JP2000070896A - Organic waste treatment and waste water treatment - Google Patents
Organic waste treatment and waste water treatmentInfo
- Publication number
- JP2000070896A JP2000070896A JP10243518A JP24351898A JP2000070896A JP 2000070896 A JP2000070896 A JP 2000070896A JP 10243518 A JP10243518 A JP 10243518A JP 24351898 A JP24351898 A JP 24351898A JP 2000070896 A JP2000070896 A JP 2000070896A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- sewage sludge
- supercritical water
- supercritical
- wastewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Processing Of Solid Wastes (AREA)
- Activated Sludge Processes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機性廃棄物を超
臨界水中において酸化処理する有機性廃棄物の処理方法
に係り、特に窒素化合物を含んだ有機性廃棄物の処理方
法および排水処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic waste by oxidizing organic waste in supercritical water, and more particularly to a method for treating organic waste containing nitrogen compounds and a method for treating wastewater. About.
【0002】[0002]
【従来の技術】近年、下水汚泥などの有機性廃棄物を超
臨界水中で酸化処理する技術の開発が盛んに行われてい
る(例えば、特公平1−38532号公報)。そして、
従来、窒素化合物を含有する有機性廃棄物を超臨界水酸
化処理する場合、圧力を22MPa以上にし、かつ反応
温度を600℃以上に維持することにより行っている。
これは、炭素化合物は水の臨界点(374.2℃)付近
において分解することが可能であるが、アンモニアなど
の窒素化合物は400℃程度の比較的低温の超臨界水中
では分解速度が小さいく、実用的な分解速度を得るため
には600℃以上の高温に保持する必要があることによ
る。図3と図4は、下水汚泥を酸化処理した際の有機炭
素と窒素化合物との分解率を示したものである。2. Description of the Related Art In recent years, techniques for oxidizing organic waste such as sewage sludge in supercritical water have been actively developed (for example, Japanese Patent Publication No. 38532/1993). And
Conventionally, when supercritical water oxidation treatment of organic waste containing a nitrogen compound is performed, the pressure is set to 22 MPa or more and the reaction temperature is maintained to 600 ° C. or more.
This is because carbon compounds can be decomposed near the critical point of water (374.2 ° C.), but nitrogen compounds such as ammonia have a low decomposition rate in supercritical water at a relatively low temperature of about 400 ° C. In order to obtain a practical decomposition rate, it is necessary to keep the temperature at 600 ° C. or higher. 3 and 4 show the decomposition rates of organic carbon and nitrogen compounds when sewage sludge is oxidized.
【0003】図3は、下水汚泥中に含まれる全有機炭素
量(TOC)の酸化分解実験の結果であって、横軸が℃
で示した反応温度であり、縦軸が%で表したTOCの分
解率である。また、図4は、横軸が反応温度(℃)を示
し、縦軸が下水汚泥中の全窒素化合物量(T−N)の分
解率(%)である。そして、下水汚泥は、酸化剤として
酸素が添加され、22MPa以上の圧力に加圧してあ
る。FIG. 3 shows the results of an oxidative decomposition experiment of the total organic carbon (TOC) contained in sewage sludge.
The vertical axis represents the TOC decomposition rate expressed in%. In FIG. 4, the horizontal axis indicates the reaction temperature (° C.), and the vertical axis indicates the decomposition rate (%) of the total nitrogen compound amount (TN) in the sewage sludge. The sewage sludge is added with oxygen as an oxidizing agent and is pressurized to a pressure of 22 MPa or more.
【0004】これらの図からわかるようにTOCは、3
00℃程度の湿式酸化においても97.5%程度分解す
ることができるが、T−Nの場合は55%程度しか分解
できない。そして、TOCの場合、400℃の超臨界水
による酸化処理によってほぼ100%分解できる。しか
し、T−Nの場合は、超臨界水による酸化処理をしたと
しても、600℃以上の高温でないと100%分解する
ことができない。As can be seen from these figures, TOC is 3
Although about 97.5% can be decomposed by wet oxidation at about 00 ° C., only about 55% can be decomposed in the case of TN. In the case of TOC, almost 100% can be decomposed by an oxidation treatment using supercritical water at 400 ° C. However, in the case of TN, even if it is oxidized by supercritical water, it cannot be decomposed 100% unless the temperature is 600 ° C. or higher.
