JPH1177089A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH1177089A
JPH1177089A JP9241133A JP24113397A JPH1177089A JP H1177089 A JPH1177089 A JP H1177089A JP 9241133 A JP9241133 A JP 9241133A JP 24113397 A JP24113397 A JP 24113397A JP H1177089 A JPH1177089 A JP H1177089A
Authority
JP
Japan
Prior art keywords
wastewater
ammonia
water
concentrated
supercritical water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9241133A
Other languages
Japanese (ja)
Other versions
JP3736950B2 (en
Inventor
Masanori Sasaki
雅教 佐々木
Akira Suzuki
明 鈴木
Kazumi Kosuge
和見 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP24113397A priority Critical patent/JP3736950B2/en
Publication of JPH1177089A publication Critical patent/JPH1177089A/en
Application granted granted Critical
Publication of JP3736950B2 publication Critical patent/JP3736950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently treating a waste water to be treated contg. low concn. of org. compd. with a high b.p. such as (CH3 )4 NOH (TMAH) as a main solute ingredient and an inorg washing waste water contg. low concn. of ammonia. SOLUTION: This method for treating waste water comprises an ammonia recovering process wherein a waste water to be treated contg. low concn. or org. compd. with a higher b.p. than that of water as a main solute ingredient and an inorg. washing waste water contg. low concn. of ammonia are mixed and this mixed waste water is distilled to recover ammonia and a concentrating process wherein the mixed waste water from which ammonia is recovered is concentrated to obtain a conc. waste water. It is possible thereby to reduce remarkably the amt. of waste water by treating two kinds of waste water with different properties and to safely and easily recover ammonia. In addition, the recovered ammonia and the conc. waste water can be decomposed into mainly nitrogen, carbon dioxide and water by supercritical water reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、性状が相互に異な
り、単独では技術的に処理の難しい2種類の廃水の処理
法に関し、更に詳細には、処理の難しい廃水を環境上の
問題を発生させないような形に効率的に転化することに
より、経済的に廃水を処理する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating two types of wastewater which have different properties and are technically difficult to treat independently. The present invention relates to a method for economically treating wastewater by efficiently converting the wastewater into a form that does not cause wastewater.

【0002】[0002]

【従来の技術】半導体装置の製造工程では、種々の薬剤
を使用してウエハの微細加工を行っているので、使用済
みの種々の薬剤を含む溶液が廃液として排出されてい
る。例えば、ウエハのフォトリソグラフィ工程で行う現
像作業等のウエハの処理作業では、(CH3 4 NOH
(以下、TMAHと言う)を含む処理液でウエハを処理
しているので、主溶質成分として0.4〜1.0重量%
のTMAHを含む有機系のアルカリ性廃水が排出され
る。また、ウエハの洗浄工程では、NH4 OH(30
%)、H2 2 (30%)及びH2 Oからなる洗浄水で
ウエハを洗浄することが多いので、洗浄廃水としてNH
4 OHとH2 2 とをそれぞれ0.4〜1.0重量%程
度含む洗浄廃水が排出される。これらの廃水の処理は、
技術的に難しく、専門的な知識と専門的処理装置を必要
とするために、半導体装置の個々の製造工場で個別に対
応することは現実的でなく、通常、処理専門業者により
回収されて、集中的に処理されている。
2. Description of the Related Art In a process of manufacturing a semiconductor device, various chemicals are used to finely process a wafer. Therefore, a solution containing various used chemicals is discharged as a waste liquid. For example, in a wafer processing operation such as a developing operation performed in a wafer photolithography process, (CH 3 ) 4 NOH
(Hereinafter referred to as TMAH), the wafer is processed with a processing solution containing 0.4 to 1.0% by weight as a main solute component.
The organic alkaline wastewater containing TMAH is discharged. In the wafer cleaning step, NH 4 OH (30
%), H 2 O 2 (30%) and H 2 O, the wafer is often washed, so that NH 3
4 OH, H 2 O 2 and the washing waste water, each containing about 0.4 to 1.0 wt% is discharged. Treatment of these wastewaters
Due to technical difficulties and the need for specialized knowledge and specialized processing equipment, it is not practical to respond individually at individual semiconductor device manufacturing plants, and is usually collected by processing specialists, It is intensively processed.

【0003】[0003]

【発明が解決しようとする課題】ところで、環境問題の
高まりと共に産業廃棄物の処理が注目されるに伴い、T
MAHを含む処理廃水(以下、含TMAH廃水と言う)
及びアンモニアを含む洗浄廃水等の上述した廃水の処理
を専門処理業者に委ねることなく、廃水の排出元で排出
元の十分な管理下で廃水を確実にかつ効率良く処理した
いと言う要望が強くなっている。そこで、廃水を濃縮し
て減容する方法が試みられているが、廃水の組成によっ
ては、濃縮が難しいという問題がある。例えば、アンモ
ニアを含む洗浄廃水のような廃水では、加熱濃縮の際に
アンモニアが発生するために、その濃縮処理が煩雑で、
コストが嵩むという問題である。尚、膜濃縮により濃縮
する方法もあるものの、コストが加熱濃縮に比べて高い
と言う難点がある。従来の他の廃水処理法にも適当な方
法が無く、結論的に言って、従来の技術には、生産工場
から排出される、主溶質成分として水より沸点の高い有
機化合物を低濃度で含む処理廃水、例えばTMAHを含
む処理廃水(以下、含TMAH廃水と言う)、及びアン
モニアを含む無機系洗浄廃水を簡易にかつ確実に処理で
きる方法が見当たらないというのが実状で、その開発が
求められていた。以上の説明では、半導体装置の製造過
程で生じる廃水を例にして説明したが、同じような問題
は他の工場から排出される廃水についても同様である。
By the way, as environmental problems are increasing and attention is being paid to the treatment of industrial waste, T
Treatment wastewater containing MAH (hereinafter referred to as TMAH wastewater)
There is a growing demand for reliable and efficient treatment of wastewater at the source of the wastewater under the sufficient control of the source without leaving the treatment of the above-mentioned wastewater such as washing wastewater containing ammonia to a specialized treatment company. ing. Therefore, a method of concentrating wastewater to reduce the volume has been attempted, but there is a problem that concentration is difficult depending on the composition of the wastewater. For example, in wastewater such as washing wastewater containing ammonia, ammonia is generated at the time of heating and concentration, and the concentration treatment is complicated,
The problem is that the cost increases. Although there is a method of concentration by membrane concentration, there is a drawback that the cost is higher than that of heat concentration. There is no suitable method in other conventional wastewater treatment methods, and consequently, the conventional technology includes a low concentration of an organic compound having a higher boiling point than water as a main solute component discharged from a production plant. In fact, there is no method that can easily and surely treat treated wastewater, for example, treated wastewater containing TMAH (hereinafter, referred to as TMAH wastewater) and inorganic cleaning wastewater containing ammonia. I was In the above description, wastewater generated in the process of manufacturing semiconductor devices has been described as an example, but the same problem applies to wastewater discharged from other factories.

【0004】そこで、本発明の目的は、主溶質成分とし
て水より沸点の高い有機化合物を低濃度で含む処理廃
水、及びアンモニアを低濃度で含む無機系洗浄廃水を効
率良く処理する方法を提供することである。
Accordingly, an object of the present invention is to provide a method for efficiently treating treated wastewater containing a low concentration of an organic compound having a higher boiling point than water as a main solute component, and inorganic washing wastewater containing a low concentration of ammonia. That is.

【0005】[0005]

【課題を解決するための手段】本発明者は、第1には、
先ず、無機系洗浄廃水からアンモニアを回収し、次いで
処理廃水と混合し、混合濃縮して廃水量を大幅に減容す
ること着眼して、第1の発明方法を完成した。また、第
2には、混合濃縮した廃水の完全処理を図るために、超
臨界水反応の適用に注目した。ところで、前述の含TM
AH廃水及び洗浄廃水等の廃水の処理に超臨界水反応を
直接適用するには、廃水の発熱量が低いという問題であ
った。即ち、含TMAH廃水中の有機物は、主としてT
MAHであり、洗浄廃水中には主としてアンモニアが含
まれているが、双方ともに濃度が低いために、超臨界水
反応装置の超臨界水領域に廃水を送入するだけでは、超
臨界水反応を維持するための熱量を十分に自給すること
が難しく、別途、熱量を補充して超臨界水反応を維持す
るために燃料を超臨界水反応装置に注入する必要があ
る。これでは、超臨界水反応の利点を十分に活かすこと
ができず、燃料費が嵩むという結果を招き、前述の含T
MAH廃水及び洗浄廃水等の廃水の処理に超臨界水反応
を適用しようとしても、コストが嵩み、経済的に引き合
わないので、実用化が難しかった。以上のように、原廃
水に直接超臨界水反応を適用するには熱量の問題がある
ものの、第1発明方法により混合濃縮した濃縮廃水は比
較的高い濃度で有機物を含んでいるので、逆に言えば、
超臨界水反応を適用できる有機物濃度にまで第1発明方
法により濃縮することにより、超臨界水反応を濃縮廃水
に適用できることを見い出した。即ち、第1発明方法に
より濃縮した濃縮廃水を超臨界水反応により完全処理す
る第2の発明方法を完成するに到った。更に、第3に
は、超臨界水反応により廃水を完全処理する別法とし
て、処理廃水を濃縮する一方、洗浄廃水からアンモニア
を回収し、次いで濃縮処理廃水とアンモニアとを超臨界
水反応により完全処理することを着想し、本発明方法を
完成するに到った。
Means for Solving the Problems The present inventor firstly stated that:
First, ammonia was recovered from the inorganic cleaning wastewater, then mixed with the treated wastewater, mixed and concentrated to reduce the volume of the wastewater, and the first invention method was completed. Secondly, attention was paid to the application of the supercritical water reaction in order to achieve complete treatment of the mixed and concentrated wastewater. By the way, the TM including
In order to directly apply the supercritical water reaction to the treatment of wastewater such as AH wastewater and washing wastewater, there is a problem that the calorific value of the wastewater is low. That is, the organic matter in the TMAH-containing wastewater is mainly T
Although it is MAH and the cleaning wastewater mainly contains ammonia, the concentration of both is low, so simply sending wastewater to the supercritical water region of the supercritical water reactor will cause supercritical water reaction. It is difficult to sufficiently supply the heat for maintaining the fuel, and it is necessary to separately inject the fuel into the supercritical water reactor in order to supplement the heat and maintain the supercritical water reaction. In this case, the advantage of the supercritical water reaction cannot be fully utilized, which results in an increase in fuel cost.
Even if an attempt is made to apply a supercritical water reaction to the treatment of wastewater such as MAH wastewater and washing wastewater, it has been difficult to commercialize it because the cost is high and it is not economically feasible. As described above, although the supercritical water reaction is directly applied to the raw wastewater, there is a problem of calorific value, but the concentrated wastewater mixed and concentrated by the method of the first invention contains organic substances at a relatively high concentration. Speaking of
It has been found that the supercritical water reaction can be applied to the concentrated wastewater by concentrating the organic substance to a concentration of an organic substance which can be used for the supercritical water reaction by the first invention method. That is, the second invention method of completely treating the concentrated wastewater concentrated by the first invention method by a supercritical water reaction has been completed. Thirdly, as another method of completely treating wastewater by a supercritical water reaction, the treated wastewater is concentrated, ammonia is recovered from the washing wastewater, and then the concentrated wastewater and ammonia are completely treated by a supercritical water reaction. With the idea of processing, the method of the present invention was completed.

【0006】超臨界水反応とは、超臨界水の高い反応性
を利用して有機物を分解する方法であって、例えば、難
分解性の有害な有機物を分解して無害な二酸化炭素と水
に転化したり、難分解性の高分子化合物を分解して有用
な低分子化合物に転化したりするために、現在、その実
用化が盛んに研究されている。超臨界水とは、超臨界状
態にある水、即ち、水の臨界点を越えた状態にある水を
言い、詳しくは、臨界温度、即ち374.1℃以上の温
度で、かつ水の臨界圧力、即ち22.04MPa以上の
圧力下にある状態の水を言う。超臨界水は、有機物を溶
解する溶解能が高く、有機化合物に多い非極性物質をも
完全に溶解することができ、また、超臨界水は、酸素や
窒素などの気体と任意の割合で混合して単一相を構成す
ることができる。
[0006] The supercritical water reaction is a method of decomposing organic substances by utilizing the high reactivity of supercritical water. For example, it decomposes hard-to-decompose harmful organic substances into harmless carbon dioxide and water. In order to convert the compound into a useful low-molecular compound by decomposing a high-molecular compound that is hardly decomposable, the practical use of the compound has been actively studied. Supercritical water refers to water that is in a supercritical state, that is, water that is beyond the critical point of water, and more specifically, has a critical temperature, that is, a temperature of 374.1 ° C. or higher, and a critical pressure of water. That is, water in a state under a pressure of 22.04 MPa or more. Supercritical water has a high dissolving power to dissolve organic substances and can completely dissolve non-polar substances that are abundant in organic compounds.Supercritical water is mixed with gases such as oxygen and nitrogen at an arbitrary ratio. To form a single phase.

