JP3356206B2 - Wastewater treatment method - Google Patents

Wastewater treatment method

Info

Publication number
JP3356206B2
JP3356206B2 JP24351898A JP24351898A JP3356206B2 JP 3356206 B2 JP3356206 B2 JP 3356206B2 JP 24351898 A JP24351898 A JP 24351898A JP 24351898 A JP24351898 A JP 24351898A JP 3356206 B2 JP3356206 B2 JP 3356206B2
Authority
JP
Japan
Prior art keywords
supercritical water
wastewater
sewage sludge
treatment tank
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24351898A
Other languages
Japanese (ja)
Other versions
JP2000070896A (en
Inventor
哲司 宮林
明雄 田中
孝章 末松
伸二 麻生
章夫 本地
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP24351898A priority Critical patent/JP3356206B2/en
Publication of JP2000070896A publication Critical patent/JP2000070896A/en
Application granted granted Critical
Publication of JP3356206B2 publication Critical patent/JP3356206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水などの排水処
理方法にかかり、特に沈殿させた汚泥を超臨界水中にお
いて酸化処理する排水処理方法に関する。
TECHNICAL FIELD The present invention relates to a wastewater treatment system for sewage and the like.
In particular, the present invention relates to a wastewater treatment method for oxidizing precipitated sludge in supercritical water.

【0002】[0002]

【従来の技術】近年、下水汚泥などの有機性廃棄物を超
臨界水中で酸化処理する技術の開発が盛んに行われてい
る(例えば、特公平1−38532号公報)。そして、
従来、窒素化合物を含有する有機性廃棄物を超臨界水酸
化処理する場合、圧力を22MPa以上にし、かつ反応
温度を600℃以上に維持することにより行っている。
これは、炭素化合物は水の臨界点(374.2℃)付近
において分解することが可能であるが、アンモニアなど
の窒素化合物は400℃程度の比較的低温の超臨界水中
では分解速度が小さいく、実用的な分解速度を得るため
には600℃以上の高温に保持する必要があることによ
る。図3と図4は、下水汚泥を酸化処理した際の有機炭
素と窒素化合物との分解率を示したものである。
2. Description of the Related Art In recent years, techniques for oxidizing organic waste such as sewage sludge in supercritical water have been actively developed (for example, Japanese Patent Publication No. 38532/1993). And
Conventionally, when supercritical water oxidation treatment of organic waste containing a nitrogen compound is performed, the pressure is set to 22 MPa or more and the reaction temperature is maintained to 600 ° C. or more.
This is because carbon compounds can be decomposed near the critical point of water (374.2 ° C.), but nitrogen compounds such as ammonia have a low decomposition rate in supercritical water at a relatively low temperature of about 400 ° C. In order to obtain a practical decomposition rate, it is necessary to keep the temperature at 600 ° C. or higher. 3 and 4 show the decomposition rates of organic carbon and nitrogen compounds when sewage sludge is oxidized.

【0003】図3は、下水汚泥中に含まれる全有機炭素
量(TOC)の酸化分解実験の結果であって、横軸が℃
で示した反応温度であり、縦軸が%で表したTOCの分
解率である。また、図4は、横軸が反応温度(℃)を示
し、縦軸が下水汚泥中の全窒素化合物量(T−N)の分
解率(%)である。そして、下水汚泥は、酸化剤として
酸素が添加され、22MPa以上の圧力に加圧してあ
る。
FIG. 3 shows the results of an oxidative decomposition experiment of the total organic carbon (TOC) contained in sewage sludge.
The vertical axis represents the TOC decomposition rate expressed in%. In FIG. 4, the horizontal axis indicates the reaction temperature (° C.), and the vertical axis indicates the decomposition rate (%) of the total nitrogen compound amount (TN) in the sewage sludge. The sewage sludge is added with oxygen as an oxidizing agent and is pressurized to a pressure of 22 MPa or more.

【0004】これらの図からわかるようにTOCは、3
00℃程度の湿式酸化においても97.5%程度分解す
ることができるが、T−Nの場合は55%程度しか分解
できない。そして、TOCの場合、400℃の超臨界水
による酸化処理によってほぼ100%分解できる。しか
し、T−Nの場合は、超臨界水による酸化処理をしたと
しても、600℃以上の高温でないと100%分解する
ことができない。
As can be seen from these figures, TOC is 3
Although about 97.5% can be decomposed by wet oxidation at about 00 ° C., only about 55% can be decomposed in the case of TN. In the case of TOC, almost 100% can be decomposed by an oxidation treatment using supercritical water at 400 ° C. However, in the case of TN, even if it is oxidized by supercritical water, it cannot be decomposed 100% unless the temperature is 600 ° C. or higher.

【0005】[0005]

【発明が解決しようとする課題】ところで、超臨界水に
よる酸化処理をする超臨界水酸化処理槽は、インコネル
やハステロイ等の耐熱耐腐食性を有する材料によって形
成してあるが、このような材料は、600℃以上の温度
になると強度が急激に小さくなる。このため、超臨界水
酸化処理によって窒素化合物を酸化分解する場合、60
0℃以上の温度でも充分な強度を有するように処理槽の
肉厚を大きくしなければならず、設備費が増大したり、
また汚泥などの反応物を600℃以上という高温に維持
するため、外部からのエネルギー投入量が多くなるなど
の課題がある。
The supercritical water bath for oxidizing with supercritical water is made of a material having heat and corrosion resistance, such as Inconel or Hastelloy. When the temperature reaches 600 ° C. or higher, the strength rapidly decreases. Therefore, when oxidatively decomposing nitrogen compounds by supercritical water oxidation,
It is necessary to increase the thickness of the processing tank so that it has sufficient strength even at a temperature of 0 ° C. or more, which increases equipment costs,
In addition, there is a problem that the amount of energy input from the outside is increased in order to maintain a reaction product such as sludge at a high temperature of 600 ° C. or higher.

【0006】本発明は、前記従来技術の欠点を解消する
ためになされたもので、窒素化合物を含む有機性廃棄物
を超臨界水酸化処理のための設備費、維持費を削減する
ことを目的としている。また、窒素化合物を含む排水の
処理を安価に行えるようにすることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art, and has as its object to reduce facility costs and maintenance costs for supercritical water oxidation of organic waste containing nitrogen compounds. And It is another object of the present invention to enable inexpensive treatment of wastewater containing nitrogen compounds.

【0007】[0007]

【課題を解決するための手段】本発明に係る排水処理方
法は、原水を生物処理槽において生物処理したのちに汚
泥を沈殿させ、前記汚泥を、反応温度を400℃程度の
超臨界水中において酸化処理し、その後、反応生成物を
冷却して窒素化合物を含む廃水を反応生成物から取り出
して前記生物処理槽にそのまま供給する構成となってい
る。
SUMMARY OF THE INVENTION A wastewater treatment method according to the present invention
The law requires that raw water be treated in a biological treatment tank
The sludge is settled, and the sludge is reacted at a reaction temperature of about 400 ° C.
Oxidation treatment in supercritical water, then the reaction product
Cool and remove wastewater containing nitrogen compounds from reaction products
And supply it to the biological treatment tank as it is.
You.

【0008】前記超臨界水による酸化処理は、沈殿池か
ら抜き出した下水汚泥に酸素を添加し、前記下水汚泥と
酸素との混合流体を25MPa程度に加圧したのち、2
00℃程度に加熱して超臨界水酸化処理槽に導入して行
なう。
[0008] The oxidation treatment with the supercritical water is carried out in a sedimentation pond.
Oxygen is added to the sewage sludge extracted from the sewage sludge,
After pressurizing the mixed fluid with oxygen to about 25 MPa,
Heat to about 00 ° C and introduce into supercritical water oxidation treatment tank
Now.

【0009】[0009]

【作用】上記のごとく構成した本発明は、窒素化合物を
超臨界水中で酸化処理せず、超臨界水酸化処理後の反応
生成物からアンモニアなどの窒素化合物を含んだ廃水を
取り出し、この廃水を生物処理して窒素化合物を分解す
るようにしているため、下水汚泥などの有機性廃棄物を
超臨界水による酸化処理をする場合、比較的低温の超臨
界水によって分解可能な炭素化合物だけを分解すればよ
く、また反応物である有機性廃棄物を600℃以上に保
持する必要がないため、超臨界水酸化処理槽の設備費用
を低減することができるとともに、反応物に与えるエネ
ルギーが少なくなって維持費を低減することができる。
The present invention constructed as described above does not oxidize nitrogen compounds in supercritical water, but extracts wastewater containing nitrogen compounds such as ammonia from the reaction product after the supercritical water oxidation treatment, and removes the wastewater. Since biological treatment is used to decompose nitrogen compounds, when organic waste such as sewage sludge is oxidized with supercritical water, only carbon compounds that can be decomposed by relatively low-temperature supercritical water are decomposed. It is not necessary to maintain the organic waste as a reactant at 600 ° C. or higher, so that the equipment cost of the supercritical water oxidation treatment tank can be reduced, and the energy given to the reactant is reduced. Maintenance costs can be reduced.

【0010】そして、廃水中にアンモニアなどの揮発性
窒素化合物が多い場合、揮発性窒素化合物を処理水から
抽出したのちに廃水を生物処理して窒素化合物の分解を
行うようにすると、廃水の生物処理を行う生物処理槽に
過大な負荷を与えることがなく、有機性廃棄物の分解処
理を円滑に行うことができる。また、超臨界水による酸
化処理の反応温度は、374℃より高く、600℃未満
である。水の臨界温度は、374.2℃であるから、反
応温度が374℃以下であると臨界水を得ることができ
ない。そして、反応温度は、600℃を超えると超臨界
水酸化反応槽を形成している材料の強度が低下するとこ
ろから、600℃を超えないようにする。
[0010] If the wastewater contains a large amount of volatile nitrogen compounds such as ammonia, the wastewater is subjected to biological treatment after extracting the volatile nitrogen compounds from the treated water to decompose the nitrogen compounds. The organic waste can be smoothly decomposed without imposing an excessive load on the biological treatment tank that performs the treatment. The reaction temperature of the oxidation treatment with supercritical water is higher than 374 ° C and lower than 600 ° C. Since the critical temperature of water is 374.2 ° C., critical water cannot be obtained if the reaction temperature is 374 ° C. or lower. When the reaction temperature exceeds 600 ° C., the strength of the material forming the supercritical water oxidation reaction tank is reduced.

【0011】[0011]

【発明の実施の形態】本発明に係る排水処理方法の好ま
しい実施の形態を添付図面に従って詳細に説明する。図
1は、本発明の実施の形態に係る排水処理方法の説明図
である。図1において、原水である下水10は、生物処
理槽12に投入され、活性汚泥法などの微生物による浄
化処理が行われ、また汚泥フロックが形成される。その
後、下水10は、沈殿池14に流入し、処理水16と下
水汚泥18とに分離される。そして、処理水16は、消
毒などの処理をしたのちに河川などに放水される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a wastewater treatment method according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an explanatory diagram of a wastewater treatment method according to an embodiment of the present invention. In FIG. 1, sewage 10 which is raw water is put into a biological treatment tank 12, where purification treatment by microorganisms such as an activated sludge method is performed, and sludge floc is formed. Thereafter, the sewage 10 flows into the sedimentation basin 14 and is separated into the treated water 16 and the sewage sludge 18. The treated water 16 is discharged to a river or the like after being subjected to a treatment such as disinfection.

【0012】一方、沈殿池14から抜き出された有機性
廃棄物である下水汚泥18は、図示しない酸素供給装置
によって酸素20が添加される。そして、下水汚泥18
と酸素20との混合流体は、25MPa程度の圧力に加
圧されたのち、ヒータ22によって200℃程度まで加
熱され、超臨界水酸化処理槽24に導入される。超臨界
水酸化処理槽24に供給された混合流体は、酸化処理槽
24内において発熱を伴う酸化反応が進行し、下水汚泥
18に含まれていた水が超臨界水となる。超臨界水酸化
処理槽24内は、温度が400℃程度、圧力が25MP
a程度に維持されている。そして、下水汚泥中の有機物
は酸素と反応し、炭素が二酸化炭素になる。また、下水
汚泥18中の窒素は、アンモニアに変換される。超臨界
水酸化処理槽24において超臨界水酸化処理された汚泥
(反応生成物)は、冷却器26において冷却されたの
ち、気固液分離器28に送られ、アンモニア含有廃水3
0と排ガス32と灰34とに分離される。
On the other hand, sewage sludge 18 which is organic waste extracted from the sedimentation basin 14 is added with oxygen 20 by an oxygen supply device (not shown). And sewage sludge 18
The mixed fluid of oxygen and oxygen 20 is pressurized to a pressure of about 25 MPa, heated to about 200 ° C. by a heater 22, and introduced into a supercritical water oxidation treatment tank 24. The mixed fluid supplied to the supercritical water oxidation treatment tank 24 undergoes an oxidation reaction with heat generation in the oxidation treatment tank 24, and the water contained in the sewage sludge 18 becomes supercritical water. The temperature inside the supercritical water oxidation treatment tank 24 is about 400 ° C. and the pressure is 25MPa.
a is maintained. Then, organic matter in the sewage sludge reacts with oxygen, and carbon becomes carbon dioxide. Further, nitrogen in the sewage sludge 18 is converted into ammonia. The sludge (reaction product) subjected to the supercritical water oxidation treatment in the supercritical water oxidation treatment tank 24 is cooled in the cooler 26, and then sent to the gas-solid liquid separator 28, where the ammonia-containing wastewater 3
0, exhaust gas 32, and ash 34.

【0013】ところで、下水汚泥18は、乾燥重量比で
約8%の窒素を含んでいる。このため、下水汚泥を40
0℃で超臨界水酸化処理した場合、アンモニア含有廃水
30の窒素濃度は、図4より約4800mg−N/Lと
なる。そして、アンモニア含有廃水30は、生物処理槽
12に返送され、再び生物処理されてアンモニアが分解
される。
The sewage sludge 18 contains about 8% nitrogen by dry weight. Therefore, sewage sludge is reduced to 40
When the supercritical water oxidation treatment is performed at 0 ° C., the nitrogen concentration of the ammonia-containing wastewater 30 is about 4800 mg-N / L from FIG. Then, the ammonia-containing wastewater 30 is returned to the biological treatment tank 12, and is again subjected to biological treatment to decompose ammonia.

【0014】このように、本発明の実施の形態において
は、超臨界水酸化処理槽24を400℃程度の比較的低
い温度に保持して炭素化合物のみを酸化分解し、アンモ
ニアの分解を生物処理槽12において行うようにしてい
るため、超臨界水酸化処理槽24の設備費を低減するこ
とができ、また外部から反応物(下水汚泥と酸素との混
合流体)に与えるエネルギー量を少なくすることがで
き、維持費の低減を図ることができる。
As described above, in the embodiment of the present invention, only the carbon compound is oxidatively decomposed while maintaining the supercritical water oxidation treatment tank 24 at a relatively low temperature of about 400 ° C., and the decomposition of ammonia is carried out by biological treatment. Since it is performed in the tank 12, the equipment cost of the supercritical water oxidation treatment tank 24 can be reduced, and the amount of energy given to the reactant (mixed fluid of sewage sludge and oxygen) from outside can be reduced. And maintenance costs can be reduced.

【0015】そして、前記実施の形態においては、ヒー
タ22によって下水汚泥18と酸素20との混合流体を
加熱する場合について説明したが、冷却器26において
反応生成物と熱交換させた処理液を用いて混合流体を加
熱する場合、熱交換器の容量を小さくすることができる
とともに、下水汚泥18の濃度を下げることが可能とな
って、下水汚泥18の圧送が容易となる。また、前記実
施の形態においては、有機性廃棄物が下水汚泥18であ
る場合について説明したが、有機性廃棄物は飲食店や食
品加工工場などから排出されるいわゆる生ゴミ等であっ
てもよい。
In the above-described embodiment, the case where the mixed fluid of the sewage sludge 18 and the oxygen 20 is heated by the heater 22 has been described, but the processing liquid which has been subjected to heat exchange with the reaction product in the cooler 26 is used. When the mixed fluid is heated by heating, the capacity of the heat exchanger can be reduced, and the concentration of the sewage sludge 18 can be reduced, so that the sewage sludge 18 can be easily pumped. Further, in the above embodiment, the case where the organic waste is the sewage sludge 18 has been described, but the organic waste may be so-called garbage discharged from a restaurant or a food processing factory. .

【0016】図2は、他の実施の形態を示したものであ
る。この実施の形態においては、気固液分離器28にお
いて分離したアンモニア含有廃水30をストリッピング
槽40に流入させ、アンモニア含有廃水30中のアンモ
ニアを一部気化させて触媒処理槽42に送り、アンモニ
アを触媒によって分解するようになっている。そして、
アンモニアを一部気化させたアンモニア含有廃水30
は、ストリッピング槽40から前記実施の形態と同様に
生物処理槽12に戻すようになっている。他の構成は、
前記の実施形態と同様である。このように構成した本実
施の形態においては、アンモニア含有廃水30中のアン
モニアの濃度が高い場合であっても、生物処理槽12に
過大な負荷を与えることがない。
FIG. 2 shows another embodiment. In this embodiment, the ammonia-containing wastewater 30 separated in the gas-solid liquid separator 28 flows into the stripping tank 40, and the ammonia in the ammonia-containing wastewater 30 is partially vaporized and sent to the catalyst treatment tank 42. Is decomposed by a catalyst. And
Ammonia-containing wastewater 30 obtained by partially vaporizing ammonia
Is returned from the stripping tank 40 to the biological treatment tank 12 in the same manner as in the above embodiment. Other configurations are
This is the same as the above embodiment. In the present embodiment configured as described above, even when the concentration of ammonia in the ammonia-containing wastewater 30 is high, an excessive load is not applied to the biological treatment tank 12.

【0017】[0017]

【発明の効果】以上に説明したように、本発明によれ
ば、窒素化合物を超臨界水中で酸化処理せず、超臨界水
酸化処理後の反応生成物からアンモニアなどの窒素化合
物を含んだ廃水を取り出し、この廃水を生物処理して窒
素化合物を分解するようにしているため、下水汚泥など
の有機性廃棄物を超臨界水による酸化処理をする場合、
比較的低温の超臨界水によって分解可能な炭素化合物だ
けを分解すればよく、また反応物である有機性廃棄物を
600℃以上に保持する必要がないため、超臨界水酸化
処理槽の設備費用を低減することができるとともに、反
応物に与えるエネルギーが少なくなって維持費を低減す
ることができる。
As described above, according to the present invention, the nitrogen compound is not oxidized in the supercritical water, and the wastewater containing the nitrogen compound such as ammonia is obtained from the reaction product after the supercritical water oxidation treatment. The wastewater is biologically treated to decompose nitrogen compounds, so when oxidizing organic waste such as sewage sludge with supercritical water,
It is only necessary to decompose carbon compounds that can be decomposed by relatively low-temperature supercritical water, and there is no need to maintain the organic waste, which is a reactant, at 600 ° C. or higher. Can be reduced, and the energy given to the reactants can be reduced, and the maintenance cost can be reduced.

【0018】そして、廃水中にアンモニアなどの揮発性
窒素化合物が多い場合、揮発性窒素化合物を処理水から
抽出したのちに廃水を生物処理して窒素化合物の分解を
行うようにすると、廃水の生物処理を行う生物処理槽に
過大な負荷を与えることがなく、有機性廃棄物の分解処
理を円滑に行うことができる。また、超臨界水による酸
化処理の反応温度を374℃より高く、600℃未満と
することにより、超臨界水酸化処理を行えるとともに、
超臨界水酸化処理を行わせる超臨界水酸化処理槽の設備
費用を低減することができる。
If the wastewater contains a large amount of volatile nitrogen compounds such as ammonia, the wastewater is biologically treated after the volatile nitrogen compounds are extracted from the treated water to decompose the nitrogen compounds. The organic waste can be smoothly decomposed without imposing an excessive load on the biological treatment tank that performs the treatment. In addition, by making the reaction temperature of the oxidation treatment with supercritical water higher than 374 ° C. and lower than 600 ° C., the supercritical water oxidation treatment can be performed,
The facility cost of the supercritical water oxidation treatment tank for performing the supercritical water oxidation treatment can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る排水処理方法の説明
図である。
FIG. 1 is an explanatory diagram of a wastewater treatment method according to an embodiment of the present invention.

【図2】他の実施形態の説明図である。FIG. 2 is an explanatory diagram of another embodiment.

【図3】下水汚泥を超臨界水酸化処理したときの処理温
度と全有機炭素量の分解率との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the treatment temperature and the decomposition rate of total organic carbon when sewage sludge is subjected to supercritical water oxidation treatment.

【図4】下水汚泥を超臨界水酸化処理したときの処理温
度と全窒素化合物の分解率との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the treatment temperature and the decomposition rate of total nitrogen compounds when sewage sludge is subjected to supercritical water oxidation treatment.

【符号の説明】[Explanation of symbols]

10 原水(下水) 12 生物処理槽 14 沈殿池 18 有機性廃棄物(下水汚泥) 20 酸素 22 ヒータ 24 超臨界水酸化処理槽 26 冷却器 28 気固液分離器 30 廃水(アンモニア含有廃水) 40 ストリッピング槽 42 触媒処理槽 DESCRIPTION OF SYMBOLS 10 Raw water (sewage) 12 Biological treatment tank 14 Sedimentation basin 18 Organic waste (sewage sludge) 20 Oxygen 22 Heater 24 Supercritical oxidation treatment tank 26 Cooler 28 Gas-solid liquid separator 30 Wastewater (ammonia-containing wastewater) 40 Ripping tank 42 Catalyst treatment tank

フロントページの続き (72)発明者 麻生 伸二 東京都千代田区内神田一丁目1番14号 日立プラント建設株式会社内 (72)発明者 本地 章夫 茨城県ひたちなか市堀口832番地の2 株式会社日立製作所 日立研究所内 (56)参考文献 特開 平8−197039(JP,A) 特開 平9−276900(JP,A) 特開 平11−226583(JP,A) 特開 平10−52698(JP,A) 特開 平9−294969(JP,A) 特表 平9−502390(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 11/00 - 11/20 B09B 3/00 - 5/00 B01J 3/00 B01J 19/00 Continued on the front page (72) Inventor Shinji Aso 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Within Hitachi Plant Construction Co., Ltd. (72) Inventor Akio Honchi 832-2 Horiguchi, Hitachinaka City, Ibaraki Prefecture Hitachi, Ltd. Hitachi, Ltd. In the laboratory (56) References JP-A-8-197039 (JP, A) JP-A-9-276900 (JP, A) JP-A-11-226583 (JP, A) JP-A-10-52698 (JP, A) JP-A-9-294969 (JP, A) Table 9-502390 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 3/12 C02F 11/00-11 / 20 B09B 3/00-5/00 B01J 3/00 B01J 19/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原水を生物処理槽において生物処理した
のちに汚泥を沈殿させ、前記汚泥を、反応温度を400
℃程度の超臨界水中において酸化処理し、その後、反応
生成物を冷却して窒素化合物を含む廃水を反応生成物か
ら取り出して前記生物処理槽にそのまま供給することを
特徴とする排水処理方法。
1. A raw sludge precipitated After biological treatment in the biological treatment tank, the sludge, the reaction temperature 400
A wastewater treatment method comprising oxidizing in supercritical water at about ° C , cooling the reaction product, removing wastewater containing nitrogen compounds from the reaction product, and supplying the wastewater to the biological treatment tank as it is.
【請求項2】 前記超臨界水による酸化処理は、沈殿池
から抜き出した下水汚泥に酸素を添加し、前記下水汚泥
と酸素との混合流体を25MPa程度に加圧したのち、
200℃程度に加熱して超臨界水酸化処理槽に導入して
行なうことを特徴とする請求項1に記載の排水処理方
法。
2. The oxidation treatment with supercritical water is performed in a sedimentation basin.
Oxygen is added to the sewage sludge extracted from
After pressurizing the mixed fluid of oxygen and oxygen to about 25 MPa,
The wastewater treatment method according to claim 1 , wherein the wastewater treatment method is performed by heating the mixture to about 200C and introducing it into a supercritical water oxidation treatment tank .
JP24351898A 1998-08-28 1998-08-28 Wastewater treatment method Expired - Fee Related JP3356206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24351898A JP3356206B2 (en) 1998-08-28 1998-08-28 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24351898A JP3356206B2 (en) 1998-08-28 1998-08-28 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2000070896A JP2000070896A (en) 2000-03-07
JP3356206B2 true JP3356206B2 (en) 2002-12-16

Family

ID=17105108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24351898A Expired - Fee Related JP3356206B2 (en) 1998-08-28 1998-08-28 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3356206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880122A (en) * 2014-03-17 2014-06-25 山东大学 Method for preparing anti-hardening granular burning-free iron-carbon microelectrolysis filler

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671520B2 (en) * 2001-03-23 2011-04-20 三菱重工環境・化学エンジニアリング株式会社 Organic solids processing system
CN1330589C (en) * 2003-12-17 2007-08-08 财团法人工业技术研究院 Supercritical water oxidation system
JP4846307B2 (en) * 2005-09-09 2011-12-28 公立大学法人大阪府立大学 Continuous or semi-continuous processing apparatus and continuous or semi-continuous processing method
JP4951760B2 (en) * 2007-02-27 2012-06-13 国立大学法人静岡大学 Hydrothermal oxidative decomposition treatment apparatus and fertilizer manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880122A (en) * 2014-03-17 2014-06-25 山东大学 Method for preparing anti-hardening granular burning-free iron-carbon microelectrolysis filler
CN103880122B (en) * 2014-03-17 2015-08-26 山东大学 A kind of method preparing the anti-granular unburned iron-carbon micro-electrolysis filler that hardens

Also Published As

Publication number Publication date
JP2000070896A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP4489589B2 (en) Method and equipment for treating sludge from biological water treatment equipment
US6913700B2 (en) Method of and arrangement for continuous hydrolysis of organic material
JP3531481B2 (en) Wastewater treatment method and apparatus
JPH10500611A (en) In particular, a method and apparatus for treating wastewater containing organic matter by wet oxidation with internal recirculation of solid residue, and a purification facility therefor
JP3356206B2 (en) Wastewater treatment method
JP5020490B2 (en) Organic sludge treatment method and organic sludge treatment equipment
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP4834942B2 (en) Organic waste processing method and processing apparatus
JP2000117273A (en) Waste water treatment
JP3482326B2 (en) Supercritical water oxidation of organic sludge
JP2001179074A (en) Treatment method and apparatus of organic substance containing nitrogen and phosphorus
JP2004041974A (en) Method and equipment for treating organic waste liquid
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2002355698A (en) Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor
JP2002177983A (en) Waste water treatment equipment
JP3801803B2 (en) Descale removal method for supercritical water oxidation equipment
KR100465521B1 (en) Method of treating wastewater using catalytic wet oxidation process
JP2003340485A (en) Method for treating organic waste water and apparatus therefor
JP3463138B2 (en) Method for treating cyanide-containing wastewater containing metal cyanide complex ions
KR20230035807A (en) Livestock wastewater treatment
JPH08290176A (en) Treatment of cyanide-containing waste water
Debellefontaine et al. Elimination of phenolic aqueous wastes using new chemical oxidation processes.
KR100378569B1 (en) auto-heated and mesophilic denitrification system for wastewater sludge
JPH1190494A (en) Method for supercritical hydroxylation of organic sludge
JP4390357B2 (en) Method for treating ammonia-containing water

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees