JP5347664B2 - Method and apparatus for treating fluorine-containing wastewater - Google Patents

Method and apparatus for treating fluorine-containing wastewater Download PDF

Info

Publication number
JP5347664B2
JP5347664B2 JP2009091251A JP2009091251A JP5347664B2 JP 5347664 B2 JP5347664 B2 JP 5347664B2 JP 2009091251 A JP2009091251 A JP 2009091251A JP 2009091251 A JP2009091251 A JP 2009091251A JP 5347664 B2 JP5347664 B2 JP 5347664B2
Authority
JP
Japan
Prior art keywords
fluorine
ammonia
separated
concentration
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009091251A
Other languages
Japanese (ja)
Other versions
JP2010240558A (en
Inventor
智裕 仁木
直人 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009091251A priority Critical patent/JP5347664B2/en
Publication of JP2010240558A publication Critical patent/JP2010240558A/en
Application granted granted Critical
Publication of JP5347664B2 publication Critical patent/JP5347664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating fluorine-containing waste water which are capable of efficiently treating fluorine-containing waste water including hydrofluoric acid and ammonium fluoride such as BHF waste water in a narrow installation space and has high practicality even for the fluorine-containing waste water of a large flux and for the fluorine-containing waste water of a large flux fluctuation, too. <P>SOLUTION: Fluorine-containing waste water including hydrofluoric acid and ammonium fluoride is adjusted so as to fall into the range of pH 10 to 13 and is concentrated by vaporization, whereby ammonia is removed from separate distilled water that is separated and fluorine is removed from concentrated water. By concentrating the fluorine-containing waste water including hydrofluoric acid and ammonium fluoride in a condition of pH 10 to 13 by vaporization, ammonia is easily separated from a fluoride to the separate distilled water side and is concentrated to provide distilled water of high ammonia concentration and small flux and, therefore, ammonia in the separate vaporized water can be easily treated according to the normal method. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、半導体や液晶等の電子製品ないしはその素子の製造プロセスから排出されるフッ酸及びフッ化アンモニウムを含むフッ素含有排水の処理方法及び処理装置に関するものである。   The present invention relates to a treatment method and a treatment apparatus for fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride discharged from a manufacturing process of electronic products such as semiconductors and liquid crystals or elements thereof.

半導体製造工程やその関連工程、各種金属材料、単結晶材料、光学材料などの表面処理工程では、フッ化アンモニウムとフッ酸を含有するバッファードフッ酸(BHF)と呼ばれるウェットエッチング剤が使用されている。このため、これらの表面処理工程からは、フッ化アンモニウム及びフッ酸を多量に含む排水(BHF排水)が排出される。   Wet etching agent called buffered hydrofluoric acid (BHF) containing ammonium fluoride and hydrofluoric acid is used in semiconductor manufacturing processes and related processes, various metal materials, single crystal materials, and surface treatment processes such as optical materials. Yes. For this reason, wastewater containing a large amount of ammonium fluoride and hydrofluoric acid (BHF wastewater) is discharged from these surface treatment steps.

しかし、フッ酸は腐食性が強く、管渠を損傷し、フッ素は、終末処理場で生物処理機能を阻害するので、BHF排水中のフッ素は除去する必要がある。また、アンモニウムイオンは、閉鎖性水域の富栄養化の源となるので、BHF排水中のアンモニウムイオンも除去する必要がある。   However, since hydrofluoric acid is highly corrosive, damages the pipe fistula, and fluorine inhibits the biological treatment function at the final treatment plant, it is necessary to remove the fluorine in the BHF waste water. Moreover, since ammonium ion becomes a source of eutrophication in a closed water area, it is necessary to remove ammonium ion in BHF waste water.

従来、フッ酸及びフッ化アンモニウムを含むフッ素含有排水の処理方法としては、フッ素含有排水に、水酸化カルシウム、塩化カルシウムなどのカルシウム化合物を添加して、フッ素イオンを不溶性のフッ化カルシウムとして沈殿させて除去した後、水中に含まれるアンモニウムイオンを生物的硝化脱窒法により処理する方法が行われていた。しかし、生物的硝化脱窒法は、大容量の硝化反応槽と脱窒槽が必要であり、また、生物処理であるために多量の生物汚泥が発生する。このために、小型の装置で処理することができ、汚泥の発生量が少ないフッ化アンモニウム含有排水の処理方法及び装置が求められていた。   Conventionally, as a method for treating fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride, calcium compounds such as calcium hydroxide and calcium chloride are added to fluorine-containing wastewater to precipitate fluorine ions as insoluble calcium fluoride. After removal, the ammonium ion contained in the water has been treated by a biological nitrification denitrification method. However, the biological nitrification denitrification method requires a large-capacity nitrification reaction tank and a denitrification tank, and a large amount of biological sludge is generated due to the biological treatment. For this reason, the processing method and apparatus of the ammonium fluoride containing waste water which can be processed with a small apparatus and have little generation amount of sludge were calculated | required.

この課題を解決するものとして、特許文献1には、フッ化アンモニウム含有排水を、アルカリ性条件下に放散塔で放散処理し、放散塔から排出される排ガスを、アンモニア分解触媒と接触させることによりアンモニアを酸化分解して除去し、アンモニアを除去した後の水にカルシウム塩を添加して、該水中に含まれるフッ素をフッ化カルシウムとして除去する方法が提案されている。この方法では、例えば、図3に示すように、フッ化アンモニウム含有排水をpH計11を備えたpH調整槽12へ送り、アルカリ剤を添加して所定のアルカリ条件に調整し、pH調整水をポンプ13により、熱交換器14で放散塔15の流出水と熱交換して余熱を回収した後、放散塔15の塔頂の液分散器16に供給する。放散塔15の下部には、キャリアガスとしての空気と加熱用の蒸気を供給し、流下する排水と向流に接触させる。アンモニアが気相に移行して除去された処理水は、塔底よりポンプ17により送り出し、熱交換器14を経由して、フッ素処理工程に送られる。放散塔15の塔頂より流出する排ガスは、触媒反応器18においてアンモニア分解触媒と接触させ、含有されるアンモニアを酸化分解し、無害な処理ガスとして放出する。   In order to solve this problem, Patent Document 1 discloses that ammonium fluoride-containing wastewater is treated with a stripping tower under alkaline conditions, and the exhaust gas discharged from the stripping tower is brought into contact with an ammonia decomposition catalyst. A method has been proposed in which calcium salt is added to water after oxidative decomposition and removal of ammonia and ammonia is removed, and fluorine contained in the water is removed as calcium fluoride. In this method, for example, as shown in FIG. 3, ammonium fluoride-containing wastewater is sent to a pH adjustment tank 12 equipped with a pH meter 11, adjusted to a predetermined alkaline condition by adding an alkali agent, and pH adjusted water is supplied. After the heat is exchanged with the effluent water of the diffusion tower 15 by the heat exchanger 14 by the pump 13 to recover the residual heat, the heat is supplied to the liquid distributor 16 at the top of the diffusion tower 15. The lower part of the stripping tower 15 is supplied with air as a carrier gas and steam for heating, and is brought into contact with the flowing down drainage and countercurrent. The treated water from which ammonia has been transferred to the gas phase is removed by a pump 17 from the bottom of the tower, and is sent to the fluorine treatment process via the heat exchanger 14. The exhaust gas flowing out from the top of the stripping tower 15 is brought into contact with the ammonia decomposition catalyst in the catalytic reactor 18 to oxidize and decompose the contained ammonia and release it as a harmless processing gas.