【0007】また、超臨界水反応は、超臨界水内の反応
又は超臨界水を媒体とした反応を意味し、例えば塩素や
硫黄などの塩生成物質を含む難分解性有機物を超臨界水
領域内で酸化剤、例えば空気により酸化分解する酸化反
応、或いは超臨界水内で高分子有機物を低分子化する分
解反応等が例として挙げられる。これらの超臨界水反応
では、超臨界水が反応物、例えば有機物と酸素とを溶解
する溶媒としてのみ、すなわち反応場としてのみ機能す
る場合もあり、また超臨界水が反応物と反応する場合も
あり、超臨界水が反応に寄与する態様は、複雑でかつ様
々である。
The supercritical water reaction means a reaction in supercritical water or a reaction using supercritical water as a medium. For example, a hardly decomposable organic substance containing a salt-forming substance such as chlorine or sulfur is converted into a supercritical water region. Examples thereof include an oxidation reaction in which oxidizing and decomposing by an oxidizing agent, for example, air, and a decomposing reaction in which high-molecular organic matter is decomposed into low molecular weight in supercritical water. In these supercritical water reactions, supercritical water may function only as a solvent that dissolves a reactant, for example, an organic substance and oxygen, that is, may function only as a reaction field, or when supercritical water reacts with a reactant. Yes, the manner in which supercritical water contributes to the reaction is complex and various.

【0008】上記目的を達成するために、本発明に係る
廃水の処理法(以下、第1の発明方法と言う)は、主溶
質成分として水より沸点の高い有機化合物を含むアルカ
リ性処理廃水と、アンモニアを含む無機系洗浄廃水とを
同一プロセスで処理する処理法であって、処理廃水と洗
浄廃水とを混合してなる混合廃水を蒸留してアンモニア
を回収するアンモニア回収工程と、アンモニアを回収し
た混合廃水を濃縮して濃縮廃水を得る濃縮工程とを有す
ることを特徴としている。
In order to achieve the above object, a method for treating wastewater according to the present invention (hereinafter referred to as a first invention method) comprises: an alkaline treatment wastewater containing an organic compound having a higher boiling point than water as a main solute component; A treatment method for treating an inorganic cleaning wastewater containing ammonia in the same process, wherein an ammonia recovery step of recovering ammonia by distilling a mixed wastewater obtained by mixing the treated wastewater and the cleaning wastewater, and recovering the ammonia A concentration step of concentrating the mixed wastewater to obtain a concentrated wastewater.

【0009】濃縮廃水を更に処理するために、本発明に
係る廃水の処理法(以下、第2の発明方法と言う)は、
濃縮工程に続いて、得た濃縮廃水とアンモニアとを超臨
界水反応により主として窒素、炭酸ガス及び水に分解す
る超臨界水反応工程とを有することを特徴としている。
In order to further treat the concentrated wastewater, the method for treating wastewater according to the present invention (hereinafter referred to as the second invention method) comprises:
It is characterized by having a supercritical water reaction step of decomposing the obtained concentrated wastewater and ammonia into nitrogen, carbon dioxide gas and water mainly by a supercritical water reaction, following the concentration step.

【0010】本発明に係る別の超臨界水反応による廃水
の処理法(第3の発明方法と言う)は、主溶質成分とし
て水より沸点の高い有機化合物を含む処理廃水、及びア
ンモニアを含む無機系洗浄廃水を処理する処理法であっ
て、処理廃水を濃縮して濃縮処理廃水を得る濃縮工程
と、洗浄廃水にアルカリを添加してpHを7以上に調整
し、次いで蒸留してアンモニアを回収するアンモニア回
収工程と、得た濃縮処理廃水及びアンモニアを超臨界水
反応により主として窒素、炭酸ガス及び水に分解する超
臨界水反応工程とを有することを特徴としている。
[0010] Another method of treating wastewater by supercritical water reaction according to the present invention (referred to as the third invention method) is a treated wastewater containing an organic compound having a higher boiling point than water as a main solute component and an inorganic containing ammonia. This is a treatment method for treating system washing wastewater, in which the treatment wastewater is concentrated to obtain concentrated treatment wastewater, and the pH is adjusted to 7 or more by adding alkali to the washing wastewater, and then ammonia is recovered by distillation. And a supercritical water reaction step in which the obtained concentrated wastewater and ammonia are mainly decomposed into nitrogen, carbon dioxide and water by a supercritical water reaction.

【0011】第1、第2及び第3の発明方法は、半導体
装置の製造過程でウエハを処理した際に生じ、有機化合
物として主に(CH3 4 NOHを低濃度で含む処理廃
水、及び半導体装置の製造過程でウエハをNH4 OHと
2 2 とを低濃度で含む洗浄水で洗浄した際に生じる
洗浄廃水の処理に好適に適用できる。ここで、半導体装
置等とは、シリコン半導体基板又は化合物半導体基板上
に形成されるトランジスタ、ダイオード、レーザ素子等
の半導体素子及びその集積回路素子を言う。
The first, second and third invention methods are produced when a wafer is processed in the process of manufacturing a semiconductor device, and are treated wastewater mainly containing (CH 3 ) 4 NOH at a low concentration as an organic compound; and The present invention can be suitably applied to treatment of cleaning wastewater generated when a wafer is cleaned with cleaning water containing NH 4 OH and H 2 O 2 at a low concentration in a manufacturing process of a semiconductor device. Here, a semiconductor device or the like refers to a semiconductor element such as a transistor, a diode, or a laser element formed on a silicon semiconductor substrate or a compound semiconductor substrate and an integrated circuit element thereof.

【0012】第1及び第3の発明方法で実施する蒸留操
作は、アンモニアを高い回収率で回収できる限り、単蒸
留方式でも、塔頂からアンモニアの一部を還流させる精
留方式でも良い。第3の発明方法で、洗浄廃水にアルカ
リを添加してpHを中性又はアルカリ性に調整するの
は、塩化アンモニアの生成を防止して、アンモニアを回
収し易くするためであり、pH値は好適には7以上であ
り、さらに好適には10〜12である。第1及び第3の
発明方法の濃縮処理廃水又は濃縮廃水を得る工程では、
出来るだけ高い濃縮率で濃縮するのが好ましいが、実用
的には60〜70倍に濃縮する。濃縮する方法は、濃縮
処理廃水又は濃縮廃水を得ることができる限り、濃縮の
方法には制約はなく、例えば水分を蒸発させる加熱濃縮
法でも、逆浸透膜等を使用した膜濃縮法でも良い。加熱
濃縮法による場合には、有機化合物の分解程度以下の温
度に加熱して濃縮し、必要に応じて減圧下で加熱する。
第2及び第3の発明方法において超臨界水反応を実施す
る超臨界水反応装置は、既知の超臨界水反応装置で良
く、超臨界水反応により濃縮処理廃水又は濃縮廃水を主
として窒素、炭酸ガス及び水に分解できる限り、形式及
び構成には制約はない。
The distillation operation performed in the first and third invention methods may be a simple distillation method or a rectification method in which a part of the ammonia is refluxed from the top of the column, as long as ammonia can be recovered at a high recovery rate. The reason for adjusting the pH to neutral or alkaline by adding alkali to the washing wastewater in the third invention method is to prevent the production of ammonia chloride and to facilitate the recovery of ammonia, and the pH value is preferably Is 7 or more, and more preferably 10 to 12. In the step of obtaining the concentrated wastewater or the concentrated wastewater of the first and third invention methods,
It is preferable to concentrate at a concentration rate as high as possible, but practically, the concentration is 60 to 70 times. The method of concentration is not particularly limited as long as concentrated wastewater or concentrated wastewater can be obtained. For example, a heat concentration method for evaporating water or a membrane concentration method using a reverse osmosis membrane or the like may be used. In the case of the heat concentration method, the mixture is heated to a temperature lower than the decomposition degree of the organic compound and concentrated, and if necessary, heated under reduced pressure.
The supercritical water reactor for carrying out the supercritical water reaction in the second and third invention methods may be a known supercritical water reactor, and the concentrated wastewater or concentrated wastewater is mainly subjected to nitrogen and carbon dioxide gas by the supercritical water reaction. There is no restriction on the type and composition as long as it can be decomposed into water and water.

【0013】第1の発明方法は、相互に異なる性状の2
種類の処理廃水と洗浄廃水とを混合して、同一プロセス
で処理して廃水量を大幅に減容できる効果を有し、更
に、アンモニアを回収するために蒸留する際、アルカリ
性の処理廃水と洗浄廃水とを混合して得た混合液を蒸留
しているので、第2の発明方法のように、別途、アルカ
リを添加してpH調整をする必要がないという利点を有
する。濃縮工程で得た濃縮廃水は、蒸発乾固、或いは湿
式燃焼等により更に処理することができる。第2の発明
方法は、超臨界水反応により濃縮廃水を完全に無害な物
質に転化できる利点を有する。第3の発明方法は、第2
の発明方法と同様に、超臨界水反応により濃縮廃水を完
全に無害な物質に転化できる利点を有する。
[0013] The first method of the present invention comprises the following two methods having different properties.
It has the effect of mixing the treated wastewater and washing wastewater and treating them in the same process to greatly reduce the volume of wastewater.Furthermore, when distilling to recover ammonia, the alkaline treated wastewater and washing water Since the mixed solution obtained by mixing with the wastewater is distilled, there is an advantage that it is not necessary to separately add an alkali to adjust the pH as in the second invention method. The concentrated wastewater obtained in the concentration step can be further treated by evaporation to dryness, wet combustion, or the like. The second invention method has an advantage that the concentrated wastewater can be completely converted to harmless substances by a supercritical water reaction. The third invention method is the second invention method.
As in the method of the invention, the concentrated wastewater can be completely converted into a harmless substance by the supercritical water reaction.

【0014】[0014]

【発明の実施の形態】以下に、添付図面を参照し、実施
形態例を挙げて本発明の実施の形態を具体的かつ詳細に
説明する。実施形態例1 本実施形態例は、第1の発明方法の実施の形態の一つの
例であって、図1は本実施形態例の廃水の処理法の工程
の流れを示すフローチャートである。本方法を適用する
含TMAH廃水は、半導体装置の製造過程でウエハを処
理水で処理した際に生じた、TMAHを0.4〜1.0
重量%の濃度で含む処理廃水である。またAPMは、半
導体装置の製造過程でウエハを洗浄した際に生じた、ア
ンモニア(NH3 )及び過酸化水素(H2 2 )をそれ
ぞれ0.4〜1.0%程度含む洗浄廃水である。本例で
は、図1に示すように、含TMAH廃水とAPMとを混
合した得た混合廃水を蒸留塔に送入し、連続的に蒸留し
てアンモニアをアンモニア蒸気又はアンモニア水溶液と
して回収する。蒸留の条件例を以下に示す。 混合廃水の供給温度 :常温 蒸留塔の圧力 :0.12MPa 蒸留塔の塔底温度 :103℃ 蒸留塔の塔頂温度 :48℃ 還流比 :2.4
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment 1 This embodiment is an example of an embodiment of the method of the first invention, and FIG. 1 is a flowchart showing a flow of a process of a wastewater treatment method of this embodiment. The TMAH-containing wastewater to which the present method is applied is 0.4 to 1.0 TMAH generated when a wafer is treated with treated water in the process of manufacturing a semiconductor device.
It is treated wastewater containing at a concentration of% by weight. APM is cleaning wastewater containing ammonia (NH 3 ) and hydrogen peroxide (H 2 O 2 ) of about 0.4 to 1.0%, respectively, generated when a wafer is cleaned in the process of manufacturing a semiconductor device. . In this example, as shown in FIG. 1, mixed wastewater obtained by mixing TMAH-containing wastewater and APM is fed into a distillation column and continuously distilled to recover ammonia as ammonia vapor or an aqueous ammonia solution. Examples of distillation conditions are shown below. Supply temperature of mixed wastewater: normal temperature Pressure of distillation column: 0.12 MPa Column bottom temperature of distillation column: 103 ° C. Column top temperature of distillation column: 48 ° C. Reflux ratio: 2.4

【0015】次いで、蒸留塔の塔底から得たアンモニア
を含まない混合廃水を多段式蒸発缶装置に送入し、TM
AHが分解しない程度の温度で連続的に蒸発濃縮する。
蒸発濃縮の条件例を以下に示す。 蒸発缶の段数 :2段 蒸発缶の圧力 :150〜200Tarr 蒸発缶の温度 :60℃〜70℃ 濃縮した含TMAH廃水中のTMAHの濃度:18重量
Next, the ammonia-free mixed wastewater obtained from the bottom of the distillation column is fed into a multi-stage evaporator, and TM
Continuous evaporation and concentration at a temperature at which AH does not decompose.
Examples of conditions for evaporation concentration are shown below. Number of stages of evaporator: 2 stages Pressure of evaporator: 150 to 200 Torr Temperature of evaporator: 60 ° C to 70 ° C Concentration of TMAH in concentrated TMAH-containing wastewater: 18% by weight

【0016】本実施形態例では、含TMAH廃水とAP
Mとを混合した得た混合廃水を以上のように処理して、
濃縮廃水として元の廃水量の約2%に減容することがで
きた。得た濃縮廃水は、更に、蒸発乾固して減容するこ
とができ、或いは湿式燃焼することにより完全処理する
こともできる。
In this embodiment, TMAH-containing wastewater and AP
The mixed wastewater obtained by mixing M and M is treated as described above,
The volume of concentrated wastewater could be reduced to about 2% of the original wastewater amount. The concentrated wastewater obtained can be further evaporated to dryness to reduce its volume, or can be completely treated by wet combustion.

【0017】実施形態例2 本実施形態例は、実施形態例1と同じ廃水、即ち含TM
AH廃水とAPMの処理に第2の発明方法を適用する実
施の形態の一つの例であって、図2は本実施形態例の廃
水の処理法の工程の流れを示すフローチャートである。
本例では、図2に示すように、先ず、実施形態例1と同
様にして、含TMAH廃水とAPMとを混合した得た混
合廃水を蒸留塔に送入し、連続的に蒸留してアンモニア
をアンモニア蒸気として回収する。次いで、蒸留塔の塔
底から得たアンモニアを含まない混合廃水を多段式蒸発
缶装置に送入し、TMAHが分解しない程度の温度で連
続的に蒸発濃縮する。
Second Embodiment The second embodiment is the same wastewater as that of the first embodiment, that is, contains TM.
FIG. 2 is a flowchart showing a process flow of a wastewater treatment method according to an embodiment of the present invention, which is one example of an embodiment in which the second invention method is applied to the treatment of AH wastewater and APM.
In this example, as shown in FIG. 2, first, in the same manner as in Embodiment 1, mixed wastewater obtained by mixing TMAH-containing wastewater and APM is fed into a distillation column, and continuously distilled to obtain ammonia. Is recovered as ammonia vapor. Next, the mixed wastewater containing no ammonia obtained from the bottom of the distillation column is fed into a multi-stage evaporator and continuously evaporated and concentrated at a temperature at which TMAH is not decomposed.

【0018】次いで、回収したアンモニアと濃縮した混
合廃水を超臨界水反応装置に移送し、超臨界水反応によ
り、窒素、炭酸ガス及び水に分解する。超臨界水反応の
条件例を以下に示す。 反応器の温度 :600℃ 反応器の圧力 :25MPa 一方、蒸発濃縮する過程で蒸発した水蒸気を凝縮回収し
て、例えば半導体装置の製造過程で必要とする純水を製
造する原水として利用するために、純水製造装置に送水
する。
Next, the recovered mixed wastewater mixed with ammonia is transferred to a supercritical water reactor, where it is decomposed into nitrogen, carbon dioxide and water by a supercritical water reaction. Examples of conditions for the supercritical water reaction are shown below. Reactor temperature: 600 ° C. Reactor pressure: 25 MPa On the other hand, in order to condense and recover the water vapor evaporated in the process of evaporating and concentrating, for example, to use it as raw water for producing pure water required in the semiconductor device manufacturing process. , And water is sent to the pure water production equipment.

【0019】超臨界水反応は、種々の形式の超臨界水反
応装置により実施されるが、図3を参照して、本実施形
態例で使用する超臨界水反応装置10を説明する。超臨
界水反応装置10は、超臨界水反応装置の基本的な形式
の一つであるモダープロセス方式の超臨界水反応装置の
一例であって、縦型反応容器12を備え、反応容器12
の上部には、水の臨界点以上の条件、即ち超臨界条件が
維持されている超臨界水領域14が存在していて、被処
理流体が超臨界水領域14に導入される。本実施形態例
では、被処理流体はアンモニアと濃縮廃水との混合流体
である。被処理流体に含まれる有機物中に塩素化合物、
硫黄化合物等の酸形成物質が含まれている場合には、超
臨界水反応により酸が生成して、反応容器12を腐食す
るので、中和剤により中和して塩に転化する。この場合
には、通常、超臨界水領域14との界面16を介して反
応容器12の下部に水の臨界温度より低い温度に維持さ
れている亜臨界水領域18を形成し、生成した塩を超臨
界水領域14から亜臨界水領域に移行させて再溶解し、
後述するように亜臨界排水と共に排出している。反応容
器12の超臨界水領域14には超臨界水が、亜臨界水領
域18には亜臨界水が、それぞれ界面16を介して滞留
している。
The supercritical water reaction is performed by various types of supercritical water reactors. The supercritical water reactor 10 used in the present embodiment will be described with reference to FIG. The supercritical water reactor 10 is an example of a modal process type supercritical water reactor which is one of the basic types of the supercritical water reactor, and includes a vertical reaction vessel 12.
A supercritical water region 14 in which a condition equal to or higher than the critical point of water, that is, a supercritical condition is maintained, is located above the water, and a fluid to be treated is introduced into the supercritical water region 14. In the present embodiment, the fluid to be treated is a mixed fluid of ammonia and concentrated wastewater. Chlorine compounds in organic matter contained in the fluid to be treated,
When an acid-forming substance such as a sulfur compound is contained, an acid is generated by the supercritical water reaction and corrodes the reaction vessel 12, so that the acid is neutralized by a neutralizing agent and converted into a salt. In this case, usually, a subcritical water region 18 maintained at a temperature lower than the critical temperature of water is formed at a lower portion of the reaction vessel 12 through an interface 16 with the supercritical water region 14, and the generated salt is formed. Transfer from the supercritical water region 14 to the subcritical water region and redissolve it,
It is discharged together with subcritical wastewater as described below. Supercritical water is retained in the supercritical water region 14 of the reaction vessel 12, and subcritical water is retained in the subcritical water region 18 via the interface 16.

【0020】反応容器12の上部には、流入管20が接
続され、超臨界水反応を行う流体が超臨界水領域14に
流入する。流入管20には、超臨界水反応により処理す
る有機物を有する被処理流体を送入する被処理流体ライ
ン22、有機物を酸化させる酸化剤として空気を送入す
る空気ライン24、及び、超臨界水領域に超臨界水を供
給する超臨界水ライン26が合流している。反応容器1
2の上部には、更に、処理流体ライン30が接続され、
被処理流体中の有機物が、超臨界水反応により、主とし
て水と二酸化炭素になって処理流体と共に超臨界水領域
14から処理流体ライン30を通って流出する。有機物
が酸を生成する塩素系化合物等を有する場合には、生成
する酸を中和するために、被処理流体にアルカリ中和剤
を添加する中和剤ライン28が被処理流体ライン22に
接続されており、また、中和により生じた塩を移行させ
る亜臨界水領域18が形成されている。亜臨界水領域1
8を形成する際には、亜臨界水ライン32及び亜臨界排
水ライン34が反応容器12の下部に接続され、亜臨界
水ライン32は亜臨界水領域18に亜臨界水を供給し、
また亜臨界排水ライン34は超臨界水反応及び中和反応
により生成した塩を溶解ないし懸濁している亜臨界水を
亜臨界水領域18から亜臨界排水として排出する。
An inflow pipe 20 is connected to an upper portion of the reaction vessel 12, and a fluid for performing a supercritical water reaction flows into the supercritical water region 14. The inflow pipe 20 has a fluid line 22 for supplying a fluid to be treated having an organic substance to be treated by a supercritical water reaction, an air line 24 for supplying air as an oxidizing agent for oxidizing the organic substance, and supercritical water. A supercritical water line 26 for supplying supercritical water to the region joins. Reaction vessel 1
2, a processing fluid line 30 is further connected to
The organic matter in the fluid to be treated mainly becomes water and carbon dioxide by the supercritical water reaction, and flows out from the supercritical water region 14 through the treatment fluid line 30 together with the treatment fluid. When the organic substance has a chlorine-based compound or the like that generates an acid, a neutralizing agent line 28 for adding an alkali neutralizer to the processing target fluid is connected to the processing target fluid line 22 in order to neutralize the generated acid. In addition, a subcritical water region 18 for transferring the salt generated by the neutralization is formed. Subcritical water area 1
When forming 8, the subcritical water line 32 and the subcritical drainage line 34 are connected to the lower part of the reaction vessel 12, and the subcritical water line 32 supplies subcritical water to the subcritical water region 18,
The subcritical drain line 34 discharges the subcritical water in which the salt generated by the supercritical water reaction and the neutralization reaction is dissolved or suspended from the subcritical water region 18 as subcritical drainage.

【0021】超臨界水反応を安定に維持するためには、
反応容器12の超臨界水領域14を600℃程度の温度
及び25MPa程度の圧力に維持する必要がある。そこ
で、温度、圧力条件を維持するために、処理流体ライン
30には、図3に示すように、冷却器36、減圧弁38
及び気液分離槽40が順次設けてあって、減圧弁38
は、圧力制御装置42により弁開度が調整されつつ、処
理流体を減圧しつつ流量調節する。更には、図示しない
が、被処理流体ライン22、空気ライン24及び超臨界
水ライン26には、供給する被処理流体、空気及び超臨
界水を所定の温度に昇温し、所定の圧力に昇圧する加熱
装置、圧縮機及び昇圧ポンプがそれぞれ設けてある。
In order to maintain the supercritical water reaction stably,
It is necessary to maintain the supercritical water region 14 of the reaction vessel 12 at a temperature of about 600 ° C. and a pressure of about 25 MPa. Therefore, in order to maintain the temperature and pressure conditions, as shown in FIG.
And a gas-liquid separation tank 40 are sequentially provided, and a pressure reducing valve 38 is provided.
Adjusts the flow rate while reducing the processing fluid while the valve opening is adjusted by the pressure control device 42. Further, although not shown, the fluid to be treated, air and supercritical water are supplied to the fluid line 22, the air line 24, and the supercritical water line 26 to a predetermined temperature, and the pressure is increased to a predetermined pressure. A heating device, a compressor and a booster pump are provided.

【0022】実施形態例3 本実施形態例は、実施形態例1と同じ廃水、即ち含TM
AH廃水とAPMの処理に第3の発明方法を適用する実
施の形態の一つの例であって、図4は本実施形態例の超
臨界水反応による廃水処理法の工程の流れを示すフロー
チャートである。本方法では、APMにアルカリ、例え
ばNaOH水溶液を添加してpH調整し、pH調整した
APMを蒸留塔に送入し、連続的に蒸留してアンモニア
をアンモニア蒸気として回収する。蒸留の条件例を以下
に示す。 APMのpH値 :11〜12 APMの供給温度 :常温 蒸留塔の圧力 :0.12MPa 蒸留塔の塔底温度 :103℃ 蒸留塔の塔頂温度 :48℃ 還流比 :2.4 アンモニアを回収した残りは、無機系不純物を含む水と
して、蒸留塔の塔底から流出し、通常の排水処理装置で
処理する。
Embodiment 3 This embodiment is the same as the wastewater of Embodiment 1, that is, TM-containing water.
FIG. 4 is one example of an embodiment in which the third invention method is applied to the treatment of AH wastewater and APM, and FIG. is there. In this method, the pH of the APM is adjusted by adding an alkali, for example, an aqueous solution of NaOH, and the pH-adjusted APM is sent to a distillation column, and is continuously distilled to recover ammonia as ammonia vapor. Examples of distillation conditions are shown below. APM pH value: 11 to 12 APM supply temperature: normal temperature Distillation column pressure: 0.12 MPa Distillation column bottom temperature: 103 ° C. Distillation column top temperature: 48 ° C. Reflux ratio: 2.4 Ammonia was recovered The remainder flows out from the bottom of the distillation column as water containing inorganic impurities, and is treated by an ordinary wastewater treatment device.

【0023】一方、含TMAH廃水を多段蒸発缶式濃縮
装置に送入し、TMAHが分解しない程度の温度で連続
的に蒸発濃縮する。蒸発濃縮の条件例を以下に示す。 蒸発缶の段数 :2段 蒸発缶の圧力 :150〜200Tarr 蒸発缶の温度 :60℃〜70℃ 濃縮した含TMAH廃水中のTMAHの濃度:18重量
On the other hand, the TMAH-containing wastewater is fed into a multistage evaporator-type concentrator, and is continuously evaporated and concentrated at a temperature at which TMAH is not decomposed. Examples of conditions for evaporation concentration are shown below. Number of stages of evaporator: 2 stages Pressure of evaporator: 150 to 200 Torr Temperature of evaporator: 60 ° C to 70 ° C Concentration of TMAH in concentrated TMAH-containing wastewater: 18% by weight

【0024】次いで、回収したアンモニアと濃縮した含
TMAH廃水とを混合して、実施形態例2と同じ構成の
超臨界水反応装置10に移送し、超臨界水反応により、
窒素、炭酸ガス及び水に分解する。超臨界水反応の条件
例を以下に示す。 反応器の温度 :600℃ 反応器の圧力 :25MPa 一方、蒸発濃縮する過程で蒸発した水蒸気を凝縮回収し
て、例えば半導体装置の製造過程で必要とする純水を製
造するための原水として利用するために、純水製造装置
に送水する。
Next, the recovered ammonia and the concentrated TMAH-containing wastewater are mixed and transferred to a supercritical water reactor 10 having the same configuration as that of the second embodiment.
Decomposes into nitrogen, carbon dioxide and water. Examples of conditions for the supercritical water reaction are shown below. Reactor temperature: 600 ° C. Reactor pressure: 25 MPa On the other hand, water vapor evaporated in the process of evaporating and condensing is condensed and recovered and used, for example, as raw water for producing pure water required in the process of manufacturing semiconductor devices. For this purpose, water is sent to a pure water production system.

【0025】[0025]

【発明の効果】第1発明方法によれば、主溶質成分とし
てTMAH等の水より沸点の高い有機化合物を低濃度で
含む処理廃水とアンモニアを低濃度で含む洗浄廃水とを
混合し、アンモニアを回収し、更に濃縮することによ
り、性状の異なる2種類の廃水を同一プロセスで処理し
て大幅に減容でき、またアンモニアを含む廃水を安全か
つ容易に処理することができる。また、第2発明方法に
よれば、第1発明方法により濃縮して得た濃縮廃水を超
臨界水反応により効率的に完全処理して、環境汚染の問
題を生じない安全な物質に転化することができる。更
に、第3発明方法によれば、主溶質成分としてTMAH
等の水より沸点の高い有機化合物を低濃度で含む処理廃
水及びアンモニアを低濃度で含む洗浄廃水をそれぞれ別
途に前処理することにより超臨界水反応により効率的に
廃水を完全処理して、環境汚染の問題を生じない安全な
物質に転化することができる。半導体装置の製造過程で
それぞれ排出される、低濃度で有機性溶質成分を溶解し
ているウエハ処理廃水及びウエハ洗浄廃水に、本発明方
法を適用することにより、二次廃棄物処理を必要としな
いレベルにまで、廃水を効率的に処理することができ
る。
According to the first method of the present invention, treated wastewater containing a low concentration of an organic compound having a higher boiling point than water such as TMAH as a main solute component and cleaning wastewater containing a low concentration of ammonia are mixed. By collecting and further concentrating, two types of wastewater having different properties can be treated in the same process to greatly reduce the volume, and wastewater containing ammonia can be treated safely and easily. Further, according to the second invention method, the concentrated wastewater obtained by concentration according to the first invention method is efficiently and completely treated by a supercritical water reaction to be converted into a safe substance which does not cause a problem of environmental pollution. Can be. Further, according to the third invention method, TMAH is used as the main solute component.
By separately pretreating treated wastewater containing organic compounds having a higher boiling point than water at a low concentration and washing wastewater containing ammonia at a low concentration, the wastewater is completely treated efficiently by supercritical water reaction, It can be converted to a safe substance that does not cause pollution problems. By applying the method of the present invention to wafer processing wastewater and wafer cleaning wastewater each having a low concentration and dissolving an organic solute component discharged in the process of manufacturing a semiconductor device, no secondary waste treatment is required. To a level, wastewater can be treated efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る廃水の処理法の実施形態例1の工
程の流れを示すフローチャートである。
FIG. 1 is a flowchart showing a process flow of a first embodiment of a wastewater treatment method according to the present invention.

【図2】本発明に係る廃水の処理法の実施形態例2の工
程の流れを示すフローチャートである。
FIG. 2 is a flowchart showing a process flow of a second embodiment of the wastewater treatment method according to the present invention.

【図3】超臨界水反応装置の一例の構成を示すフローシ
ートである。
FIG. 3 is a flow sheet showing a configuration of an example of a supercritical water reactor.

【図4】本発明に係る廃水の処理法の実施形態例3の工
程の流れを示すフローチャートである。
FIG. 4 is a flowchart showing a process flow of a third embodiment of the wastewater treatment method according to the present invention.

【符号の説明】[Explanation of symbols]

10 超臨界水反応装置 12 縦型反応容器 14 超臨界水領域 16 界面 18 亜臨界水領域 20 流入管 22 被処理流体ライン 24 空気ライン 26 超臨界水ライン 28 中和剤ライン 30 処理流体ライン 32 亜臨界水ライン 34 亜臨界排水ライン 36 冷却器 38 減圧弁 40 気液分離槽 42 圧力制御装置 REFERENCE SIGNS LIST 10 supercritical water reactor 12 vertical reaction vessel 14 supercritical water region 16 interface 18 subcritical water region 20 inflow pipe 22 fluid line to be treated 24 air line 26 supercritical water line 28 neutralizer line 30 treatment fluid line 32 Supercritical water line 34 subcritical drainage line 36 cooler 38 pressure reducing valve 40 gas-liquid separation tank 42 pressure controller

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 主溶質成分として水より沸点の高い有機
化合物を含むアルカリ性処理廃水と、アンモニアを含む
無機系洗浄廃水とを同一プロセスで処理する処理法であ
って、 処理廃水と洗浄廃水とを混合してなる混合廃水を蒸留し
てアンモニアを回収するアンモニア回収工程と、 アンモニアを回収した混合廃水を濃縮して濃縮廃水を得
る濃縮工程とを有することを特徴とする廃水の処理法。
1. A treatment method for treating an alkaline treatment wastewater containing an organic compound having a higher boiling point than water as a main solute component and an inorganic washing wastewater containing ammonia in the same process, wherein the treatment wastewater and the washing wastewater are separated. A method for treating wastewater, comprising: an ammonia recovery step of recovering ammonia by distilling mixed wastewater formed by mixing; and a concentrating step of concentrating the mixed wastewater from which ammonia has been recovered to obtain concentrated wastewater.
【請求項2】 濃縮工程に続いて、得た濃縮廃水とアン
モニアとを超臨界水反応により主として窒素、炭酸ガス
及び水に分解する超臨界水反応工程を有することを特徴
とする請求項1に記載の廃水の処理法。
2. The method according to claim 1, further comprising a supercritical water reaction step of decomposing the obtained concentrated wastewater and ammonia into nitrogen, carbon dioxide gas and water mainly by a supercritical water reaction, following the concentration step. Wastewater treatment method as described.
【請求項3】 主溶質成分として水より沸点の高い有機
化合物を含む処理廃水、及びアンモニアを含む無機系洗
浄廃水を処理する処理法であって、 処理廃水を濃縮して濃縮処理廃水を得る濃縮工程と、 洗浄廃水にアルカリを添加してpHを7以上に調整し、
次いで蒸留してアンモニアを回収するアンモニア回収工
程と、 得た濃縮処理廃水及びアンモニアを超臨界水反応により
主として窒素、炭酸ガス及び水に分解する超臨界水反応
工程とを有することを特徴とする廃水の処理法。
3. A method for treating treated wastewater containing an organic compound having a higher boiling point than water as a main solute component and inorganic cleaning wastewater containing ammonia, wherein the treated wastewater is concentrated to obtain concentrated treated wastewater. Process, adding alkali to the washing wastewater to adjust the pH to 7 or more,
Wastewater characterized by having an ammonia recovery step of recovering ammonia by distillation, and a supercritical water reaction step of mainly decomposing the obtained concentrated wastewater and ammonia into nitrogen, carbon dioxide and water by a supercritical water reaction Processing method.
【請求項4】 処理廃水が、半導体装置の製造過程でウ
エハを処理した際に生じる、有機化合物として主に(C
3 4 NOHを含む廃水であり、無機系洗浄廃水が、
半導体装置の製造過程でウエハをNH4 OHとH2 2
とを含む洗浄水で洗浄した際に生じる廃水であることを
特徴とする請求項1から3のうちのいずれか1項に記載
の廃水の処理法。
4. The treatment wastewater is mainly composed of (C) as an organic compound generated when a wafer is treated in a semiconductor device manufacturing process.
H 3 ) 4 Wastewater containing NOH, and inorganic cleaning wastewater
NH wafer in the manufacturing process of the semiconductor device 4 OH and H 2 O 2
The wastewater treatment method according to any one of claims 1 to 3, wherein the wastewater is wastewater generated by washing with washing water containing:
【請求項5】 濃縮処理廃水又は濃縮廃水を得る濃縮工
程では、それぞれ処理廃水又はアンモニアを回収した混
合廃水を蒸発法により濃縮し、蒸発した水を回収するこ
とを特徴とする請求項1から4のうちのいずれか1項に
記載の廃水の処理法。
5. The method according to claim 1, wherein in the step of obtaining the concentrated wastewater or the concentrated wastewater, the mixed wastewater in which the treated wastewater or the ammonia is recovered is concentrated by an evaporation method, and the evaporated water is recovered. The method for treating wastewater according to any one of the preceding claims.
JP24113397A 1997-07-14 1997-09-05 Wastewater treatment method Expired - Fee Related JP3736950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24113397A JP3736950B2 (en) 1997-07-14 1997-09-05 Wastewater treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-188036 1997-07-14
JP18803697 1997-07-14
JP24113397A JP3736950B2 (en) 1997-07-14 1997-09-05 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH1177089A true JPH1177089A (en) 1999-03-23
JP3736950B2 JP3736950B2 (en) 2006-01-18

Family

ID=26504704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24113397A Expired - Fee Related JP3736950B2 (en) 1997-07-14 1997-09-05 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3736950B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474191B1 (en) * 2001-02-02 2005-03-08 가부시키가이샤 닛폰 쇼쿠바이 Process For Treating Waste Water and Apparatus Therefor
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
WO2020080008A1 (en) * 2018-10-19 2020-04-23 オルガノ株式会社 System for treating tetraalkylammonium-hydroxide-containing liquid, and method for treating same
CN113474305A (en) * 2019-02-25 2021-10-01 洛桑联邦理工学院(Epfl) Aqueous effluent treatment system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474191B1 (en) * 2001-02-02 2005-03-08 가부시키가이샤 닛폰 쇼쿠바이 Process For Treating Waste Water and Apparatus Therefor
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
WO2020080008A1 (en) * 2018-10-19 2020-04-23 オルガノ株式会社 System for treating tetraalkylammonium-hydroxide-containing liquid, and method for treating same
JPWO2020080008A1 (en) * 2018-10-19 2021-09-09 オルガノ株式会社 Treatment system and treatment method for tetraalkylammonium hydroxide-containing liquid
US11524261B2 (en) 2018-10-19 2022-12-13 Organo Corporation System for treating tetraalkylammonium hydroxide-containing liquid and method for treating same
CN113474305A (en) * 2019-02-25 2021-10-01 洛桑联邦理工学院(Epfl) Aqueous effluent treatment system

Also Published As

Publication number Publication date
JP3736950B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
US5183577A (en) Process for treatment of wastewater containing inorganic ammonium salts
US8771603B2 (en) Method for removal of hydrogen sulfide from geothermal steam and condensate
JPH0773699B2 (en) Method for treating aqueous solution containing hydrogen sulfide, hydrogen cyanide and ammonia
JP5347664B2 (en) Method and apparatus for treating fluorine-containing wastewater
WO2000073221A1 (en) A method of and arrangement for continuous hydrolysis of organic material
US3635664A (en) REGENERATION OF HYDROCHLORIC ACID PICKLING WASTE BY H{11 SO{11 {0 ADDITION, DISTILLATION AND FeSO{11 {0 Precipitation
CN106698561B (en) A kind of urea method preparation ADC foaming agent biruea condensation sewage-treatment plant and its application method
CN110627287A (en) Device and method for treating high-concentration organic wastewater containing ammonium sulfate salt
US5651897A (en) Wet oxidation of high strength liquors with high solids content
CN111020589B (en) Device and method for recycling aluminum etching liquid
JP4333859B2 (en) Method for treating ammonia-containing water
JP3736950B2 (en) Wastewater treatment method
TWI503283B (en) Method and apparatus for treating water containing hydrogen peroxide and ammonia
JP3194123B2 (en) Ultrapure water production and wastewater treatment method for closed system
JPH06190382A (en) Method and device for recovery of heat in chemical decomposition treatment of sewage sludge or waste liquid
JP4282962B2 (en) Wastewater neutralization method
JP3356206B2 (en) Wastewater treatment method
JP2003053328A (en) Waste water treating equipment
JP2952741B2 (en) Pure water production system for fuel cell power plant
JP6718758B2 (en) Nitrogen-containing wastewater treatment apparatus and treatment method
WO2020131116A1 (en) Process to recover ammonium bicarbonate from wastewater
CN103523978A (en) Method or treating ammonium sulfate wastewater in acrylonitrile process
CN113698017B (en) Resource utilization and treatment method of alkynol wastewater
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP2001179074A (en) Treatment method and apparatus of organic substance containing nitrogen and phosphorus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees