に保つことができ、従来に比べ過硫酸塩等の添加量を大幅に低減できることを見出し、本発明を完成した。
【0014】
このような本発明の方法は、TOCが4〜5ppm或いはそれ以上の、比較的TOC濃度の高い原水の処理に有効であり、過硫酸塩等の必要添加量を有効に低減できる。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を図面を参照して詳細に説明する。
【0016】
図1は本発明の有機物の除去方法の酸素添加手段の実施の形態を示す系統図である。
【0017】
本発明の有機物の除去方法においては、必要に応じて前処理を施した原水に、酸素と、酸化剤として過硫酸塩等を添加して加熱分解処理した後、脱イオン処理し、更に必要に応じて後処理する。なお、酸素は、加熱分解処理で酸化剤が消費される前に添加すれば良く、酸化剤添加の前後どちらでも良い。
【0018】
原水としては、一般に半導体又は液晶洗浄工程からの回収水、工水、市水、井水及びこれらを混合したものが用いられ、半導体洗浄工程からの回収水については、適当な前処理工程を経た後、加熱分解処理工程に導入するのが好ましい。
【0019】
前処理工程としては、原水水質に応じて任意の手段を設けることができ、例えば、凝集、濾過、浮上、吸着、イオン交換などの手段を採用することができる。具体的な前処理工程としては、次の(i) 〜(iii) が挙げられる。特に、半導体洗浄工程からの回収水については、下記(iii) の前処理により、活性炭吸着塔で含有されるH2 2 を除去した後、強アニオン交換塔でフッ素の除去を行って加熱分解処理工程に導入するのが好ましい。
【0020】
(i) 凝集・加圧浮上・濾過装置
(ii) イオン交換塔
(iii) 活性炭吸着塔→アニオン交換塔
本発明において、原水に酸素を添加して、溶存酸素濃度を高める方法としては、例えば、次のような方法が挙げられる。
【0021】
即ち、一般に、水の飽和溶存酸素濃度は常温で8ppm程度であることは周知の事実であるが、これは窒素(及び他の微量成分)との混合系である空気成分と平衡状態における溶存酸素濃度である。従って、何らかの手段によって原水と接する気体の酸素分圧を高めれば、溶存酸素濃度は8ppm以上に容易に高めることができる。また、加熱分解装置へ原水を送水するポンプの出口側(反応装置側)では、原水は加圧されているので、大気圧下での溶解度以上に気体を溶解することができる。この高圧部に、酸素又は空気を圧入することによっても、原水の溶存酸素濃度を高めることができる。なお、酸素又は空気は必ずしも完全に原水中に溶解している必要はない。即ち、加熱分解装置内で未溶解のまま残る気体中の酸素は、加熱分解反応中の溶存酸素の消費と並行して水に溶解していき、溶存酸素濃度を保つ効果を持つ。
【0022】
従って、本発明において、原水に酸素を添加する手段としては、例えば、次のI−VIの方法が挙げられる。なお、下記I−VIは、本発明に係る酸素添加手段の一例を示すものであり、本発明は何らこれらの方法に限定されるものではない。I 図1(a)に示す如く、原水を処理槽1に導入して、酸素又は酸素富化空気をバブリングする方法。この原水は、その後ポンプ2により、酸化剤添加後、加熱分解反応器3に導入される。
【0023】
II 図1(b)に示す如く、原水を気体透過膜モジュール4に導入し、このモジュール4で酸素又は酸素富化空気を注入する方法。この原水は、その後ポンプ2により、酸化剤添加後、加熱分解反応器3に導入される。
【0024】
なお、上記I,IIの手段に先立ち、真空脱気や気体透過膜モジュールによる減圧膜脱気等で、原水中の全溶存気体(特に溶存窒素)濃度を減少させておくことも、酸素溶解効率を高める上で効果的である。また、気体透過膜モジュールの気相部を減圧しつつ酸素を供給する方法も、予備処理として適当である。これらの方法は、反応器3への送水ポンプ2の上流側での処理に適当である。
【0025】
III 図1(c)に示す如く、原水を加熱分解反応器3に導入するポンプ2の出口側でコンプレッサー等で原水に圧縮空気等の酸素含有ガスを注入する方法。
IV 原水を加熱分解反応器3に導入するポンプ2の入口側の配管にエゼクター等を使って常圧又は加圧の空気又は酸素を吸い込ませる方法。
V 加熱分解反応部を多段式にし、各段の中間部を大気開放型にして溶存酸素を増加させる方法。
VI 上記Vの方法で、各段の中間部において前記I又はIIを行う方法。
【0026】
本発明において、原水への酸素の添加量は、原水中のTOC濃度や酸化剤添加量の低減割合、目標とする処理水TOC、その他の諸条件により異なるが、TOC成分としてIPAを対象とした時のTOC4ppm以上の原水の場合、原水中の溶存酸素濃度を大気との平衡状態の飽和濃度である8ppm以上(過飽和)とすることができるような添加量とするのが好ましい。この溶存酸素濃度が8ppm未満では、本発明による酸化剤低減効果が十分に得られない。酸素添加量は、酸素添加後の原水の溶存酸素濃度を溶存酸素濃度計で測定し、この測定値に基いて上記溶存酸素濃度となるように制御してもよい。
【0027】
本発明において、酸化剤としては、パーオキシ二硫酸ナトリウム(Na2 2 8 )、パーオキシ二硫酸カリウム(K2 2 8 )、パーオキシ二硫酸アンモニウム((NH4 2 2 8 )等の過硫酸塩や過硫酸(H2 2 8 )が挙げられるが、Na2 2 8 ,K2 2 8 などの過硫酸塩が好適である。
【0028】
酸化剤としての過硫酸塩等の添加量は、上記酸素添加による原水中の溶存酸素濃度等によっても異なるが、原水中のTOC1重量部当りS2 8 2- として15〜35重量部の範囲とするのが好ましい。TOC1重量部当りのS2 8 2- 換算の過硫酸塩等の添加量がこの範囲よりも少ないと、酸化剤が不足し、TOCが多く残留し、逆にこの範囲より多いと、酸化剤が過剰となり、後段の装置に負荷をかけ、後段装置からTOC成分を溶出させるなどの不具合を生じる。
【0029】
本発明では、特に、TOC成分としてIPAを対象とした場合のTOC4ppm以上の原水に対し、溶存酸素濃度が8ppm以上となるように酸素を添加した後、TOC1重量部当りS2 8 2- 20〜35重量部となるように過硫酸塩等を添加するのが好ましい。
【0030】
本発明において酸化剤添加後の加熱分解処理における加熱温度は、110〜150℃とし、また、加熱分解反応時間は、加熱温度や原水TOCや溶存酸素濃度及び酸化剤の添加量によっても異なるが、通常の場合1〜15分とするのが好ましい。
【0032】
なお、加熱分解処理のpH条件については、特に調整の必要はないが、酸性側の方がTOCが分解し易い。通常、中性の原水に過硫酸塩等を添加するとTOC成分の酸化分解もしくは酸化剤の自己分解により、H2 SO4 が生成され、pHは酸性側となるので、特にpH調整の必要はない。
【0033】
加熱分解処理水は、次いで、脱イオン処理に供するが、この脱イオン処理に先立ち、必要に応じて、酸化剤除去処理を行う。
【0034】
即ち、加熱分解工程における過剰の酸化剤が加熱分解処理水中に含有されて脱イオン処理工程に流入すると、脱イオン処理工程の逆浸透膜やイオン交換樹脂を酸化劣化させ、劣化した樹脂の溶出によるTOCの増加や装置寿命の低減等の問題を生じる。
【0035】
本発明においては、酸化剤としての過硫酸塩等の添加量が少ないことから、加熱分解処理水中に含まれる過硫酸塩等の量は少なく、従って、酸化剤除去処理は必ずしも必要とされないが、酸化剤除去処理を行うことにより、酸化剤による脱イオン処理工程への影響を確実に防止することができる。
【0036】
この酸化剤除去処理手段としては、活性炭及び/又は適当な触媒を充填した充填塔を採用することができる。
【0037】
活性炭としては、粒状、粉状、繊維状のいずれでも良いが、特に粒状か繊維状のものが通水効率の面で有利である。活性炭のタイプ(ヤシガラ系、石炭系、その他)には特に制限はない。一方、触媒としては、一般に用いられている白金系、パラジウム系のものなど、多様なものを用いることができる。
【0038】
上記活性炭及び触媒は、そのいずれか一方を用いるだけでも目的は達せられるが、場合によって、両者を併用しても良い。その他、酸化剤除去手段としては、紫外線照射も採用可能である。
【0039】
酸化剤除去処理条件は、加熱分解処理水中に残留する過硫酸塩等が、後段の脱イオン処理工程のイオン交換樹脂や逆浸透膜を酸化劣化させない程度の、十分低濃度にまで除去できるような条件であれば良く、加熱分解処理水中の残留過硫酸塩等の濃度や、酸化剤除去工程の仕様、即ち、活性炭や触媒の形状、粒径、充填量等によって適宜決定される。例えば、10ppmの残留Na2 2 5 を含む加熱分解処理水を、20/40メッシュの粒状活性炭充填塔で処理する場合、SV=40hr-1程度以下とするのが好ましい。
【0040】
なお、加熱分解処理水は、通常pH4以下の酸性であるので、このような残留酸化剤除去装置を腐食から保護するために、加熱分解処理工程と酸化剤除去工程との間にpH調整のためのアルカリ注入手段を設け、酸性水を中和した後、酸化剤除去工程に導入するのが好ましい。
【0041】
本発明において、脱イオン処理手段としては、イオン交換塔、逆浸透膜分離装置等を必要に応じて組み合せて用いることができる。即ち、例えば、イオン交換塔→逆浸透膜分離装置、逆浸透膜分離装置→イオン交換塔、或いは、逆浸透膜分離装置→逆浸透膜分離装置とすることができる。
【0042】
また、後処理手段としては、要求される処理水水質に応じて、任意の手段を採用することができ、紫外線酸化による殺菌、TOC分解、或いは、イオン交換、逆浸透膜分離、精密濾過膜分離、限外濾過膜分離装置等、一般には超純水製造における二次純水製造工程(サブシステム)に相当する工程、即ち、低圧紫外線照射装置(有機物分解)→混床式イオン交換塔(非再生型イオン交換器:分解生成物の除去)→限外濾過膜分離装置(イオン交換塔から流出するイオン交換樹脂の微粒子の分離)が採用される。
【0043】
脱イオン処理工程及び後処理工程の具体例としては、次の(i) 〜(v) が挙げられる。
【0044】
(i) 脱炭酸塔→アニオン交換塔→逆浸透膜分離装置→二次純水製造工程
(ii) 逆浸透膜分離装置→低圧逆浸透膜分離装置→二次純水製造工程
(iii) カチオン交換塔→脱炭酸塔→アニオン交換塔→逆浸透膜分離装置→二次純水製造工程
(iv) 弱アニオン交換塔→強カチオン交換塔→強アニオン交換塔→二次純水製造工程
(v) 逆浸透膜分離装置→イオン交換塔(混床式イオン交換塔又は(強カチオン交換塔→強アニオン交換塔))→二次純水製造工程
これら脱イオン処理工程及び後処理工程の装置は予め加熱処理によりTOC成分を除去している上に、酸化剤としての過硫酸塩等の添加量も少ないため、負荷が軽減され、小容量小型装置を採用できる。
【0045】
このような本発明の有機物の除去方法は、特に、TOC4〜5ppm、或いはそれ以上の比較的TOC濃度の高い水を処理する場合に有効で、顕著な酸化剤の必要添加量の低減効果を得ることができる。
【0046】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0047】
実施例1,2、比較例1
有機系排水の模擬液として、試薬特級のIPAを超純水に溶解した水を原水とし、酸化剤としてNa2 2 8 を用い、TOCの加熱分解実験を行った。
【0048】
反応温度を130℃、反応時間を5分間、原水TOCを9ppmに固定し、下記の溶存酸素濃度条件で、処理水のTOCを20ppb以下にするために必要なNa2 2 8 注入量及び原水TOCに対するNa2 2 8 注入量の割合を調べ、結果を表1に示した。
【0049】
溶存酸素濃度条件
比較例1:溶存酸素無調整(溶存酸素濃度7.2ppm)
実施例1:酸素バブリングにより原水の溶存酸素濃度を12ppmに高めた
実施例2:酸素バブリングにより原水の溶存酸素濃度を24.5ppmに高めた
【0050】
【表1】

Figure 0003858359
【0051】
表1より明らかなように、バブリングによって原水の溶存酸素濃度を高めることによって、酸化剤の必要量を低減できる。特に、実施例2では、溶存酸素無処理の比較例1の場合に比べて約31%もの酸化剤の低減が図れる。
【0052】
実施例3〜6、比較例2〜5
基板洗浄薬液に由来する数種類の有機物を含む実際の排水を原水とし、酸化剤としてNa2 2 8 を用い、TOCの加熱分解実験を行った。
【0053】
反応温度を130℃、反応時間を5分間とし、表2に示すTOCの原水を、下記溶存酸素濃度条件で処理する場合の、処理水のTOCを20ppb以下にするために必要なNa2 2 8 注入量及び原水TOCに対するNa2 2 8 注入量の割合を調べ、結果を表2に示した。
【0054】
溶存酸素濃度条件
比較例2〜5:溶存酸素無調整(溶存酸素濃度7.0ppm)
実施例3〜6:加圧ポンプ出口と反応器の間にコンプレッサーによる加圧空気(0.8MPa)を、原水1容量に対し0.5容量(常圧換算)定量注入した(溶存酸素過飽和とした)。
【0055】
【表2】
Figure 0003858359
【0056】
表2より明らかなように、加圧空気を注入し、原水の溶存酸素濃度を高めることによって、溶存酸素無処理の場合に比べて9〜45%の酸化剤が低減できた。また、溶存酸素濃度増加による必要酸化剤添加量低減の効果は、原水TOC濃度が高いときほど顕著であったが、TOC濃度の低い原水に対しても、効果を発揮することが確認できた。
【0057】
実施例7
図2に示す純水製造システムにより、下記原水を通水処理した。
【0058】
原水:原水1(IPA溶解超純水,TOC:20.2ppm)と原水2(厚木市水,TOC:0.8ppm)とを原水1:原水2=1:2の割合で混合した水(TOC:7ppm,DO:7.0ppm)
本実施例のシステムでは、原水を加温熱交換器11で加熱した後、酸素を注入し、次いで、酸化剤としてNa2 2 8 を添加し、加熱分解反応器12でTOCの加熱分解を行う。加熱分解処理水は、次いで冷却熱交換器13で冷却した後、中和用のNaOHを添加し、活性炭塔14で残留Na2 2 8 の除去を行う。次いで、流量調整用のタンク15を経て逆浸透膜分離装置16、イオン交換塔17に順次通水して処理水を得た。各部の仕様及び処理条件は下記の通りである。なお、図2中、カッコ内の数値は、各部の通水流量である。また、▲1▼〜▲5▼はサンプリングポイントを示す。
【0059】
Figure 0003858359
各部で採取した水の水質を分析し、結果を表3に示した。
【0060】
比較例6
酸素の注入を行わなかったこと以外は実施例7と全く同様にして処理を行い、結果を表3に示した。
【0061】
【表3】
Figure 0003858359
【0062】
表3より、酸素を注入した実施例7ではTOC1重量部に対するNa2 2 8 添加量がS2 8 2- 換算で約25重量部の加熱分解処理で、TOCの極めて少ない純水が得られることが明らかである。これに対して、酸素を注入していない比較例6では、酸化剤が不足するため、十分なTOC除去を行えない。
【0063】
【発明の効果】
以上詳述した通り、本発明の有機物の除去方法によれば、TOCの加熱分解に当り、酸化剤としての過硫酸塩等の添加量を低減して低コストで効率的な処理を行うことができる。また、過硫酸塩等の添加量が少ないことから、結果として、過剰の過硫酸塩等による加熱分解処理後の脱イオン処理工程への影響が防止されると共に、添加した過硫酸塩等に由来する加熱分解処理水中の硫酸塩及び硫酸濃度が低いことから、脱イオン処理工程の装置規模の縮小を図ることもできる。
【図面の簡単な説明】
【図1】本発明の有機物の除去方法の酸素添加手段の実施の形態を示す系統図である。
【図2】実施例7における純水製造システムを示すフローチャートである。
【符号の説明】
1 処理槽
2 ポンプ
3 加熱分解反応器
4 気体透過膜モジュール
11 加温熱交換器
12 加熱分解反応器
13 冷却熱交換器
14 活性炭塔
15 タンク
16 逆浸透膜分離装置
17 イオン交換塔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic matter removal method, and more particularly, to an organic matter removal method that greatly improves TOC (total organic carbon) removal efficiency in an ultrapure water or ultrapure water production process.
[0002]
[Prior art]
In the production of ultrapure water mainly used for cleaning semiconductor substrates and liquid crystal substrates, the removal of TOC is as important as the removal of other impurities (fine particles, ions, etc.). In particular, when cleaning semiconductor substrates and liquid crystal substrates, and recovering and reusing rinse wastewater, the TOC is used before impurities removal by other unit devices, in order to protect the processing equipment from bacterial fouling and continue stable operation. It is extremely important to reduce this.
[0003]
For this reason, two-stage reverse osmosis membrane separation treatment, low-pressure ultraviolet oxidation treatment combined with an ion exchange tower, biological treatment, and the like are performed to obtain treated water with the TOC reduced to the target level. In addition, in order to reduce the processing cost and further reduce the TOC, the applicant has filed an application for a thermal decomposition TOC removal method using an oxidizing agent (International Publication W094 / 18127). According to this method, raw water containing TOC on the order of several ppm can be treated to several ppb-TOC in a single stage. The applicant also 20 in this as the oxidizing agent used in the TOC removal method that persulfate or persulfate is optimal, and the addition amount thereof is TOC1 parts per S 2 O 8 2- Conversion raw water After confirming that it was appropriate to use 45 parts by weight, a patent application was filed first (JP-A-8-173978).
[0004]
In the removal method of TOC by this thermal decomposition method,
(a) TOC can be removed to a low level with a simple device.
(b) Corresponding to the TOC concentration of the raw water, it can be handled only by adjusting the oxidant addition amount.
(c) Since there is a heating process, the growth of bacteria can be prevented, and organic matter as a nutrient source can be reduced to reduce bacterial fouling.
There are excellent advantages.
[0005]
[Problems to be solved by the invention]
However, in the above conventional thermal decomposition method, there is not much problem when raw water of about TOC 1 ppm is processed, but when TOC 4-5 ppm or more raw water is targeted, the amount of oxidant added is considerably increased. If not increased, the TOC could not be reduced to the target water quality.
[0006]
Since the oxidizing agent added by this method, for example, sodium persulfate, is present as sulfuric acid and sodium sulfate after the decomposition reaction of the TOC component, it must be removed after the thermal decomposition apparatus. For this reason, the need for a large amount of oxidant causes not only an increase in drug cost but also a problem of an increase in the load on the subsequent equipment.
[0007]
The present invention solves the above-mentioned conventional problems in a method for removing organic matter in the raw water by deionizing after decomposing the TOC component in the raw water by heat-treating the raw water in the presence of an oxidizing agent. An object of the present invention is to provide a method for removing an organic substance that significantly reduces the amount of an oxidizing agent used.
[0008]
[Means for Solving the Problems]
In the ultrapure water production process, the organic matter removal method of the present invention is a deionization treatment after decomposing the TOC component in the raw water by heating the raw water having a TOC of 4 to 5 ppm or more in the presence of an oxidizing agent. In the method of removing TOC in raw water to tens of ppb or less by adding oxygen and persulfuric acid and / or persulfate as an oxidizing agent to raw water without bringing the catalyst into contact with the raw water, A method of heat treatment at 110 to 150 ° C. , characterized in that the amount of the oxidizing agent added is less than the amount of the necessary oxidizing agent added when oxygen is not added . Hereinafter, persulfate and persulfate may be referred to as “persulfate or the like”.
[0009]
All TOC components in raw water are isopropyl alcohol (IPA: C 3 H 7 OH, this IPA is a representative substance contained in cleaning wastewater when semiconductor cleaning wastewater is recovered and pure water is obtained using this as raw water. When this is treated by a thermal decomposition method using Na 2 S 2 O 8 as a persulfate, a decomposition reaction occurs according to the following reaction formula.
[0010]
C 3 H 7 OH + 9Na 2 S 2 O 8 + 9H 2 O → 3CO 2 + 4H 2 O + 9Na 2 SO 4 + 9H 2 SO 4
As is apparent from the above reaction formula, 9 mol of Na 2 S 2 O 8 is required for 1 mol of IPA (3 mol of carbon). In terms of concentration, 59.5 ppm of Na 2 S 2 O 8 (67.5 ppm for K 2 S 2 O 8 ) is required for oxidative decomposition of 1 ppm of TOC. Therefore, it is considered preferable to add about 70 mg / L of persulfate per 1 mg / L of TOC.
[0011]
However, in a normal thermal decomposition treatment, it is preferable to add about 30 ppm Na 2 S 2 O 8 (that is, about 50% of the above theoretical amount) lower than 59.5 ppm to 1 ppm TOC. Treated water is obtained.
[0012]
The present inventors have examined in more detail the required addition amount of persulfate and the TOC ratio of raw water for reducing the TOC in the treated water to several tens of ppb level or less by this thermolysis method. This ratio was not constant, and increased when the TOC concentration in the raw water increased beyond a certain range, and it was confirmed that a large amount of persulfate or the like was required to decompose the unit amount of TOC. As a result of further intensive analysis of this phenomenon, it was found that TOC decomposition by the thermal decomposition method contributes not only persulfate as an oxidizing agent but also dissolved oxygen in raw water.
[0013]
Based on this knowledge, in the thermal decomposition treatment of the TOC in the raw water, the present inventors increased the dissolved oxygen concentration of the raw water in advance, the required addition amount of persulfate, etc. / TOC ratio of the raw water, The present invention has been completed by finding that it can be maintained at the same level as in the case of treatment of raw water with a low concentration TOC, and that the amount of persulfate added can be significantly reduced as compared with the conventional case.
[0014]
The method of present invention as described above, T OC is 4~5ppm or more, relatively effective der the TOC concentration high raw water treatment is, can effectively reduce the necessary amount of such a persulfate.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0016]
FIG. 1 is a system diagram showing an embodiment of an oxygen addition means of the organic matter removal method of the present invention.
[0017]
In the organic matter removal method of the present invention, if necessary, oxygen and persulfate as an oxidizing agent are added to raw water that has been pretreated as necessary, followed by thermal decomposition treatment, followed by deionization treatment, and further required. Post-process accordingly. Note that oxygen may be added before the oxidizing agent is consumed in the thermal decomposition treatment, and may be either before or after the addition of the oxidizing agent.
[0018]
As raw water, generally recovered water from a semiconductor or liquid crystal cleaning process, industrial water, city water, well water and a mixture thereof are used. The recovered water from the semiconductor cleaning process has undergone an appropriate pretreatment process. Thereafter, it is preferably introduced into the thermal decomposition treatment step.
[0019]
As the pretreatment step, any means can be provided according to the raw water quality, and for example, means such as aggregation, filtration, flotation, adsorption, ion exchange, etc. can be adopted. Specific examples of the pretreatment step include the following (i) to (iii). In particular, for the water recovered from the semiconductor cleaning process, after the H 2 O 2 contained in the activated carbon adsorption tower is removed by the pretreatment of the following (iii), the fluorine is removed in the strong anion exchange tower and the thermal decomposition is performed. It is preferable to introduce into the processing step.
[0020]
(i) Agglomeration, pressurized flotation and filtration equipment
(ii) Ion exchange tower
(iii) Activated carbon adsorption tower → anion exchange tower In the present invention, examples of a method for increasing dissolved oxygen concentration by adding oxygen to raw water include the following methods.
[0021]
That is, in general, it is a well-known fact that the saturated dissolved oxygen concentration of water is about 8 ppm at room temperature, but this is a dissolved oxygen in an equilibrium state with an air component that is a mixed system with nitrogen (and other trace components). Concentration. Therefore, if the oxygen partial pressure of the gas in contact with the raw water is increased by some means, the dissolved oxygen concentration can be easily increased to 8 ppm or more. Moreover, since the raw water is pressurized at the outlet side (reaction apparatus side) of the pump that feeds the raw water to the thermal decomposition apparatus, the gas can be dissolved more than the solubility under atmospheric pressure. The dissolved oxygen concentration of the raw water can also be increased by press-fitting oxygen or air into the high-pressure part. Note that oxygen or air does not necessarily have to be completely dissolved in the raw water. That is, oxygen in the gas that remains undissolved in the thermal decomposition apparatus dissolves in water in parallel with consumption of dissolved oxygen during the thermal decomposition reaction, and has an effect of maintaining the dissolved oxygen concentration.
[0022]
Therefore, in the present invention, examples of means for adding oxygen to the raw water include the following methods I-VI. In addition, the following I-VI shows an example of the oxygen addition means based on this invention, and this invention is not limited to these methods at all. I A method of introducing raw water into a treatment tank 1 and bubbling oxygen or oxygen-enriched air as shown in FIG. This raw water is then introduced into the thermal decomposition reactor 3 by the pump 2 after addition of the oxidizing agent.
[0023]
II A method in which raw water is introduced into a gas permeable membrane module 4 and oxygen or oxygen-enriched air is injected by this module 4 as shown in FIG. This raw water is then introduced into the thermal decomposition reactor 3 by the pump 2 after addition of the oxidizing agent.
[0024]
In addition, prior to the above means I and II, it is also possible to reduce the total dissolved gas (especially dissolved nitrogen) concentration in the raw water by vacuum degassing or decompression membrane degassing using a gas permeable membrane module. It is effective in increasing A method of supplying oxygen while decompressing the gas phase portion of the gas permeable membrane module is also suitable as a preliminary treatment. These methods are suitable for processing on the upstream side of the water pump 2 to the reactor 3.
[0025]
III As shown in FIG. 1 (c), a method of injecting oxygen-containing gas such as compressed air into the raw water by a compressor or the like at the outlet side of the pump 2 for introducing the raw water into the thermal decomposition reactor 3.
IV A method in which normal pressure or pressurized air or oxygen is sucked into the piping on the inlet side of the pump 2 for introducing the raw water into the thermal decomposition reactor 3 using an ejector or the like.
V: A method in which the thermal decomposition reaction part is made into a multistage system, and the intermediate part of each stage is opened to the atmosphere to increase dissolved oxygen.
VI A method of performing I or II in the middle part of each stage by the method V above.
[0026]
In the present invention, the amount of oxygen added to the raw water varies depending on the TOC concentration in the raw water and the reduction ratio of the added amount of the oxidant, the target treated water TOC, and other conditions, but IPA is targeted as a TOC component. In the case of raw water having a TOC of 4 ppm or more, it is preferable to set the dissolved oxygen concentration in the raw water so that it can be 8 ppm or more (supersaturated) which is a saturated concentration in equilibrium with the atmosphere. If the dissolved oxygen concentration is less than 8 ppm, the oxidizing agent reducing effect according to the present invention cannot be sufficiently obtained. The amount of oxygen added may be controlled so that the dissolved oxygen concentration of the raw water after the oxygen addition is measured with a dissolved oxygen concentration meter, and based on this measured value, the above-mentioned dissolved oxygen concentration is obtained.
[0027]
In the present invention, as the oxidizing agent, sodium peroxydisulfate (Na 2 S 2 O 8 ), potassium peroxydisulfate (K 2 S 2 O 8 ), ammonium peroxydisulfate ((NH 4 ) 2 S 2 O 8 ), etc. Persulfate and persulfate (H 2 S 2 O 8 ), but persulfates such as Na 2 S 2 O 8 and K 2 S 2 O 8 are preferred.
[0028]
The amount of persulfate added as an oxidizing agent varies depending on the dissolved oxygen concentration in the raw water due to the addition of oxygen, but ranges from 15 to 35 parts by weight as S 2 O 8 2− per 1 part by weight of TOC in the raw water. Is preferable. If the amount of S 2 O 8 2- converted persulfate per 1 part by weight of TOC is less than this range, there will be insufficient oxidant and a lot of TOC will remain. Becomes excessive, and a load is applied to the latter apparatus, causing problems such as elution of the TOC component from the latter apparatus.
[0029]
In the present invention, in particular, to more than the raw water TOC4ppm when intended for IPA as TOC component, after the dissolved oxygen concentration was added to oxygen so that the above 8 ppm, TOC1 parts per S 2 O 8 2- 20 It is preferable to add a persulfate or the like so as to be -35 parts by weight.
[0030]
The heating temperature in the thermal decomposition treatment after the addition of the oxidizing agent in the present invention, and 1 10 to 150 ° C., also pyrolysis reaction time varies depending on the addition amount of the heating temperature and the raw water TOC and the dissolved oxygen concentration and an oxidizing agent In general, it is preferably 1 to 15 minutes.
[0032]
The pH conditions for the heat decomposition treatment do not need to be adjusted, but the TOC is easily decomposed on the acidic side. Normally, when persulfate is added to neutral raw water, H 2 SO 4 is generated by oxidative decomposition of the TOC component or self-decomposition of the oxidizing agent, and the pH becomes acidic, so there is no need for pH adjustment. .
[0033]
The thermally decomposed water is then subjected to a deionization process. Prior to the deionization process, an oxidizing agent removal process is performed as necessary.
[0034]
That is, if excessive oxidizing agent in the thermal decomposition process is contained in the thermal decomposition treated water and flows into the deionization process, the reverse osmosis membrane and ion exchange resin in the deionization process are oxidized and deteriorated, and the deteriorated resin is eluted. Problems such as an increase in TOC and a reduction in device life occur.
[0035]
In the present invention, since the amount of persulfate added as an oxidizing agent is small, the amount of persulfate contained in the heat-decomposed water is small, and therefore, the oxidizing agent removal treatment is not necessarily required. By performing the oxidizing agent removal treatment, it is possible to reliably prevent the oxidizing agent from affecting the deionization process.
[0036]
As this oxidizing agent removal treatment means, a packed tower packed with activated carbon and / or a suitable catalyst can be employed.
[0037]
The activated carbon may be granular, powdery, or fibrous, but granular or fibrous is particularly advantageous in terms of water flow efficiency. There are no particular restrictions on the type of activated carbon (coconut shell, coal, etc.). On the other hand, various catalysts such as commonly used platinum-based and palladium-based catalysts can be used.
[0038]
The purpose of the activated carbon and catalyst can be achieved by using only one of them, but both may be used in some cases. In addition, ultraviolet irradiation can be employed as the oxidant removing means.
[0039]
The oxidizing agent removal treatment condition is such that persulfate remaining in the heat-decomposed treatment water can be removed to a sufficiently low concentration that does not oxidize and degrade the ion exchange resin or reverse osmosis membrane in the subsequent deionization treatment step. The conditions may be sufficient, and are determined as appropriate depending on the concentration of residual persulfate and the like in the heat-decomposed water and the specifications of the oxidant removal step, that is, the shape, particle size, filling amount, etc. of activated carbon and catalyst. For example, when heat-treated water containing 10 ppm of residual Na 2 S 2 O 5 is treated in a 20/40 mesh granular activated carbon packed tower, it is preferable that SV = about 40 hr −1 or less.
[0040]
The heat-decomposed water is usually acidic with a pH of 4 or lower, and therefore, in order to protect such a residual oxidant removing device from corrosion, the pH is adjusted between the heat-decomposing process and the oxidant removing process. It is preferable to introduce the alkali injecting means and neutralize the acidic water and then introduce it into the oxidizing agent removing step.
[0041]
In the present invention, as the deionization treatment means, an ion exchange tower, a reverse osmosis membrane separation device, or the like can be used in combination as necessary. That is, for example, ion exchange tower → reverse osmosis membrane separation device, reverse osmosis membrane separation device → ion exchange tower, or reverse osmosis membrane separation device → reverse osmosis membrane separation device.
[0042]
Further, as post-treatment means, any means can be adopted according to the required quality of treated water, and sterilization by ultraviolet oxidation, TOC decomposition, ion exchange, reverse osmosis membrane separation, microfiltration membrane separation. , Ultrafiltration membrane separators, etc., generally corresponding to the secondary pure water production process (subsystem) in ultrapure water production, that is, low-pressure ultraviolet irradiation device (organic matter decomposition) → mixed bed type ion exchange tower (non- Regenerative ion exchanger: removal of decomposition products) → ultrafiltration membrane separator (separation of fine particles of ion exchange resin flowing out from ion exchange tower) is employed.
[0043]
Specific examples of the deionization process and the post-treatment process include the following (i) to (v).
[0044]
(i) Decarboxylation tower → Anion exchange tower → Reverse osmosis membrane separation device → Secondary pure water production process
(ii) Reverse osmosis membrane separation device → Low pressure reverse osmosis membrane separation device → Secondary pure water production process
(iii) Cation exchange tower → Decarboxylation tower → Anion exchange tower → Reverse osmosis membrane separation device → Secondary pure water production process
(iv) Weak anion exchange tower → Strong cation exchange tower → Strong anion exchange tower → Secondary pure water production process
(v) Reverse osmosis membrane separation device → ion exchange tower (mixed bed type ion exchange tower or (strong cation exchange tower → strong anion exchange tower)) → secondary pure water production process Equipment for these deionization and post-treatment processes Since the TOC component is removed by heat treatment in advance and the amount of persulfate added as an oxidizing agent is small, the load is reduced and a small-capacity small-sized apparatus can be employed.
[0045]
Such a method for removing an organic substance of the present invention is particularly effective when treating water having a relatively high TOC concentration of TOC 4 to 5 ppm or more, and obtains a remarkable effect of reducing the required addition amount of an oxidizing agent. it is Ru can.
[0046]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0047]
Examples 1 and 2 and Comparative Example 1
As a simulation solution of organic waste water, a TOC thermal decomposition experiment was performed using water obtained by dissolving reagent-grade IPA in ultrapure water as raw water and using Na 2 S 2 O 8 as an oxidant.
[0048]
The reaction temperature is 130 ° C., the reaction time is 5 minutes, the raw water TOC is fixed at 9 ppm, and the amount of Na 2 S 2 O 8 injection necessary for reducing the TOC of the treated water to 20 ppb or less under the following dissolved oxygen concentration conditions: The ratio of the amount of Na 2 S 2 O 8 injected relative to the raw water TOC was examined, and the results are shown in Table 1.
[0049]
Dissolved oxygen concentration condition Comparative example 1: No adjustment of dissolved oxygen (dissolved oxygen concentration 7.2 ppm)
Example 1: The dissolved oxygen concentration of raw water was increased to 12 ppm by oxygen bubbling Example 2: The dissolved oxygen concentration of raw water was increased to 24.5 ppm by oxygen bubbling
[Table 1]
Figure 0003858359
[0051]
As is clear from Table 1, the required amount of oxidant can be reduced by increasing the dissolved oxygen concentration of the raw water by bubbling. In particular, in Example 2, the oxidant can be reduced by about 31% compared to Comparative Example 1 in which no dissolved oxygen is treated.
[0052]
Examples 3-6, Comparative Examples 2-5
The actual effluent containing several kinds of organic substances derived from the substrate cleaning chemical solution was used as raw water, and Na 2 S 2 O 8 was used as an oxidant to conduct a thermal decomposition experiment of TOC.
[0053]
When the reaction temperature is 130 ° C., the reaction time is 5 minutes, and the raw water of TOC shown in Table 2 is treated under the following dissolved oxygen concentration conditions, the Na 2 S 2 necessary for reducing the TOC of the treated water to 20 ppb or less. O 8 checks the percentage of the injected amount and Na 2 S 2 O 8 injection amount for the raw water TOC, the results are shown in Table 2.
[0054]
Conditions for dissolved oxygen concentration Comparative Examples 2 to 5: No adjustment of dissolved oxygen (dissolved oxygen concentration of 7.0 ppm)
Examples 3 to 6: 0.5 volume (converted to normal pressure) of pressurized air (0.8 MPa) by a compressor between the outlet of the pressure pump and the reactor was quantitatively injected into 1 volume of raw water (dissolved oxygen supersaturation and did).
[0055]
[Table 2]
Figure 0003858359
[0056]
As is clear from Table 2, by injecting pressurized air and increasing the dissolved oxygen concentration of the raw water, 9 to 45% of the oxidizing agent could be reduced compared to the case of no treatment with dissolved oxygen. In addition, the effect of reducing the required oxidant addition amount by increasing the dissolved oxygen concentration was more remarkable as the raw water TOC concentration was higher, but it was confirmed that the effect was exhibited even for raw water having a low TOC concentration.
[0057]
Example 7
The following raw water was passed through the pure water production system shown in FIG.
[0058]
Raw water: Raw water 1 (IPA dissolved ultrapure water, TOC: 20.2 ppm) and raw water 2 (Atsugi City water, TOC: 0.8 ppm) mixed in a ratio of raw water 1: raw water 2 = 1: 2 (TOC : 7ppm, DO: 7.0ppm)
In the system of the present embodiment, raw water is heated by the heating heat exchanger 11 and then oxygen is injected. Then, Na 2 S 2 O 8 is added as an oxidant, and the thermal decomposition reactor 12 performs thermal decomposition of the TOC. Do. The thermally decomposed water is then cooled in the cooling heat exchanger 13, neutralized NaOH is added, and residual Na 2 S 2 O 8 is removed in the activated carbon tower 14. Subsequently, the water was passed through the reverse osmosis membrane separator 16 and the ion exchange tower 17 sequentially through the flow rate adjusting tank 15 to obtain treated water. The specifications and processing conditions of each part are as follows. In addition, the numerical value in parenthesis in FIG. 2 is the water flow rate of each part. Also, (1) to (5) indicate sampling points.
[0059]
Figure 0003858359
The water quality collected at each part was analyzed, and the results are shown in Table 3.
[0060]
Comparative Example 6
The treatment was performed in the same manner as in Example 7 except that oxygen was not injected, and the results are shown in Table 3.
[0061]
[Table 3]
Figure 0003858359
[0062]
From Table 3, in Example 7 in which oxygen was injected, the amount of Na 2 S 2 O 8 added to 1 part by weight of TOC was about 25 parts by weight in terms of S 2 O 8 2− , and pure water with very little TOC was obtained. It is clear that it is obtained. On the other hand, in Comparative Example 6 in which oxygen was not injected, the TOC was insufficient, so that sufficient TOC removal could not be performed.
[0063]
【The invention's effect】
As described above in detail, according to the organic matter removal method of the present invention, when TOC is thermally decomposed, it is possible to reduce the amount of persulfate added as an oxidizing agent and to perform an efficient treatment at a low cost. it can. In addition, since the amount of persulfate added is small, as a result, the influence on the deionization process after the thermal decomposition treatment due to excess persulfate is prevented, and derived from the added persulfate, etc. Since the concentration of sulfate and sulfuric acid in the thermal decomposition treated water is low, the scale of the apparatus in the deionization process can be reduced.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a system diagram showing an embodiment of an oxygen addition means of an organic matter removal method of the present invention.
FIG. 2 is a flowchart showing a pure water production system according to a seventh embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing tank 2 Pump 3 Thermal decomposition reactor 4 Gas permeable membrane module 11 Heating heat exchanger 12 Thermal decomposition reactor 13 Cooling heat exchanger 14 Activated carbon tower 15 Tank 16 Reverse osmosis membrane separation apparatus 17 Ion exchange tower

Claims (3)

超純水製造工程において、TOCが4〜5ppm或いはそれ以上の原水を酸化剤の存在下で加熱処理して原水中のTOC成分を分解した後、脱イオン処理することにより原水中のTOCを数十ppb以下にまで除去する方法において、
原水に触媒を接触させることなく、
原水に酸素と、酸化剤として過硫酸及び/又は過硫酸塩とを添加した後、110〜150℃に加熱処理する方法であって、
前記酸化剤の添加量が酸素を添加しない場合の必要酸化剤添加量よりも少ない量であることを特徴とする有機物の除去方法。
In the ultrapure water production process, raw water with a TOC of 4-5 ppm or more is heat-treated in the presence of an oxidizing agent to decompose TOC components in the raw water, and then deionized to obtain a number of TOC in the raw water. In the method of removing to less than 10 ppb ,
Without contacting the catalyst with the raw water,
And oxygen raw water, after addition of the persulfate and / or persulfate as an oxidizing agent, a method of heat treatment 110 to 150 ° C.,
The method for removing an organic substance, wherein the addition amount of the oxidant is less than a necessary oxidant addition amount when oxygen is not added .
前記酸化剤として過硫酸及び/又は過硫酸塩を、原水中のTOC1重量部当りS28 2-として15〜35重量部の範囲となるように添加することを特徴とする請求項1に記載の有機物の除去方法。Examples oxidant persulfate and / or persulfate, to claim 1, characterized in that the addition to be in the range of 15 to 35 parts by weight S 2 O 8 2- per TOC1 parts of raw water The organic substance removal method as described. 前記原水のTOCが4ppm以上であることを特徴とする請求項1又は2に記載の有機物の除去方法。The method for removing an organic substance according to claim 1 or 2 , wherein the TOC of the raw water is 4 ppm or more.
JP17965397A 1997-07-04 1997-07-04 How to remove organic matter Expired - Lifetime JP3858359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17965397A JP3858359B2 (en) 1997-07-04 1997-07-04 How to remove organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17965397A JP3858359B2 (en) 1997-07-04 1997-07-04 How to remove organic matter

Publications (2)

Publication Number Publication Date
JPH1119663A JPH1119663A (en) 1999-01-26
JP3858359B2 true JP3858359B2 (en) 2006-12-13

Family

ID=16069544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17965397A Expired - Lifetime JP3858359B2 (en) 1997-07-04 1997-07-04 How to remove organic matter

Country Status (1)

Country Link
JP (1) JP3858359B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560033B2 (en) 2004-10-13 2009-07-14 E.I. Dupont De Nemours And Company Multi-functional oxidizing composition
JP4573043B2 (en) * 2005-09-30 2010-11-04 栗田工業株式会社 Sulfuric acid recycling cleaning system
JP4978275B2 (en) * 2007-03-30 2012-07-18 栗田工業株式会社 Primary pure water production process water treatment method and apparatus
CN111735676A (en) * 2020-06-17 2020-10-02 东莞市依科净化材料科技有限公司 Processing method of sampling cotton swab for TOC (total organic carbon) determination
JP2023000376A (en) * 2021-06-17 2023-01-04 オルガノ株式会社 Pure water production apparatus and pure water production method
CN114560572B (en) * 2022-02-27 2023-04-07 四川大学 Device and method for relieving water oversaturation TDG (time domain gradient) in complex flow field river net cage based on mobile aeration curtain

Also Published As

Publication number Publication date
JPH1119663A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
EP2927197A1 (en) System for treating coal gasification wastewater, and method for treating coal gasification wastewater
US6991733B2 (en) Process for removing organics from ultrapure water
TWI640482B (en) Ultrapure water manufacturing method and ultrapure water manufacturing equipment
EP0634364A1 (en) Pure water manufacturing method
JPH0790219B2 (en) Pure water production apparatus and production method
TW201829321A (en) Water treatment method and apparatus
JP3858359B2 (en) How to remove organic matter
JP4978275B2 (en) Primary pure water production process water treatment method and apparatus
CN101423310A (en) Circulative reuse treatment method of electric ultrapure water
JP3546548B2 (en) Ultrapure water production equipment
JP3721871B2 (en) Production method of ultra pure water
JP4635827B2 (en) Ultrapure water production method and apparatus
TW201427910A (en) Device for treating ammonia-containing wastewater, and method for treating ammonia-containing wastewater
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP2003266097A (en) Ultrapure water making apparatus
JPH0252088A (en) Apparatus for making desalted water
JP3506171B2 (en) Method and apparatus for removing TOC component
JPS62110795A (en) Device for producing high-purity water
JPH11226569A (en) Apparatus for removing organic substance in water and apparatus for producing ultrapure water
JP3259557B2 (en) How to remove organic matter
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JPH09122690A (en) Method for decomposing organic nitrogen and water treatment apparatus
JP3794113B2 (en) Method for removing TOC component and dissolved oxygen
CN112239264B (en) Method for treating carbon-containing organic matters in waste brine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6