この方法によれば、生物汚泥を発生させることなく、小規模な装置を用いて効果的にフッ化アンモニウム含有排水中のアンモニア性窒素を除去した後、フッ素を処理することができるとされている。   According to this method, it is said that fluorine can be treated after removing ammonia nitrogen in the ammonium fluoride-containing wastewater effectively using a small-scale apparatus without generating biological sludge. .

しかしながら、フッ酸及びフッ化アンモニウムを含むフッ素含有排水が大量に排出される場合には、特許文献1に記載される放散処理では効率が悪く、実用性が低い。元来、BHF排水は高濃度かつ小流量であるが、通常、BHF排水は上流側で低濃度かつ大流量のフッ酸排水と混合されて処理されるため、処理段階におけるフッ素含有排水は低濃度かつ大流量なものとなる。このようなBHF排水の処理に対して、特許文献1に記載される方法では実用性が低い。   However, in the case where a large amount of fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride is discharged, the efficiency of the stripping treatment described in Patent Document 1 is poor and practicality is low. Originally, BHF wastewater has a high concentration and a small flow rate. Normally, BHF wastewater is mixed with a low concentration and high flow hydrofluoric acid wastewater on the upstream side. And it becomes a large flow rate. For such BHF wastewater treatment, the method described in Patent Document 1 is less practical.

なお、特許文献2には、フッ素含有排水の液量を減量化するために、フッ素含有排水に、濃縮水のpHが6〜8.5となるように苛性ソーダを添加して蒸発濃縮する方法が提案されている。しかし、この方法をフッ酸及びフッ化アンモニウムを含むフッ素含有排水に適用すると、アンモニアがフッ化物と共に濃縮水側に濃縮されてしまうため、フッ素の処理に先立ち、アンモニア性窒素を除去することはできない。   In Patent Document 2, there is a method of adding caustic soda to the fluorine-containing wastewater so that the pH of the concentrated water is 6 to 8.5 and evaporating and concentrating it in order to reduce the amount of fluorine-containing wastewater. Proposed. However, if this method is applied to fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride, ammonia will be concentrated on the concentrated water side together with fluoride, so ammoniacal nitrogen cannot be removed prior to fluorine treatment. .

特許第3912157号公報Japanese Patent No. 3912157 特許第3284260号公報Japanese Patent No. 3284260

本発明は上記従来の問題点を解決するものであって、BHF排水等のフッ酸及びフッ化アンモニウムを含むフッ素含有排水を、狭い設置スペースで高効率に処理することができ、大流量のフッ素含有排水や流量変動の大きいフッ素含有排水に対しても実用性の高い方法及び装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and can treat fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride, such as BHF wastewater, with high efficiency in a small installation space. An object is to provide a highly practical method and apparatus for containing wastewater and fluorine-containing wastewater having a large flow rate fluctuation.

本発明(請求項1)のフッ素含有排水の処理方法は、フッ酸及びフッ化アンモニウムを含むフッ素含有排水を処理する方法において、該フッ素含有排水をpH10〜13に調整して蒸発濃縮する蒸発濃縮工程と、該蒸発濃縮工程で分離された分離蒸留水からアンモニアを除去するアンモニア除去工程とを含むことを特徴とする。   The method for treating fluorine-containing wastewater according to the present invention (Claim 1) is a method for treating fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride, wherein the fluorine-containing wastewater is adjusted to pH 10-13 and evaporated and concentrated. And an ammonia removal step of removing ammonia from the separated distilled water separated in the evaporation and concentration step.

請求項2のフッ素含有排水の処理方法は、請求項1において、前記アンモニア除去工程が、前記分離蒸留水を放散処理してアンモニアを含むガスを得る放散工程と、該放散工程からのアンモニア含有ガスをアンモニア分解触媒に接触させる分解工程とを含むことを特徴とする。   The method for treating fluorine-containing wastewater according to claim 2 is the method according to claim 1, wherein the ammonia removal step is a diffusion step in which the separated distilled water is diffused to obtain a gas containing ammonia, and the ammonia-containing gas from the diffusion step. And a decomposition step of bringing the ammonia into contact with an ammonia decomposition catalyst.

請求項3のフッ素含有排水の処理方法は、請求項1又は2において、前記蒸発濃縮工程で分離された分離濃縮水からフッ素を除去するフッ素除去工程をさらに含むことを特徴とする。   A method for treating fluorine-containing wastewater according to a third aspect of the present invention is the method according to the first or second aspect, further comprising a fluorine removal step of removing fluorine from the separated concentrated water separated in the evaporation concentration step.

請求項4のフッ素含有排水の処理方法は、請求項1乃至3のいずれか1項において、前記蒸発濃縮工程で、フッ素濃度が1.6重量%以下の分離濃縮水を得ることを特徴とする。   A method for treating fluorine-containing wastewater according to claim 4 is characterized in that, in any one of claims 1 to 3, separation concentrated water having a fluorine concentration of 1.6 wt% or less is obtained in the evaporation concentration step. .

本発明(請求項5)のフッ素含有排水の処理装置は、フッ酸及びフッ化アンモニウムを含むフッ素含有排水を処理する装置において、該フッ素含有排水をpH10〜13に調整して蒸発濃縮する蒸発濃縮手段と、該蒸発濃縮手段で分離された分離蒸留水からアンモニアを除去するアンモニア除去手段とを含むことを特徴とする。   The apparatus for treating fluorine-containing wastewater according to the present invention (Claim 5) is an apparatus for treating fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride, and adjusting the fluorine-containing wastewater to pH 10 to 13 for evaporation and concentration. And ammonia removal means for removing ammonia from the separated distilled water separated by the evaporation and concentration means.

請求項6のフッ素含有排水の処理装置は、請求項5において、前記アンモニア除去手段が、前記分離蒸留水を放散処理する放散塔と、該放散塔からのアンモニア含有ガスが導入される、アンモニア分解触媒が充填された触媒反応塔とを含むことを特徴とする。   The apparatus for treating fluorine-containing wastewater according to claim 6 is the ammonia decomposition method according to claim 5, wherein the ammonia removing means introduces a stripping tower for stripping the separated distilled water and an ammonia-containing gas from the stripping tower. And a catalytic reaction tower packed with a catalyst.

請求項7のフッ素含有排水の処理装置は、請求項5又は6において、前記蒸発濃縮手段で分離された分離濃縮水からフッ素を除去するフッ素除去手段をさらに含むことを特徴とする。   According to a seventh aspect of the present invention, there is provided a fluorine-containing wastewater treatment apparatus according to the fifth or sixth aspect, further comprising fluorine removal means for removing fluorine from the separated concentrated water separated by the evaporation and concentration means.

請求項8のフッ素含有排水の処理装置は、請求項5乃至7のいずれか1項において、前記蒸発濃縮手段で、フッ素濃度が1.6重量%以下の分離濃縮水を得ることを特徴とする。   The apparatus for treating fluorine-containing wastewater according to claim 8 is characterized in that, in any one of claims 5 to 7, the concentrated evaporation means obtains separated concentrated water having a fluorine concentration of 1.6% by weight or less. .

本発明によれば、フッ酸及びフッ化アンモニウムを含むフッ素含有排水をpH10〜13の条件で蒸発濃縮することにより、フッ化物からアンモニアを分離蒸留水側に容易に分離して濃縮し、高アンモニア濃度かつ小流量の蒸留水を得ることができるので、この分離蒸留水中のアンモニアを常法に従って容易に処理することができる。このため、大流量のフッ素含有排水や流量変動の大きいフッ素含有排水に対しても、蒸発濃縮の適用で容易にフッ素含有排水中のアンモニアの分離及びアンモニアの処理を行うことができる。また、アンモニアが分離された、フッ素を含む分離濃縮水を、通常のフッ素含有排水の処理方法に従って容易に処理することができる。   According to the present invention, a fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride is evaporated and concentrated under the conditions of pH 10 to 13, whereby ammonia is easily separated and concentrated on the distilled water side from the fluoride, and high ammonia. Since distilled water having a concentration and a small flow rate can be obtained, ammonia in the separated distilled water can be easily treated according to a conventional method. For this reason, even in a fluorine-containing wastewater having a large flow rate or a fluorine-containing wastewater having a large flow fluctuation, it is possible to easily separate ammonia and treat ammonia in the fluorine-containing wastewater by applying evaporation concentration. Further, the separated concentrated water containing fluorine from which ammonia has been separated can be easily treated in accordance with a normal treatment method for fluorine-containing waste water.

本発明において、分離蒸留水中のアンモニアは、分離蒸留水を放散処理してアンモニアを含むガスを得、このアンモニア含有ガスをアンモニア分解触媒に接触させることにより、効率的に分解除去することができる(請求項2,6)。   In the present invention, ammonia in the separated distilled water can be efficiently decomposed and removed by stripping the separated distilled water to obtain a gas containing ammonia, and bringing the ammonia-containing gas into contact with an ammonia decomposition catalyst ( Claims 2 and 6).

また、フッ素含有排水の蒸留濃縮で得られた分離濃縮水からは、更にフッ素を除去することが好ましく、このフッ素除去処理は、常法に従って、分離濃縮水中のフッ素をフッ化カルシウムとして分離除去することにより容易かつ効率的に行うことができる(請求項3,7)。   Further, it is preferable to further remove fluorine from the separated concentrated water obtained by distillation concentration of fluorine-containing wastewater, and this fluorine removal treatment separates and removes fluorine in the separated concentrated water as calcium fluoride according to a conventional method. Therefore, it can be carried out easily and efficiently (claims 3 and 7).

なお、蒸発濃縮において、分離濃縮水中のフッ素濃度が過度に高いと、フッ化物の溶解度を超え、濃縮装置内にフッ化物が析出し、装置の効率が低下して安定な運転を行えなくなるため、必要に応じて水希釈を行うなどして、フッ素濃度1.6重量%以下の分離濃縮水が得られるような条件で蒸発濃縮を行うことが好ましい(請求項4,8)。   In addition, in the evaporation concentration, if the fluorine concentration in the separated concentrated water is excessively high, the solubility of the fluoride will be exceeded, and the fluoride will precipitate in the concentration device, the efficiency of the device will decrease, and stable operation will not be possible, It is preferable to carry out evaporation and concentration under conditions such that separated concentrated water having a fluorine concentration of 1.6% by weight or less can be obtained by diluting with water as necessary (Claims 4 and 8).

本発明のフッ素含有排水の処理方法及び処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method and processing apparatus of the fluorine-containing waste_water | drain of this invention. 本発明のフッ素含有排水の処理方法及び処理装置の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the processing method and processing apparatus of the fluorine-containing waste_water | drain of this invention. 従来法を示す系統図である。It is a systematic diagram showing a conventional method.

以下に図面を参照して本発明のフッ素含有排水の処理方法及び処理装置の実施の形態を詳細に説明する。
図1,2は本発明のフッ素含有排水の処理方法及び処理装置の実施の形態を示す系統図であり、図1,2において、1はpH調整槽、2は蒸発濃縮装置、3は放散塔、4は触媒反応塔、5は炭酸カルシウム充填塔、6はアンモニア蒸留塔を示す。
Embodiments of a method and apparatus for treating fluorine-containing wastewater according to the present invention will be described in detail below with reference to the drawings.
1 and 2 are system diagrams showing an embodiment of a treatment method and treatment apparatus for fluorine-containing waste water according to the present invention. In FIGS. 4 is a catalytic reaction tower, 5 is a calcium carbonate packed tower, and 6 is an ammonia distillation tower.

<フッ素含有排水>
本発明で処理対象とするフッ素含有排水は、フッ酸及びフッ化アンモニウムを含む水であり、特に制限はないが、特に大流量のフッ素含有排水を処理する場合に、蒸発濃縮を採用することによる本発明の効果が有効に発揮されることから、本発明は大流量のフッ素含有排水或いは流量変動の激しいフッ素含有排水の処理に好適である。このようなフッ素含有排水としては、前述のBHF排水に、他のエッチング剤によるエッチング排水や石英管洗浄排水等を混合した排水などが挙げられる。
<Fluorine-containing wastewater>
The fluorine-containing wastewater to be treated in the present invention is water containing hydrofluoric acid and ammonium fluoride, and there is no particular limitation. However, when treating a large amount of fluorine-containing wastewater, evaporative concentration is adopted. Since the effects of the present invention are effectively exhibited, the present invention is suitable for the treatment of a large amount of fluorine-containing wastewater or fluorine-containing wastewater having a large flow rate fluctuation. Examples of such fluorine-containing wastewater include wastewater obtained by mixing the above-described BHF wastewater with etching wastewater using other etching agents, quartz tube cleaning wastewater, and the like.

本発明で処理対象とするフッ素含有排水の水質及び流量としては、典型的には、次のようなものが挙げられるが、何らこのような水質及び流量に限定されるものではない。
フッ素含有排水濃度:1〜200g/L
NH−N濃度 :0.9〜150g/L
pH :1〜4
流量 :1〜30m/hr
Typical examples of the water quality and flow rate of the fluorine-containing wastewater to be treated in the present invention include the following, but are not limited to such water quality and flow rate.
Fluorine-containing wastewater concentration: 1 to 200 g / L
NH 3 —N concentration: 0.9 to 150 g / L
pH: 1-4
Flow rate: 1-30 m 3 / hr

<pH調整及び希釈>
本発明においては、上述のようなフッ素含有排水を、まずpH10〜13に調整して蒸発濃縮する。
<PH adjustment and dilution>
In the present invention, the fluorine-containing wastewater as described above is first adjusted to pH 10 to 13 and evaporated and concentrated.