【0005】[0005]
【発明が解決しようとする課題】ところで、超臨界水に
よる酸化処理をする超臨界水酸化処理槽は、インコネル
やハステロイ等の耐熱耐腐食性を有する材料によって形
成してあるが、このような材料は、600℃以上の温度
になると強度が急激に小さくなる。このため、超臨界水
酸化処理によって窒素化合物を酸化分解する場合、60
0℃以上の温度でも充分な強度を有するように処理槽の
肉厚を大きくしなければならず、設備費が増大したり、
また汚泥などの反応物を600℃以上という高温に維持
するため、外部からのエネルギー投入量が多くなるなど
の課題がある。The supercritical water bath for oxidizing with supercritical water is made of a material having heat and corrosion resistance, such as Inconel or Hastelloy. When the temperature reaches 600 ° C. or higher, the strength rapidly decreases. Therefore, when oxidatively decomposing nitrogen compounds by supercritical water oxidation,
It is necessary to increase the thickness of the processing tank so that it has sufficient strength even at a temperature of 0 ° C. or more, which increases equipment costs,
In addition, there is a problem that the amount of energy input from the outside is increased in order to maintain a reaction product such as sludge at a high temperature of 600 ° C. or higher.
【0006】本発明は、前記従来技術の欠点を解消する
ためになされたもので、窒素化合物を含む有機性廃棄物
を超臨界水酸化処理のための設備費、維持費を削減する
ことを目的としている。また、窒素化合物を含む排水の
処理を安価に行えるようにすることを目的としている。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art, and has as its object to reduce facility costs and maintenance costs for supercritical water oxidation of organic waste containing nitrogen compounds. And It is another object of the present invention to enable inexpensive treatment of wastewater containing nitrogen compounds.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る有機性廃棄物の処理方法は、有機性
廃棄物を超臨界水中において酸化処理したのち、反応生
成物を冷却して窒素化合物を含む廃水を前記反応生成物
から取り出して生物処理をし、前記窒素化合物を分解す
る構成にしてある。廃水の生物処理は、アンモニアなど
の揮発性窒素化合物を多く含んでいる場合、揮発性窒素
化合物を抽出したのちに行うようにする。そして、揮発
性窒素化合物は、触媒を用いて分解する。さらに、超臨
界水による酸化処理は、反応温度を374℃より高く、
600℃未満に保持して行う。In order to achieve the above object, a method for treating organic waste according to the present invention comprises oxidizing organic waste in supercritical water and then cooling the reaction product. Then, waste water containing a nitrogen compound is taken out of the reaction product and subjected to biological treatment to decompose the nitrogen compound. If the wastewater contains a large amount of volatile nitrogen compounds such as ammonia, the biological treatment of the wastewater is performed after the volatile nitrogen compounds are extracted. And a volatile nitrogen compound decomposes using a catalyst. Furthermore, the oxidation treatment with supercritical water raises the reaction temperature to above 374 ° C.
This is performed while maintaining the temperature below 600 ° C.
【0008】また、本発明に係る排水処理方法は、原水
を生物処理槽において生物処理したのちに汚泥を沈殿さ
せ、前記汚泥を超臨界水中において酸化処理し、その
後、反応生成物を冷却して窒素化合物を含む廃水を反応
生成物から取り出して前記生物処理槽に供給する構成と
なっている。廃水は揮発性窒素化合物が抽出されたのち
に生物処理槽に供給するようにし、抽出した揮発性窒素
化合物は触媒によって分解する。この場合においても、
超臨界水による酸化処理は、反応温度を374℃より高
く、600℃未満に保持して行うようにする。Further, in the wastewater treatment method according to the present invention, sludge is precipitated after subjecting raw water to biological treatment in a biological treatment tank, the sludge is oxidized in supercritical water, and then the reaction product is cooled. Waste water containing nitrogen compounds is taken out of the reaction product and supplied to the biological treatment tank. The wastewater is supplied to the biological treatment tank after the volatile nitrogen compounds are extracted, and the extracted volatile nitrogen compounds are decomposed by the catalyst. Even in this case,
The oxidation treatment with supercritical water is performed while maintaining the reaction temperature higher than 374 ° C and lower than 600 ° C.
【0009】[0009]
【作用】上記のごとく構成した本発明は、窒素化合物を
超臨界水中で酸化処理せず、超臨界水酸化処理後の反応
生成物からアンモニアなどの窒素化合物を含んだ廃水を
取り出し、この廃水を生物処理して窒素化合物を分解す
るようにしているため、下水汚泥などの有機性廃棄物を
超臨界水による酸化処理をする場合、比較的低温の超臨
界水によって分解可能な炭素化合物だけを分解すればよ
く、また反応物である有機性廃棄物を600℃以上に保
持する必要がないため、超臨界水酸化処理槽の設備費用
を低減することができるとともに、反応物に与えるエネ
ルギーが少なくなって維持費を低減することができる。The present invention constructed as described above does not oxidize nitrogen compounds in supercritical water, but extracts wastewater containing nitrogen compounds such as ammonia from the reaction product after the supercritical water oxidation treatment, and removes the wastewater. Since biological treatment is used to decompose nitrogen compounds, when organic waste such as sewage sludge is oxidized with supercritical water, only carbon compounds that can be decomposed by relatively low-temperature supercritical water are decomposed. It is not necessary to maintain the organic waste as a reactant at 600 ° C. or higher, so that the equipment cost of the supercritical water oxidation treatment tank can be reduced, and the energy given to the reactant is reduced. Maintenance costs can be reduced.
【0010】そして、廃水中にアンモニアなどの揮発性
窒素化合物が多い場合、揮発性窒素化合物を処理水から
抽出したのちに廃水を生物処理して窒素化合物の分解を
行うようにすると、廃水の生物処理を行う生物処理槽に
過大な負荷を与えることがなく、有機性廃棄物の分解処
理を円滑に行うことができる。また、超臨界水による酸
化処理の反応温度は、374℃より高く、600℃未満
である。水の臨界温度は、374.2℃であるから、反
応温度が374℃以下であると臨界水を得ることができ
ない。そして、反応温度は、600℃を超えると超臨界
水酸化反応槽を形成している材料の強度が低下するとこ
ろから、600℃を超えないようにする。[0010] If the wastewater contains a large amount of volatile nitrogen compounds such as ammonia, the wastewater is subjected to biological treatment after extracting the volatile nitrogen compounds from the treated water to decompose the nitrogen compounds. The organic waste can be smoothly decomposed without imposing an excessive load on the biological treatment tank that performs the treatment. The reaction temperature of the oxidation treatment with supercritical water is higher than 374 ° C and lower than 600 ° C. Since the critical temperature of water is 374.2 ° C., critical water cannot be obtained if the reaction temperature is 374 ° C. or lower. When the reaction temperature exceeds 600 ° C., the strength of the material forming the supercritical water oxidation reaction tank is reduced.
【0011】[0011]
【発明の実施の形態】本発明に係る有機性廃棄物の処理
方法および排水処理方法の好ましい実施の形態を添付図
面に従って詳細に説明する。図1は、本発明の実施の形
態に係る排水処理方法の説明図である。図1において、
原水である下水10は、生物処理槽12に投入され、活
性汚泥法などの微生物による浄化処理が行われ、また汚
泥フロックが形成される。その後、下水10は、沈殿池
14に流入し、処理水16と下水汚泥18とに分離され
る。そして、処理水16は、消毒などの処理をしたのち
に河川などに放水される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a method for treating organic waste and a method for treating wastewater according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an explanatory diagram of a wastewater treatment method according to an embodiment of the present invention. In FIG.
The sewage 10, which is raw water, is put into the biological treatment tank 12, where purification treatment by microorganisms such as an activated sludge method is performed, and sludge flocs are formed. Thereafter, the sewage 10 flows into the sedimentation basin 14 and is separated into the treated water 16 and the sewage sludge 18. The treated water 16 is discharged to a river or the like after being subjected to a treatment such as disinfection.
