WO2017213050A1 - Water treatment method and device, water treatment device modification method, and kit for water treatment device modification - Google Patents
Water treatment method and device, water treatment device modification method, and kit for water treatment device modification Download PDFInfo
- Publication number
- WO2017213050A1 WO2017213050A1 PCT/JP2017/020658 JP2017020658W WO2017213050A1 WO 2017213050 A1 WO2017213050 A1 WO 2017213050A1 JP 2017020658 W JP2017020658 W JP 2017020658W WO 2017213050 A1 WO2017213050 A1 WO 2017213050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- water
- ammonia
- aqueous solution
- liquid
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
Definitions
- the present invention relates to a water treatment method and apparatus for removing ammonia from ammonia-containing water, such as ammonia-containing wastewater discharged from a manufacturing process of an electronic product such as a semiconductor or liquid crystal or an element thereof.
- cleaning is performed using a chemical mixture of ammonia and hydrogen peroxide. After the cleaning step, cleaning is performed using ultrapure water to remove ammonia remaining on the surface of the article to be cleaned. For this reason, a large amount of wastewater having a low salt concentration and a relatively low concentration of ammonia is discharged. Since ammonia is a cause of eutrophication, it is necessary to treat ammonia in the wastewater.
- an ammonia stripping method is known as a method for treating ammonia-containing wastewater.
- ammonia-containing wastewater is heated with steam, a heater, or the like, and diffused in a diffusion tower.
- the exhaust gas discharged from the stripping tower can be removed by oxidizing and decomposing ammonia by bringing it into contact with an ammonia decomposition catalyst (Patent Document 1).
- ammonia gas can be obtained even from wastewater containing low concentration ammonia.
- Ammonia gas can be absorbed with sulfuric acid and converted to ammonium sulfate.
- the stripping method may be applied to a high concentration ammonium sulfate solution.
- an alkali such as sodium hydroxide
- An object of the present invention is to provide a water treatment method and apparatus capable of treating ammonia in low-concentration ammonia-containing water with low energy consumption and without discharging ammonium sulfate.
- Another object of the present invention is to provide a water treatment device remodeling method and a water treatment device remodeling kit for obtaining this water treatment device.
- An alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved;
- a sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side channel inlet of the gas-liquid membrane separator;
- a second line connecting the permeate side channel outlet of the gas-liquid membrane separator to the liquid inlet of the stripping tower;
- a water treatment device including a dilution water addition device provided in the middle of the second line is provided.
- a water treatment apparatus including a sulfuric acid aqueous solution supply device that supplies a sulfuric acid aqueous solution to the permeation line flow path inlet of the gas line and the gas-liquid membrane separation device, In the water treatment device, Stripping tower, A water treatment device comprising a step of providing a second line for connecting a permeate-side channel outlet of the gas-liquid membrane separation device to a liquid inlet of a stripping tower, and a diluting water addition device disposed in the middle of the second line A remodeling method is provided.
- a kit for remodeling a water treatment device including a sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side flow channel inlet of the gas-liquid membrane separation device, Stripping tower,
- a water treatment device remodeling kit including a second line for connecting a permeate-side channel outlet of a gas-liquid membrane separation device to a liquid inlet of a stripping tower, and a diluting water addition device arranged in the middle of the second line Is provided.
- a water treatment device remodeling method and a water treatment device remodeling kit for obtaining this water treatment device are provided.
- the inventors of the present invention produced ammonium sulfate using a gas-liquid separation membrane cartridge to obtain an aqueous ammonium sulfate solution. After diluting the aqueous ammonium sulfate solution with water, alkaline conditions The inventors have found that a method of performing a diffusion treatment in a diffusion tower below is effective for solving the problems, and have reached the present invention.
- ammonia-containing wastewater can be treated with a small apparatus with low energy, and can be treated without generating waste such as sludge.
- solubility of ammonium sulfate or ammonium sulfate (NH 4 ) 2 SO 4 and sodium sulfate Na 2 SO 4 in water (at atmospheric pressure (0.101 MPa)) is shown in Table 1. Note that sodium sulfate is less soluble in water than ammonium sulfate.
- the water treatment method according to the present invention includes steps a to d.
- the water to be treated is water in which ammonia is dissolved, for example, ammonia-containing wastewater discharged from an electronic product manufacturing process. Since a part of ammonia dissolved in water becomes ammonium ions, the water to be treated contains ammonium ions.
- the ammonia concentration in the water to be treated is preferably 500 mg / L or more and 5000 mg / L or less.
- concentration is 500 mg / L or more, it is easy to prevent the gas-liquid separation membrane required for the treatment from becoming large and the cost advantage over the biological treatment from being reduced.
- it is 5000 mg / L or less, the effect of the present invention is particularly remarkable as compared with the case where stripping is directly performed without passing through the gas-liquid separation membrane.
- ammonia concentration in the liquid in this specification means a concentration including not only free ammonia but also ammonium ions. Unless otherwise specified, when the ammonia concentration in the liquid is expressed in the unit of “mg / L”, it means the concentration when free ammonia and ammonium ions are converted to nitrogen.
- step a the alkali ion is added to the water to be treated to convert ammonium ions in the water to be treated into ammonia. That is, the reaction of “NH 4 + + OH ⁇ ⁇ NH 3 + H 2 O” is allowed to proceed.
- a part of ammonium ions in the water to be treated may be ammonia.
- an alkali metal salt, particularly sodium hydroxide can be used.
- the pH of the water to be treated (liquid obtained from step a) after addition of alkali is preferably 9 or more.
- Step b the liquid obtained from step a (the water to be treated after addition of alkali) is supplied to the gas-liquid separation membrane supply side, and the sulfuric acid aqueous solution is supplied to the permeation side of the gas-liquid separation membrane.
- the ammonia gas in to-be-processed water permeate transmits a gas-liquid separation membrane, and the permeated ammonia gas is absorbed by sulfuric acid aqueous solution.
- ammonium sulfate is formed (2NH 3 + H 2 SO 4 ⁇ (NH 4 ) 2 SO 4 ). Therefore, an aqueous ammonium sulfate solution is obtained from the permeation side of the gas-liquid separation membrane. Further, treated water with a reduced ammonia concentration is obtained from the supply side of the gas-liquid separation membrane.
- gas-liquid separation membrane a known gas-liquid separation membrane capable of treating ammonia gas can be used.
- a hydrophobic porous membrane can be used.
- a hollow fiber membrane type, spiral membrane type or flat membrane type gas-liquid separation membrane can be used.
- a membrane having a diameter of about 300 ⁇ m, a pore size of about 0.03 ⁇ m, and an (average) porosity of about 40 to 50% is preferable.
- the sulfuric acid concentration of the sulfuric acid aqueous solution supplied to the gas-liquid separation membrane is higher. This is because the concentration of ammonium sulfate to be produced is high, and it is excellent in terms of handling such as a small sulfuric acid storage tank. The higher the concentration of ammonium sulfate produced, the smaller the amount of ammonium sulfate aqueous solution discharged from the permeation side of the gas-liquid separation membrane. In the case of recovering ammonium sulfate or performing post-treatment such as stripping, it is advantageous in terms of cost to reduce this discharge amount.
- the concentration of the sulfuric acid aqueous solution supplied to the gas-liquid separation membrane is preferably 50 mass percent or more. For example, a 96-98 mass% sulfuric acid aqueous solution that is industrially easily available as “concentrated sulfuric acid” can be supplied to the gas-liquid separation membrane.
- the aqueous sulfuric acid solution supplied to the gas-liquid separation membrane may contain ammonium sulfate.
- the water temperature during gas-liquid separation is 20-50. ° C is preferred. It is preferable to raise the temperature of the water to be treated after the alkali addition using a heater (for example, an electric heater) or a heat exchanger before supplying it to the gas-liquid separation membrane because the treatment efficiency is increased.
- a heater for example, an electric heater
- a heat exchanger for example, a heat exchanger
- Step c the ammonium sulfate aqueous solution obtained from step b is diluted with dilution water.
- dilution water pure water, industrial water, tap water, filtered water, or the like can be used.
- the treated water obtained from step b and the treated water obtained from step d can be used as dilution water in step c.
- the dilution water is preferably water that does not contain a scale-causing substance such as calcium or magnesium at a high concentration.
- a scale-causing substance such as calcium or magnesium at a high concentration.
- water having a total hardness of 200 mg-CaCO 3 / L or less, preferably 20 mg-CaCO 3 / L or less can be used. The same applies to the water to be treated.
- step d the diluted aqueous ammonium sulfate solution is treated under alkaline conditions.
- an alkaline salt for example, sodium sulfate
- the aqueous ammonium sulfate solution is diluted in step c.
- step c the aqueous ammonium sulfate solution is diluted in advance so as to achieve a concentration at which the alkali salt does not precipitate in step d (for example, the sodium sulfate concentration is not higher than the solubility shown in Table 1).
- the amount of dilution water sufficient to prevent precipitation in step d can be estimated in advance, and that amount of dilution water can be quantitatively injected in step c.
- the concentration of sulfate ion in the ammonium sulfate aqueous solution discharged from step b can be measured by a meter, and dilution water can be injected in step c so that the value is not more than the solubility.
- the injection amount of the dilution water can be determined using the conductivity instead of the sulfate ion concentration.
- step d when sodium hydroxide is added to the diluted ammonium sulfate aqueous solution in order to achieve alkaline conditions, the concentration of Na 2 SO 4 in the diluted ammonium sulfate aqueous solution after addition of sodium hydroxide is less than the solubility (see Table 1).
- the aqueous ammonium sulfate solution can be diluted in advance in step c so that it is preferably 30% by mass or less, more preferably 16% by mass or less.
- Step d the diluted ammonium sulfate aqueous solution (diluted ammonium sulfate aqueous solution) obtained from step c is stripped under alkaline conditions. This removes ammonia from the diluted aqueous ammonium sulfate solution. A gas containing ammonia gas and treated water with reduced ammonia concentration are obtained from the stripping tower.
- step d it is preferable in terms of cost to add sodium hydroxide to the diluted ammonium sulfate aqueous solution in order to achieve alkaline conditions, that is, to make the diluted ammonium sulfate aqueous solution alkaline.
- the pH of the diluted ammonium sulfate aqueous solution to be stripped is preferably 9 to 13 in order to convert most of the ammonium ions in the wastewater into ammonia gas and reduce the ammonia concentration in the treated water.
- the concentration of ammonium sulfate in the stripping solution is preferably 30% by mass or less, more preferably 16% by mass or less, from the viewpoint of preventing salt precipitation.
- the temperature of the liquid at the inlet of the stripping tower for stripping is preferably 40 ° C. or higher and 100 ° C. or lower in order to increase the rate at which ammonia gas volatilizes.
- the ammonia concentration of the treated water (water with reduced ammonia concentration) obtained from the stripping tower is 0 mg from the viewpoint of environmental load, such as to protect the discharge regulation value, or to reduce the nitrogen load on the subsequent treatment. / L or more and 100 mg / L or less is preferable.
- Steam or air can be blown into the stripping tower during stripping.
- steam may be generated by providing a heater (reboiler) at the bottom of the stripping tower without blowing stripping gas.
- a gas containing ammonia gas is obtained from the stripping tower, and this gas may contain water vapor, nitrogen, oxygen, etc. depending on the type of stripping gas.
- Ammonia gas contained in a gas (a gas containing ammonia gas) obtained from the stripping tower can be converted into nitrogen gas using an ammonia decomposition catalyst.
- a catalytic reactor ammonia catalytic cracking apparatus
- the structure of this catalytic reactor a known structure in the field of ammonia decomposition can be adopted as appropriate, and a fixed bed, a fluidized bed, or the like can be used.
- ammonia decomposition catalyst a catalyst known in the field of ammonia decomposition can be used, and in particular, an oxidation catalyst can be used.
- catalytically active components such as salts or oxides such as ruthenium, rhodium, palladium, iridium, platinum, titanium, iron, nickel, cobalt, vanadium, cerium, and manganese on a carrier such as titania, silica, alumina, zirconia, and zeolite Can be used.
- the shape of the catalyst is not particularly limited, such as a honeycomb, a wire mesh type, or a granular shape.
- the water treatment apparatus is An alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved; Gas-liquid membrane separator, Stripping tower, A first line connecting the outlet of the alkali addition device to the supply side flow channel inlet of the gas-liquid membrane separation device; A sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side channel inlet of the gas-liquid membrane separator; A second line connecting the permeate side channel outlet of the gas-liquid membrane separator to the liquid inlet of the stripping tower, and A dilution water addition device provided in the middle of the second line is included.
- the alkali addition device can be used as appropriate as long as it can add alkali (typically sodium hydroxide) to the water to be treated, and has a structure known in the field of water treatment. It can be adopted as appropriate.
- alkali typically sodium hydroxide
- a pH adjustment tank equipped with a means for adding sodium hydroxide can be used as an alkali addition device.
- the treated water to which alkali is added is discharged from the outlet of the alkali addition device.
- a gas-liquid membrane separation apparatus is a separation apparatus containing a gas-liquid separation membrane.
- the gas-liquid membrane separation device has a supply-side channel and a permeation-side channel with the gas-liquid separation membrane interposed therebetween.
- the treated water added with alkali is supplied to the supply side flow channel as a fluid to be separated. Is done. Ammonia permeates the gas-liquid separation membrane and moves to the permeate side channel.
- the sulfuric acid aqueous solution is supplied to the permeate side flow path by the sulfuric acid aqueous solution supply device that supplies the sulfuric acid aqueous solution to the permeate side flow path inlet of the gas-liquid membrane separator.
- Ammonia that has passed through the membrane is absorbed by this aqueous sulfuric acid solution to produce an aqueous ammonium sulfate solution, which is discharged from the permeate side flow path.
- a sulfuric acid aqueous solution supply apparatus As a sulfuric acid aqueous solution supply apparatus, the apparatus which can supply sulfuric acid aqueous solution to a permeation
- a water (or ammonium sulfate aqueous solution) supply line may be connected to the inlet of the permeate side flow path, and a line for adding sulfuric acid (particularly concentrated sulfuric acid) to the water flowing through the water supply line may be provided.
- a well-known structure can be employ
- the ammonium sulfate aqueous solution is supplied to the diffusion tower by a second line that connects the permeate-side flow path outlet of the gas-liquid membrane separation device to the liquid inlet (stripping liquid supply port) of the diffusion tower.
- a diluting water addition device is provided in the middle of this line.
- diluting water is added to the ammonium sulfate aqueous solution flowing through the second line in the middle of the second line (between the gas-liquid membrane separator permeation channel outlet and the stripping tower).
- the apparatus which can add can be used suitably.
- a dilution water supply line can be connected in the middle of the second line.
- the water treatment apparatus can include a line that connects the supply-side flow path outlet of the gas-liquid membrane separation apparatus or the liquid outlet of the stripping tower to the dilution water addition apparatus.
- the treated water obtained from the gas-liquid membrane separator or the treated water obtained from the stripping tower can be used as dilution water.
- Each line can be configured using piping, valves, pumps, etc. as appropriate.
- FIG. 1 shows a process flow of an example of a water treatment apparatus according to the present invention.
- the water to be treated stored in the drain tank 1 is sent to the pH adjusting tank (for water to be treated) 2 through the line L1.
- alkali NaOH
- the water to be treated to which alkali has been added is sent to the filter 3 via the line L2.
- suspended substances are removed from the water to be treated.
- the liquid that has passed through the filter is sent to the heat exchanger 4 through the line L3 and heated.
- the heated liquid is sent to the heater (electric heater) 5 via the line L4 and further heated. Further, the heated liquid is supplied to the supply-side flow path 6a of the gas-liquid membrane separation device 6 via the line L5.
- the ammonia gas contained in the liquid supplied from the line L5 permeates the gas-liquid separation membrane 6c and moves to the permeate side flow path 6b. Therefore, the ammonia gas concentration in the liquid supplied from the line L5 is reduced, and the treated water with the reduced ammonia concentration is discharged from the supply side flow path 6a.
- This treated water is sent to the heat exchanger 4 via the line L6 and cooled here.
- the treated water cooled (heat recovered) is obtained in the line L7. This treated water is reused or discharged to the outside as appropriate.
- the aqueous sulfuric acid solution is supplied from the line L11 to the permeate side flow path 6b of the gas-liquid membrane separation device 6.
- the ammonia gas that has permeated through the gas-liquid separation membrane 6c is absorbed by the sulfuric acid aqueous solution in the permeation side flow path 6b, and an ammonium sulfate aqueous solution is generated and discharged to the line L12.
- the aqueous ammonium sulfate solution is sent from the line L12 to the circulation tank 7. From the circulation tank 7, the aqueous ammonium sulfate solution is sent to the filter 8 via the line L13, where suspended substances are removed.
- the aqueous ammonium sulfate solution from which suspended substances have been removed is discharged from the filter 8 to the line L14, mixed with sulfuric acid supplied from the line L32, and permeated from the line L11 as an aqueous sulfuric acid solution (containing ammonium sulfate from the line L14). It is supplied to the side flow path 6b.
- a closed loop is formed by the lines L11, L12, L13, and L14.
- the line L21 is closed by an appropriate valve (not shown), the aqueous ammonium sulfate solution gradually accumulates in the circulation tank 7.
- the valve of the line L21 is opened, and the ammonium sulfate aqueous solution is sent from the circulation tank 7 to the ammonium sulfate solution tank 9 via the line L21.
- dilution water is added from the line L22, and the diluted ammonium sulfate aqueous solution is sent to the pH adjustment tank (for ammonium sulfate aqueous solution) 10 via the line L23.
- alkali NaOH
- the alkaline ammonium sulfate aqueous solution is supplied to the heat exchanger 11 via the line L24 and heated there.
- the heated alkaline ammonium sulfate aqueous solution is supplied to the stripping tower 12 through the line L25, and is stripped by the steam supplied from the line L34.
- the gas including ammonia gas removed from the ammonium sulfate aqueous solution and steam
- the gas is discharged from the stripping tower to the line L26, it is diluted to an appropriate concentration with the air supplied from the line L35, and the ammonia catalytic decomposition is performed via the line L27.
- Sent to the device 13 ammonia is oxidized and discharged as nitrogen gas (and moisture) from the line L28 to the outside.
- the liquid obtained from the stripping tower is sent to the heat exchanger 11 via the line L29 and cooled here.
- the cooled liquid obtained in the line L30 is high-purity water (treated water) from which ammonia has been removed, and is appropriately reused or discharged to the outside.
- the treated water obtained from the supply-side flow path 6a of the gas-liquid separation membrane or the treated water obtained from the diffusion tower can be used as dilution water. Can do.
- the amount of diluted ammonium sulfate solution can be reduced to 1/10 to 1/300 of the amount of water to be treated. Therefore, compared with direct stripping of the water to be treated, the heat energy required for stripping is also reduced to 1/10 to 1/300, which saves energy and reduces the processing cost.
- the process until the ammonium sulfate aqueous solution is obtained (the process up to the process b) and the process for treating the ammonium sulfate aqueous solution (the process after the process c) can be performed at remote locations.
- an aqueous ammonium sulfate solution obtained from the permeate side of the gas-liquid separation membrane in step b
- ammonia stripping processing after step c
- a water treatment apparatus that removes ammonia from water to be treated in which ammonia is dissolved by using a gas-liquid separation membrane may already exist. In this case, it is possible to obtain the above-described excellent water treatment apparatus by modifying the existing water treatment apparatus.
- the existing apparatus is configured to add alkali to the water to be treated in which ammonia is dissolved.
- the alkali addition apparatus, the gas-liquid membrane separation apparatus, and the outlet of the alkali addition apparatus are connected to the supply side flow path inlet of the gas-liquid membrane separation apparatus.
- a sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate-side flow channel inlet of the gas-liquid membrane separation device.
- a diffusion tower, a second line connecting the permeate side channel outlet of the gas-liquid membrane separator to the liquid inlet of the diffusion tower, and dilution water disposed in the middle of the second line By providing the addition device, the water treatment device can be modified.
- the existing water treatment device can include, for example, portions (devices 1 to 8, lines L1 to L7, L11 to L14, L31, and L32) located upstream from the line L21 shown in FIG.
- this existing water treatment apparatus when an aqueous ammonium sulfate solution is accumulated in the circulation tank 7, the aqueous ammonium sulfate solution can be taken out from the circulation tank 7 and solidified as necessary, and then treated as industrial waste.
- This existing water treatment apparatus can be provided with the line L21 shown in FIG. 1 and portions downstream thereof (apparatuses 9 to 13, lines L21 to L30, L33 to L35).
- the water treatment apparatus modified in this way has the process flow shown in FIG. 1 and is suitable for carrying out the above-described water treatment method.
- the present invention provides an alkali addition device, a gas-liquid membrane separation device, and an outlet of the alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved.
- a kit for remodeling a water treatment apparatus including a first line connected to an inlet and a sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to a permeate side channel inlet of a gas-liquid membrane separator.
- the kit includes a diffusion tower, a second line that connects a permeate-side channel outlet of the gas-liquid membrane separator to a liquid inlet of the diffusion tower, and a diluting water addition device that is disposed in the middle of the second line. including.
- the results are summarized in Table 2.
- the amount of water to be treated (line L1) was 100 m 3 / day, but this was reduced to 3.6 m 3 / day using a gas-liquid separation membrane, and diluted water 5 was used to prevent precipitation of sodium sulfate.
- NaOH (lines L31, L33): Industrial 25 mass% NaOH aqueous solution.
- H 2 SO 4 (line L32): 98 wt% H 2 SO 4 aqueous solution for industrial use.
- Water vapor (line L34): 0.5 MPa saturated water vapor.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physical Water Treatments (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Gas Separation By Absorption (AREA)
Abstract
The present invention makes it possible to treat ammonia in water containing a low concentration of ammonia with low energy consumption without discharging ammonium sulfate. Provided is a water treatment method comprising a) a step for converting ammonium ions into ammonia by adding alkaline to water to be treated wherein ammonia is dissolved, b) a step for supplying the liquid obtained in step a to the supply side of a gas-liquid separation membrane and supplying an aqueous solution of sulfuric acid to the permeation side of the gas-liquid separation membrane to make the ammonia gas pass through the gas-liquid separation membrane and make the ammonia gas that is passed through be absorbed in the aqueous solution of sulfuric acid to obtain an aqueous solution of ammonium sulfate from the permeation side and treated water from the supply side, c) a step for diluting the aqueous solution of ammonium sulfate obtained in step b with dilution water, and d) a step for obtaining treated water from the diluted aqueous solution of ammonium sulfate by stripping the diluted aqueous solution of ammonium sulfate obtained in step c under alkaline conditions. Also provided is a device suitable for carrying out this method. Also provided are a water treatment device modification method and kit for water treatment device modification for obtaining this device.
Description
本発明は、例えば半導体や液晶などの電子製品ないしその素子の製造プロセスから排出されるアンモニア含有排水などの、アンモニア含有水からアンモニアを除去するための水処理方法および装置に関する。
The present invention relates to a water treatment method and apparatus for removing ammonia from ammonia-containing water, such as ammonia-containing wastewater discharged from a manufacturing process of an electronic product such as a semiconductor or liquid crystal or an element thereof.
半導体製造工程やその関連工程では、アンモニアと過酸化水素とを混合した薬品を用いて洗浄を行っている。上記洗浄工程の後で超純水を使用して洗浄を行い、被洗浄品の表面に残留したアンモニアを除去している。このため塩類濃度が低くアンモニアが比較的低濃度の排水が大量に排出される。アンモニアは富栄養化の原因とされるので排水中のアンモニア処理が必要である。
In the semiconductor manufacturing process and related processes, cleaning is performed using a chemical mixture of ammonia and hydrogen peroxide. After the cleaning step, cleaning is performed using ultrapure water to remove ammonia remaining on the surface of the article to be cleaned. For this reason, a large amount of wastewater having a low salt concentration and a relatively low concentration of ammonia is discharged. Since ammonia is a cause of eutrophication, it is necessary to treat ammonia in the wastewater.
従来アンモニア含有排水を処理する手法として、アンモニアストリッピング法が知られている。この方法では、アンモニア含有排水を蒸気やヒーターなどで加熱して放散塔で放散処理する。放散塔から排出される排ガスは、アンモニア分解触媒と接触させることによりアンモニアを酸化分解して除去することができる(特許文献1)。
Conventionally, an ammonia stripping method is known as a method for treating ammonia-containing wastewater. In this method, ammonia-containing wastewater is heated with steam, a heater, or the like, and diffused in a diffusion tower. The exhaust gas discharged from the stripping tower can be removed by oxidizing and decomposing ammonia by bringing it into contact with an ammonia decomposition catalyst (Patent Document 1).
また、アンモニア排水を処理する別の方法として、アンモニア含有排水を加熱した後、気体は透過するが液体は透過しない気液分離膜モジュールに通して脱アンモニアガス処理する方法が知られている(特許文献2)。
Further, as another method for treating ammonia wastewater, there is known a method in which ammonia-containing wastewater is heated and then passed through a gas-liquid separation membrane module that allows gas to permeate but does not permeate liquid (patented). Reference 2).
低濃度アンモニア含有排水を、アンモニアストリッピング法で処理する場合、多量の水を蒸発させなければならない。したがって、消費エネルギーが大きく、また装置も巨大になり、このような処理は現実的ではない。
When treating wastewater containing low concentration ammonia by the ammonia stripping method, a large amount of water must be evaporated. Therefore, energy consumption is large and the apparatus becomes huge, and such processing is not realistic.
気液分離膜を用いる方法によれば、低濃度アンモニア含有排水からでも、アンモニアガスを得ることができる。アンモニアガスは、硫酸で吸収して、硫酸アンモニウムに転換することができる。しかしこの場合、生成した高濃度の硫酸アンモニウム溶液または固形化された硫酸アンモニウムを産業廃棄物として処理するために、かなりのコストがかかることがある。あるいは、高濃度の硫酸アンモニウム溶液にストリッピング法を適用することも考えられる。この場合、溶液中のアンモニウムイオンをアンモニアにするために水酸化ナトリウムなどのアルカリを溶液に加えることが必要となる。したがってこの場合、溶解度の低い硫酸ナトリウムの結晶が析出して、ストリッピングが困難になると考えられる。
According to the method using a gas-liquid separation membrane, ammonia gas can be obtained even from wastewater containing low concentration ammonia. Ammonia gas can be absorbed with sulfuric acid and converted to ammonium sulfate. However, in this case, it can be quite expensive to treat the resulting high concentration ammonium sulfate solution or solidified ammonium sulfate as industrial waste. Alternatively, the stripping method may be applied to a high concentration ammonium sulfate solution. In this case, it is necessary to add an alkali such as sodium hydroxide to the solution in order to convert ammonium ions in the solution into ammonia. Therefore, in this case, it is considered that sodium sulfate crystals having low solubility are precipitated, and stripping becomes difficult.
本発明の目的は、低消費エネルギーで、硫酸アンモニウムを排出せずに、低濃度アンモニア含有水中のアンモニアを処理することのできる、水処理方法および装置を提供することである。
An object of the present invention is to provide a water treatment method and apparatus capable of treating ammonia in low-concentration ammonia-containing water with low energy consumption and without discharging ammonium sulfate.
本発明の別の目的は、この水処理装置を得るための、水処理装置の改造方法および水処理装置改造用キットを提供することである。
Another object of the present invention is to provide a water treatment device remodeling method and a water treatment device remodeling kit for obtaining this water treatment device.
本発明の一態様により、
a)アンモニアが溶解している被処理水にアルカリを添加することにより、アンモニウムイオンをアンモニアにする工程、
b)工程aから得られる液を気液分離膜の供給側に供給するとともに、気液分離膜の透過側に硫酸水溶液を供給することにより、アンモニアガスに気液分離膜を透過させるとともに透過したアンモニアガスを硫酸水溶液に吸収させ、透過側から硫酸アンモニウム水溶液を得、供給側からアンモニア濃度が低減された処理水を得る工程、
c)工程bから得られる硫酸アンモニウム水溶液を、希釈水で希釈する工程、および、
d)工程cから得られる希釈された硫酸アンモニウム水溶液を、アルカリ性条件下でストリッピングすることにより、希釈された硫酸アンモニウム水溶液から、アンモニア濃度が低減された処理水を得る工程
を含む、水処理方法が提供される。 According to one aspect of the invention,
a) a step of converting ammonium ions to ammonia by adding alkali to the water to be treated in which ammonia is dissolved;
b) Supplying the liquid obtained from step a to the gas-liquid separation membrane supply side and supplying the aqueous solution of sulfuric acid to the permeation side of the gas-liquid separation membrane, allowing ammonia gas to permeate and permeate the gas-liquid separation membrane. A step of absorbing ammonia gas in a sulfuric acid aqueous solution, obtaining an aqueous ammonium sulfate solution from the permeate side, and obtaining treated water having a reduced ammonia concentration from the supply side;
c) diluting the aqueous ammonium sulfate solution obtained from step b with dilution water; and
d) A water treatment method comprising the step of obtaining a treated water having a reduced ammonia concentration from a diluted ammonium sulfate aqueous solution by stripping the diluted ammonium sulfate aqueous solution obtained from step c under alkaline conditions. Is done.
a)アンモニアが溶解している被処理水にアルカリを添加することにより、アンモニウムイオンをアンモニアにする工程、
b)工程aから得られる液を気液分離膜の供給側に供給するとともに、気液分離膜の透過側に硫酸水溶液を供給することにより、アンモニアガスに気液分離膜を透過させるとともに透過したアンモニアガスを硫酸水溶液に吸収させ、透過側から硫酸アンモニウム水溶液を得、供給側からアンモニア濃度が低減された処理水を得る工程、
c)工程bから得られる硫酸アンモニウム水溶液を、希釈水で希釈する工程、および、
d)工程cから得られる希釈された硫酸アンモニウム水溶液を、アルカリ性条件下でストリッピングすることにより、希釈された硫酸アンモニウム水溶液から、アンモニア濃度が低減された処理水を得る工程
を含む、水処理方法が提供される。 According to one aspect of the invention,
a) a step of converting ammonium ions to ammonia by adding alkali to the water to be treated in which ammonia is dissolved;
b) Supplying the liquid obtained from step a to the gas-liquid separation membrane supply side and supplying the aqueous solution of sulfuric acid to the permeation side of the gas-liquid separation membrane, allowing ammonia gas to permeate and permeate the gas-liquid separation membrane. A step of absorbing ammonia gas in a sulfuric acid aqueous solution, obtaining an aqueous ammonium sulfate solution from the permeate side, and obtaining treated water having a reduced ammonia concentration from the supply side;
c) diluting the aqueous ammonium sulfate solution obtained from step b with dilution water; and
d) A water treatment method comprising the step of obtaining a treated water having a reduced ammonia concentration from a diluted ammonium sulfate aqueous solution by stripping the diluted ammonium sulfate aqueous solution obtained from step c under alkaline conditions. Is done.
本発明の別の態様により、
アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、
気液膜分離装置、
放散塔、
アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、
気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、
前記第2のラインの途中に設けられた、希釈水添加装置
を含む、水処理装置が提供される。 According to another aspect of the invention,
An alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved;
Gas-liquid membrane separator,
Stripping tower,
A first line connecting the outlet of the alkali addition device to the supply side flow channel inlet of the gas-liquid membrane separation device;
A sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side channel inlet of the gas-liquid membrane separator;
A second line connecting the permeate side channel outlet of the gas-liquid membrane separator to the liquid inlet of the stripping tower;
A water treatment device including a dilution water addition device provided in the middle of the second line is provided.
アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、
気液膜分離装置、
放散塔、
アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、
気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、
前記第2のラインの途中に設けられた、希釈水添加装置
を含む、水処理装置が提供される。 According to another aspect of the invention,
An alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved;
Gas-liquid membrane separator,
Stripping tower,
A first line connecting the outlet of the alkali addition device to the supply side flow channel inlet of the gas-liquid membrane separation device;
A sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side channel inlet of the gas-liquid membrane separator;
A second line connecting the permeate side channel outlet of the gas-liquid membrane separator to the liquid inlet of the stripping tower;
A water treatment device including a dilution water addition device provided in the middle of the second line is provided.
本発明のさらなる態様により、
アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、気液膜分離装置、アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、および気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置を含む水処理装置の改造方法であって、
前記水処理装置に、
放散塔、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、および
前記第2のラインの途中に配置される希釈水添加装置
を設ける工程を含む、水処理装置の改造方法が提供される。 According to a further aspect of the invention,
First connecting an outlet of an alkali addition device, a gas-liquid membrane separation device, and an alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved, to a supply-side flow channel inlet of the gas-liquid membrane separation device A water treatment apparatus including a sulfuric acid aqueous solution supply device that supplies a sulfuric acid aqueous solution to the permeation line flow path inlet of the gas line and the gas-liquid membrane separation device,
In the water treatment device,
Stripping tower,
A water treatment device comprising a step of providing a second line for connecting a permeate-side channel outlet of the gas-liquid membrane separation device to a liquid inlet of a stripping tower, and a diluting water addition device disposed in the middle of the second line A remodeling method is provided.
アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、気液膜分離装置、アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、および気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置を含む水処理装置の改造方法であって、
前記水処理装置に、
放散塔、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、および
前記第2のラインの途中に配置される希釈水添加装置
を設ける工程を含む、水処理装置の改造方法が提供される。 According to a further aspect of the invention,
First connecting an outlet of an alkali addition device, a gas-liquid membrane separation device, and an alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved, to a supply-side flow channel inlet of the gas-liquid membrane separation device A water treatment apparatus including a sulfuric acid aqueous solution supply device that supplies a sulfuric acid aqueous solution to the permeation line flow path inlet of the gas line and the gas-liquid membrane separation device,
In the water treatment device,
Stripping tower,
A water treatment device comprising a step of providing a second line for connecting a permeate-side channel outlet of the gas-liquid membrane separation device to a liquid inlet of a stripping tower, and a diluting water addition device disposed in the middle of the second line A remodeling method is provided.
本発明のさらなる態様により、
アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、気液膜分離装置、アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、および気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置を含む水処理装置を改造するためのキットであって、
放散塔、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、および
前記第2のラインの途中に配置される希釈水添加装置
を含む、水処理装置改造用キットが提供される。 According to a further aspect of the invention,
First connecting an outlet of an alkali addition device, a gas-liquid membrane separation device, and an alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved, to a supply-side flow channel inlet of the gas-liquid membrane separation device And a kit for remodeling a water treatment device including a sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side flow channel inlet of the gas-liquid membrane separation device,
Stripping tower,
A water treatment device remodeling kit including a second line for connecting a permeate-side channel outlet of a gas-liquid membrane separation device to a liquid inlet of a stripping tower, and a diluting water addition device arranged in the middle of the second line Is provided.
アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、気液膜分離装置、アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、および気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置を含む水処理装置を改造するためのキットであって、
放散塔、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、および
前記第2のラインの途中に配置される希釈水添加装置
を含む、水処理装置改造用キットが提供される。 According to a further aspect of the invention,
First connecting an outlet of an alkali addition device, a gas-liquid membrane separation device, and an alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved, to a supply-side flow channel inlet of the gas-liquid membrane separation device And a kit for remodeling a water treatment device including a sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side flow channel inlet of the gas-liquid membrane separation device,
Stripping tower,
A water treatment device remodeling kit including a second line for connecting a permeate-side channel outlet of a gas-liquid membrane separation device to a liquid inlet of a stripping tower, and a diluting water addition device arranged in the middle of the second line Is provided.
本発明によれば、低消費エネルギーで、硫酸アンモニウムを排出せずに、低濃度アンモニア含有水中のアンモニアを処理することのできる、水処理方法および装置を提供することができる。
According to the present invention, it is possible to provide a water treatment method and apparatus capable of treating ammonia in low-concentration ammonia-containing water with low energy consumption and without discharging ammonium sulfate.
また本発明によれば、この水処理装置を得るための、水処理装置の改造方法および水処理装置改造用キットが提供される。
Further, according to the present invention, a water treatment device remodeling method and a water treatment device remodeling kit for obtaining this water treatment device are provided.
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、気液分離膜カートリッジを用いて硫酸アンモニウムを生成させて硫酸アンモニウム水溶液を得、この硫酸アンモニウム水溶液を水で希釈した後、アルカリ性条件下に放散塔で放散処理する方法が、課題を解決するために有効であることを見出し、本発明に至った。
As a result of intensive studies to solve the above problems, the inventors of the present invention produced ammonium sulfate using a gas-liquid separation membrane cartridge to obtain an aqueous ammonium sulfate solution. After diluting the aqueous ammonium sulfate solution with water, alkaline conditions The inventors have found that a method of performing a diffusion treatment in a diffusion tower below is effective for solving the problems, and have reached the present invention.
本発明によれば、アンモニア含有排水を小型の装置で、低エネルギーで処理することができ、汚泥などの廃棄物の生成なく処理することができる。
According to the present invention, ammonia-containing wastewater can be treated with a small apparatus with low energy, and can be treated without generating waste such as sludge.
ここで、硫酸アンモニウムもしくは硫安(NH4)2SO4と硫酸ナトリウムNa2SO4の水に対する溶解度(大気圧(0.101MPa)における)を表1に示す。硫酸アンモニウムに比べて硫酸ナトリウムが水に溶けにくいことに注目されたい。
Here, solubility of ammonium sulfate or ammonium sulfate (NH 4 ) 2 SO 4 and sodium sulfate Na 2 SO 4 in water (at atmospheric pressure (0.101 MPa)) is shown in Table 1. Note that sodium sulfate is less soluble in water than ammonium sulfate.
本発明に係る水処理方法は、工程a~dを含む。
The water treatment method according to the present invention includes steps a to d.
〔工程a〕
水処理の対象となる被処理水は、アンモニアが溶解している水であり、例えば電子製品製造プロセスから排出されるアンモニア含有排水である。水に溶解したアンモニアの一部はアンモニウムイオンになるので、被処理水にはアンモニウムイオンが含まれる。 [Step a]
The water to be treated is water in which ammonia is dissolved, for example, ammonia-containing wastewater discharged from an electronic product manufacturing process. Since a part of ammonia dissolved in water becomes ammonium ions, the water to be treated contains ammonium ions.
水処理の対象となる被処理水は、アンモニアが溶解している水であり、例えば電子製品製造プロセスから排出されるアンモニア含有排水である。水に溶解したアンモニアの一部はアンモニウムイオンになるので、被処理水にはアンモニウムイオンが含まれる。 [Step a]
The water to be treated is water in which ammonia is dissolved, for example, ammonia-containing wastewater discharged from an electronic product manufacturing process. Since a part of ammonia dissolved in water becomes ammonium ions, the water to be treated contains ammonium ions.
被処理水中のアンモニア濃度は、500mg/L以上5000mg/L以下が好適である。500mg/L以上であると、処理に必要な気液分離膜の膜面積が大きくなって生物処理に比べてコスト的な優位性が小さくなることを防止することが容易である。5000mg/L以下であると、気液分離膜を通さずに直接ストリッピングを行う場合と比較して、本発明の効果が特に顕著である。
The ammonia concentration in the water to be treated is preferably 500 mg / L or more and 5000 mg / L or less. When the concentration is 500 mg / L or more, it is easy to prevent the gas-liquid separation membrane required for the treatment from becoming large and the cost advantage over the biological treatment from being reduced. When it is 5000 mg / L or less, the effect of the present invention is particularly remarkable as compared with the case where stripping is directly performed without passing through the gas-liquid separation membrane.
なお別途断りの無い限り、本明細書において液中の「アンモニア濃度」は、遊離アンモニアだけでなくアンモニウムイオンも含めた濃度を意味する。また別途断りの無い限り、液中のアンモニア濃度を単位「mg/L」で表した場合、それは遊離アンモニアおよびアンモニウムイオンを窒素に換算した場合の濃度を意味する。
Unless otherwise specified, “ammonia concentration” in the liquid in this specification means a concentration including not only free ammonia but also ammonium ions. Unless otherwise specified, when the ammonia concentration in the liquid is expressed in the unit of “mg / L”, it means the concentration when free ammonia and ammonium ions are converted to nitrogen.
工程aでは、被処理水にアルカリを添加することにより、被処理水中のアンモニウムイオンをアンモニアにする。つまり、「NH4
++OH-→NH3+H2O」の反応を進ませる。被処理水中のアンモニウムイオンの一部をアンモニアにすればよい。アルカリとしては、例えばアルカリ金属塩、特には水酸化ナトリウムが用いることができる。
In step a, the alkali ion is added to the water to be treated to convert ammonium ions in the water to be treated into ammonia. That is, the reaction of “NH 4 + + OH − → NH 3 + H 2 O” is allowed to proceed. A part of ammonium ions in the water to be treated may be ammonia. As the alkali, for example, an alkali metal salt, particularly sodium hydroxide can be used.
アンモニウムイオンを十分にアンモニアにするために、アルカリ添加後の被処理水(工程aから得られる液)のpHは9以上が好ましい。
In order to sufficiently convert ammonium ions to ammonia, the pH of the water to be treated (liquid obtained from step a) after addition of alkali is preferably 9 or more.
〔工程b〕
この工程では、気液分離膜の供給側に工程aから得られる液(アルカリ添加後の被処理水)を供給するとともに、気液分離膜の透過側に硫酸水溶液を供給する。これにより、被処理水中のアンモニアガスが気液分離膜を透過し、透過したアンモニアガスが硫酸水溶液に吸収される。アンモニアガスを吸収した硫酸水溶液中では、硫安が生成する(2NH3+H2SO4→(NH4)2SO4)。したがって、気液分離膜の透過側から硫酸アンモニウム水溶液が得られる。また、気液分離膜の供給側からは、アンモニア濃度が低減された処理水が得られる。 [Step b]
In this step, the liquid obtained from step a (the water to be treated after addition of alkali) is supplied to the gas-liquid separation membrane supply side, and the sulfuric acid aqueous solution is supplied to the permeation side of the gas-liquid separation membrane. Thereby, the ammonia gas in to-be-processed water permeate | transmits a gas-liquid separation membrane, and the permeated ammonia gas is absorbed by sulfuric acid aqueous solution. In the sulfuric acid aqueous solution that has absorbed ammonia gas, ammonium sulfate is formed (2NH 3 + H 2 SO 4 → (NH 4 ) 2 SO 4 ). Therefore, an aqueous ammonium sulfate solution is obtained from the permeation side of the gas-liquid separation membrane. Further, treated water with a reduced ammonia concentration is obtained from the supply side of the gas-liquid separation membrane.
この工程では、気液分離膜の供給側に工程aから得られる液(アルカリ添加後の被処理水)を供給するとともに、気液分離膜の透過側に硫酸水溶液を供給する。これにより、被処理水中のアンモニアガスが気液分離膜を透過し、透過したアンモニアガスが硫酸水溶液に吸収される。アンモニアガスを吸収した硫酸水溶液中では、硫安が生成する(2NH3+H2SO4→(NH4)2SO4)。したがって、気液分離膜の透過側から硫酸アンモニウム水溶液が得られる。また、気液分離膜の供給側からは、アンモニア濃度が低減された処理水が得られる。 [Step b]
In this step, the liquid obtained from step a (the water to be treated after addition of alkali) is supplied to the gas-liquid separation membrane supply side, and the sulfuric acid aqueous solution is supplied to the permeation side of the gas-liquid separation membrane. Thereby, the ammonia gas in to-be-processed water permeate | transmits a gas-liquid separation membrane, and the permeated ammonia gas is absorbed by sulfuric acid aqueous solution. In the sulfuric acid aqueous solution that has absorbed ammonia gas, ammonium sulfate is formed (2NH 3 + H 2 SO 4 → (NH 4 ) 2 SO 4 ). Therefore, an aqueous ammonium sulfate solution is obtained from the permeation side of the gas-liquid separation membrane. Further, treated water with a reduced ammonia concentration is obtained from the supply side of the gas-liquid separation membrane.
気液分離膜には、脱アンモニアガス処理可能な公知の気液分離膜を用いることができ、例えば疎水性多孔質膜が用いることができる。中空糸膜タイプ、スパイラル膜タイプもしくは平膜タイプの気液分離膜を用いることができる。
As the gas-liquid separation membrane, a known gas-liquid separation membrane capable of treating ammonia gas can be used. For example, a hydrophobic porous membrane can be used. A hollow fiber membrane type, spiral membrane type or flat membrane type gas-liquid separation membrane can be used.
中空糸膜の場合、例えば、直径が300μm程度で、空孔サイズが0.03μm程度、(平均)空孔率が40~50%程度の膜が好適である。
In the case of a hollow fiber membrane, for example, a membrane having a diameter of about 300 μm, a pore size of about 0.03 μm, and an (average) porosity of about 40 to 50% is preferable.
気液分離膜に供給する硫酸水溶液の硫酸濃度は高いほうが有利である。生成する硫酸アンモニウムの濃度が高くなり、また硫酸貯槽が小さくて済むなどの取り扱いの点で優れるからである。生成する硫酸アンモニウムの濃度が高いほうが、気液分離膜の透過側から排出される硫酸アンモニウム水溶液の排出量が少なくなる。硫酸アンモニウムを回収、またはストリッピング等の後処理する場合、この排出量が少ない方がコスト的に有利となる。具体的には気液分離膜に供給する硫酸水溶液の濃度は50質量パーセント以上が好ましい。例えば工業的に「濃硫酸」として入手容易な96~98質量%程度の硫酸水溶液を気液分離膜に供給することができる。
It is advantageous that the sulfuric acid concentration of the sulfuric acid aqueous solution supplied to the gas-liquid separation membrane is higher. This is because the concentration of ammonium sulfate to be produced is high, and it is excellent in terms of handling such as a small sulfuric acid storage tank. The higher the concentration of ammonium sulfate produced, the smaller the amount of ammonium sulfate aqueous solution discharged from the permeation side of the gas-liquid separation membrane. In the case of recovering ammonium sulfate or performing post-treatment such as stripping, it is advantageous in terms of cost to reduce this discharge amount. Specifically, the concentration of the sulfuric acid aqueous solution supplied to the gas-liquid separation membrane is preferably 50 mass percent or more. For example, a 96-98 mass% sulfuric acid aqueous solution that is industrially easily available as “concentrated sulfuric acid” can be supplied to the gas-liquid separation membrane.
気液分離膜に供給する硫酸水溶液は、硫酸アンモニウムを含んでいてもよい。
The aqueous sulfuric acid solution supplied to the gas-liquid separation membrane may contain ammonium sulfate.
アンモニアをガス化して気液分離膜を透過する効率を上げ、気液分離膜の供給側から排出される処理水のアンモニア濃度を低減させるために、気液分離を行う際の水温は20~50℃が好ましい。アルカリ添加後の被処理水を、気液分離膜に供給する前に、ヒーター(例えば電気ヒーター)や熱交換器を用いて昇温しておくと、処理効率が高まるので好ましい。
In order to increase the efficiency of gasification of ammonia through the gas-liquid separation membrane and reduce the ammonia concentration of the treated water discharged from the supply side of the gas-liquid separation membrane, the water temperature during gas-liquid separation is 20-50. ° C is preferred. It is preferable to raise the temperature of the water to be treated after the alkali addition using a heater (for example, an electric heater) or a heat exchanger before supplying it to the gas-liquid separation membrane because the treatment efficiency is increased.
被処理水に懸濁物質が含まれる場合には、気液分離膜に供給する前に、ろ過器やフィルターなどを通して懸濁物質を除去するのが好ましい。
When suspended matter is contained in the water to be treated, it is preferable to remove the suspended matter through a filter or a filter before supplying it to the gas-liquid separation membrane.
〔工程c〕
この工程では、工程bから得られる硫酸アンモニウム水溶液を、希釈水で希釈する。希釈水として、純水、工業用水、水道水、ろ過水などを用いることができる。また、工程bから得られる処理水および工程dから得られる処理水のうちの一方もしくは両方を、工程cにおいて希釈水として用いることもできる。 [Step c]
In this step, the ammonium sulfate aqueous solution obtained from step b is diluted with dilution water. As dilution water, pure water, industrial water, tap water, filtered water, or the like can be used. In addition, one or both of the treated water obtained from step b and the treated water obtained from step d can be used as dilution water in step c.
この工程では、工程bから得られる硫酸アンモニウム水溶液を、希釈水で希釈する。希釈水として、純水、工業用水、水道水、ろ過水などを用いることができる。また、工程bから得られる処理水および工程dから得られる処理水のうちの一方もしくは両方を、工程cにおいて希釈水として用いることもできる。 [Step c]
In this step, the ammonium sulfate aqueous solution obtained from step b is diluted with dilution water. As dilution water, pure water, industrial water, tap water, filtered water, or the like can be used. In addition, one or both of the treated water obtained from step b and the treated water obtained from step d can be used as dilution water in step c.
水処理装置におけるスケール発生を抑制する観点から、希釈水としては、カルシウムやマグネシウムなどのスケール原因物質を高濃度に含まない水が好ましい。例えば、全硬度として200mg-CaCO3/L以下、好ましくは20mg-CaCO3/L以下の水が使用できる。このことは被処理水についても同様である。
From the viewpoint of suppressing the generation of scale in the water treatment apparatus, the dilution water is preferably water that does not contain a scale-causing substance such as calcium or magnesium at a high concentration. For example, water having a total hardness of 200 mg-CaCO 3 / L or less, preferably 20 mg-CaCO 3 / L or less can be used. The same applies to the water to be treated.
工程dにおいて、希釈された硫酸アンモニウム水溶液をアルカリ性条件下で処理するが、このときに硫酸アンモニウム水溶液からアルカリ塩(例えば硫酸ナトリウム)が析出する恐れがある。工程dにおけるアルカリ塩の析出を防止するために、工程cにおいて硫酸アンモニウム水溶液を希釈する。
In step d, the diluted aqueous ammonium sulfate solution is treated under alkaline conditions. At this time, an alkaline salt (for example, sodium sulfate) may be precipitated from the aqueous ammonium sulfate solution. In order to prevent precipitation of alkali salts in step d, the aqueous ammonium sulfate solution is diluted in step c.
したがって、工程dにおいてアルカリ塩が析出しない濃度が実現されるように(例えば硫酸ナトリウム濃度が表1に示す溶解度以下の濃度)になるよう、工程cにおいて予め硫酸アンモニウム水溶液を希釈する。工程dにおける析出を防止するに足る希釈水の量を予め見積もっておき、工程cにおいてその量の希釈水を定量注入することができる。あるいは、工程bから排出された硫酸アンモニウム水溶液中の硫酸イオン濃度を計器によって測定し、その値が溶解度以下となるように工程cにおいて希釈水を注入することもできる。あるいは、硫酸アンモニウム水溶液の導電率と硫酸イオン濃度の対応関係を予備実験等により予め把握しておけば、硫酸イオン濃度に替えて導電率を使用して、希釈水の注入量を決めることもできる。
Therefore, in step c, the aqueous ammonium sulfate solution is diluted in advance so as to achieve a concentration at which the alkali salt does not precipitate in step d (for example, the sodium sulfate concentration is not higher than the solubility shown in Table 1). The amount of dilution water sufficient to prevent precipitation in step d can be estimated in advance, and that amount of dilution water can be quantitatively injected in step c. Alternatively, the concentration of sulfate ion in the ammonium sulfate aqueous solution discharged from step b can be measured by a meter, and dilution water can be injected in step c so that the value is not more than the solubility. Alternatively, if the correspondence between the conductivity of the ammonium sulfate aqueous solution and the sulfate ion concentration is grasped in advance by a preliminary experiment or the like, the injection amount of the dilution water can be determined using the conductivity instead of the sulfate ion concentration.
工程dにおいて、アルカリ性条件を達成するために、希釈硫酸アンモニウム水溶液に水酸化ナトリウムを添加する場合、水酸化ナトリウム添加後の希釈硫酸アンモニウム水溶液中のNa2SO4濃度が溶解度(表1参照)以下になるように、好ましくは30質量%以下、より好ましくは16質量%以下になるように、工程cにおいて硫酸アンモニウム水溶液を予め希釈することができる。
In step d, when sodium hydroxide is added to the diluted ammonium sulfate aqueous solution in order to achieve alkaline conditions, the concentration of Na 2 SO 4 in the diluted ammonium sulfate aqueous solution after addition of sodium hydroxide is less than the solubility (see Table 1). Thus, the aqueous ammonium sulfate solution can be diluted in advance in step c so that it is preferably 30% by mass or less, more preferably 16% by mass or less.
〔工程d〕
この工程では、工程cから得られる希釈された硫酸アンモニウム水溶液(希釈硫酸アンモニウム水溶液)を、アルカリ性条件下でストリッピングする。これによって、希釈硫酸アンモニウム水溶液からアンモニアを除去する。放散塔からは、アンモニアガスを含む気体と、アンモニア濃度が低減された処理水が得られる。 [Step d]
In this step, the diluted ammonium sulfate aqueous solution (diluted ammonium sulfate aqueous solution) obtained from step c is stripped under alkaline conditions. This removes ammonia from the diluted aqueous ammonium sulfate solution. A gas containing ammonia gas and treated water with reduced ammonia concentration are obtained from the stripping tower.
この工程では、工程cから得られる希釈された硫酸アンモニウム水溶液(希釈硫酸アンモニウム水溶液)を、アルカリ性条件下でストリッピングする。これによって、希釈硫酸アンモニウム水溶液からアンモニアを除去する。放散塔からは、アンモニアガスを含む気体と、アンモニア濃度が低減された処理水が得られる。 [Step d]
In this step, the diluted ammonium sulfate aqueous solution (diluted ammonium sulfate aqueous solution) obtained from step c is stripped under alkaline conditions. This removes ammonia from the diluted aqueous ammonium sulfate solution. A gas containing ammonia gas and treated water with reduced ammonia concentration are obtained from the stripping tower.
工程dにおいて、アルカリ性条件を達成するために、すなわち希釈硫酸アンモニウム水溶液をアルカリ性にするために、希釈硫酸アンモニウム水溶液に水酸化ナトリウムを添加することが、コスト的に好ましい。排水中のアンモニウムイオンの大部分を、アンモニアガスに転換して、処理水中のアンモニア濃度を低減するために、ストリッピングする希釈硫酸アンモニウム水溶液のpHは9~13が好ましい。
In step d, it is preferable in terms of cost to add sodium hydroxide to the diluted ammonium sulfate aqueous solution in order to achieve alkaline conditions, that is, to make the diluted ammonium sulfate aqueous solution alkaline. The pH of the diluted ammonium sulfate aqueous solution to be stripped is preferably 9 to 13 in order to convert most of the ammonium ions in the wastewater into ammonia gas and reduce the ammonia concentration in the treated water.
前述のように、ストリッピングする液(アルカリ性化された希釈硫酸アンモニウム水溶液)中の硫酸アンモニウムの濃度は、塩析出防止の観点から、30質量%以下が好ましく、より好ましくは16質量%以下である。
As described above, the concentration of ammonium sulfate in the stripping solution (alkalized diluted ammonium sulfate aqueous solution) is preferably 30% by mass or less, more preferably 16% by mass or less, from the viewpoint of preventing salt precipitation.
ストリッピングを行う放散塔の入口における液(アルカリ性化された希釈硫酸アンモニウム水溶液)の温度は、アンモニアガスが揮発する割合を大きくするために、40℃以上100℃以下が好ましい。
The temperature of the liquid at the inlet of the stripping tower for stripping (an alkalinized diluted ammonium sulfate aqueous solution) is preferably 40 ° C. or higher and 100 ° C. or lower in order to increase the rate at which ammonia gas volatilizes.
放散塔から得られる処理水(アンモニア濃度が低減された水)のアンモニア濃度は、放流規制値を守るためなど環境への負荷の観点から、または後段の処理への窒素負荷を低減するため、0mg/L以上100mg/L以下が好ましい。
The ammonia concentration of the treated water (water with reduced ammonia concentration) obtained from the stripping tower is 0 mg from the viewpoint of environmental load, such as to protect the discharge regulation value, or to reduce the nitrogen load on the subsequent treatment. / L or more and 100 mg / L or less is preferable.
ストリッピングの際に、スチームあるいは空気を放散塔に吹き込むことができる。あるいはストリッピングガス吹き込みを行わずに、放散塔の底部に加熱器(リボイラー)を設けて、スチームを発生させてもよい。
Steam or air can be blown into the stripping tower during stripping. Alternatively, steam may be generated by providing a heater (reboiler) at the bottom of the stripping tower without blowing stripping gas.
放散塔から、アンモニアガスを含む気体が得られるが、この気体にはストリッピングガスの種類に応じて、水蒸気、窒素、酸素などが含まれ得る。
A gas containing ammonia gas is obtained from the stripping tower, and this gas may contain water vapor, nitrogen, oxygen, etc. depending on the type of stripping gas.
〔さらなる処理〕
放散塔から得られる気体(アンモニアガスを含む気体)に含まれるアンモニアガスを、アンモニア分解触媒を用いて、窒素ガスに転換することができる。このために、放散塔から得られる気体をアンモニア分解触媒と接触させる触媒反応器(アンモニア触媒分解装置)を使用することができる。この触媒反応器の構造としては、アンモニア分解の分野で公知の構造を適宜採用でき、固定層、流動層などを使用できる。 [Further processing]
Ammonia gas contained in a gas (a gas containing ammonia gas) obtained from the stripping tower can be converted into nitrogen gas using an ammonia decomposition catalyst. For this purpose, it is possible to use a catalytic reactor (ammonia catalytic cracking apparatus) in which the gas obtained from the stripping tower is brought into contact with the ammonia cracking catalyst. As the structure of this catalytic reactor, a known structure in the field of ammonia decomposition can be adopted as appropriate, and a fixed bed, a fluidized bed, or the like can be used.
放散塔から得られる気体(アンモニアガスを含む気体)に含まれるアンモニアガスを、アンモニア分解触媒を用いて、窒素ガスに転換することができる。このために、放散塔から得られる気体をアンモニア分解触媒と接触させる触媒反応器(アンモニア触媒分解装置)を使用することができる。この触媒反応器の構造としては、アンモニア分解の分野で公知の構造を適宜採用でき、固定層、流動層などを使用できる。 [Further processing]
Ammonia gas contained in a gas (a gas containing ammonia gas) obtained from the stripping tower can be converted into nitrogen gas using an ammonia decomposition catalyst. For this purpose, it is possible to use a catalytic reactor (ammonia catalytic cracking apparatus) in which the gas obtained from the stripping tower is brought into contact with the ammonia cracking catalyst. As the structure of this catalytic reactor, a known structure in the field of ammonia decomposition can be adopted as appropriate, and a fixed bed, a fluidized bed, or the like can be used.
アンモニア分解触媒としては、アンモニア分解の分野で公知の触媒を使用することができ、特には酸化触媒を用いることができる。例えば、チタニア、シリカ、アルミナ、ジルコニア、ゼオライトなどの担体に、ルテニウム、ロジウム、パラジウム、イリジウム、白金、チタン、鉄、ニッケル、コバルト、バナジウム、セリウム、マンガンなどの塩または酸化物などの触媒活性成分を担持させた触媒を用いることができる。触媒の形状は、ハニカム、金網型、粒状など特に制限はない。
As the ammonia decomposition catalyst, a catalyst known in the field of ammonia decomposition can be used, and in particular, an oxidation catalyst can be used. For example, catalytically active components such as salts or oxides such as ruthenium, rhodium, palladium, iridium, platinum, titanium, iron, nickel, cobalt, vanadium, cerium, and manganese on a carrier such as titania, silica, alumina, zirconia, and zeolite Can be used. The shape of the catalyst is not particularly limited, such as a honeycomb, a wire mesh type, or a granular shape.
〔水処理装置〕
本発明に係る水処理装置は、
アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、
気液膜分離装置、
放散塔、
アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、
気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、および、
前記第2のラインの途中に設けられた、希釈水添加装置
を含む。 [Water treatment equipment]
The water treatment apparatus according to the present invention is
An alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved;
Gas-liquid membrane separator,
Stripping tower,
A first line connecting the outlet of the alkali addition device to the supply side flow channel inlet of the gas-liquid membrane separation device;
A sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side channel inlet of the gas-liquid membrane separator;
A second line connecting the permeate side channel outlet of the gas-liquid membrane separator to the liquid inlet of the stripping tower, and
A dilution water addition device provided in the middle of the second line is included.
本発明に係る水処理装置は、
アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、
気液膜分離装置、
放散塔、
アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、
気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、および、
前記第2のラインの途中に設けられた、希釈水添加装置
を含む。 [Water treatment equipment]
The water treatment apparatus according to the present invention is
An alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved;
Gas-liquid membrane separator,
Stripping tower,
A first line connecting the outlet of the alkali addition device to the supply side flow channel inlet of the gas-liquid membrane separation device;
A sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side channel inlet of the gas-liquid membrane separator;
A second line connecting the permeate side channel outlet of the gas-liquid membrane separator to the liquid inlet of the stripping tower, and
A dilution water addition device provided in the middle of the second line is included.
・アルカリ添加装置
アルカリ添加装置は、被処理水にアルカリ(典型的には水酸化ナトリウム)を添加することのできる装置であれば、適宜使用することができ、水処理の分野で公知の構造を適宜採用できる。例えば、水酸化ナトリウムを投入する手段を備えたpH調整槽を、アルカリ添加装置として使用することができる。アルカリ添加装置の出口から、アルカリが添加された被処理水が排出される。 -Alkali addition device The alkali addition device can be used as appropriate as long as it can add alkali (typically sodium hydroxide) to the water to be treated, and has a structure known in the field of water treatment. It can be adopted as appropriate. For example, a pH adjustment tank equipped with a means for adding sodium hydroxide can be used as an alkali addition device. The treated water to which alkali is added is discharged from the outlet of the alkali addition device.
アルカリ添加装置は、被処理水にアルカリ(典型的には水酸化ナトリウム)を添加することのできる装置であれば、適宜使用することができ、水処理の分野で公知の構造を適宜採用できる。例えば、水酸化ナトリウムを投入する手段を備えたpH調整槽を、アルカリ添加装置として使用することができる。アルカリ添加装置の出口から、アルカリが添加された被処理水が排出される。 -Alkali addition device The alkali addition device can be used as appropriate as long as it can add alkali (typically sodium hydroxide) to the water to be treated, and has a structure known in the field of water treatment. It can be adopted as appropriate. For example, a pH adjustment tank equipped with a means for adding sodium hydroxide can be used as an alkali addition device. The treated water to which alkali is added is discharged from the outlet of the alkali addition device.
・気液膜分離装置
気液膜分離装置は、気液分離膜を含む分離装置である。気液膜分離装置の構造としては、水処理の分野で公知の構造を適宜採用することができる。気液膜分離装置は、気液分離膜を挟んで供給側流路と透過側流路とを有する。アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のラインによって、供給側流路に、分離を行う対象となる流体として、アルカリ添加された被処理水が供給される。アンモニアが気液分離膜を透過して透過側流路に移動する。 -Gas-liquid membrane separation apparatus A gas-liquid membrane separation apparatus is a separation apparatus containing a gas-liquid separation membrane. As the structure of the gas-liquid membrane separator, a known structure in the field of water treatment can be appropriately employed. The gas-liquid membrane separation device has a supply-side channel and a permeation-side channel with the gas-liquid separation membrane interposed therebetween. By the first line that connects the outlet of the alkali addition device to the supply side flow channel inlet of the gas-liquid membrane separation device, the treated water added with alkali is supplied to the supply side flow channel as a fluid to be separated. Is done. Ammonia permeates the gas-liquid separation membrane and moves to the permeate side channel.
気液膜分離装置は、気液分離膜を含む分離装置である。気液膜分離装置の構造としては、水処理の分野で公知の構造を適宜採用することができる。気液膜分離装置は、気液分離膜を挟んで供給側流路と透過側流路とを有する。アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のラインによって、供給側流路に、分離を行う対象となる流体として、アルカリ添加された被処理水が供給される。アンモニアが気液分離膜を透過して透過側流路に移動する。 -Gas-liquid membrane separation apparatus A gas-liquid membrane separation apparatus is a separation apparatus containing a gas-liquid separation membrane. As the structure of the gas-liquid membrane separator, a known structure in the field of water treatment can be appropriately employed. The gas-liquid membrane separation device has a supply-side channel and a permeation-side channel with the gas-liquid separation membrane interposed therebetween. By the first line that connects the outlet of the alkali addition device to the supply side flow channel inlet of the gas-liquid membrane separation device, the treated water added with alkali is supplied to the supply side flow channel as a fluid to be separated. Is done. Ammonia permeates the gas-liquid separation membrane and moves to the permeate side channel.
気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置によって、透過側流路に硫酸水溶液が供給される。膜を透過したアンモニアがこの硫酸水溶液に吸収され、硫酸アンモニウム水溶液が生成し、硫酸アンモニウム水溶液が透過側流路から排出される。
The sulfuric acid aqueous solution is supplied to the permeate side flow path by the sulfuric acid aqueous solution supply device that supplies the sulfuric acid aqueous solution to the permeate side flow path inlet of the gas-liquid membrane separator. Ammonia that has passed through the membrane is absorbed by this aqueous sulfuric acid solution to produce an aqueous ammonium sulfate solution, which is discharged from the permeate side flow path.
・硫酸水溶液供給装置
硫酸水溶液供給装置としては、透過側流路に硫酸水溶液を供給できる装置を適宜使用することができる。例えば、透過側流路の入口に、水(硫酸アンモニウム水溶液でもよい)供給ラインを接続し、この水供給ラインを流れる水に硫酸(特には濃硫酸)を添加するラインを設けることができる。 -Sulfuric acid aqueous solution supply apparatus As a sulfuric acid aqueous solution supply apparatus, the apparatus which can supply sulfuric acid aqueous solution to a permeation | transmission side flow path can be used suitably. For example, a water (or ammonium sulfate aqueous solution) supply line may be connected to the inlet of the permeate side flow path, and a line for adding sulfuric acid (particularly concentrated sulfuric acid) to the water flowing through the water supply line may be provided.
硫酸水溶液供給装置としては、透過側流路に硫酸水溶液を供給できる装置を適宜使用することができる。例えば、透過側流路の入口に、水(硫酸アンモニウム水溶液でもよい)供給ラインを接続し、この水供給ラインを流れる水に硫酸(特には濃硫酸)を添加するラインを設けることができる。 -Sulfuric acid aqueous solution supply apparatus As a sulfuric acid aqueous solution supply apparatus, the apparatus which can supply sulfuric acid aqueous solution to a permeation | transmission side flow path can be used suitably. For example, a water (or ammonium sulfate aqueous solution) supply line may be connected to the inlet of the permeate side flow path, and a line for adding sulfuric acid (particularly concentrated sulfuric acid) to the water flowing through the water supply line may be provided.
・放散塔
放散塔の構造としては、アンモニアストリッピングにおいて公知の構造を適宜採用することができ、放散塔には棚段塔、充填塔などを使用できる。 -Stripping tower As a structure of a stripping tower, a well-known structure can be employ | adopted suitably in ammonia stripping, and a plate tower, a packed tower, etc. can be used for a stripping tower.
放散塔の構造としては、アンモニアストリッピングにおいて公知の構造を適宜採用することができ、放散塔には棚段塔、充填塔などを使用できる。 -Stripping tower As a structure of a stripping tower, a well-known structure can be employ | adopted suitably in ammonia stripping, and a plate tower, a packed tower, etc. can be used for a stripping tower.
気液膜分離装置の透過側流路出口を放散塔の液入口(ストリッピングされる液体の供給口)に接続する第2のラインによって、硫酸アンモニウム水溶液が放散塔に供給される。このラインの途中には、希釈水添加装置が設けられる。
The ammonium sulfate aqueous solution is supplied to the diffusion tower by a second line that connects the permeate-side flow path outlet of the gas-liquid membrane separation device to the liquid inlet (stripping liquid supply port) of the diffusion tower. A diluting water addition device is provided in the middle of this line.
・希釈水添加装置
希釈水添加装置としては、第2のラインの途中(気液膜分離装置透過側流路出口と、放散塔との間)で、第2のラインを流れる硫酸アンモニウム水溶液に希釈水を添加できる装置を適宜使用することができる。例えば、第2のラインの途中に希釈水供給ラインを接続することができる。 -Diluting water addition device As the diluting water addition device, diluting water is added to the ammonium sulfate aqueous solution flowing through the second line in the middle of the second line (between the gas-liquid membrane separator permeation channel outlet and the stripping tower). The apparatus which can add can be used suitably. For example, a dilution water supply line can be connected in the middle of the second line.
希釈水添加装置としては、第2のラインの途中(気液膜分離装置透過側流路出口と、放散塔との間)で、第2のラインを流れる硫酸アンモニウム水溶液に希釈水を添加できる装置を適宜使用することができる。例えば、第2のラインの途中に希釈水供給ラインを接続することができる。 -Diluting water addition device As the diluting water addition device, diluting water is added to the ammonium sulfate aqueous solution flowing through the second line in the middle of the second line (between the gas-liquid membrane separator permeation channel outlet and the stripping tower). The apparatus which can add can be used suitably. For example, a dilution water supply line can be connected in the middle of the second line.
水処理装置は、気液膜分離装置の供給側流路出口または放散塔の液出口を、希釈水添加装置に接続するラインを含むことができる。これによって気液膜分離装置から得られる処理水あるいは放散塔から得られる処理水を、希釈水として利用することができる。
The water treatment apparatus can include a line that connects the supply-side flow path outlet of the gas-liquid membrane separation apparatus or the liquid outlet of the stripping tower to the dilution water addition apparatus. As a result, the treated water obtained from the gas-liquid membrane separator or the treated water obtained from the stripping tower can be used as dilution water.
各ラインは、適宜配管、バルブ、ポンプなどを用いて構成することができる。
Each line can be configured using piping, valves, pumps, etc. as appropriate.
〔水処理装置の例〕
本発明に係る水処理装置の一例のプロセスフローを図1に示す。 [Example of water treatment equipment]
FIG. 1 shows a process flow of an example of a water treatment apparatus according to the present invention.
本発明に係る水処理装置の一例のプロセスフローを図1に示す。 [Example of water treatment equipment]
FIG. 1 shows a process flow of an example of a water treatment apparatus according to the present invention.
排水槽1に貯えられた被処理水が、ラインL1を経て、pH調整槽(被処理水用)2に送られる。ここで被処理水に、ラインL31から、アルカリ(NaOH)が添加される。アルカリ添加された被処理水が、ラインL2を経て、フィルター3に送られる。ここで被処理水から懸濁物質が除去される。フルターを通った液が、ラインL3を経て、熱交換器4に送られて加熱される。加熱された液がラインL4を経て、加熱器(電気ヒータ)5に送られて更に加熱される。更に加熱された液が、ラインL5を経て、気液膜分離装置6の供給側流路6aに供給される。ここでラインL5から供給される液に含まれていたアンモニアガスが、気液分離膜6cを透過して、透過側流路6bに移動する。したがって、ラインL5から供給された液中のアンモニアガス濃度が低減され、供給側流路6aから、アンモニア濃度が低減された処理水が排出される。この処理水はラインL6を経て、熱交換器4に送られ、ここで冷却される。ラインL7に、冷却(熱回収)された処理水が得られる。この処理水は、適宜再利用もしくは外界に排出される。
The water to be treated stored in the drain tank 1 is sent to the pH adjusting tank (for water to be treated) 2 through the line L1. Here, alkali (NaOH) is added to the water to be treated from the line L31. The water to be treated to which alkali has been added is sent to the filter 3 via the line L2. Here, suspended substances are removed from the water to be treated. The liquid that has passed through the filter is sent to the heat exchanger 4 through the line L3 and heated. The heated liquid is sent to the heater (electric heater) 5 via the line L4 and further heated. Further, the heated liquid is supplied to the supply-side flow path 6a of the gas-liquid membrane separation device 6 via the line L5. Here, the ammonia gas contained in the liquid supplied from the line L5 permeates the gas-liquid separation membrane 6c and moves to the permeate side flow path 6b. Therefore, the ammonia gas concentration in the liquid supplied from the line L5 is reduced, and the treated water with the reduced ammonia concentration is discharged from the supply side flow path 6a. This treated water is sent to the heat exchanger 4 via the line L6 and cooled here. The treated water cooled (heat recovered) is obtained in the line L7. This treated water is reused or discharged to the outside as appropriate.
気液膜分離装置6の透過側流路6bには硫酸水溶液がラインL11から供給される。気液分離膜6cを透過したアンモニアガスが、透過側流路6bにおいて硫酸水溶液に吸収され、硫酸アンモニウム水溶液が生成し、ラインL12に排出される。硫酸アンモニウム水溶液は、ラインL12から循環槽7に送られる。循環槽7から、ラインL13を経て、硫酸アンモニウム水溶液がフィルター8に送られ、ここで懸濁物質が除去される。懸濁物質が除去された硫酸アンモニウム水溶液が、フィルター8から、ラインL14に排出され、ラインL32から供給される硫酸と混合されて、硫酸水溶液(ラインL14からの硫酸アンモニウムを含有する)としてラインL11から透過側流路6bに供給される。ラインL11、L12、L13、L14により閉ループが形成される。ここで、ラインL21が適宜のバルブ(不図示)により閉止されていると、徐々に循環槽7に硫酸アンモニウム水溶液が溜まっていく。循環槽7に或る量以上の硫酸アンモニウム水溶液が溜まったら、ラインL21のバルブを開け、硫酸アンモニウム水溶液を、循環槽7からラインL21を経て硫安溶液槽9に送る。ここでラインL22から希釈水が添加され、希釈された硫酸アンモニウム水溶液がラインL23を経てpH調整槽(硫酸アンモニウム水溶液用)10に送られる。ここで、硫酸アンモニウム水溶液に、ラインL33からアルカリ(NaOH)が添加され、硫酸アンモニウム水溶液のpHがアルカリ性となる。アルカリ性にされた硫酸アンモニウム水溶液は、ラインL24を経て、熱交換器11に供給され、ここで加熱される。加熱されたアルカリ性硫酸アンモニウム水溶液が、ラインL25を経て放散塔12に供給され、ラインL34から供給されるスチームによってストリッピングされる。気体(硫酸アンモニウム水溶液から除去されたアンモニアガスと、スチームを含む)が放散塔からラインL26に排出された後、ラインL35から供給される空気で適当な濃度に希釈され、ラインL27を経てアンモニア触媒分解装置13に送られる。アンモニア触媒分解装置において、アンモニアが酸化され、窒素ガス(および水分)としてラインL28から外界に排出される。放散塔から得られる液は、ラインL29を経て、熱交換器11に送られ、ここで冷却される。ラインL30に得られる冷却された液は、アンモニアが除去された純度の高い水(処理水)であり、適宜再利用もしくは外界に排出される。
The aqueous sulfuric acid solution is supplied from the line L11 to the permeate side flow path 6b of the gas-liquid membrane separation device 6. The ammonia gas that has permeated through the gas-liquid separation membrane 6c is absorbed by the sulfuric acid aqueous solution in the permeation side flow path 6b, and an ammonium sulfate aqueous solution is generated and discharged to the line L12. The aqueous ammonium sulfate solution is sent from the line L12 to the circulation tank 7. From the circulation tank 7, the aqueous ammonium sulfate solution is sent to the filter 8 via the line L13, where suspended substances are removed. The aqueous ammonium sulfate solution from which suspended substances have been removed is discharged from the filter 8 to the line L14, mixed with sulfuric acid supplied from the line L32, and permeated from the line L11 as an aqueous sulfuric acid solution (containing ammonium sulfate from the line L14). It is supplied to the side flow path 6b. A closed loop is formed by the lines L11, L12, L13, and L14. Here, when the line L21 is closed by an appropriate valve (not shown), the aqueous ammonium sulfate solution gradually accumulates in the circulation tank 7. When a certain amount or more of the ammonium sulfate aqueous solution has accumulated in the circulation tank 7, the valve of the line L21 is opened, and the ammonium sulfate aqueous solution is sent from the circulation tank 7 to the ammonium sulfate solution tank 9 via the line L21. Here, dilution water is added from the line L22, and the diluted ammonium sulfate aqueous solution is sent to the pH adjustment tank (for ammonium sulfate aqueous solution) 10 via the line L23. Here, alkali (NaOH) is added to the ammonium sulfate aqueous solution from the line L33, and the pH of the ammonium sulfate aqueous solution becomes alkaline. The alkaline ammonium sulfate aqueous solution is supplied to the heat exchanger 11 via the line L24 and heated there. The heated alkaline ammonium sulfate aqueous solution is supplied to the stripping tower 12 through the line L25, and is stripped by the steam supplied from the line L34. After the gas (including ammonia gas removed from the ammonium sulfate aqueous solution and steam) is discharged from the stripping tower to the line L26, it is diluted to an appropriate concentration with the air supplied from the line L35, and the ammonia catalytic decomposition is performed via the line L27. Sent to the device 13. In the ammonia catalytic cracking apparatus, ammonia is oxidized and discharged as nitrogen gas (and moisture) from the line L28 to the outside. The liquid obtained from the stripping tower is sent to the heat exchanger 11 via the line L29 and cooled here. The cooled liquid obtained in the line L30 is high-purity water (treated water) from which ammonia has been removed, and is appropriately reused or discharged to the outside.
ラインL7あるいはラインL30と、ラインL22とを接続すれば、気液分離膜の供給側流路6aから得られた処理水、あるいは、放散塔から得られた処理水を、希釈水として利用することができる。
If the line L7 or the line L30 and the line L22 are connected, the treated water obtained from the supply-side flow path 6a of the gas-liquid separation membrane or the treated water obtained from the diffusion tower can be used as dilution water. Can do.
本発明によれば、希釈硫酸アンモニウム溶液の量を、被処理水の量に対して、10分の1~300分の1にすることができる。したがって、被処理水を直接ストリッピングする場合に比べ、ストリッピングに必要な熱エネルギーも10分の1~300分の1になり、省エネルギーで処理費用が安価になる。
According to the present invention, the amount of diluted ammonium sulfate solution can be reduced to 1/10 to 1/300 of the amount of water to be treated. Therefore, compared with direct stripping of the water to be treated, the heat energy required for stripping is also reduced to 1/10 to 1/300, which saves energy and reduces the processing cost.
また、硫酸アンモニウムを固形化して処理する場合に比べ、硫酸アンモニウム溶液の状態で取り扱うことによって、移送、運搬が容易である。したがって硫酸アンモニウム水溶液を得るまでの工程(工程bまでの工程)と、硫酸アンモニウム水溶液を処理する工程(工程c以降の工程)を、離れた場所で行うこともできる。例えば、多数の箇所から硫酸アンモニウム水溶液(工程bで気液分離膜の透過側から得られる)を回収して一箇所に集め、そこで一括してアンモニアストリッピング(工程c以降の処理)することが容易、効率的になる。大量の硫酸アンモニウム水溶液を一か所で処理することにより、放散塔を効率的に連続運転することができるからである。
Also, compared to the case where ammonium sulfate is solidified and processed, it can be easily transferred and transported by handling it in an ammonium sulfate solution state. Therefore, the process until the ammonium sulfate aqueous solution is obtained (the process up to the process b) and the process for treating the ammonium sulfate aqueous solution (the process after the process c) can be performed at remote locations. For example, an aqueous ammonium sulfate solution (obtained from the permeate side of the gas-liquid separation membrane in step b) is collected from a number of locations and collected in a single location, where ammonia stripping (processing after step c) is easy. Become efficient. This is because the stripping tower can be operated efficiently and continuously by treating a large amount of aqueous ammonium sulfate solution in one place.
〔既存の水処理装置の改造〕
アンモニアが溶解している被処理水から、気液分離膜を利用してアンモニアを除去する水処理装置が既に存在していることがある。この場合、この既存の水処理装置を改造することによって、前述の優れた水処理装置を得ることが可能である。 [Modification of existing water treatment equipment]
A water treatment apparatus that removes ammonia from water to be treated in which ammonia is dissolved by using a gas-liquid separation membrane may already exist. In this case, it is possible to obtain the above-described excellent water treatment apparatus by modifying the existing water treatment apparatus.
アンモニアが溶解している被処理水から、気液分離膜を利用してアンモニアを除去する水処理装置が既に存在していることがある。この場合、この既存の水処理装置を改造することによって、前述の優れた水処理装置を得ることが可能である。 [Modification of existing water treatment equipment]
A water treatment apparatus that removes ammonia from water to be treated in which ammonia is dissolved by using a gas-liquid separation membrane may already exist. In this case, it is possible to obtain the above-described excellent water treatment apparatus by modifying the existing water treatment apparatus.
既存の装置は、アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、気液膜分離装置、アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、および気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置を含む。既存の水処理装置に、放散塔と、気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のラインと、前記第2のラインの途中に配置される希釈水添加装置を設けることにより、水処理装置を改造することができる。
The existing apparatus is configured to add alkali to the water to be treated in which ammonia is dissolved. The alkali addition apparatus, the gas-liquid membrane separation apparatus, and the outlet of the alkali addition apparatus are connected to the supply side flow path inlet of the gas-liquid membrane separation apparatus. And a sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate-side flow channel inlet of the gas-liquid membrane separation device. In an existing water treatment device, a diffusion tower, a second line connecting the permeate side channel outlet of the gas-liquid membrane separator to the liquid inlet of the diffusion tower, and dilution water disposed in the middle of the second line By providing the addition device, the water treatment device can be modified.
既存の水処理装置は、例えば図1に示すラインL21よりも上流に位置する部分(装置1~8、ラインL1~L7、L11~L14、L31、L32)を含むことができる。この既存の水処理装置では、循環槽7に硫酸アンモニウム水溶液が溜まったら、循環槽7から硫酸アンモニウム水溶液を取り出して、必要に応じて硫酸アンモニウムを固化した後、産業廃棄物として処理することができる。この既存の水処理装置に、図1に示すラインL21およびそれより下流の部分(装置9~13、ラインL21~L30、L33~L35)を設けることができる。このように改造された水処理装置は、図1に示すプロセスフローを有し、前述の水処理方法を実施するに好適である。
The existing water treatment device can include, for example, portions (devices 1 to 8, lines L1 to L7, L11 to L14, L31, and L32) located upstream from the line L21 shown in FIG. In this existing water treatment apparatus, when an aqueous ammonium sulfate solution is accumulated in the circulation tank 7, the aqueous ammonium sulfate solution can be taken out from the circulation tank 7 and solidified as necessary, and then treated as industrial waste. This existing water treatment apparatus can be provided with the line L21 shown in FIG. 1 and portions downstream thereof (apparatuses 9 to 13, lines L21 to L30, L33 to L35). The water treatment apparatus modified in this way has the process flow shown in FIG. 1 and is suitable for carrying out the above-described water treatment method.
したがって、本発明は、アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、気液膜分離装置、アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、および気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置を含む水処理装置を改造するためのキットを提供する。このキットは、放散塔と、気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のラインと、前記第2のラインの途中に配置される希釈水添加装置とを含む。
Accordingly, the present invention provides an alkali addition device, a gas-liquid membrane separation device, and an outlet of the alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved. Provided is a kit for remodeling a water treatment apparatus including a first line connected to an inlet and a sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to a permeate side channel inlet of a gas-liquid membrane separator. The kit includes a diffusion tower, a second line that connects a permeate-side channel outlet of the gas-liquid membrane separator to a liquid inlet of the diffusion tower, and a diluting water addition device that is disposed in the middle of the second line. including.
以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれによって限定されるものではない。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
図1に示すプロセスフローを有する装置につき、プロセスシミュレーションを行った。
Process simulation was performed for the apparatus having the process flow shown in FIG.
結果を表2にまとめる。被処理水(ラインL1)の量は100m3/日であったが、これを気液分離膜を用いて3.6m3/日まで減容し、硫酸ナトリウムの析出防止のために希釈水5.0m3/日を加え、結果としてストリッピングする液の量は8.6m3/日となった。つまり、被処理水の量に対して、放散塔入口液の量は約12分の1(=8.6/100)となった。したがって、被処理水を直接ストリッピングする場合と比べて、本発明によれば、ストリッピングに必要な熱エネルギーもおおよそ12分の1になると考えられる。
The results are summarized in Table 2. The amount of water to be treated (line L1) was 100 m 3 / day, but this was reduced to 3.6 m 3 / day using a gas-liquid separation membrane, and diluted water 5 was used to prevent precipitation of sodium sulfate. 0.0 m 3 / day was added, resulting in an amount of stripping liquid of 8.6 m 3 / day. That is, the amount of the liquid at the inlet of the diffusion tower was about 1/12 (= 8.6 / 100) with respect to the amount of water to be treated. Therefore, compared with the case of stripping the water to be treated directly, according to the present invention, it is considered that the thermal energy required for stripping is also approximately 1/12.
なお、NaOH等として次のものを想定した。
・NaOH(ラインL31、L33):工業用25質量%NaOH水溶液。
・H2SO4(ラインL32):工業用98質量%H2SO4水溶液。
・水蒸気(ラインL34):0.5MPa飽和水蒸気。 In addition, the following were assumed as NaOH etc.
NaOH (lines L31, L33): Industrial 25 mass% NaOH aqueous solution.
· H 2 SO 4 (line L32): 98 wt%H 2 SO 4 aqueous solution for industrial use.
Water vapor (line L34): 0.5 MPa saturated water vapor.
・NaOH(ラインL31、L33):工業用25質量%NaOH水溶液。
・H2SO4(ラインL32):工業用98質量%H2SO4水溶液。
・水蒸気(ラインL34):0.5MPa飽和水蒸気。 In addition, the following were assumed as NaOH etc.
NaOH (lines L31, L33): Industrial 25 mass% NaOH aqueous solution.
· H 2 SO 4 (line L32): 98 wt%
Water vapor (line L34): 0.5 MPa saturated water vapor.
1 排水(被処理水)槽
2 pH調整槽
3 フィルター
4 熱交換器
5 加熱器
6 気液膜分離装置
7 硫安水溶液循環槽
8 フィルター
9 硫安水溶液槽
10 pH調整槽
11 熱交換器
12 アンモニア放散塔
13 アンモニア触媒分解装置
DESCRIPTION OFSYMBOLS 1 Wastewater (treated water) tank 2 pH adjustment tank 3 Filter 4 Heat exchanger 5 Heater 6 Gas-liquid membrane separator 7 Aqueous ammonium sulfate circulation tank 8 Filter 9 Aqueous ammonium sulfate tank 10 pH adjustment tank 11 Heat exchanger 12 Ammonia diffusion tower 13 Ammonia catalytic cracker
2 pH調整槽
3 フィルター
4 熱交換器
5 加熱器
6 気液膜分離装置
7 硫安水溶液循環槽
8 フィルター
9 硫安水溶液槽
10 pH調整槽
11 熱交換器
12 アンモニア放散塔
13 アンモニア触媒分解装置
DESCRIPTION OF
Claims (7)
- a)アンモニアが溶解している被処理水にアルカリを添加することにより、アンモニウムイオンをアンモニアにする工程、
b)工程aから得られる液を気液分離膜の供給側に供給するとともに、気液分離膜の透過側に硫酸水溶液を供給することにより、アンモニアガスに気液分離膜を透過させるとともに透過したアンモニアガスを硫酸水溶液に吸収させ、透過側から硫酸アンモニウム水溶液を得、供給側からアンモニア濃度が低減された処理水を得る工程、
c)工程bから得られる硫酸アンモニウム水溶液を、希釈水で希釈する工程、および、
d)工程cから得られる希釈された硫酸アンモニウム水溶液を、アルカリ性条件下でストリッピングすることにより、希釈された硫酸アンモニウム水溶液から、アンモニア濃度が低減された処理水を得る工程
を含む、水処理方法。 a) a step of converting ammonium ions to ammonia by adding alkali to the water to be treated in which ammonia is dissolved;
b) Supplying the liquid obtained from step a to the gas-liquid separation membrane supply side and supplying the aqueous solution of sulfuric acid to the permeation side of the gas-liquid separation membrane, allowing ammonia gas to permeate and permeate the gas-liquid separation membrane. A step of absorbing ammonia gas in a sulfuric acid aqueous solution, obtaining an aqueous ammonium sulfate solution from the permeate side, and obtaining treated water having a reduced ammonia concentration from the supply side;
c) diluting the aqueous ammonium sulfate solution obtained from step b with dilution water; and
d) A water treatment method comprising a step of obtaining treated water having a reduced ammonia concentration from a diluted ammonium sulfate aqueous solution by stripping the diluted ammonium sulfate aqueous solution obtained from step c under alkaline conditions. - 工程bから得られる処理水および工程dから得られる処理水のうちの一方もしくは両方を、工程cにおいて希釈水として使用する、請求項1記載の方法。 The method according to claim 1, wherein one or both of treated water obtained from step b and treated water obtained from step d is used as dilution water in step c.
- 被処理水中のアンモニア濃度が、窒素換算濃度で500mg/L以上、5000mg/L以下である、請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the ammonia concentration in the water to be treated is 500 mg / L or more and 5000 mg / L or less in terms of nitrogen.
- アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、
気液膜分離装置、
放散塔、
アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、
気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、
前記第2のラインの途中に設けられた、希釈水添加装置
を含む、水処理装置。 An alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved;
Gas-liquid membrane separator,
Stripping tower,
A first line connecting the outlet of the alkali addition device to the supply side flow channel inlet of the gas-liquid membrane separation device;
A sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side channel inlet of the gas-liquid membrane separator;
A second line connecting the permeate side channel outlet of the gas-liquid membrane separator to the liquid inlet of the stripping tower;
A water treatment apparatus including a diluting water addition apparatus provided in the middle of the second line. - 気液膜分離装置の供給側流路出口または放散塔の液出口を、希釈水添加装置に接続するラインを含む、請求項4記載の水処理装置。 The water treatment device according to claim 4, comprising a line for connecting the supply-side channel outlet of the gas-liquid membrane separation device or the liquid outlet of the stripping tower to the dilution water addition device.
- アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、気液膜分離装置、アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、および気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置を含む水処理装置の改造方法であって、
前記水処理装置に、
放散塔、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、および
前記第2のラインの途中に配置される希釈水添加装置
を設ける工程を含む、水処理装置の改造方法。 First connecting an outlet of an alkali addition device, a gas-liquid membrane separation device, and an alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved, to a supply-side flow channel inlet of the gas-liquid membrane separation device A water treatment apparatus including a sulfuric acid aqueous solution supply device that supplies a sulfuric acid aqueous solution to the permeation line flow path inlet of the gas line and the gas-liquid membrane separation device,
In the water treatment device,
Stripping tower,
A water treatment device comprising a step of providing a second line for connecting a permeate-side channel outlet of the gas-liquid membrane separation device to a liquid inlet of a stripping tower, and a diluting water addition device disposed in the middle of the second line Remodeling method. - アンモニアが溶解している被処理水にアルカリを添加するよう構成されたアルカリ添加装置、気液膜分離装置、アルカリ添加装置の出口を気液膜分離装置の供給側流路入口に接続する第1のライン、および気液膜分離装置の透過側流路入口に硫酸水溶液を供給する硫酸水溶液供給装置を含む水処理装置を改造するためのキットであって、
放散塔、
気液膜分離装置の透過側流路出口を放散塔の液入口に接続する第2のライン、および
前記第2のラインの途中に配置される希釈水添加装置
を含む、水処理装置改造用キット。 First connecting an outlet of an alkali addition device, a gas-liquid membrane separation device, and an alkali addition device configured to add alkali to the water to be treated in which ammonia is dissolved, to a supply-side flow channel inlet of the gas-liquid membrane separation device And a kit for remodeling a water treatment device including a sulfuric acid aqueous solution supply device for supplying a sulfuric acid aqueous solution to the permeate side flow channel inlet of the gas-liquid membrane separation device,
Stripping tower,
A water treatment device remodeling kit including a second line for connecting a permeate-side channel outlet of a gas-liquid membrane separation device to a liquid inlet of a stripping tower, and a diluting water addition device arranged in the middle of the second line .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-113635 | 2016-06-07 | ||
JP2016113635A JP6653626B2 (en) | 2016-06-07 | 2016-06-07 | Water treatment method and apparatus, water treatment apparatus modification method, and water treatment apparatus modification kit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017213050A1 true WO2017213050A1 (en) | 2017-12-14 |
Family
ID=60577943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020658 WO2017213050A1 (en) | 2016-06-07 | 2017-06-02 | Water treatment method and device, water treatment device modification method, and kit for water treatment device modification |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6653626B2 (en) |
TW (1) | TWI717517B (en) |
WO (1) | WO2017213050A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112546530A (en) * | 2020-11-20 | 2021-03-26 | 李开春 | Harmless treatment and resource utilization method for alkali slag generated in preparation of soda ash by ammonia-soda process |
WO2023165020A1 (en) * | 2022-03-03 | 2023-09-07 | 无锡中天固废处置有限公司 | Method for deamination treatment of ammonia-nitrogen wastewater |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102128077B1 (en) * | 2018-10-23 | 2020-06-29 | 광주과학기술원 | Cooling apparatus using thermally regenerative ammonia based battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001162266A (en) * | 1999-12-07 | 2001-06-19 | Toyo Eng Corp | Treating method for waste water containing ammonium salt, and device used for it |
JP2001314872A (en) * | 2000-05-12 | 2001-11-13 | Sumitomo Metal Ind Ltd | Method for treating ammonia-containing wastewater discharged from semiconductor manufacturing process |
JP2005319369A (en) * | 2004-05-07 | 2005-11-17 | Babcock Hitachi Kk | Ammonia decomposition/removal apparatus |
JP2013202475A (en) * | 2012-03-28 | 2013-10-07 | Sumitomo Metal Mining Engineering Co Ltd | Method of removing ammonia from ammonia-containing wastewater |
WO2014083887A1 (en) * | 2012-11-27 | 2014-06-05 | オルガノ株式会社 | Device for treating ammonia-containing wastewater, and method for treating ammonia-containing wastewater |
WO2016063581A1 (en) * | 2014-10-22 | 2016-04-28 | オルガノ株式会社 | Treatment method and treatment apparatus for ammonia-containing wastewater |
WO2016063578A1 (en) * | 2014-10-24 | 2016-04-28 | オルガノ株式会社 | Ammonia-containing wastewater treatment apparatus and treatment method |
-
2016
- 2016-06-07 JP JP2016113635A patent/JP6653626B2/en active Active
-
2017
- 2017-05-17 TW TW106116223A patent/TWI717517B/en active
- 2017-06-02 WO PCT/JP2017/020658 patent/WO2017213050A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001162266A (en) * | 1999-12-07 | 2001-06-19 | Toyo Eng Corp | Treating method for waste water containing ammonium salt, and device used for it |
JP2001314872A (en) * | 2000-05-12 | 2001-11-13 | Sumitomo Metal Ind Ltd | Method for treating ammonia-containing wastewater discharged from semiconductor manufacturing process |
JP2005319369A (en) * | 2004-05-07 | 2005-11-17 | Babcock Hitachi Kk | Ammonia decomposition/removal apparatus |
JP2013202475A (en) * | 2012-03-28 | 2013-10-07 | Sumitomo Metal Mining Engineering Co Ltd | Method of removing ammonia from ammonia-containing wastewater |
WO2014083887A1 (en) * | 2012-11-27 | 2014-06-05 | オルガノ株式会社 | Device for treating ammonia-containing wastewater, and method for treating ammonia-containing wastewater |
WO2016063581A1 (en) * | 2014-10-22 | 2016-04-28 | オルガノ株式会社 | Treatment method and treatment apparatus for ammonia-containing wastewater |
WO2016063578A1 (en) * | 2014-10-24 | 2016-04-28 | オルガノ株式会社 | Ammonia-containing wastewater treatment apparatus and treatment method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112546530A (en) * | 2020-11-20 | 2021-03-26 | 李开春 | Harmless treatment and resource utilization method for alkali slag generated in preparation of soda ash by ammonia-soda process |
WO2023165020A1 (en) * | 2022-03-03 | 2023-09-07 | 无锡中天固废处置有限公司 | Method for deamination treatment of ammonia-nitrogen wastewater |
Also Published As
Publication number | Publication date |
---|---|
TWI717517B (en) | 2021-02-01 |
JP2017217608A (en) | 2017-12-14 |
TW201808820A (en) | 2018-03-16 |
JP6653626B2 (en) | 2020-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5571419A (en) | Method of producing pure water | |
WO2003022751A1 (en) | Method of multi-stage reverse osmosis treatment | |
JP5347664B2 (en) | Method and apparatus for treating fluorine-containing wastewater | |
WO2017213050A1 (en) | Water treatment method and device, water treatment device modification method, and kit for water treatment device modification | |
JP5537157B2 (en) | Method for treating liquid waste | |
JP6085155B2 (en) | Ammonia-containing wastewater treatment apparatus and ammonia-containing wastewater treatment method | |
JP3546548B2 (en) | Ultrapure water production equipment | |
JP2015073923A (en) | Ultrapure water production method and system | |
JP6629383B2 (en) | Ultrapure water production method | |
WO2016063581A1 (en) | Treatment method and treatment apparatus for ammonia-containing wastewater | |
JPH03278882A (en) | Method and apparatus for removing dissolved oxygen in water | |
JP6368767B2 (en) | Ammonia-containing wastewater treatment apparatus and ammonia-containing wastewater treatment method | |
JPH0380991A (en) | Method and apparatus for treating supplied water to boiler | |
JPH08224572A (en) | Ultra pure water production and wastewater treatment in closed system | |
JP3259557B2 (en) | How to remove organic matter | |
JP4177521B2 (en) | Method for treating wastewater containing metal and ammonia | |
JP6777430B2 (en) | Water treatment equipment | |
JP2000308815A (en) | Producing device of ozone dissolved water | |
JPH1119663A (en) | Removing method for organic matter | |
JP3912157B2 (en) | Ammonium fluoride-containing wastewater treatment method | |
JP4524525B2 (en) | Method for treating wastewater containing ammonia and hydrogen peroxide | |
JP7261711B2 (en) | Ultrapure water production system and ultrapure water production method | |
JP3794113B2 (en) | Method for removing TOC component and dissolved oxygen | |
CN113800703B (en) | Catalyst flue gas washing wastewater treatment method and system | |
JP2012196630A (en) | Treatment equipment and treatment method of acid liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17810228 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17810228 Country of ref document: EP Kind code of ref document: A1 |