通常、本発明で処理対象とするフッ素含有排水は、上述の如く、pH1〜4程度であるため、このpH調整には、アルカリ剤が用いられる。このpH調整には、図1,2に示す如く、pH計1Aを有するpH調整槽1を設けて、このpH計1Aに連動する薬注ポンプ1Bによりアルカリ剤を添加制御してもよく、排水の移送配管に直接アルカリ剤を添加しても良い。   Usually, since the fluorine-containing waste water to be treated in the present invention has a pH of about 1 to 4 as described above, an alkaline agent is used for this pH adjustment. In this pH adjustment, as shown in FIGS. 1 and 2, a pH adjusting tank 1 having a pH meter 1A may be provided, and an alkali agent may be added and controlled by a chemical injection pump 1B linked to the pH meter 1A. An alkali agent may be added directly to the transfer pipe.

pH調整に用いるアルカリ剤としては特に制限はなく、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等を用いることができる。これらは、通常5〜10重量%程度の水溶液としてフッ素含有排水に添加される。   There is no restriction | limiting in particular as an alkaline agent used for pH adjustment, Sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate etc. can be used. These are usually added to fluorine-containing wastewater as an aqueous solution of about 5 to 10% by weight.

本発明においては、アルカリ剤の添加でフッ素含有排水のpHを10〜13、好ましくは11〜12に調整する。即ち、pHアルカリ性とすることにより、下記式で表される平衡反応が右辺側に移行してフッ素含有排水からアンモニアを蒸発させ易くなるが、このpHが低過ぎると、次の蒸発濃縮工程において、アンモニアを分離蒸留水側に濃縮することができない。本発明に従って、pH10以上に調整することにより、蒸発濃縮により分離される分離蒸留水中に、アンモニアを効率的に濃縮することができるようになる。
NH + OH ⇔ NH+ H
In the present invention, the pH of the fluorine-containing wastewater is adjusted to 10 to 13, preferably 11 to 12, by adding an alkaline agent. That is, by making the pH alkaline, the equilibrium reaction represented by the following formula shifts to the right side and it is easy to evaporate ammonia from the fluorine-containing wastewater, but if this pH is too low, in the next evaporation concentration step, Ammonia cannot be concentrated to the separated distilled water side. By adjusting the pH to 10 or more according to the present invention, ammonia can be efficiently concentrated in separated distilled water separated by evaporation and concentration.
NH 4 + OH NH NH 3 + H 2 O

ただし、pHを過度に高くしてもアンモニアの蒸発濃縮効果に差異はなく、アルカリ剤の添加量が増えて不経済であるため、調整pHの上限は13以下とする。   However, even if the pH is excessively high, there is no difference in the evaporative concentration effect of ammonia, and the addition amount of the alkaline agent is increased, which is uneconomical. Therefore, the upper limit of the adjusted pH is set to 13 or less.

また、フッ素含有排水のフッ素濃度が高く、蒸発濃縮によりその濃度が更に高められると、蒸発濃縮装置内でフッ化ナトリウム等のフッ化物が析出することで、装置の効率が低下し、安定な運転を継続し得なくなる。従って、蒸発濃縮に先立ち、蒸発濃縮で得られる分離濃縮水中のフッ素がフッ化物として析出しないフッ素濃度となるように、フッ素含有排水に希釈水を添加するなどして蒸発濃縮装置に送給される水のフッ素濃度を調整することが好ましい。   In addition, if the fluorine concentration of the fluorine-containing wastewater is high and the concentration is further increased by evaporation concentration, fluoride such as sodium fluoride is deposited in the evaporation concentration device, which reduces the efficiency of the device and ensures stable operation. Can not continue. Therefore, prior to evaporative concentration, the diluted concentrated water obtained by evaporative concentration is fed to the evaporative concentration device by adding diluted water to the fluorine-containing waste water so that the fluorine concentration does not precipitate as fluoride. It is preferable to adjust the fluorine concentration of water.

図1,2では、このフッ素濃度の調整のために、蒸発濃縮装置2からの分離濃縮水の移送配管に設けたフッ素濃度計2Aに連動するポンプ2Bで、pH調整槽1に希釈水を供給するように構成されているが、このフッ素濃度計2Aは、蒸発濃縮装置2における濃縮倍率を積算することにより、pH調整槽1或いはpH調整槽1から蒸発濃縮装置2へのpH調整水の移送配管に設けても良い。このフッ素含有排水の希釈は連続的に行なっても良く、回分的に行なっても良い。   In FIGS. 1 and 2, for adjustment of the fluorine concentration, dilution water is supplied to the pH adjustment tank 1 by a pump 2 </ b> B interlocked with a fluorine concentration meter 2 </ b> A provided in a separation concentrated water transfer pipe from the evaporation concentration device 2. However, the fluorine concentration meter 2A integrates the concentration ratio in the evaporative concentration apparatus 2 to transfer the pH adjusted water from the pH adjustment tank 1 or the pH adjustment tank 1 to the evaporative concentration apparatus 2. You may provide in piping. The fluorine-containing waste water may be diluted continuously or batchwise.

希釈水としては、工業用水や本発明による処理水などを用いることができる。   As the dilution water, industrial water, treated water according to the present invention, or the like can be used.

なお、このようなフッ素含有排水の希釈制御手段は、フッ素含有排水の流量や組成が変動する場合に必要となるが、これらが一定の場合には予め設定された量の希釈水を添加すれば良い。また、蒸発濃縮により得られる分離濃縮水のフッ素濃度が1.6重量%より高くなることがない場合や、pH調整のためのアルカリ剤の水溶液として添加される水による希釈で、分離濃縮水のフッ素濃度が1.6重量%以下となる場合には、この希釈は不要である。   Such a fluorine-containing wastewater dilution control means is required when the flow rate and composition of the fluorine-containing wastewater fluctuate, but if these are constant, a preset amount of dilution water can be added. good. In addition, when the concentration of fluorine in separated concentrated water obtained by evaporation concentration is not higher than 1.6% by weight, or when diluted with water added as an aqueous solution of an alkaline agent for pH adjustment, When the fluorine concentration is 1.6% by weight or less, this dilution is unnecessary.

<蒸発濃縮>
pH調整、更には必要に応じて水希釈を行なったフッ素含有排水は、蒸発濃縮装置2に導入して、常法に従って蒸留による蒸発濃縮を行う。
この蒸発濃縮により、フッ素含有排水中のアンモニアは分離蒸留水側に濃縮分離され、フッ素は分離濃縮水中に分離される。
<Evaporation concentration>
The fluorine-containing wastewater that has been adjusted for pH and further diluted with water as needed is introduced into the evaporating and concentrating device 2 and evaporatively concentrated by distillation according to a conventional method.
By this evaporation and concentration, the ammonia in the fluorine-containing wastewater is concentrated and separated on the separated distilled water side, and the fluorine is separated into the separated and concentrated water.

本発明では、pH10〜13の高アルカリ条件で蒸発濃縮することにより、以下のような水質及び流量のフッ素含有排水を、例えば、以下のような水質及び流量の分離蒸留水と分離濃縮水とに分離することができる。   In the present invention, fluorine-containing wastewater having the following water quality and flow rate is converted into, for example, separated distilled water and separated concentrated water having the following water quality and flow rate by evaporating and concentrating under high alkaline conditions of pH 10-13. Can be separated.

Figure 0005347664
Figure 0005347664

<分離蒸留水のアンモニア除去>
蒸発濃縮で得られる分離蒸留水のアンモニア除去処理方法には特に制限はないが、図1に示す如く、分離蒸留水を放散塔(アンモニアストリッピング塔)3に導入して放散処理し、放散塔3から得られるアンモニア含有ガスをアンモニア分解触媒が充填された触媒反応塔4に導入してアンモニアを分解処理しても良く、また、図2に示す如く、分離蒸留水をアンモニア蒸留塔6に導入してアンモニア蒸留を行なっても良い。図1に示す放散塔3と触媒反応塔4によるアンモニアの除去処理は、図3に示す従来法と同様に行うことができる。
<Ammonia removal of separated distilled water>
The method for removing ammonia from the separated distilled water obtained by evaporation and concentration is not particularly limited, but as shown in FIG. The ammonia-containing gas obtained from No. 3 may be introduced into a catalytic reaction column 4 packed with an ammonia decomposition catalyst to decompose ammonia, and separated distilled water is introduced into the ammonia distillation column 6 as shown in FIG. Then, ammonia distillation may be performed. The ammonia removal treatment by the stripping tower 3 and the catalytic reaction tower 4 shown in FIG. 1 can be performed in the same manner as the conventional method shown in FIG.

分離蒸留水を放散塔3で放散処理する場合、用いる放散塔に特に制限はなく、例えば、充填塔、スプレー塔、サイクロンスクラバー、ベンチュリースクラバー、流動層式放散塔、濡れ壁塔などの液分散型放散塔や、段塔、気泡塔などのガス分散型放散塔などを挙げることができる。   When the separated distilled water is diffused in the stripping tower 3, the stripping tower to be used is not particularly limited. For example, a liquid dispersion type such as a packed tower, a spray tower, a cyclone scrubber, a venturi scrubber, a fluidized bed stripping tower, a wet wall tower Examples include a diffusion tower, and a gas dispersion type diffusion tower such as a plate tower and a bubble tower.

放散塔3での放散処理は、アンモニア除去率を高め、アンモニア濃度の低い処理水を得ることができることから、加温下に行なうことが好ましい。この加温の程度としては、40〜100℃、特に60〜90℃であることが好ましい。   The diffusion treatment in the diffusion tower 3 is preferably performed under heating since the ammonia removal rate can be increased and treated water having a low ammonia concentration can be obtained. The degree of heating is preferably 40 to 100 ° C, particularly preferably 60 to 90 ° C.

放散塔3における加温の方法には特に制限はなく、例えば、放散塔3内へ蒸気を供給して加温しても良く、熱媒により放散塔を加温しても良い。放散塔3において加温下に放散処理した場合、放散塔3からの流出水は高温であるので、放散塔3へ供給する分離蒸留水と放散塔3からの流出水との間で熱交換を行い、熱エネルギーを回収することが好ましい。   There is no restriction | limiting in particular in the heating method in the stripping tower 3, For example, a vapor | steam may be supplied and heated in the stripping tower 3, and a stripping tower may be heated with a heat medium. When the stripping treatment is performed in the stripping tower 3 under heating, the effluent water from the stripping tower 3 is high temperature, so heat exchange is performed between the separated distilled water supplied to the stripping tower 3 and the effluent water from the stripping tower 3. Preferably, the thermal energy is recovered.

放散塔3における放散処理で、操作条件を整えれば分離蒸留水中のアンモニアは95%以上排ガス中に移行するがアンモニア濃度の低い処理水が得られるため、この処理水は、通常希薄排水処理系で処理される。   If the operating conditions are adjusted in the stripping treatment in the stripping tower 3, ammonia in the separated distilled water is transferred to the exhaust gas by 95% or more, but treated water having a low ammonia concentration is obtained. Is processed.

放散塔3から排出されるアンモニア含有排ガスは、次いで触媒反応塔4に導入され、塔内に充填されたアンモニア分解触媒により酸化分解される。   The ammonia-containing exhaust gas discharged from the stripping tower 3 is then introduced into the catalytic reaction tower 4 and oxidatively decomposed by an ammonia decomposition catalyst filled in the tower.

この触媒反応塔4には特に制限はなく、例えば、固定層触媒反応塔、流動層触媒反応塔のいずれをも用いることができる。   The catalyst reaction tower 4 is not particularly limited, and for example, either a fixed bed catalyst reaction tower or a fluidized bed catalyst reaction tower can be used.

また、使用するアンモニア分解触媒にも特に制限はなく、例えば、チタニア、シリカ、アルミナ、ジルコニア、ゼオライトなどの担体に、ルテニウム、ロジウム、パラジウム、イリジウム、白金、鉄、ニッケル、コバルト、チタン、バナジウムなど、又は、その塩若しくは酸化物などの触媒活性成分を担持させた触媒を挙げることができる。   Also, the ammonia decomposition catalyst to be used is not particularly limited. For example, on a carrier such as titania, silica, alumina, zirconia, zeolite, ruthenium, rhodium, palladium, iridium, platinum, iron, nickel, cobalt, titanium, vanadium, etc. Alternatively, a catalyst on which a catalytically active component such as a salt or oxide thereof is supported can be mentioned.

触媒反応塔4におけるアンモニア含有排ガスとアンモニア分解触媒との接触は、250〜500℃で行うことが好ましく、350〜450℃で行うことがより好ましい。このような温度でアンモニア含有排ガスをアンモニア分解触媒と接触させることにより、下記式で示す反応により、アンモニアを無害な窒素と水に酸化分解することができ、アンモニア濃度30ppm(容量比)以下、NOx濃度10ppm(容量比)以下の処理ガスを得ることができる。
4NH3 + 3O2 → 2N2 + 6H2
The contact between the ammonia-containing exhaust gas and the ammonia decomposition catalyst in the catalytic reaction tower 4 is preferably performed at 250 to 500 ° C, more preferably 350 to 450 ° C. By bringing the ammonia-containing exhaust gas into contact with the ammonia decomposition catalyst at such a temperature, ammonia can be oxidatively decomposed into harmless nitrogen and water by the reaction shown by the following formula, with an ammonia concentration of 30 ppm (volume ratio) or less, NOx A processing gas having a concentration of 10 ppm (volume ratio) or less can be obtained.
4NH 3 + 3O 2 → 2N 2 + 6H 2 O

一方、図2に示す如く、分離蒸留水をアンモニア蒸留塔6で蒸留処理する場合、充填式の蒸留塔6を用いて、温度92〜99℃程度の条件でアンモニア蒸留することにより、NH−N濃度20〜25%程度のアンモニア水と、NH−N濃度100mg/L以下の処理水とに蒸留分離することができ、処理水は希薄排水処理系で残留するNH−Nを処理する。 On the other hand, as shown in FIG. 2, when the separated distilled water is distilled in the ammonia distillation column 6, NH 3 − is obtained by performing ammonia distillation using the packed distillation column 6 at a temperature of about 92 to 99 ° C. It can be separated by distillation into ammonia water having an N concentration of about 20 to 25% and treated water having an NH 3 —N concentration of 100 mg / L or less, and the treated water treats the remaining NH 3 -N in a diluted waste water treatment system. .

いずれの場合も、本発明によれば、フッ素含有排水を高アルカリ条件で蒸発濃縮して、アンモニアが濃縮された小流量の分離蒸留水を得、この分離蒸留水に対して放散、蒸留等のアンモニア除去処理を施すことにより、効率的なアンモニアの分解ないしは回収を行なうことができる。   In any case, according to the present invention, the fluorine-containing waste water is evaporated and concentrated under a high alkaline condition to obtain a separated flow of distilled water having a concentrated ammonia concentration. By performing the ammonia removal treatment, it is possible to efficiently decompose or recover ammonia.

<分離濃縮水のフッ素除去>
蒸発濃縮装置2で得られる分離濃縮水は、フッ素含有排水中のアンモニアが除去されると共に、流量が低減されてフッ素が濃縮された水であり、本発明においては、好ましくは、この分離濃縮水に対して、フッ素の除去処理を施す。
<Fluorine removal of separated concentrated water>
The separated concentrated water obtained by the evaporative concentration apparatus 2 is water in which ammonia in the fluorine-containing wastewater is removed and the flow rate is reduced to concentrate fluorine. In the present invention, this separated concentrated water is preferably used. The fluorine is removed.

分離濃縮水中のフッ素の除去方法に特に制限はなく、例えば、分離濃縮水に水酸化カルシウム、塩化カルシウムなどのカルシウム化合物を添加して難溶性のフッ化カルシウムを析出させて、これを固液分離する方法や、図1,2に示すごとく、分離濃縮水を炭酸カルシウム充填塔5に通水してフッ化カルシウムを生成させる方法を採用することができる。フッ素をフッ化カルシウムとして固液分離した後、さらに硫酸アルミニウム、ポリ塩化アルミニウムなどのアルミニウム化合物を添加して固液分離することもでき、また、フッ素をフッ化カルシウムとして固液分離した水をフッ素吸着体と接触させて残存するフッ素を吸着除去することもできる。   There is no particular limitation on the method for removing fluorine from the separated concentrated water. For example, calcium compounds such as calcium hydroxide and calcium chloride are added to the separated concentrated water to precipitate hardly soluble calcium fluoride, which is then separated into solid and liquid. As shown in FIGS. 1 and 2, it is possible to adopt a method in which the separated concentrated water is passed through the calcium carbonate packed tower 5 to generate calcium fluoride. After solid-liquid separation using fluorine as calcium fluoride, it is also possible to add aluminum compounds such as aluminum sulfate and polyaluminum chloride to separate into solid and liquid. The remaining fluorine can also be adsorbed and removed by contacting with the adsorbent.

分離濃縮水に添加するカルシウム化合物の量は、分離濃縮水中のフッ素イオン1モルに対して0.5〜3モルであることが好ましく、1〜2.5モルであることがより好ましい。分離濃縮水にカルシウム化合物を添加した後、pHを6〜11に調整することが好ましく、6.5〜10に調整することがより好ましい。カルシウム化合物を添加して、pH調整してフッ化カルシウムを沈殿させた水は、凝集槽に移送して凝集剤を添加し、フッ化カルシウムの沈殿を凝集させることが好ましい。   The amount of the calcium compound added to the separated concentrated water is preferably 0.5 to 3 mol, more preferably 1 to 2.5 mol based on 1 mol of fluorine ions in the separated concentrated water. After adding the calcium compound to the separated concentrated water, the pH is preferably adjusted to 6 to 11, and more preferably adjusted to 6.5 to 10. It is preferable to add the calcium compound, adjust the pH, and precipitate the calcium fluoride so that the water is transferred to a coagulation tank and a coagulant is added to aggregate the calcium fluoride precipitate.

分離濃縮水を炭酸カルシウム充填塔5に通水してフッ素の除去を行なう場合、炭酸カルシウム充填塔としては特に制限はないが、例えば、特開平6−154768号公報に記載される炭酸カルシウム充填塔を用いることができる。   When the separated concentrated water is passed through the calcium carbonate packed tower 5 to remove fluorine, the calcium carbonate packed tower is not particularly limited, but for example, a calcium carbonate packed tower described in JP-A-6-154768. Can be used.

このような炭酸カルシウム充填塔に分離濃縮水を通水すると、分離濃縮水中のフッ素が炭酸カルシウム充填塔内の炭酸カルシウム粒子と反応してフッ化カルシウムとして炭酸カルシウム粒子に固定されて除去され、炭酸カルシウム充填塔の流出水としてフッ素濃度の低い処理水が得られる。
分離濃縮水中のフッ素を固定した炭酸カルシウム粒子は、適宜炭酸カルシウム充填塔から抜き出してフッ化カルシウムを回収する。
When the separated concentrated water is passed through such a calcium carbonate packed tower, the fluorine in the separated concentrated water reacts with the calcium carbonate particles in the calcium carbonate packed tower and is fixed to the calcium carbonate particles as calcium fluoride and removed. Treated water having a low fluorine concentration is obtained as the effluent of the calcium packed tower.
The calcium carbonate particles fixed with fluorine in the separated concentrated water are appropriately extracted from the calcium carbonate packed tower to recover calcium fluoride.

また、残存フッ素の除去にフッ素吸着体を用いる場合、フッ素吸着体としては、例えば、セリウム、ハフニウム、チタン、ジルコニウム、鉄、アルミニウム、ランタニドなどのフッ素イオンと錯化合物を形成する金属イオンを吸着したフッ素吸着樹脂や、活性炭、活性アルミナ、含水酸化チタン、ゼオライト、マグネシアなどの吸着剤などを用いることができる。   When a fluorine adsorbent is used to remove residual fluorine, the fluorine adsorbent adsorbs metal ions that form complex compounds with fluorine ions such as cerium, hafnium, titanium, zirconium, iron, aluminum, and lanthanide. Fluorine adsorption resins, adsorbents such as activated carbon, activated alumina, hydrous titanium oxide, zeolite, and magnesia can be used.

本発明において、この分離濃縮水のフッ素の除去処理に際しては、分離濃縮水のみをフッ素の除去工程に送給しても良く、分離濃縮水を、他のプロセスから排出される別のフッ酸含有排水等のフッ素含有排水と混合して処理しても良い。   In the present invention, in the process of removing the fluorine of the separated concentrated water, only the separated concentrated water may be supplied to the fluorine removing step, and the separated concentrated water contains another hydrofluoric acid discharged from another process. It may be treated by mixing with fluorine-containing wastewater such as wastewater.

このようなフッ素除去処理で、好ましくはフッ素濃度8mg/L以下の処理水を得ることができ、この処理水は、通常、下水道、河川に放流される。   By such a fluorine removal treatment, treated water having a fluorine concentration of preferably 8 mg / L or less can be obtained, and this treated water is usually discharged into sewers and rivers.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実施例1]
図1に示す手順で、下記水質及び流量のフッ素含有排水を処理した。
[Example 1]
The fluorine-containing waste water having the following water quality and flow rate was treated by the procedure shown in FIG.

<フッ素含有排水水質・流量>
F濃度 :8,900mg/L
NH−N濃度 :10,000mg/L
pH :3.5
流量 :2.4m/hr
<Fluorine-containing wastewater quality and flow rate>
F concentration: 8,900 mg / L
NH 3 -N concentration: 10,000mg / L
pH: 3.5
Flow rate: 2.4 m 3 / hr

まず、pH調整槽1で、フッ素含有排水に10重量%水酸化ナトリウム水溶液を添加してpH12に調整し、pH調整水を蒸発濃縮装置2で蒸発濃縮して下記水質及び流量の分離蒸留水と分離濃縮水を得た。   First, in the pH adjustment tank 1, 10% by weight sodium hydroxide aqueous solution is added to fluorine-containing wastewater to adjust the pH to 12, and the pH adjusted water is evaporated and concentrated by the evaporating and concentrating device 2 to separate the distilled water having the following water quality and flow rate. Separated concentrated water was obtained.

<分離蒸留水・水質・流量>
F濃度 :2mg/L
NH−N濃度 :22,000mg/L
pH :12
流量 :1.0m/hr
<分離濃縮水・水質・流量>
F濃度 :15,000mg/L
NH−N濃度 :70mg/L
pH :10.9
流量 :1.6m/hr
<Separated distilled water / water quality / flow rate>
F concentration: 2 mg / L
NH 3 —N concentration: 22,000 mg / L
pH: 12
Flow rate: 1.0 m 3 / hr
<Separated concentrated water / water quality / flow rate>
F concentration: 15,000 mg / L
NH 3 -N concentration: 70 mg / L
pH: 10.9
Flow rate: 1.6 m 3 / hr

得られた分離蒸留水を放散塔(φ450mm×H3000mm、SUS316製)3の塔頂より導入して45℃に加温すると共に、キャリアガスとして20m/minの空気を吹き込んで曝気処理することにより、アンモニア濃度1.9%のアンモニア含有排ガスを得た。このアンモニア含有排ガスを大気で2倍希釈した後400℃に加熱してチタニア系触媒を充填した触媒反応塔4に40m/minの流量で導入してアンモニアを分解処理した。
その結果、触媒反応塔4からは、アンモニア濃度30ppmでNO濃度10ppmの処理ガスが得られた。
なお、放散塔3で曝気処理した後の処理水は、pH11.1、NH−N濃度150mg/Lであり、この水は希薄排水処理系で残留するNH−Nの処理を行った。
一方、分離濃縮水については、平均粒径0.32mmの炭酸カルシウムを充填した炭酸カルシウム充填塔5に通水速度SV2h−1、循環LV20m/h、3塔をシリーズで通水してフッ素を除去する処理を行った。
その結果、フッ素濃度150mg/Lの処理水を得ることができた。
The obtained separated distilled water was introduced from the top of the diffusion tower (φ450 mm × H3000 mm, manufactured by SUS316) 3 and heated to 45 ° C., and aerated by blowing air of 20 m 3 / min as a carrier gas. An ammonia-containing exhaust gas having an ammonia concentration of 1.9% was obtained. The ammonia-containing exhaust gas was diluted twice in the air, heated to 400 ° C. and introduced into the catalytic reaction tower 4 filled with a titania catalyst at a flow rate of 40 m 3 / min to decompose ammonia.
As a result, a treatment gas having an ammonia concentration of 30 ppm and an NO x concentration of 10 ppm was obtained from the catalytic reaction tower 4.
The treated water after the aeration treatment in the diffusion tower 3 has a pH of 11.1 and an NH 4 —N concentration of 150 mg / L, and this water was treated with the remaining NH 3 —N in a diluted waste water treatment system.
On the other hand, the separated concentrated water is passed through a calcium carbonate packed tower 5 filled with calcium carbonate having an average particle size of 0.32 mm, with a water flow rate SV2h −1 , circulation LV 20 m / h, and 3 towers in series to remove fluorine. The process to do.
As a result, treated water having a fluorine concentration of 150 mg / L could be obtained.

以上の結果から、本発明によれば、フッ素含有排水からアンモニアを分離濃縮して効率的に除去すると共に、アンモニアの分離後の濃縮水中のフッ素についても効率的に処理することができることが分かる。   From the above results, it can be seen that according to the present invention, ammonia can be separated and concentrated efficiently from fluorine-containing wastewater, and fluorine in concentrated water after separation of ammonia can also be efficiently treated.

[比較例1]
実施例1において、蒸発濃縮を行わず、フッ素含有排水に水酸化ナトリウム水溶液を添加してpH12に調整した後、直接放散塔に導入したこと以外は同様にして処理を行った。
その結果、放散塔の通水速度が上がったことにより、十分な放散処理を行えず、放散塔からの排ガスのアンモニア濃度は1.5%で、処理水は、pH11.5、NH−N濃度1250mg/Lであった。
[Comparative Example 1]
In Example 1, after evaporating and concentrating, after adding sodium hydroxide aqueous solution to fluorine-containing wastewater and adjusting to pH 12, it processed similarly except having introduce | transduced directly into the stripping tower.
As a result, due to the increase in water flow rate of the stripping tower, sufficient stripping treatment cannot be performed, the ammonia concentration of the exhaust gas from the stripping tower is 1.5%, and the treated water has a pH of 11.5, NH 4 -N. The concentration was 1250 mg / L.

本比較例では、大流量のフッ素含有排水を処理するために放散塔での処理効率が悪く、実施例1と同等の十分な効率を得るためには、複数個の放散塔を並列ないしは多段に設置する必要があった。   In this comparative example, the treatment efficiency in the stripping tower is poor because it treats a large amount of fluorine-containing wastewater, and in order to obtain sufficient efficiency equivalent to that of Example 1, a plurality of stripping towers are arranged in parallel or in multiple stages. It was necessary to install.

1 pH調整槽
2 蒸発濃縮装置
3 放散塔
4 触媒反応塔
5 炭酸カルシウム充填塔
6 アンモニア蒸留塔
DESCRIPTION OF SYMBOLS 1 pH adjustment tank 2 Evaporative concentration apparatus 3 Stripping tower 4 Catalytic reaction tower 5 Calcium carbonate packed tower 6 Ammonia distillation tower

Claims (8)

フッ酸及びフッ化アンモニウムを含むフッ素含有排水を処理する方法において、
該フッ素含有排水をpH10〜13に調整して蒸発濃縮する蒸発濃縮工程と、
該蒸発濃縮工程で分離された分離蒸留水からアンモニアを除去するアンモニア除去工程と
を含むことを特徴とするフッ素含有排水の処理方法。
In a method for treating fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride,
An evaporative concentration step of adjusting the fluorine-containing wastewater to pH 10 to 13 and evaporating and concentrating;
A method for treating fluorine-containing wastewater, comprising an ammonia removal step of removing ammonia from the separated distilled water separated in the evaporation concentration step.
請求項1において、前記アンモニア除去工程が、前記分離蒸留水を放散処理してアンモニアを含むガスを得る放散工程と、該放散工程からのアンモニア含有ガスをアンモニア分解触媒に接触させる分解工程とを含むことを特徴とするフッ素含有排水の処理方法。   2. The ammonia removal step according to claim 1, wherein the ammonia removal step includes a diffusion step of releasing the separated distilled water to obtain a gas containing ammonia, and a decomposition step of bringing the ammonia-containing gas from the diffusion step into contact with an ammonia decomposition catalyst. A method for treating fluorine-containing wastewater. 請求項1又は2において、前記蒸発濃縮工程で分離された分離濃縮水からフッ素を除去するフッ素除去工程をさらに含むことを特徴とするフッ素含有排水の処理方法。   The method for treating fluorine-containing wastewater according to claim 1 or 2, further comprising a fluorine removing step of removing fluorine from the separated concentrated water separated in the evaporation and concentration step. 請求項1乃至3のいずれか1項において、前記蒸発濃縮工程で、フッ素濃度が1.6重量%以下の分離濃縮水を得ることを特徴とするフッ素含有排水の処理方法。   4. The method for treating fluorine-containing wastewater according to any one of claims 1 to 3, wherein separated concentrated water having a fluorine concentration of 1.6% by weight or less is obtained in the evaporation concentration step. フッ酸及びフッ化アンモニウムを含むフッ素含有排水を処理する装置において、
該フッ素含有排水をpH10〜13に調整して蒸発濃縮する蒸発濃縮手段と、
該蒸発濃縮手段で分離された分離蒸留水からアンモニアを除去するアンモニア除去手段と
を含むことを特徴とするフッ素含有排水の処理装置。
In an apparatus for treating fluorine-containing wastewater containing hydrofluoric acid and ammonium fluoride,
Evaporative concentration means for adjusting the fluorine-containing wastewater to pH 10-13 and evaporating and concentrating;
An apparatus for treating fluorine-containing wastewater, comprising ammonia removing means for removing ammonia from the separated distilled water separated by the evaporation and concentration means.
請求項5において、前記アンモニア除去手段が、前記分離蒸留水を放散処理する放散塔と、該放散塔からのアンモニア含有ガスが導入される、アンモニア分解触媒が充填された触媒反応塔とを含むことを特徴とするフッ素含有排水の処理装置。   6. The ammonia removing means according to claim 5, comprising a stripping tower for stripping the separated distilled water, and a catalytic reaction tower filled with an ammonia decomposition catalyst into which ammonia-containing gas from the stripping tower is introduced. An apparatus for treating fluorine-containing wastewater. 請求項5又は6において、前記蒸発濃縮手段で分離された分離濃縮水からフッ素を除去するフッ素除去手段をさらに含むことを特徴とするフッ素含有排水の処理装置。   7. The apparatus for treating fluorine-containing wastewater according to claim 5, further comprising fluorine removing means for removing fluorine from the separated concentrated water separated by the evaporation and concentration means. 請求項5乃至7のいずれか1項において、前記蒸発濃縮手段で、フッ素濃度が1.6重量%以下の分離濃縮水を得ることを特徴とするフッ素含有排水の処理装置。   The apparatus for treating fluorine-containing wastewater according to any one of claims 5 to 7, wherein the concentrated evaporation means obtains separated concentrated water having a fluorine concentration of 1.6% by weight or less.
JP2009091251A 2009-04-03 2009-04-03 Method and apparatus for treating fluorine-containing wastewater Active JP5347664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091251A JP5347664B2 (en) 2009-04-03 2009-04-03 Method and apparatus for treating fluorine-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091251A JP5347664B2 (en) 2009-04-03 2009-04-03 Method and apparatus for treating fluorine-containing wastewater

Publications (2)

Publication Number Publication Date
JP2010240558A JP2010240558A (en) 2010-10-28
JP5347664B2 true JP5347664B2 (en) 2013-11-20

Family

ID=43094233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091251A Active JP5347664B2 (en) 2009-04-03 2009-04-03 Method and apparatus for treating fluorine-containing wastewater

Country Status (1)

Country Link
JP (1) JP5347664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247931A (en) * 2021-07-14 2021-08-13 赛恩斯环保股份有限公司 Resource treatment method for high-ammonia high-salt waste liquid in rare earth industry

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183457A (en) * 2011-03-03 2012-09-27 Seiko Epson Corp Separation method and separation device
JP2012201554A (en) * 2011-03-25 2012-10-22 Seiko Epson Corp Method and apparatus for separation
CN105110442A (en) * 2015-08-17 2015-12-02 李海兰 Treatment agent for removing methanol, normal butanol and isobutanol in amino resin workshop waste water
CN105565575A (en) * 2016-02-26 2016-05-11 陕西科技大学 Fluorine removal solar distiller and fluorine removal method thereof
CN111410210A (en) * 2020-03-13 2020-07-14 厦门世达膜科技有限公司 Method for recovering ammonium fluoride from ammonium fluoride wastewater
CN114436459A (en) * 2020-10-30 2022-05-06 伊斯拓通用设备江苏有限公司 Method for treating wastewater discharged by ammonium fluoride production process
CN113045089B (en) * 2021-03-15 2023-04-18 盛隆资源再生(无锡)有限公司 Method for refining and purifying etching waste liquid
CN114149131B (en) * 2021-12-18 2023-07-04 江苏电科环保有限公司 Treatment method of fluorine-containing etching waste liquid for controlling COD concentration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263558A (en) * 1997-03-26 1998-10-06 Japan Organo Co Ltd Treatment of fluorine-containing desulfurized waste water
JPH11157834A (en) * 1997-12-01 1999-06-15 Ultla Clean Technology Kaihatsu Kenkyusho:Kk Resource recovering device
JPH11347535A (en) * 1998-06-04 1999-12-21 Tokyo Electric Power Co Inc:The Method for treating drainage containing ammonia

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247931A (en) * 2021-07-14 2021-08-13 赛恩斯环保股份有限公司 Resource treatment method for high-ammonia high-salt waste liquid in rare earth industry

Also Published As

Publication number Publication date
JP2010240558A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5347664B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2006239578A (en) Ammonia nitrogen and soluble salt-containing water treatment apparatus and method
JPH10323664A (en) Wastewater-recovering apparatus
JPH1157397A (en) Gas purifying method
WO2017213050A1 (en) Water treatment method and device, water treatment device modification method, and kit for water treatment device modification
JP5637797B2 (en) Method and apparatus for treating wastewater containing persistent materials
JP2007175673A (en) Treatment method of ammonia-containing drain
JP3912157B2 (en) Ammonium fluoride-containing wastewater treatment method
WO2016063581A1 (en) Treatment method and treatment apparatus for ammonia-containing wastewater
JP3194123B2 (en) Ultrapure water production and wastewater treatment method for closed system
JP3879318B2 (en) Wastewater treatment method
KR100799049B1 (en) Process and apparatus for treating ammonia-containing waste water
JP2004290862A (en) Method and apparatus for recovering nitrogen and phosphorus
JP4524525B2 (en) Method for treating wastewater containing ammonia and hydrogen peroxide
JP6777430B2 (en) Water treatment equipment
JP2003104721A (en) Apparatus and method for recovering ammonia
JP3284260B2 (en) Treatment method for fluorine-containing wastewater
JP4021688B2 (en) Method and apparatus for treatment of wastewater containing fluorine and silicon
EP1308420A1 (en) Method and apparatus for treating ammonia-containing effluent water
JP4465786B2 (en) Method and apparatus for treating human waste and / or septic tank sludge
RU2389686C2 (en) Method of regenerating ammonia from ammonia-soda production filter liquid
JP2023148949A (en) Water treatment system and method
JP3630352B2 (en) Method for treating urea-containing water
JP2004066206A (en) Method of neutralizing waste water
JPH1177089A (en) Treatment of waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150