JPH1119663A - Removing method for organic matter - Google Patents

Removing method for organic matter

Info

Publication number
JPH1119663A
JPH1119663A JP17965397A JP17965397A JPH1119663A JP H1119663 A JPH1119663 A JP H1119663A JP 17965397 A JP17965397 A JP 17965397A JP 17965397 A JP17965397 A JP 17965397A JP H1119663 A JPH1119663 A JP H1119663A
Authority
JP
Japan
Prior art keywords
raw water
toc
water
oxidizing agent
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17965397A
Other languages
Japanese (ja)
Other versions
JP3858359B2 (en
Inventor
Chikao Tanaka
親男 田中
Takaaki Sato
貴昭 佐藤
Hiroshi Morita
博志 森田
Kashu Obata
嘉修 小畠
Ryohei Miwa
良平 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Nippon Electric Kagoshima Ltd
NEC Kagoshima Ltd
Original Assignee
Kurita Water Industries Ltd
Nippon Electric Kagoshima Ltd
NEC Kagoshima Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Nippon Electric Kagoshima Ltd, NEC Kagoshima Ltd filed Critical Kurita Water Industries Ltd
Priority to JP17965397A priority Critical patent/JP3858359B2/en
Publication of JPH1119663A publication Critical patent/JPH1119663A/en
Application granted granted Critical
Publication of JP3858359B2 publication Critical patent/JP3858359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the amt. of an oxidizing agent by adding oxygen and persulfuric acid and/or persulfate as the oxidizing agent to raw water, then subjecting the water to heat treatment, in the case that total org. carbon components in the raw water are decomposed by heat-treating the raw water in the presence of the oxidizing agent, then subjecting the water to a deionizing treatment. SOLUTION: At the time of removing the total org. carbon TOC at a production stage, etc., of ultrapure water, the raw water subjected to a pre-treatment is introduced into a treating vessel 1, and after bubbling the oxygen or an oxygen rich air, the water is introduced into a thermally decomposing reactor 3 with a pump 2 after adding the oxidizing agent. The addition of the persulfate, etc., as the oxidizing agent is preferably within the range of 15-35 pts.wt. as S2 O8 <2-> per 1 pts.wt. TOC in the raw water. The oxygen is added to the raw water having >=4 ppm TOC when IPA is an object matter as the TOC component so that a dissolved oxygen concn. may be >=8 ppm, then the persulfate, etc., are preferably added so that S2 O8 <2-> concn. per 1 pts.wt. TOC may be 20-35 pts.wt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機物の除去方法に
係り、特に、超純水又は超純水製造工程におけるTOC
(全有機体炭素)除去効率を大幅に改善した有機物の除
去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing organic substances, and more particularly, to TOC in ultrapure water or ultrapure water production process.
(Total organic carbon) The present invention relates to a method for removing organic substances with greatly improved removal efficiency.

【0002】[0002]

【従来の技術】主に半導体基板や液晶基板の洗浄用に用
いられる超純水の製造において、TOCの除去は他の不
純物(微粒子、イオンなど)の除去と同様に極めて重要
である。また、特に、半導体基板や液晶基板の洗浄、リ
ンス排水の回収・再利用を行う場合、バクテリアファウ
リングから処理装置を守り、安定運転を続ける上でも、
他のユニット装置による不純物除去の前段でTOCを低
減しておくことは、極めて重要である。
2. Description of the Related Art In the production of ultrapure water used mainly for cleaning semiconductor substrates and liquid crystal substrates, the removal of TOC is very important as is the removal of other impurities (fine particles, ions, etc.). In addition, especially when cleaning semiconductor substrates and liquid crystal substrates and collecting and reusing rinse wastewater, protecting the processing equipment from bacterial fouling and maintaining stable operation are also important.
It is very important to reduce the TOC before removing impurities by another unit device.

【0003】このため、目標水準までTOCを低減させ
た処理水を得るべく、2段式逆浸透膜分離処理やイオン
交換塔を併用した低圧紫外線酸化処理、生物処理などが
行われている。また、処理コストを低減し、より一層の
TOC低減を図るために、本出願人により、酸化剤を併
用した加熱分解型のTOC除去方法が出願されている
(国際公開W094/18127号公報)。本方式によ
ると、数ppmオーダーのTOCを含む原水を1段階の
処理で数ppb−TOCにまで高度に処理することがで
きる。本出願人はまた、このTOC除去法で用いる酸化
剤としては過硫酸又は過硫酸塩が最適であること、そし
てその添加量は原水中のTOC1重量部当たりS2 8
2- 換算で20〜45重量部とするのが適当であること
を確認し、先に特許出願を行った(特開平8−1739
78号公報)。
[0003] For this reason, in order to obtain treated water whose TOC is reduced to a target level, a two-stage reverse osmosis membrane separation treatment, a low-pressure ultraviolet oxidation treatment using an ion exchange tower in combination, a biological treatment and the like are performed. In addition, in order to reduce the processing cost and to further reduce the TOC, the present applicant has filed an application for a thermal decomposition type TOC removal method using an oxidizing agent (WO094 / 18127). According to this method, raw water containing TOC on the order of several ppm can be highly processed to several ppb-TOC in a single-stage process. Applicant also concluded that persulfuric acid or persulfate is the most suitable oxidizing agent to be used in this TOC removal method, and that the amount of S 2 O 8 per 1 part by weight of TOC in raw water
It has been confirmed that it is appropriate to use 20 to 45 parts by weight in terms of 2- , and a patent application was filed earlier (Japanese Patent Application Laid-Open No. 8-1739).
No. 78).

【0004】この加熱分解法によるTOCの除去方式に
おいては、 (a) 簡単な装置でTOCを低レベルにまで除去でき
る。 (b) 原水のTOC濃度に応じて、酸化剤添加量を調整
するだけで対応できる。 (c) 加熱工程があるので、菌の繁殖を防止し、また、
栄養源である有機物が減少し、バクテリアファウリング
を軽減できる。といった優れた利点がある。
[0004] In this TOC removal method by the thermal decomposition method, (a) TOC can be removed to a low level with a simple device. (b) According to the TOC concentration of the raw water, it can be dealt with only by adjusting the amount of the oxidizing agent added. (c) Since there is a heating step, it prevents the growth of bacteria,
Organic matter as a nutrient source is reduced, and bacterial fouling can be reduced. There is such an excellent advantage.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の加熱分解法では、TOC1ppm程度の原水を処理
する場合にはさほど問題とはならないが、TOC4〜5
ppm或いはそれ以上の原水を対象とした場合には、酸
化剤添加量を相当に多くしないと目標水質までTOCを
低減することができなかった。
However, in the above-mentioned conventional thermal decomposition method, when treating raw water having a TOC of about 1 ppm, there is not much problem.
In the case of raw water of ppm or more, TOC could not be reduced to the target water quality unless the amount of the oxidizing agent was considerably increased.

【0006】この方法で添加された酸化剤、例えば、過
硫酸ナトリウムは、TOC成分の分解反応後、硫酸と硫
酸ナトリウムとなって存在するため、加熱分解装置の後
段で除去する必要がある。このため、多量の酸化剤を必
要とすることは、薬剤コストの高騰のみならず、後段設
備の負荷の増大の問題も引き起こすこととなる。
[0006] The oxidizing agent added by this method, for example, sodium persulfate, is present as sulfuric acid and sodium sulfate after the decomposition reaction of the TOC component. Therefore, the need for a large amount of the oxidizing agent causes not only a rise in the cost of the chemical, but also a problem of an increase in the load on the downstream equipment.

【0007】本発明は上記従来の問題点を解決し、原水
を酸化剤の存在下で加熱処理して原水中のTOC成分を
分解した後、脱イオン処理することにより原水中の有機
物を除去する方法において、酸化剤の使用量を大幅に低
減する有機物の除去方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and heat-treats raw water in the presence of an oxidizing agent to decompose the TOC component in the raw water, followed by deionization to remove organic substances in the raw water. In a method, an object of the present invention is to provide a method for removing organic substances, which greatly reduces the amount of an oxidizing agent used.

【0008】[0008]

【課題を解決するための手段】本発明の有機物の除去方
法は、原水を酸化剤の存在下で加熱処理して原水中のT
OC成分を分解した後、脱イオン処理することにより原
水中の有機物を除去する方法において、原水に酸素と、
酸化剤として過硫酸及び/又は過硫酸塩とを添加した
後、加熱処理することを特徴とする。なお、以下におい
て、過硫酸塩と過硫酸とを「過硫酸塩等」と称する場合
がある。
According to the method for removing organic substances of the present invention, raw water is heat-treated in the presence of an oxidizing agent to remove T from raw water.
In a method of removing organic matter in raw water by deionizing after decomposing an OC component, oxygen is added to raw water,
After adding persulfuric acid and / or persulfate as an oxidizing agent, heat treatment is performed. In the following, persulfate and persulfate may be referred to as “persulfate or the like”.

【0009】原水中のTOC成分がすべてイソプロピル
アルコール(IPA:C3 7 OH,このIPAは、半
導体洗浄廃水を回収し、これを原水として純水を得る場
合に洗浄廃水に含まれている代表的な物質である。)で
あることを想定し、これを過硫酸塩としてNa2 2
8 を用いて加熱分解法で処理する場合、次のような反応
式に従って分解反応が起こる。
When the TOC component in the raw water is all isopropyl alcohol (IPA: C 3 H 7 OH, this IPA is typically used for recovering semiconductor cleaning wastewater and obtaining pure water using the same as raw water, which is included in the cleaning wastewater. It is assumed that this is a typical substance), and this is converted into Na 2 S 2 O as a persulfate.
In the case of treating by the thermal decomposition method using 8 , a decomposition reaction occurs according to the following reaction formula.

【0010】C3H7OH+9Na2S2O8+9H2 O →3CO2+4H2 O
+9Na2SO4 +9H2 SO4 上記反応式より明らかなように、1モルのIPA(3モ
ルの炭素)に対して9モルのNa2 2 8 が必要であ
る。これを濃度で表すと、1ppmのTOCの酸化分解
には59.5ppmのNa2 2 8 (K2 2 8
あれば67.5ppm)を要することとなる。従って、
TOC1mg/L当り、過硫酸塩70mg/L程度の添
加が好ましいと考えられている。
C 3 H 7 OH + 9Na 2 S 2 O 8 + 9H 2 O → 3CO 2 + 4H 2 O
+ 9Na 2 SO 4 + 9H 2 SO 4 As is clear from the above reaction formula, 9 mol of Na 2 S 2 O 8 is required for 1 mol of IPA (3 mol of carbon). In terms of the concentration, oxidative decomposition of 1 ppm of TOC requires 59.5 ppm of Na 2 S 2 O 8 (67.5 ppm for K 2 S 2 O 8 ). Therefore,
It is considered that addition of about 70 mg / L of persulfate per 1 mg / L of TOC is preferable.

【0011】しかしながら、通常の加熱分解処理におい
ては、1ppmのTOCに対し、59.5ppmより低
いおおよそ30ppm程度のNa2 2 8 (即ち、上
述の理論量の50%程度)を添加すれば、良好な処理水
が得られる。
However, in the ordinary thermal decomposition treatment, it is necessary to add about 30 ppm of Na 2 S 2 O 8 lower than 59.5 ppm to 1 ppm of TOC (ie, about 50% of the above theoretical amount). And good treated water can be obtained.

【0012】本発明者らは、この加熱分解法により、処
理水中のTOCを数十ppbレベル以下に低減させるた
めの過硫酸塩等の必要添加量/原水のTOC比について
より詳細に検討を行ったところ、この比は一定ではな
く、原水中のTOC濃度がある範囲以上に上昇すると増
加し、単位量のTOCを分解するために多くの過硫酸塩
等の添加が必要になることを確認した。この現象につい
て、更に鋭意解析を行った結果、加熱分解法によるTO
C分解では、酸化剤としての過硫酸塩等だけでなく原水
中の溶存酸素も寄与していることを見出した。
The present inventors conducted a more detailed study on the required addition amount of persulfate and the like / TOC ratio of raw water to reduce the TOC in the treated water to a level of several tens of ppb or less by this thermal decomposition method. However, it was confirmed that this ratio was not constant, but increased when the TOC concentration in the raw water rose above a certain range, and that a large amount of persulfate and the like had to be added to decompose the unit amount of TOC. . As a result of further intensive analysis of this phenomenon, the TO
In the C decomposition, it was found that not only persulfate as an oxidizing agent but also dissolved oxygen in raw water contributed.

【0013】この知見をもとに、本発明者らは、原水中
のTOCの加熱分解処理においては、原水の溶存酸素濃
度を予め高めることによって、過硫酸塩等の必要添加量
/原水のTOC比を、低濃度TOCの原水の処理の場合
と同等に保つことができ、従来に比べ過硫酸塩等の添加
量を大幅に低減できることを見出し、本発明を完成し
た。
Based on this finding, the present inventors have found that in the thermal decomposition treatment of TOC in raw water, the required added amount of persulfate or the like / TOC of raw water is increased by increasing the dissolved oxygen concentration of the raw water in advance. The present inventors have found that the ratio can be kept equal to that in the treatment of raw water having a low concentration of TOC, and that the amount of persulfate and the like can be significantly reduced as compared with the prior art, thus completing the present invention.

【0014】このような本発明の方法は、特に、TOC
が4〜5ppm或いはそれ以上の、比較的TOC濃度の
高い原水の処理に有効であるが、TOC1〜2ppm程
度の原水であっても過硫酸塩等の必要添加量を有効に低
減できる。
The method of the present invention is particularly suitable for the TOC
Is effective for treating raw water having a relatively high TOC concentration of 4 to 5 ppm or more, but even with raw water having a TOC of about 1 to 2 ppm, the required amount of persulfate and the like can be effectively reduced.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態を図面
を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】図1は本発明の有機物の除去方法の酸素添
加手段の実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the oxygen adding means in the organic matter removing method of the present invention.

【0017】本発明の有機物の除去方法においては、必
要に応じて前処理を施した原水に、酸素と、酸化剤とし
て過硫酸塩等を添加して加熱分解処理した後、脱イオン
処理し、更に必要に応じて後処理する。なお、酸素は、
加熱分解処理で酸化剤が消費される前に添加すれば良
く、酸化剤添加の前後どちらでも良い。
In the organic matter removing method of the present invention, oxygen and a persulfate as an oxidizing agent are added to raw water which has been subjected to pretreatment, if necessary, followed by thermal decomposition treatment, followed by deionization treatment. Further post-processing is performed as necessary. In addition, oxygen is
It may be added before the oxidizing agent is consumed in the thermal decomposition treatment, and may be added before or after the oxidizing agent is added.

【0018】原水としては、一般に半導体又は液晶洗浄
工程からの回収水、工水、市水、井水及びこれらを混合
したものが用いられ、半導体洗浄工程からの回収水につ
いては、適当な前処理工程を経た後、加熱分解処理工程
に導入するのが好ましい。
As the raw water, recovered water from the semiconductor or liquid crystal cleaning process, industrial water, city water, well water and a mixture thereof are generally used. For the recovered water from the semiconductor cleaning process, an appropriate pretreatment is used. After passing through the process, it is preferable to introduce into the thermal decomposition process.

【0019】前処理工程としては、原水水質に応じて任
意の手段を設けることができ、例えば、凝集、濾過、浮
上、吸着、イオン交換などの手段を採用することができ
る。具体的な前処理工程としては、次の(i) 〜(iii) が
挙げられる。特に、半導体洗浄工程からの回収水につい
ては、下記(iii) の前処理により、活性炭吸着塔で含有
されるH2 2 を除去した後、強アニオン交換塔でフッ
素の除去を行って加熱分解処理工程に導入するのが好ま
しい。
As the pretreatment step, any means can be provided according to the quality of the raw water, and for example, means such as coagulation, filtration, flotation, adsorption, and ion exchange can be employed. Specific pretreatment steps include the following (i) to (iii). In particular, with respect to the recovered water from the semiconductor washing step, after the H 2 O 2 contained in the activated carbon adsorption tower is removed by the pretreatment of the following (iii), fluorine is removed in the strong anion exchange tower to perform thermal decomposition. Preferably, it is introduced into the processing step.

【0020】(i) 凝集・加圧浮上・濾過装置 (ii) イオン交換塔 (iii) 活性炭吸着塔→アニオン交換塔 本発明において、原水に酸素を添加して、溶存酸素濃度
を高める方法としては、例えば、次のような方法が挙げ
られる。
(I) Coagulation / pressure flotation / filtration device (ii) Ion exchange column (iii) Activated carbon adsorption column → anion exchange column In the present invention, a method of adding oxygen to raw water to increase the dissolved oxygen concentration is as follows. For example, the following method can be used.

【0021】即ち、一般に、水の飽和溶存酸素濃度は常
温で8ppm程度であることは周知の事実であるが、こ
れは窒素(及び他の微量成分)との混合系である空気成
分と平衡状態における溶存酸素濃度である。従って、何
らかの手段によって原水と接する気体の酸素分圧を高め
れば、溶存酸素濃度は8ppm以上に容易に高めること
ができる。また、加熱分解装置へ原水を送水するポンプ
の出口側(反応装置側)では、原水は加圧されているの
で、大気圧下での溶解度以上に気体を溶解することがで
きる。この高圧部に、酸素又は空気を圧入することによ
っても、原水の溶存酸素濃度を高めることができる。な
お、酸素又は空気は必ずしも完全に原水中に溶解してい
る必要はない。即ち、加熱分解装置内で未溶解のまま残
る気体中の酸素は、加熱分解反応中の溶存酸素の消費と
並行して水に溶解していき、溶存酸素濃度を保つ効果を
持つ。
That is, it is a well-known fact that the saturated dissolved oxygen concentration of water is generally about 8 ppm at room temperature, which is in equilibrium with the air component which is a mixed system with nitrogen (and other trace components). Is the dissolved oxygen concentration at Therefore, if the oxygen partial pressure of the gas in contact with the raw water is increased by any means, the dissolved oxygen concentration can be easily increased to 8 ppm or more. In addition, since the raw water is pressurized on the outlet side (reactor side) of the pump that feeds the raw water to the thermal decomposition apparatus, the gas can be dissolved to a degree higher than the solubility under atmospheric pressure. By injecting oxygen or air into the high-pressure section, the dissolved oxygen concentration of the raw water can also be increased. Note that oxygen or air does not necessarily need to be completely dissolved in raw water. That is, the oxygen in the gas remaining undissolved in the thermal decomposition apparatus is dissolved in water in parallel with the consumption of dissolved oxygen during the thermal decomposition reaction, and has the effect of maintaining the dissolved oxygen concentration.

【0022】従って、本発明において、原水に酸素を添
加する手段としては、例えば、次のI−VIの方法が挙げ
られる。なお、下記I−VIは、本発明に係る酸素添加手
段の一例を示すものであり、本発明は何らこれらの方法
に限定されるものではない。 I 図1(a)に示す如く、原水を処理槽1に導入し
て、酸素又は酸素富化空気をバブリングする方法。この
原水は、その後ポンプ2により、酸化剤添加後、加熱分
解反応器3に導入される。
Therefore, in the present invention, as a means for adding oxygen to raw water, for example, the following method I-VI can be mentioned. The following I-VI shows an example of the oxygen adding means according to the present invention, and the present invention is not limited to these methods. I A method of introducing raw water into the treatment tank 1 and bubbling oxygen or oxygen-enriched air as shown in FIG. This raw water is then introduced into the thermal decomposition reactor 3 by the pump 2 after adding the oxidizing agent.

【0023】II 図1(b)に示す如く、原水を気体透
過膜モジュール4に導入し、このモジュール4で酸素又
は酸素富化空気を注入する方法。この原水は、その後ポ
ンプ2により、酸化剤添加後、加熱分解反応器3に導入
される。
II. As shown in FIG. 1 (b), a method in which raw water is introduced into a gas permeable membrane module 4 and oxygen or oxygen-enriched air is injected into the module 4. This raw water is then introduced into the thermal decomposition reactor 3 by the pump 2 after adding the oxidizing agent.

【0024】なお、上記I,IIの手段に先立ち、真空脱
気や気体透過膜モジュールによる減圧膜脱気等で、原水
中の全溶存気体(特に溶存窒素)濃度を減少させておく
ことも、酸素溶解効率を高める上で効果的である。ま
た、気体透過膜モジュールの気相部を減圧しつつ酸素を
供給する方法も、予備処理として適当である。これらの
方法は、反応器3への送水ポンプ2の上流側での処理に
適当である。
Prior to the means I and II, the concentration of all dissolved gases (particularly dissolved nitrogen) in the raw water may be reduced by vacuum degassing or degassing with a gas permeable membrane module. It is effective in increasing the oxygen dissolving efficiency. Further, a method of supplying oxygen while depressurizing the gas phase portion of the gas permeable membrane module is also suitable as the preliminary treatment. These methods are suitable for processing upstream of the water pump 2 to the reactor 3.

【0025】III 図1(c)に示す如く、原水を加熱
分解反応器3に導入するポンプ2の出口側でコンプレッ
サー等で原水に圧縮空気等の酸素含有ガスを注入する方
法。 IV 原水を加熱分解反応器3に導入するポンプ2の入口
側の配管にエゼクター等を使って常圧又は加圧の空気又
は酸素を吸い込ませる方法。 V 加熱分解反応部を多段式にし、各段の中間部を大気
開放型にして溶存酸素を増加させる方法。 VI 上記Vの方法で、各段の中間部において前記I又は
IIを行う方法。
III As shown in FIG. 1C, a method of injecting an oxygen-containing gas such as compressed air into the raw water by a compressor or the like at the outlet side of a pump 2 for introducing the raw water into the thermal decomposition reactor 3. IV A method in which air or oxygen at normal pressure or pressure is sucked into the piping on the inlet side of the pump 2 for introducing raw water into the thermal decomposition reactor 3 using an ejector or the like. V A method in which the thermal decomposition reaction section is multi-staged, and the intermediate portion of each stage is open to the atmosphere to increase dissolved oxygen. VI In the above-mentioned V, the above-mentioned I or
How to do II.

【0026】本発明において、原水への酸素の添加量
は、原水中のTOC濃度や酸化剤添加量の低減割合、目
標とする処理水TOC、その他の諸条件により異なる
が、TOC成分としてIPAを対象とした時のTOC4
ppm以上の原水の場合、原水中の溶存酸素濃度を大気
との平衡状態の飽和濃度である8ppm以上(過飽和)
とすることができるような添加量とするのが好ましい。
この溶存酸素濃度が8ppm未満では、本発明による酸
化剤低減効果が十分に得られない。酸素添加量は、酸素
添加後の原水の溶存酸素濃度を溶存酸素濃度計で測定
し、この測定値に基いて上記溶存酸素濃度となるように
制御してもよい。
In the present invention, the amount of oxygen added to the raw water varies depending on the TOC concentration in the raw water, the reduction ratio of the amount of the oxidizing agent added, the target treated water TOC, and other various conditions. TOC4 when targeted
In the case of raw water of not less than ppm, the dissolved oxygen concentration in the raw water should be 8 ppm or more, which is the saturated concentration in equilibrium with the atmosphere (supersaturated).
It is preferable to set the addition amount so that
If the dissolved oxygen concentration is less than 8 ppm, the effect of reducing the oxidizing agent according to the present invention cannot be sufficiently obtained. The amount of oxygen added may be measured by measuring the dissolved oxygen concentration of the raw water after oxygen addition with a dissolved oxygen concentration meter, and controlling the dissolved oxygen concentration based on the measured value.

【0027】本発明において、酸化剤としては、パーオ
キシ二硫酸ナトリウム(Na2 28 )、パーオキシ
二硫酸カリウム(K2 2 8 )、パーオキシ二硫酸ア
ンモニウム((NH4 2 2 8 )等の過硫酸塩や過
硫酸(H2 2 8 )が挙げられるが、Na2
2 8 ,K2 2 8 などの過硫酸塩が好適である。
In the present invention, oxidizing agents include sodium peroxydisulfate (Na 2 S 2 O 8 ), potassium peroxydisulfate (K 2 S 2 O 8 ), and ammonium peroxydisulfate ((NH 4 ) 2 S 2 O). 8) persulfates or persulfuric acid (H 2 S 2 O 8) can be mentioned, such as but, Na 2 S
Persulfates such as 2 O 8 and K 2 S 2 O 8 are preferred.

【0028】酸化剤としての過硫酸塩等の添加量は、上
記酸素添加による原水中の溶存酸素濃度等によっても異
なるが、原水中のTOC1重量部当りS2 8 2- として
15〜35重量部の範囲とするのが好ましい。TOC1
重量部当りのS2 8 2- 換算の過硫酸塩等の添加量がこ
の範囲よりも少ないと、酸化剤が不足し、TOCが多く
残留し、逆にこの範囲より多いと、酸化剤が過剰とな
り、後段の装置に負荷をかけ、後段装置からTOC成分
を溶出させるなどの不具合を生じる。
The addition amount of persulfate or the like as an oxidizing agent varies depending on the concentration of dissolved oxygen in the raw water due to the above-mentioned addition of oxygen, but is 15 to 35 weight% as S 2 O 8 2- per 1 part by weight of TOC in the raw water. The range is preferably in the range of parts. TOC1
If the added amount of persulfate or the like in terms of S 2 O 8 2- per part by weight is less than this range, the oxidizing agent becomes insufficient, and a large amount of TOC remains. It becomes excessive and places a load on the downstream device, causing problems such as elution of the TOC component from the downstream device.

【0029】本発明では、特に、TOC成分としてIP
Aを対象とした場合のTOC4ppm以上の原水に対
し、溶存酸素濃度が8ppm以上となるように酸素を添
加した後、TOC1重量部当りS2 8 2- 20〜35重
量部となるように過硫酸塩等を添加するのが好ましい。
In the present invention, in particular, IP as a TOC component
After adding oxygen so that the dissolved oxygen concentration becomes 8 ppm or more to the raw water having a TOC of 4 ppm or more in the case of A, the amount of S 2 O 8 2 per 1 part by weight of TOC is adjusted to 20 to 35 parts by weight. It is preferable to add a sulfate or the like.

【0030】本発明において酸化剤添加後の加熱分解処
理における加熱温度は、90℃以上、特に110〜15
0℃とするのが好ましく、また、加熱分解反応時間は、
加熱温度や原水TOCや溶存酸素濃度及び酸化剤の添加
量によっても異なるが、通常の場合1〜15分とするの
が好ましい。
In the present invention, the heating temperature in the thermal decomposition treatment after the addition of the oxidizing agent is 90 ° C. or higher, particularly 110 to 15 ° C.
The temperature is preferably 0 ° C., and the heat decomposition reaction time is as follows:
Although it depends on the heating temperature, the raw water TOC, the dissolved oxygen concentration, and the amount of the oxidizing agent added, it is usually preferably 1 to 15 minutes.

【0031】この加熱分解処理に際しては、触媒として
白金担持触媒、白金メッキ触媒等の白金系の酸化触媒に
接触させても良い。
In the thermal decomposition treatment, a platinum-based oxidation catalyst such as a platinum-supported catalyst or a platinum plating catalyst may be brought into contact with the catalyst.

【0032】なお、加熱分解処理のpH条件について
は、特に調整の必要はないが、酸性側の方がTOCが分
解し易い。通常、中性の原水に過硫酸塩等を添加すると
TOC成分の酸化分解もしくは酸化剤の自己分解によ
り、H2 SO4 が生成され、pHは酸性側となるので、
特にpH調整の必要はない。
It should be noted that although there is no particular need to adjust the pH conditions of the heat decomposition treatment, TOC is more easily decomposed on the acidic side. Usually, when persulfate or the like is added to neutral raw water, H 2 SO 4 is generated due to oxidative decomposition of the TOC component or self-decomposition of the oxidizing agent, and the pH becomes acidic.
There is no particular need for pH adjustment.

【0033】加熱分解処理水は、次いで、脱イオン処理
に供するが、この脱イオン処理に先立ち、必要に応じ
て、酸化剤除去処理を行う。
The thermally decomposed water is then subjected to a deionization treatment. Prior to the deionization treatment, an oxidizing agent removal treatment is performed as necessary.

【0034】即ち、加熱分解工程における過剰の酸化剤
が加熱分解処理水中に含有されて脱イオン処理工程に流
入すると、脱イオン処理工程の逆浸透膜やイオン交換樹
脂を酸化劣化させ、劣化した樹脂の溶出によるTOCの
増加や装置寿命の低減等の問題を生じる。
That is, when the excess oxidizing agent in the pyrolysis process is contained in the pyrolysis water and flows into the deionization process, the reverse osmosis membrane and the ion exchange resin in the deionization process are oxidatively degraded, and the degraded resin is degraded. This causes problems such as an increase in TOC and a reduction in the life of the apparatus due to elution of the methane.

【0035】本発明においては、酸化剤としての過硫酸
塩等の添加量が少ないことから、加熱分解処理水中に含
まれる過硫酸塩等の量は少なく、従って、酸化剤除去処
理は必ずしも必要とされないが、酸化剤除去処理を行う
ことにより、酸化剤による脱イオン処理工程への影響を
確実に防止することができる。
In the present invention, since the amount of persulfate and the like as an oxidizing agent is small, the amount of persulfate and the like contained in the water subjected to the thermal decomposition treatment is small. Although not performed, the effect of the oxidizing agent on the deionization process can be reliably prevented by performing the oxidizing agent removing process.

【0036】この酸化剤除去処理手段としては、活性炭
及び/又は適当な触媒を充填した充填塔を採用すること
ができる。
As the oxidizing agent removing means, a packed column filled with activated carbon and / or a suitable catalyst can be employed.

【0037】活性炭としては、粒状、粉状、繊維状のい
ずれでも良いが、特に粒状か繊維状のものが通水効率の
面で有利である。活性炭のタイプ(ヤシガラ系、石炭
系、その他)には特に制限はない。一方、触媒として
は、一般に用いられている白金系、パラジウム系のもの
など、多様なものを用いることができる。
The activated carbon may be granular, powdery or fibrous, but granular or fibrous ones are particularly advantageous in terms of water flow efficiency. There is no particular limitation on the type of activated carbon (coconut-based, coal-based, etc.). On the other hand, as the catalyst, various catalysts such as generally used platinum-based catalyst and palladium-based catalyst can be used.

【0038】上記活性炭及び触媒は、そのいずれか一方
を用いるだけでも目的は達せられるが、場合によって、
両者を併用しても良い。その他、酸化剤除去手段として
は、紫外線照射も採用可能である。
The above-mentioned activated carbon and catalyst can attain the object by using only one of them, but depending on the case,
You may use both together. In addition, as the oxidizing agent removing means, ultraviolet irradiation can be employed.

【0039】酸化剤除去処理条件は、加熱分解処理水中
に残留する過硫酸塩等が、後段の脱イオン処理工程のイ
オン交換樹脂や逆浸透膜を酸化劣化させない程度の、十
分低濃度にまで除去できるような条件であれば良く、加
熱分解処理水中の残留過硫酸塩等の濃度や、酸化剤除去
工程の仕様、即ち、活性炭や触媒の形状、粒径、充填量
等によって適宜決定される。例えば、10ppmの残留
Na2 2 5 を含む加熱分解処理水を、20/40メ
ッシュの粒状活性炭充填塔で処理する場合、SV=40
hr-1程度以下とするのが好ましい。
The oxidizing agent removal treatment conditions are such that persulfate and the like remaining in the heat decomposition treatment water are removed to a sufficiently low concentration that the ion exchange resin and the reverse osmosis membrane in the subsequent deionization treatment step are not oxidatively degraded. Any condition can be used as long as it is possible, and it is appropriately determined according to the concentration of the residual persulfate and the like in the heat decomposition water and the specification of the oxidizing agent removal step, that is, the shape, particle size, filling amount, etc. of the activated carbon and the catalyst. For example, when pyrolysis water containing 10 ppm of residual Na 2 S 2 O 5 is treated in a 20/40 mesh granular activated carbon packed tower, SV = 40.
It is preferable to be about hr -1 or less.

【0040】なお、加熱分解処理水は、通常pH4以下
の酸性であるので、このような残留酸化剤除去装置を腐
食から保護するために、加熱分解処理工程と酸化剤除去
工程との間にpH調整のためのアルカリ注入手段を設
け、酸性水を中和した後、酸化剤除去工程に導入するの
が好ましい。
Since the heat-decomposed water is usually acidic with a pH of 4 or less, in order to protect such a residual oxidizing agent removing apparatus from corrosion, a pH between the heat-decomposing step and the oxidizing agent removing step is reduced. It is preferable to provide an alkali injection means for adjustment, neutralize the acidic water, and then introduce it to the oxidizing agent removing step.

【0041】本発明において、脱イオン処理手段として
は、イオン交換塔、逆浸透膜分離装置等を必要に応じて
組み合せて用いることができる。即ち、例えば、イオン
交換塔→逆浸透膜分離装置、逆浸透膜分離装置→イオン
交換塔、或いは、逆浸透膜分離装置→逆浸透膜分離装置
とすることができる。
In the present invention, an ion exchange tower, a reverse osmosis membrane separation device, or the like can be used in combination as a deionization means as required. That is, for example, an ion exchange tower → a reverse osmosis membrane separator, a reverse osmosis membrane separator → an ion exchange tower, or a reverse osmosis membrane separator → a reverse osmosis membrane separator can be used.

【0042】また、後処理手段としては、要求される処
理水水質に応じて、任意の手段を採用することができ、
紫外線酸化による殺菌、TOC分解、或いは、イオン交
換、逆浸透膜分離、精密濾過膜分離、限外濾過膜分離装
置等、一般には超純水製造における二次純水製造工程
(サブシステム)に相当する工程、即ち、低圧紫外線照
射装置(有機物分解)→混床式イオン交換塔(非再生型
イオン交換器:分解生成物の除去)→限外濾過膜分離装
置(イオン交換塔から流出するイオン交換樹脂の微粒子
の分離)が採用される。
As the post-treatment means, any means can be adopted according to the required quality of the treated water.
Sterilization by UV oxidation, TOC decomposition, or ion exchange, reverse osmosis membrane separation, microfiltration membrane separation, ultrafiltration membrane separation equipment, etc., generally equivalent to the secondary pure water production process (subsystem) in ultrapure water production Process, ie, low-pressure ultraviolet irradiation equipment (organic matter decomposition) → mixed-bed ion exchange tower (non-regenerating ion exchanger: removal of decomposition products) → ultrafiltration membrane separation equipment (ion exchange flowing out of the ion exchange tower) (Separation of resin fine particles) is employed.

【0043】脱イオン処理工程及び後処理工程の具体例
としては、次の(i) 〜(v) が挙げられる。
Specific examples of the deionization step and the post-treatment step include the following (i) to (v).

【0044】(i) 脱炭酸塔→アニオン交換塔→逆浸透
膜分離装置→二次純水製造工程 (ii) 逆浸透膜分離装置→低圧逆浸透膜分離装置→二次
純水製造工程 (iii) カチオン交換塔→脱炭酸塔→アニオン交換塔→逆
浸透膜分離装置→二次純水製造工程 (iv) 弱アニオン交換塔→強カチオン交換塔→強アニオ
ン交換塔→二次純水製造工程 (v) 逆浸透膜分離装置→イオン交換塔(混床式イオン
交換塔又は(強カチオン交換塔→強アニオン交換塔))
→二次純水製造工程 これら脱イオン処理工程及び後処理工程の装置は予め加
熱処理によりTOC成分を除去している上に、酸化剤と
しての過硫酸塩等の添加量も少ないため、負荷が軽減さ
れ、小容量小型装置を採用できる。
(I) Decarbonation tower → anion exchange tower → reverse osmosis membrane separator → secondary pure water production process (ii) Reverse osmosis membrane separator → low pressure reverse osmosis membrane separator → secondary pure water production process (iii) ) Cation exchange tower → decarbonation tower → anion exchange tower → reverse osmosis membrane separator → secondary pure water production process (iv) Weak anion exchange tower → strong cation exchange tower → strong anion exchange tower → secondary pure water production process ( v) Reverse osmosis membrane separation equipment → ion exchange tower (mixed bed type ion exchange tower or (strong cation exchange tower → strong anion exchange tower))
→ Secondary pure water production process The equipment for these deionization and post-treatment processes removes the TOC component by heat treatment in advance, and has a small amount of persulfate as an oxidizing agent. It is reduced and a small capacity small device can be adopted.

【0045】このような本発明の有機物の除去方法は、
特に、TOC4〜5ppm、或いはそれ以上の比較的T
OC濃度の高い水を処理する場合に有効で、顕著な酸化
剤の必要添加量の低減効果を得ることができるが、TO
C1ppm程度の原水であっても酸化剤添加量の低減効
果を十分に得ることができる。
The method for removing organic substances according to the present invention is as follows.
In particular, the TOC is 4 to 5 ppm or more and the relative T
This is effective when treating water having a high OC concentration, and can significantly reduce the required amount of an oxidizing agent.
Even with raw water of about 1 ppm C, the effect of reducing the amount of the oxidizing agent can be sufficiently obtained.

【0046】[0046]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0047】実施例1,2、比較例1 有機系排水の模擬液として、試薬特級のIPAを超純水
に溶解した水を原水とし、酸化剤としてNa2 2 8
を用い、TOCの加熱分解実験を行った。
Examples 1 and 2 and Comparative Example 1 As a simulated liquid of organic wastewater, water obtained by dissolving a reagent grade IPA in ultrapure water was used as raw water, and Na 2 S 2 O 8 was used as an oxidizing agent.
, And a thermal decomposition experiment of TOC was performed.

【0048】反応温度を130℃、反応時間を5分間、
原水TOCを9ppmに固定し、下記の溶存酸素濃度条
件で、処理水のTOCを20ppb以下にするために必
要なNa2 2 8 注入量及び原水TOCに対するNa
2 2 8 注入量の割合を調べ、結果を表1に示した。
The reaction temperature was 130 ° C., the reaction time was 5 minutes,
The raw water TOC was fixed at 9 ppm, and the amount of Na 2 S 2 O 8 injected and the Na with respect to the raw water TOC required to reduce the TOC of the treated water to 20 ppb or less under the following dissolved oxygen concentration conditions.
The ratio of the 2 S 2 O 8 injection amount was examined, and the results are shown in Table 1.

【0049】溶存酸素濃度条件 比較例1:溶存酸素無調整(溶存酸素濃度7.2pp
m) 実施例1:酸素バブリングにより原水の溶存酸素濃度を
12ppmに高めた 実施例2:酸素バブリングにより原水の溶存酸素濃度を
24.5ppmに高めた
Comparative example of dissolved oxygen concentration Comparative example 1: no dissolved oxygen adjustment (dissolved oxygen concentration 7.2 pp
m) Example 1: Dissolved oxygen concentration of raw water was increased to 12 ppm by oxygen bubbling Example 2: Dissolved oxygen concentration of raw water was increased to 24.5 ppm by oxygen bubbling

【0050】[0050]

【表1】 [Table 1]

【0051】表1より明らかなように、バブリングによ
って原水の溶存酸素濃度を高めることによって、酸化剤
の必要量を低減できる。特に、実施例2では、溶存酸素
無処理の比較例1の場合に比べて約31%もの酸化剤の
低減が図れる。
As is apparent from Table 1, the required amount of the oxidizing agent can be reduced by increasing the dissolved oxygen concentration of the raw water by bubbling. In particular, in Example 2, the oxidizing agent can be reduced by about 31% as compared with Comparative Example 1 in which no treatment with dissolved oxygen is performed.

【0052】実施例3〜6、比較例2〜5 基板洗浄薬液に由来する数種類の有機物を含む実際の排
水を原水とし、酸化剤としてNa2 2 8 を用い、T
OCの加熱分解実験を行った。
Examples 3-6, Comparative Examples 2-5 The actual wastewater containing several kinds of organic substances derived from the substrate cleaning chemicals was used as raw water, Na 2 S 2 O 8 was used as an oxidizing agent, and T
An OC thermal decomposition experiment was performed.

【0053】反応温度を130℃、反応時間を5分間と
し、表2に示すTOCの原水を、下記溶存酸素濃度条件
で処理する場合の、処理水のTOCを20ppb以下に
するために必要なNa2 2 8 注入量及び原水TOC
に対するNa2 2 8 注入量の割合を調べ、結果を表
2に示した。
When the reaction temperature is 130 ° C., the reaction time is 5 minutes, and the TOC raw water shown in Table 2 is treated under the following dissolved oxygen concentration conditions, the Na required to reduce the TOC of the treated water to 20 ppb or less is obtained. 2 S 2 O 8 injection amount and raw water TOC
The ratio of the amount of Na 2 S 2 O 8 injected to the mixture was determined. The results are shown in Table 2.

【0054】溶存酸素濃度条件 比較例2〜5:溶存酸素無調整(溶存酸素濃度7.0p
pm) 実施例3〜6:加圧ポンプ出口と反応器の間にコンプレ
ッサーによる加圧空気(0.8MPa)を、原水1容量
に対し0.5容量(常圧換算)定量注入した(溶存酸素
過飽和とした)。
Dissolved oxygen concentration conditions Comparative Examples 2 to 5: no dissolved oxygen adjustment (dissolved oxygen concentration 7.0 p
pm) Examples 3 to 6: Compressed air (0.8 MPa) by a compressor was quantitatively injected between the outlet of the pressurizing pump and the reactor by 0.5 volume (normal pressure conversion) per 1 volume of raw water (dissolved oxygen) Supersaturated).

【0055】[0055]

【表2】 [Table 2]

【0056】表2より明らかなように、加圧空気を注入
し、原水の溶存酸素濃度を高めることによって、溶存酸
素無処理の場合に比べて9〜45%の酸化剤が低減でき
た。また、溶存酸素濃度増加による必要酸化剤添加量低
減の効果は、原水TOC濃度が高いときほど顕著であっ
たが、TOC濃度の低い原水に対しても、効果を発揮す
ることが確認できた。
As is clear from Table 2, by injecting pressurized air and increasing the dissolved oxygen concentration of the raw water, the oxidizing agent could be reduced by 9 to 45% as compared with the case where no dissolved oxygen was treated. The effect of reducing the required amount of the oxidizing agent added by increasing the dissolved oxygen concentration was more remarkable as the raw water TOC concentration was higher, but it was confirmed that the effect was exhibited even in raw water having a lower TOC concentration.

【0057】実施例7 図2に示す純水製造システムにより、下記原水を通水処
理した。
Example 7 The following raw water was passed through the pure water production system shown in FIG.

【0058】原水:原水1(IPA溶解超純水,TO
C:20.2ppm)と原水2(厚木市水,TOC:
0.8ppm)とを原水1:原水2=1:2の割合で混
合した水(TOC:7ppm,DO:7.0ppm) 本実施例のシステムでは、原水を加温熱交換器11で加
熱した後、酸素を注入し、次いで、酸化剤としてNa2
2 8 を添加し、加熱分解反応器12でTOCの加熱
分解を行う。加熱分解処理水は、次いで冷却熱交換器1
3で冷却した後、中和用のNaOHを添加し、活性炭塔
14で残留Na2 2 8 の除去を行う。次いで、流量
調整用のタンク15を経て逆浸透膜分離装置16、イオ
ン交換塔17に順次通水して処理水を得た。各部の仕様
及び処理条件は下記の通りである。なお、図2中、カッ
コ内の数値は、各部の通水流量である。また、〜は
サンプリングポイントを示す。
Raw water: Raw water 1 (IPA dissolved ultrapure water, TO
C: 20.2 ppm) and Raw Water 2 (Atsugi City Water, TOC:
0.8 ppm) and raw water 1: raw water 2 = 1: 2 (TOC: 7 ppm, DO: 7.0 ppm) In the system of the present embodiment, raw water is heated by the heat exchanger 11 , Oxygen and then Na 2 as oxidant
S 2 O 8 is added, and the thermal decomposition of the TOC is performed in the thermal decomposition reactor 12. The heat-decomposed water is then supplied to the cooling heat exchanger 1
After cooling in 3, NaOH for neutralization is added, and residual Na 2 S 2 O 8 is removed in the activated carbon tower 14. Next, water was passed through a reverse osmosis membrane separator 16 and an ion exchange tower 17 sequentially through a flow rate adjusting tank 15 to obtain treated water. The specifications and processing conditions of each part are as follows. In addition, in FIG. 2, the numerical value in a parenthesis is the flow rate of each part. Indicates a sampling point.

【0059】酸素注入量:酸素注入後の溶存酸素濃度1
5ppm Na2 2 8 添加量:217ppm 加熱分解反応器: 反応器容量=10リットル 反応温度=130℃ 平均滞留時間=5分間 活性炭塔: 活性炭=栗田工業(株)製「クリコールWG−160
20/40」を3リットル充填 SV=40hr-1 逆浸透膜分離装置: 装置=日東電工(株)製「NTU 729 HRS2」 透過水回収率=70% イオン交換塔: イオン交換樹脂=三菱化学(株)製「ダイヤイオンSM
N−UP」(強酸性カチオン交換樹脂と強塩基性アニオ
ン交換樹脂との混合品)を500ml充填 SV=29.4hr-1 各部で採取した水の水質を分析し、結果を表3に示し
た。
Oxygen injection amount: dissolved oxygen concentration after oxygen injection 1
5 ppm Na 2 S 2 O 8 addition amount: 217 ppm Thermal decomposition reactor: Reactor capacity = 10 liters Reaction temperature = 130 ° C Average residence time = 5 minutes Activated carbon tower: Activated carbon = Kurikol WG-160 manufactured by Kurita Water Industries Ltd.
SV / 40 hr -1 reverse osmosis membrane separator: equipment = "NTU 729 HRS2" manufactured by Nitto Denko Corporation Permeate recovery rate = 70% Ion exchange tower: Ion exchange resin = Mitsubishi Chemical ( Ltd. “Diaion SM”
500 ml of N-UP "(mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin) SV = 29.4 hr -1 Water quality collected at each part was analyzed, and the results are shown in Table 3. .

【0060】比較例6 酸素の注入を行わなかったこと以外は実施例7と全く同
様にして処理を行い、結果を表3に示した。
Comparative Example 6 A treatment was carried out in exactly the same manner as in Example 7 except that oxygen was not injected, and the results are shown in Table 3.

【0061】[0061]

【表3】 [Table 3]

【0062】表3より、酸素を注入した実施例7ではT
OC1重量部に対するNa2 2 8 添加量がS2 8
2- 換算で約25重量部の加熱分解処理で、TOCの極
めて少ない純水が得られることが明らかである。これに
対して、酸素を注入していない比較例6では、酸化剤が
不足するため、十分なTOC除去を行えない。
As shown in Table 3, in Example 7 in which oxygen was injected, T
The addition amount of Na 2 S 2 O 8 to 1 part by weight of OC is S 2 O 8
It is clear that a thermal decomposition treatment of about 25 parts by weight in terms of 2- yields pure water with extremely low TOC. On the other hand, in Comparative Example 6, in which oxygen was not injected, the oxidizing agent was insufficient, so that TOC could not be sufficiently removed.

【0063】[0063]

【発明の効果】以上詳述した通り、本発明の有機物の除
去方法によれば、TOCの加熱分解に当り、酸化剤とし
ての過硫酸塩等の添加量を低減して低コストで効率的な
処理を行うことができる。また、過硫酸塩等の添加量が
少ないことから、結果として、過剰の過硫酸塩等による
加熱分解処理後の脱イオン処理工程への影響が防止され
ると共に、添加した過硫酸塩等に由来する加熱分解処理
水中の硫酸塩及び硫酸濃度が低いことから、脱イオン処
理工程の装置規模の縮小を図ることもできる。
As described above in detail, according to the organic matter removing method of the present invention, the amount of persulfate or the like as an oxidizing agent is reduced in the thermal decomposition of TOC, thereby reducing cost and efficiency. Processing can be performed. Further, since the added amount of persulfate and the like is small, as a result, the influence on the deionization treatment step after the thermal decomposition treatment by excess persulfate and the like is prevented, and the persulfate derived from the added persulfate and the like Since the concentrations of sulfate and sulfuric acid in the heat decomposition treatment water are low, the scale of the apparatus in the deionization treatment step can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機物の除去方法の酸素添加手段の実
施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an oxygen adding means in an organic matter removing method of the present invention.

【図2】実施例7における純水製造システムを示すフロ
ーチャートである。
FIG. 2 is a flowchart illustrating a pure water production system according to a seventh embodiment.

【符号の説明】[Explanation of symbols]

1 処理槽 2 ポンプ 3 加熱分解反応器 4 気体透過膜モジュール 11 加温熱交換器 12 加熱分解反応器 13 冷却熱交換器 14 活性炭塔 15 タンク 16 逆浸透膜分離装置 17 イオン交換塔 DESCRIPTION OF SYMBOLS 1 Processing tank 2 Pump 3 Heat decomposition reactor 4 Gas permeable membrane module 11 Heating heat exchanger 12 Heat decomposition reactor 13 Cooling heat exchanger 14 Activated carbon tower 15 Tank 16 Reverse osmosis membrane separator 17 Ion exchange tower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 博志 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 小畠 嘉修 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 三輪 良平 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Morita 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Kurita Kogyo Co., Ltd. (72) Inventor Yoshiharu Obata 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo No. Kurita Kogyo Co., Ltd. (72) Inventor Ryohei Miwa 3-4-7 Nishi Shinjuku, Shinjuku-ku, Tokyo Kurita Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水を酸化剤の存在下で加熱処理して原
水中のTOC成分を分解した後、脱イオン処理すること
により原水中の有機物を除去する方法において、 原水に酸素と、酸化剤として過硫酸及び/又は過硫酸塩
とを添加した後、加熱処理することを特徴とする有機物
の除去方法。
1. A method for removing raw material organic matter in raw water by subjecting raw water to heat treatment in the presence of an oxidizing agent to decompose TOC components in the raw water, and then deionizing the raw water. A heat treatment after adding persulfuric acid and / or persulfate.
JP17965397A 1997-07-04 1997-07-04 How to remove organic matter Expired - Lifetime JP3858359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17965397A JP3858359B2 (en) 1997-07-04 1997-07-04 How to remove organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17965397A JP3858359B2 (en) 1997-07-04 1997-07-04 How to remove organic matter

Publications (2)

Publication Number Publication Date
JPH1119663A true JPH1119663A (en) 1999-01-26
JP3858359B2 JP3858359B2 (en) 2006-12-13

Family

ID=16069544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17965397A Expired - Lifetime JP3858359B2 (en) 1997-07-04 1997-07-04 How to remove organic matter

Country Status (1)

Country Link
JP (1) JP3858359B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103516A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Sulfuric acid recycling cleaning system
JP2008246387A (en) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd Method and apparatus for treatment of primary pure water production process water
US7560033B2 (en) 2004-10-13 2009-07-14 E.I. Dupont De Nemours And Company Multi-functional oxidizing composition
CN111735676A (en) * 2020-06-17 2020-10-02 东莞市依科净化材料科技有限公司 Processing method of sampling cotton swab for TOC (total organic carbon) determination
CN114560572A (en) * 2022-02-27 2022-05-31 四川大学 Device and method for relieving water oversaturation TDG in complex flow field river net cage based on movable aeration curtain
WO2022264479A1 (en) * 2021-06-17 2022-12-22 オルガノ株式会社 Pure water production apparatus and pure water production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560033B2 (en) 2004-10-13 2009-07-14 E.I. Dupont De Nemours And Company Multi-functional oxidizing composition
JP2007103516A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Sulfuric acid recycling cleaning system
JP4573043B2 (en) * 2005-09-30 2010-11-04 栗田工業株式会社 Sulfuric acid recycling cleaning system
JP2008246387A (en) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd Method and apparatus for treatment of primary pure water production process water
CN111735676A (en) * 2020-06-17 2020-10-02 东莞市依科净化材料科技有限公司 Processing method of sampling cotton swab for TOC (total organic carbon) determination
WO2022264479A1 (en) * 2021-06-17 2022-12-22 オルガノ株式会社 Pure water production apparatus and pure water production method
CN114560572A (en) * 2022-02-27 2022-05-31 四川大学 Device and method for relieving water oversaturation TDG in complex flow field river net cage based on movable aeration curtain

Also Published As

Publication number Publication date
JP3858359B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
JP3426072B2 (en) Ultrapure water production equipment
EP0634364B1 (en) Pure water manufacturing method
US6858145B2 (en) Method of removing organic impurities from water
US6991733B2 (en) Process for removing organics from ultrapure water
TWI640482B (en) Ultrapure water manufacturing method and ultrapure water manufacturing equipment
JP2008272713A (en) Method for producing ultrapure water, and production device therefor
JP4635827B2 (en) Ultrapure water production method and apparatus
JP3858359B2 (en) How to remove organic matter
WO2017213050A1 (en) Water treatment method and device, water treatment device modification method, and kit for water treatment device modification
JPH0252088A (en) Apparatus for making desalted water
JP2001038390A (en) Production of ultrapure water
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP2002210494A (en) Device for manufacturing extrapure water
JP3506171B2 (en) Method and apparatus for removing TOC component
JP2003266097A (en) Ultrapure water making apparatus
JP3259557B2 (en) How to remove organic matter
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JPH10314735A (en) Pure water preparation process
JPH11226569A (en) Apparatus for removing organic substance in water and apparatus for producing ultrapure water
JPH11267645A (en) Production of pure water
JP3794113B2 (en) Method for removing TOC component and dissolved oxygen
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
JP2000308815A (en) Producing device of ozone dissolved water
JP3528287B2 (en) Pure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040511

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Effective date: 20051108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A131 Notification of reasons for refusal

Effective date: 20060606

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060911

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120929