【0012】一方、沈殿池14から抜き出された有機性
廃棄物である下水汚泥18は、図示しない酸素供給装置
によって酸素20が添加される。そして、下水汚泥18
と酸素20との混合流体は、25MPa程度の圧力に加
圧されたのち、ヒータ22によって200℃程度まで加
熱され、超臨界水酸化処理槽24に導入される。超臨界
水酸化処理槽24に供給された混合流体は、酸化処理槽
24内において発熱を伴う酸化反応が進行し、下水汚泥
18に含まれていた水が超臨界水となる。超臨界水酸化
処理槽24内は、温度が400℃程度、圧力が25MP
a程度に維持されている。そして、下水汚泥中の有機物
は酸素と反応し、炭素が二酸化炭素になる。また、下水
汚泥18中の窒素は、アンモニアに変換される。超臨界
水酸化処理槽24において超臨界水酸化処理された汚泥
(反応生成物)は、冷却器26において冷却されたの
ち、気固液分離器28に送られ、アンモニア含有廃水3
0と排ガス32と灰34とに分離される。On the other hand, sewage sludge 18 which is organic waste extracted from the sedimentation basin 14 is added with oxygen 20 by an oxygen supply device (not shown). And sewage sludge 18
The mixed fluid of oxygen and oxygen 20 is pressurized to a pressure of about 25 MPa, heated to about 200 ° C. by a heater 22, and introduced into a supercritical water oxidation treatment tank 24. The mixed fluid supplied to the supercritical water oxidation treatment tank 24 undergoes an oxidation reaction with heat generation in the oxidation treatment tank 24, and the water contained in the sewage sludge 18 becomes supercritical water. The temperature inside the supercritical water oxidation treatment tank 24 is about 400 ° C. and the pressure is 25MPa.
a is maintained. Then, the organic matter in the sewage sludge reacts with oxygen, and carbon becomes carbon dioxide. Further, nitrogen in the sewage sludge 18 is converted into ammonia. The sludge (reaction product) subjected to the supercritical water oxidation treatment in the supercritical water oxidation treatment tank 24 is cooled in the cooler 26, and then sent to the gas-solid liquid separator 28, where the ammonia-containing wastewater 3
0, exhaust gas 32, and ash 34.
【0013】ところで、下水汚泥18は、乾燥重量比で
約8%の窒素を含んでいる。このため、下水汚泥を40
0℃で超臨界水酸化処理した場合、アンモニア含有廃水
30の窒素濃度は、図4より約4800mg−N/Lと
なる。そして、アンモニア含有廃水30は、生物処理槽
12に返送され、再び生物処理されてアンモニアが分解
される。The sewage sludge 18 contains about 8% nitrogen by dry weight. Therefore, sewage sludge is reduced to 40
When the supercritical water oxidation treatment is performed at 0 ° C., the nitrogen concentration of the ammonia-containing wastewater 30 is about 4800 mg-N / L from FIG. Then, the ammonia-containing wastewater 30 is returned to the biological treatment tank 12, and is again biologically treated to decompose ammonia.
【0014】このように、本発明の実施の形態において
は、超臨界水酸化処理槽24を400℃程度の比較的低
い温度に保持して炭素化合物のみを酸化分解し、アンモ
ニアの分解を生物処理槽12において行うようにしてい
るため、超臨界水酸化処理槽24の設備費を低減するこ
とができ、また外部から反応物(下水汚泥と酸素との混
合流体)に与えるエネルギー量を少なくすることがで
き、維持費の低減を図ることができる。As described above, in the embodiment of the present invention, only the carbon compound is oxidatively decomposed while maintaining the supercritical water oxidation treatment tank 24 at a relatively low temperature of about 400 ° C., and the decomposition of ammonia is carried out by biological treatment. Since it is performed in the tank 12, the equipment cost of the supercritical water oxidation treatment tank 24 can be reduced, and the amount of energy given to the reactant (mixed fluid of sewage sludge and oxygen) from outside can be reduced. And maintenance costs can be reduced.
【0015】そして、前記実施の形態においては、ヒー
タ22によって下水汚泥18と酸素20との混合流体を
加熱する場合について説明したが、冷却器26において
反応生成物と熱交換させた処理液を用いて混合流体を加
熱する場合、熱交換器の容量を小さくすることができる
とともに、下水汚泥18の濃度を下げることが可能とな
って、下水汚泥18の圧送が容易となる。また、前記実
施の形態においては、有機性廃棄物が下水汚泥18であ
る場合について説明したが、有機性廃棄物は飲食店や食
品加工工場などから排出されるいわゆる生ゴミ等であっ
てもよい。In the above-described embodiment, the case where the mixed fluid of the sewage sludge 18 and the oxygen 20 is heated by the heater 22 has been described, but the processing liquid which has been heat-exchanged with the reaction product in the cooler 26 is used. When the mixed fluid is heated by heating, the capacity of the heat exchanger can be reduced, and the concentration of the sewage sludge 18 can be reduced, so that the sewage sludge 18 can be easily pumped. Further, in the above embodiment, the case where the organic waste is the sewage sludge 18 has been described, but the organic waste may be so-called garbage discharged from a restaurant or a food processing factory. .
【0016】図2は、他の実施の形態を示したものであ
る。この実施の形態においては、気固液分離器28にお
いて分離したアンモニア含有廃水30をストリッピング
槽40に流入させ、アンモニア含有廃水30中のアンモ
ニアを一部気化させて触媒処理槽42に送り、アンモニ
アを触媒によって分解するようになっている。そして、
アンモニアを一部気化させたアンモニア含有廃水30
は、ストリッピング槽40から前記実施の形態と同様に
生物処理槽12に戻すようになっている。他の構成は、
前記の実施形態と同様である。このように構成した本実
施の形態においては、アンモニア含有廃水30中のアン
モニアの濃度が高い場合であっても、生物処理槽12に
過大な負荷を与えることがない。FIG. 2 shows another embodiment. In this embodiment, the ammonia-containing wastewater 30 separated in the gas-solid liquid separator 28 flows into the stripping tank 40, and the ammonia in the ammonia-containing wastewater 30 is partially vaporized and sent to the catalyst treatment tank 42. Is decomposed by a catalyst. And
Ammonia-containing wastewater 30 obtained by partially vaporizing ammonia
Is returned from the stripping tank 40 to the biological treatment tank 12 in the same manner as in the above embodiment. Other configurations are
This is the same as the above embodiment. In the present embodiment configured as described above, even when the concentration of ammonia in the ammonia-containing wastewater 30 is high, an excessive load is not applied to the biological treatment tank 12.
【0017】[0017]
【発明の効果】以上に説明したように、本発明によれ
ば、窒素化合物を超臨界水中で酸化処理せず、超臨界水
酸化処理後の反応生成物からアンモニアなどの窒素化合
物を含んだ廃水を取り出し、この廃水を生物処理して窒
素化合物を分解するようにしているため、下水汚泥など
の有機性廃棄物を超臨界水による酸化処理をする場合、
比較的低温の超臨界水によって分解可能な炭素化合物だ
けを分解すればよく、また反応物である有機性廃棄物を
600℃以上に保持する必要がないため、超臨界水酸化
処理槽の設備費用を低減することができるとともに、反
応物に与えるエネルギーが少なくなって維持費を低減す
ることができる。As described above, according to the present invention, the nitrogen compound is not oxidized in the supercritical water, and the wastewater containing the nitrogen compound such as ammonia is obtained from the reaction product after the supercritical water oxidation treatment. The wastewater is biologically treated to decompose nitrogen compounds, so when oxidizing organic waste such as sewage sludge with supercritical water,
It is only necessary to decompose carbon compounds that can be decomposed by relatively low-temperature supercritical water, and there is no need to maintain the organic waste, which is a reactant, at 600 ° C. or higher. Can be reduced, and the energy given to the reactants can be reduced, and the maintenance cost can be reduced.
【0018】そして、廃水中にアンモニアなどの揮発性
窒素化合物が多い場合、揮発性窒素化合物を処理水から
抽出したのちに廃水を生物処理して窒素化合物の分解を
行うようにすると、廃水の生物処理を行う生物処理槽に
過大な負荷を与えることがなく、有機性廃棄物の分解処
理を円滑に行うことができる。また、超臨界水による酸
化処理の反応温度を374℃より高く、600℃未満と
することにより、超臨界水酸化処理を行えるとともに、
超臨界水酸化処理を行わせる超臨界水酸化処理槽の設備
費用を低減することができる。If the wastewater contains a large amount of volatile nitrogen compounds such as ammonia, the wastewater is biologically treated after the volatile nitrogen compounds are extracted from the treated water to decompose the nitrogen compounds. The organic waste can be smoothly decomposed without imposing an excessive load on the biological treatment tank that performs the treatment. In addition, by making the reaction temperature of the oxidation treatment with supercritical water higher than 374 ° C. and lower than 600 ° C., the supercritical water oxidation treatment can be performed,
The facility cost of the supercritical water oxidation treatment tank for performing the supercritical water oxidation treatment can be reduced.
【図1】本発明の実施の形態に係る排水処理方法の説明
図である。FIG. 1 is an explanatory diagram of a wastewater treatment method according to an embodiment of the present invention.
【図2】他の実施形態の説明図である。FIG. 2 is an explanatory diagram of another embodiment.
【図3】下水汚泥を超臨界水酸化処理したときの処理温
度と全有機炭素量の分解率との関係を示す図である。FIG. 3 is a diagram showing the relationship between the treatment temperature and the decomposition rate of total organic carbon when sewage sludge is subjected to supercritical water oxidation treatment.
【図4】下水汚泥を超臨界水酸化処理したときの処理温
度と全窒素化合物の分解率との関係を示す図である。FIG. 4 is a diagram showing the relationship between the treatment temperature and the decomposition rate of total nitrogen compounds when sewage sludge is subjected to supercritical water oxidation treatment.
10 原水(下水) 12 生物処理槽 14 沈殿池 18 有機性廃棄物(下水汚泥) 20 酸素 22 ヒータ 24 超臨界水酸化処理槽 26 冷却器 28 気固液分離器 30 廃水(アンモニア含有廃水) 40 ストリッピング槽 42 触媒処理槽 Reference Signs List 10 Raw water (sewage) 12 Biological treatment tank 14 Sedimentation basin 18 Organic waste (sewage sludge) 20 Oxygen 22 Heater 24 Supercritical oxidation treatment tank 26 Cooler 28 Gas-solid liquid separator 30 Wastewater (ammonia-containing wastewater) 40 Strike Ripping tank 42 Catalyst treatment tank
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 明雄 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社内 (72)発明者 末松 孝章 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社内 (72)発明者 麻生 伸二 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社内 (72)発明者 本地 章夫 茨城県ひたちなか市堀口832番地の2 株 式会社日立製作所日立研究所内 Fターム(参考) 4D059 AA03 AA07 BA34 BC01 BF01 CA01 CA22 CA30 EB06 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akio Tanaka 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd. (72) Takaaki Suematsu 1-1-1, Uchikanda, Chiyoda-ku, Tokyo No. 14 Inside Hitachi Plant Construction Co., Ltd. (72) Inventor Shinji Aso 1-1-14 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd. (72) Inventor Akio Honchi 832 Horiguchi, Hitachinaka City, Ibaraki Prefecture 2 F-term in Hitachi Research Laboratory, Hitachi, Ltd. (Reference) 4D059 AA03 AA07 BA34 BC01 BF01 CA01 CA22 CA30 EB06
Claims (6)
処理したのち、反応生成物を冷却して窒素化合物を含む
廃水を前記反応生成物から取り出して生物処理をし、前
記窒素化合物を分解することを特徴とする有機性廃棄物
の処理方法。After oxidizing organic waste in supercritical water, the reaction product is cooled and waste water containing a nitrogen compound is taken out of the reaction product and biologically treated to decompose the nitrogen compound. A method for treating organic waste.
を抽出したのちに行い、前記揮発性窒素化合物を触媒に
より分解することを特徴とする有機性廃棄物の処理方
法。2. A method for treating organic waste, wherein the biological treatment of the wastewater is performed after a volatile nitrogen compound is extracted, and the volatile nitrogen compound is decomposed by a catalyst.
度を374℃より高く、600℃未満に保持して行うこ
とを特徴とする請求項1または2に記載の有機性廃棄物
の処理方法。3. The method for treating organic waste according to claim 1, wherein the oxidation treatment with supercritical water is performed while maintaining a reaction temperature higher than 374 ° C. and lower than 600 ° C. .
のちに汚泥を沈殿させ、前記汚泥を超臨界水中において
酸化処理し、その後、反応生成物を冷却して窒素化合物
を含む廃水を反応生成物から取り出して前記生物処理槽
に供給することを特徴とする排水処理方法。4. Biological treatment of raw water in a biological treatment tank, sludge is precipitated, the sludge is oxidized in supercritical water, and then the reaction product is cooled to remove waste water containing a nitrogen compound. Wastewater treatment method, wherein the wastewater is taken out of the biological treatment tank and supplied to the biological treatment tank.
発性窒素化合物を抽出したのちに行い、抽出した前記揮
発性窒素化合物を触媒によって分解することを特徴とす
る排水処理方法。5. A wastewater treatment method comprising supplying the wastewater to the biological treatment tank after extracting a volatile nitrogen compound, and decomposing the extracted volatile nitrogen compound by a catalyst.
度を374℃より高く、600℃未満に保持して行うこ
とを特徴とする請求項4または5に記載の排水処理方
法。6. The wastewater treatment method according to claim 4, wherein the oxidation treatment with the supercritical water is performed while maintaining a reaction temperature higher than 374 ° C. and lower than 600 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24351898A JP3356206B2 (en) | 1998-08-28 | 1998-08-28 | Wastewater treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24351898A JP3356206B2 (en) | 1998-08-28 | 1998-08-28 | Wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000070896A true JP2000070896A (en) | 2000-03-07 |
JP3356206B2 JP3356206B2 (en) | 2002-12-16 |
Family
ID=17105108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24351898A Expired - Fee Related JP3356206B2 (en) | 1998-08-28 | 1998-08-28 | Wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3356206B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273493A (en) * | 2001-03-23 | 2002-09-24 | Mitsubishi Heavy Ind Ltd | Organic solid treatment system |
JP2007069169A (en) * | 2005-09-09 | 2007-03-22 | Osaka Industrial Promotion Organization | Supply system, continuous or semi-continuous treatment apparatus and continuous treatment method |
CN1330589C (en) * | 2003-12-17 | 2007-08-08 | 财团法人工业技术研究院 | Supercritical water oxidation system |
JP2008207136A (en) * | 2007-02-27 | 2008-09-11 | National Univ Corp Shizuoka Univ | Hydrothermal oxidative decomposition treatment apparatus and fertilizer manufacturing method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103880122B (en) * | 2014-03-17 | 2015-08-26 | 山东大学 | A kind of method preparing the anti-granular unburned iron-carbon micro-electrolysis filler that hardens |
-
1998
- 1998-08-28 JP JP24351898A patent/JP3356206B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273493A (en) * | 2001-03-23 | 2002-09-24 | Mitsubishi Heavy Ind Ltd | Organic solid treatment system |
JP4671520B2 (en) * | 2001-03-23 | 2011-04-20 | 三菱重工環境・化学エンジニアリング株式会社 | Organic solids processing system |
CN1330589C (en) * | 2003-12-17 | 2007-08-08 | 财团法人工业技术研究院 | Supercritical water oxidation system |
JP2007069169A (en) * | 2005-09-09 | 2007-03-22 | Osaka Industrial Promotion Organization | Supply system, continuous or semi-continuous treatment apparatus and continuous treatment method |
JP2008207136A (en) * | 2007-02-27 | 2008-09-11 | National Univ Corp Shizuoka Univ | Hydrothermal oxidative decomposition treatment apparatus and fertilizer manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP3356206B2 (en) | 2002-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4489589B2 (en) | Method and equipment for treating sludge from biological water treatment equipment | |
JP3531481B2 (en) | Wastewater treatment method and apparatus | |
JP4610977B2 (en) | Method and apparatus for treating sludge return water | |
JPH10500611A (en) | In particular, a method and apparatus for treating wastewater containing organic matter by wet oxidation with internal recirculation of solid residue, and a purification facility therefor | |
JP3356206B2 (en) | Wastewater treatment method | |
JP2003024972A (en) | Biological treatment method for organic sewage and apparatus therefor | |
JP4404976B2 (en) | Organic wastewater treatment method and organic wastewater treatment apparatus | |
JP4834942B2 (en) | Organic waste processing method and processing apparatus | |
JP4517075B2 (en) | Ammonia treatment method and apparatus by anaerobic treatment | |
JP2002079299A (en) | Method for treating ammonia-containing waste | |
JP3959843B2 (en) | Biological treatment method for organic drainage | |
JP3611292B2 (en) | Wastewater treatment method | |
KR101840548B1 (en) | Wastewater treatment system | |
JPH06178995A (en) | Anaerobic digestion treatment of organic waste water | |
JP3506032B2 (en) | Equipment for treating DMSO-containing water | |
JP3223145B2 (en) | Organic wastewater treatment method | |
JP2003334589A (en) | Wastewater treatment method and treatment apparatus therefor | |
KR101177423B1 (en) | The Sludge Reduction Plant and Biological Treatment Process using metal Catalyst | |
JP2000117289A (en) | Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor | |
JP2003260491A (en) | Biological treatment method for organic sewage and apparatus therefor | |
JP2003340485A (en) | Method for treating organic waste water and apparatus therefor | |
JP3447037B2 (en) | Aerobic digestion of activated sludge | |
JP2001179074A (en) | Treatment method and apparatus of organic substance containing nitrogen and phosphorus | |
JP4929641B2 (en) | Organic waste liquid treatment equipment | |
JPH1033943A (en) | Ammonia nitrogen decomposing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071004 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081004 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091004 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |