JP4610977B2 - Method and apparatus for treating sludge return water - Google Patents

Method and apparatus for treating sludge return water Download PDF

Info

Publication number
JP4610977B2
JP4610977B2 JP2004266629A JP2004266629A JP4610977B2 JP 4610977 B2 JP4610977 B2 JP 4610977B2 JP 2004266629 A JP2004266629 A JP 2004266629A JP 2004266629 A JP2004266629 A JP 2004266629A JP 4610977 B2 JP4610977 B2 JP 4610977B2
Authority
JP
Japan
Prior art keywords
sludge
return water
fuel cell
microbial fuel
sludge return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004266629A
Other languages
Japanese (ja)
Other versions
JP2006081963A (en
Inventor
知也 岡村
輝久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004266629A priority Critical patent/JP4610977B2/en
Publication of JP2006081963A publication Critical patent/JP2006081963A/en
Application granted granted Critical
Publication of JP4610977B2 publication Critical patent/JP4610977B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、下水処理場において発生する最初沈殿池汚泥、最終沈殿池汚泥あるいはこれらを好気的あるいは嫌気的に消化することで得られる消化汚泥等に対し、濃縮処理あるいは脱水処理することによって生じる汚泥返流水の処理方法及び処理装置に関するものである。   The present invention is produced by concentrating or dewatering first sedimentation basin sludge, final sedimentation basin sludge generated in a sewage treatment plant or digested sludge obtained by aerobically or anaerobically digesting them. The present invention relates to a method and apparatus for treating sludge return water.

下水処理場では、流入した下水中の固形物及び有機物の除去を主要な目的とした処理・運転を行っている。
すなわち、流入下水中の雑物を取り除くために最初沈殿池が設けられ、有機物を除去するために生物反応槽では活性汚泥微生物による吸着・分解がなされ、最終沈殿池では活性汚泥微生物と上澄水を分離することで、良好な処理水を得ることができる。
また、一部の処理場では、最初沈殿池及び最終沈殿池から取り除かれた汚泥を好気性あるいは嫌気性消化することで、汚泥の安定化を図ることがあるが、この際にも処理された汚泥として消化汚泥が得られる。
At the sewage treatment plant, treatment and operation are performed mainly for the purpose of removing solids and organic matter in the sewage that has flowed in.
That is, primary sedimentation is provided for removing matters in the influent sewage, adsorption and decomposition by activated sludge microorganisms made in biological reactor to remove organics, in the settling tank and on the activated sludge microorganisms supernatant water By separating the water, good treated water can be obtained.
In some treatment plants, the sludge removed from the first sedimentation basin and the final sedimentation basin may be aerobically or anaerobically digested to stabilize the sludge. Digested sludge is obtained as sludge.

これら最初沈殿池汚泥、最終沈殿池汚泥及び消化汚泥は、後段の汚泥処理系において適切に処理・処分される必要があり、その処理過程のひとつとして濃縮処理及び脱水処理がある。
これらの過程は、後段の処理を効率よく行うための前処理として位置付けられ、汚泥中の水分と固形分を分離することが主目的であり、汚泥容積の減容が図られる。
このとき得られる水分は、一般的に返流水と呼ばれ、水処理系に戻され再び生物処理を受ける。
なお、本明細書においては、これら汚泥処理系において発生した返流水のことを単に汚泥返流水と表す。
These initial sedimentation basin sludge, final sedimentation basin sludge and digested sludge need to be appropriately treated and disposed of in the subsequent sludge treatment system, and one of the treatment processes includes concentration treatment and dehydration treatment.
These processes are positioned as pretreatment for efficiently performing the subsequent treatment, and the main purpose is to separate the moisture and solid content in the sludge, thereby reducing the volume of the sludge.
The water obtained at this time is generally called return water, returned to the water treatment system and subjected to biological treatment again.
In the present specification, the return water generated in the sludge treatment system is simply referred to as sludge return water.

ところで、汚泥返流水中には高濃度の有機物やアンモニア、リンなどが含まれ、水処理系へ悪影響を及ぼすおそれがある。
すなわち、水処理系では通常、好気性微生物を用いて流入下水中の有機物等を生物処理しており、空気を強制的に導入する必要があるが、これら汚泥返流水中の有機物やアンモニアを同時に処理するためには、さらに多くの空気を導入する必要がある。ところが、設備の能力が不十分であると十分な処理ができずに系外に流出し、処理水を受け入れる水域を汚染する問題などがある。
By the way, sludge return water contains high concentrations of organic substances, ammonia, phosphorus and the like, which may adversely affect the water treatment system.
That is, in the water treatment system, organic matter in the inflowing sewage is usually biologically treated using aerobic microorganisms, and it is necessary to forcibly introduce air, but the organic matter and ammonia in the sludge return water are simultaneously introduced. In order to process, it is necessary to introduce more air. However, if the capacity of the facility is insufficient, there is a problem that the water area that receives the treated water may be contaminated by flowing out of the system without sufficient treatment.

そこで、この問題に対応するため、汚泥処理系からの汚泥返流水を水処理系に戻す前に処理を行うことがあり、その一例として、汚泥返流水に凝集剤を添加したり、汚泥返流水と汚泥を混合させた上で凝集剤を添加する方法(特許文献1参照)や、汚泥返流水にオゾンと凝集剤を添加する方法(特許文献2参照)、担体を添加した活性汚泥法と凝集剤の添加を併用した処理方法(特許文献3参照)などがある。   Therefore, in order to deal with this problem, the sludge return water from the sludge treatment system may be treated before being returned to the water treatment system. For example, a flocculant is added to the sludge return water or the sludge return water is used. A method of adding a flocculant after mixing it with sludge (see Patent Document 1), a method of adding ozone and a flocculant to sludge return water (see Patent Document 2), an activated sludge method with addition of a carrier and agglomeration There is a processing method (see Patent Document 3) in which addition of an agent is used in combination.

一方、近年はバイオマスの利活用の一環として、有機性廃棄物の有効利用を促進する動きが見られ、下水処理場においても下水汚泥の有効利用が図られている。汚泥返流水についても、下水汚泥そのものに比べると少ないながらも有機物を多く含んでおり、かつ少なからぬ量を継続的に排出されるため、安定したバイオマス源とみなすこともできる。   On the other hand, in recent years, as part of the utilization of biomass, there has been a movement to promote the effective use of organic waste, and the effective use of sewage sludge has also been achieved at sewage treatment plants. Sludge return water also contains a small amount of organic matter compared to the sewage sludge itself, and since a considerable amount is continuously discharged, it can be regarded as a stable biomass source.

前述の汚泥返流水の処理方法では、問題となっている有機物やアンモニア、リンなどを除去することができるが、汚泥返流水そのものに凝集剤を添加した場合、汚泥返流水中の有機物なども同時に凝集沈殿するため、多量の汚泥を発生させることになり、汚泥を処理するための汚泥処理系において多量の汚泥を発生させるという矛盾が生じることになる。
また、オゾンによる処理ではその強力な酸化力で有機物の分解や、アンモニアを酸化させることができるが、オゾンの発生装置や排オゾンの処理装置が必要になるなど、設備が複雑化し、かつ運転コストが高くなるのが問題と言える。
また、これらの方法では、汚泥返流水はあくまで廃棄物として取り扱われ、有用物の回収やエネルギー利用などの有効利用が図られることはない。
特開平07−256295号公報 特開平05−269478号公報 特開2004−025055号公報
The sludge return water treatment method described above can remove problematic organic substances, ammonia, phosphorus, etc., but when a flocculant is added to the sludge return water itself, the organic matter in the sludge return water is also removed. Since it coagulates and settles, a large amount of sludge is generated, resulting in a contradiction that a large amount of sludge is generated in the sludge treatment system for treating the sludge.
In addition, the treatment with ozone can decompose organic substances and oxidize ammonia with its strong oxidizing power, but the equipment is complicated and operating costs are increased, such as the need for ozone generator and waste ozone treatment equipment. Can be said to be a problem.
Moreover, in these methods, sludge return water is handled as waste to the last, and effective use such as recovery of useful materials and use of energy is not achieved.
Japanese Patent Application Laid-Open No. 07-256295 Japanese Patent Laid-Open No. 05-269478 JP 2004-025055 A

本発明は、上記従来の汚泥返流水の処理方法が有する問題点に鑑み、汚泥返流水を処理する過程で発生する汚泥量を極力少なくし、かつ汚泥返流水そのものを有効に活用することができる汚泥返流水の処理方法及び処理装置を提案することを目的とする。   In view of the problems of the above conventional sludge return water treatment method, the present invention can reduce the amount of sludge generated in the process of treating sludge return water as much as possible, and can effectively use the sludge return water itself. It aims at proposing the processing method and processing device of sludge return water.

上記目的を達成するため、本発明の汚泥返流水の処理方法は、下水処理の過程で発生する最初沈殿池汚泥、最終沈殿池汚泥、又は好気性・嫌気性消化によって得られる消化汚泥等の汚泥を処理する汚泥処理系の中で、汚泥を濃縮・脱水処理することによって生じる汚泥返流水の処理方法において、汚泥返流水中の有機物を微生物燃料電池の燃料源とするに際し、微生物燃料電池の正極側に、酸素ガス又は空気中に含まれる酸素と硝化菌とを導入することにより除去することを特徴とする。 In order to achieve the above object, the sludge return water treatment method of the present invention is a sludge such as a first sedimentation basin sludge, a final sedimentation basin sludge, or a digestion sludge obtained by aerobic / anaerobic digestion generated in the process of sewage treatment. In the treatment method of sludge return water generated by concentrating and dewatering sludge in the sludge treatment system for treating sewage, the organic matter in the sludge return water is used as the fuel source of the microbial fuel cell. On the side, oxygen gas or oxygen contained in the air and nitrifying bacteria are introduced and removed.

この場合において、嫌気状態に保たれた微生物燃料電池の負極側に脱窒菌を導入し、硝酸イオンを含む溶液を該負極側に循環させることができる。 In this case, denitrifying bacteria can be introduced to the negative electrode side of the microbial fuel cell kept in an anaerobic state, and a solution containing nitrate ions can be circulated to the negative electrode side.

また、硝化に関与する硝化菌を微生物燃料電池の正極に、脱窒に関与する脱窒菌を該微生物燃料電池の負極に保持することができる。   Further, nitrifying bacteria involved in nitrification can be held on the positive electrode of the microbial fuel cell, and denitrifying bacteria involved in denitrification can be held on the negative electrode of the microbial fuel cell.

一方、同じ目的を達成するため、本発明の汚泥返流水の処理装置は、下水処理の過程で発生する最初沈殿池汚泥、最終沈殿池汚泥、又は好気性・嫌気性消化によって得られる消化汚泥等の汚泥を処理する汚泥処理系の中で、汚泥を濃縮・脱水処理することによって生じる汚泥返流水の処理装置において、汚泥返流水が流入し、該汚泥返流水の有機物を燃料源とする微生物燃料電池を設け、該微生物燃料電池の正極側に、酸素ガス又は空気中に含まれる酸素と硝化菌とを導入するようにしたことを特徴とする。 On the other hand, in order to achieve the same purpose, the sludge return water treatment apparatus of the present invention is the first sedimentation basin sludge, final sedimentation basin sludge generated in the process of sewage treatment, digested sludge obtained by aerobic / anaerobic digestion, etc. In the sludge treatment system that treats sludge in the sludge treatment system, sludge return water is generated by concentrating and dewatering sludge. A battery is provided , and oxygen and nitrifying bacteria contained in oxygen gas or air are introduced into the positive electrode side of the microbial fuel cell .

この場合において、嫌気状態に保たれた微生物燃料電池の負極側に脱窒菌を導入し、硝酸イオンを含む溶液を該負極側に循環させることができる。
嫌気状態に保たれた微生物燃料電池の負極側に脱窒菌を保持し、アンモニアイオンが硝酸イオンに酸化した溶液を該負極側に循環させて、脱窒菌により窒素ガスヘと還元して除去することができる。
In this case, denitrifying bacteria can be introduced to the negative electrode side of the microbial fuel cell kept in an anaerobic state, and a solution containing nitrate ions can be circulated to the negative electrode side.
The denitrifying bacteria are held on the negative electrode side of the microbial fuel cell kept in an anaerobic state, and a solution in which ammonia ions are oxidized to nitrate ions is circulated to the negative electrode side, and reduced to nitrogen gas by the denitrifying bacteria to be removed. it can.

また、硝化に関与する硝化菌を微生物燃料電池の正極に、脱窒に関与する脱窒菌を該微生物燃料電池の負極に保持させることができる。   Further, nitrifying bacteria involved in nitrification can be held at the positive electrode of the microbial fuel cell, and denitrifying bacteria involved in denitrification can be held at the negative electrode of the microbial fuel cell.

本発明の汚泥返流水の処理方法及び処理装置によれば、下水処理の過程で発生する最初沈殿池汚泥、最終沈殿池汚泥、又は好気性・嫌気性消化によって得られる消化汚泥等の汚泥を処理する汚泥処理系の中で、汚泥を濃縮・脱水処理することによって生じる汚泥返流水の処理方法において、汚泥返流水中の有機物を微生物燃料電池の燃料源とすることにより除去することから、従来の処理方法で問題となりがちであった、汚泥処理系での多量の汚泥発生を伴うことなく、汚泥返流水を処理することができる。
特に、汚泥返流水中の有機物とアンモニアの除去に関して良好な処理が可能であり、また、汚泥返流水からの電気エネルギーの回収が可能であり、いわゆる有機性廃棄物の利活用を図ることができる。
According to the method and apparatus for treating sludge return water of the present invention, sludge such as first sedimentation basin sludge, final sedimentation basin sludge, or digestion sludge obtained by aerobic / anaerobic digestion generated in the process of sewage treatment is treated. In the sludge treatment system, sludge return water produced by concentrating and dewatering sludge is removed by using organic matter in the sludge return water as a fuel source of the microbial fuel cell. The sludge return water can be treated without the generation of a large amount of sludge in the sludge treatment system, which tends to be a problem in the treatment method.
In particular, it is possible to treat organic substances and ammonia in sludge return water with good treatment, and electrical energy can be recovered from sludge return water, so-called organic waste can be utilized. .

そして、微生物燃料電池の正極側に、酸素ガス又は空気中に含まれる酸素と硝化菌とを導入することにより、汚泥返流水に含まれるアンモニアイオンを硝酸イオンに酸化することができる。 Then , by introducing oxygen gas or oxygen contained in the air and nitrifying bacteria into the positive electrode side of the microbial fuel cell, ammonia ions contained in the sludge return water can be oxidized to nitrate ions.

また、嫌気状態に保たれた微生物燃料電池の負極側に脱窒菌を導入し、硝酸イオンを含む溶液を該負極側に循環させることにより、アンモニアイオンが硝酸イオンに酸化した溶液を脱窒菌によって窒素ガスヘと還元し除去することができる。   Further, by introducing denitrifying bacteria to the negative electrode side of the microbial fuel cell kept in an anaerobic state and circulating a solution containing nitrate ions to the negative electrode side, a solution in which ammonia ions are oxidized to nitrate ions is removed by denitrifying bacteria. It can be reduced to gas and removed.

また、硝化に関与する硝化菌を微生物燃料電池の正極に、脱窒に関与する脱窒菌を該微生物燃料電池の負極に保持することにより、硝化菌と脱窒菌とを効率的に微生物燃料電池に投入することができる。   Further, by holding nitrifying bacteria involved in nitrification at the positive electrode of the microbial fuel cell and denitrifying bacteria involved in denitrification at the negative electrode of the microbial fuel cell, nitrifying bacteria and denitrifying bacteria can be efficiently converted into a microbial fuel cell. Can be thrown in.

以下、本発明の汚泥返流水の処理方法及び処理装置の実施の形態を、図面に基づいて説明する。   Hereinafter, embodiments of the method and apparatus for treating sludge return water of the present invention will be described with reference to the drawings.

図1〜図4に、本発明の汚泥返流水の処理方法及び処理装置の一実施例を示す。
この汚泥返流水の処理方法は、下水処理の過程で発生する最初沈殿池汚泥、最終沈殿池汚泥、又は好気性・嫌気性消化によって得られる消化汚泥等の汚泥を処理する汚泥処理系において、汚泥を濃縮・脱水処理することによって生じる汚泥返流水を処理するもので、汚泥返流水中の有機物を微生物燃料電池の燃料源とすることにより除去するようにしている。
1 to 4 show an embodiment of the method and apparatus for treating sludge return water of the present invention.
This sludge return water treatment method is used in sludge treatment systems that treat sludge such as first sedimentation basin sludge, final sedimentation basin sludge, or digestion sludge obtained by aerobic / anaerobic digestion during the sewage treatment process. The sludge return water produced by concentrating and dewatering the sewage is treated, and organic matter in the sludge return water is removed by using it as a fuel source of the microbial fuel cell.

微生物燃料電池とは、有機物を燃料源とし、微生物を生体触媒として利用した燃料電池のことであり、その概念図を図1に示す。
微生物燃料電池は、負極1が設けられた負極室2と、正極3が設置された正極室4からなり、これら両室はプロトン透過膜5で隔てられるとともに、負極1と正極3は外部回路6によって接続されている。負極室2は、分子状酸素が存在しない嫌気性条件に保たれており、嫌気性微生物7が保持されている。
A microbial fuel cell is a fuel cell that uses an organic substance as a fuel source and a microorganism as a biocatalyst, and a conceptual diagram thereof is shown in FIG.
The microbial fuel cell comprises a negative electrode chamber 2 provided with a negative electrode 1 and a positive electrode chamber 4 provided with a positive electrode 3, which are separated by a proton permeable membrane 5, and the negative electrode 1 and the positive electrode 3 are connected to an external circuit 6. Connected by. The negative electrode chamber 2 is maintained under anaerobic conditions in which molecular oxygen does not exist, and anaerobic microorganisms 7 are retained.

負極室2に投入された有機物8は、嫌気性微生物7によって代謝されるが、その過程で電子10を生成するとともに、代謝産物として水素イオン9を放出する。
一方、嫌気性微生物7による代謝機構では、細胞内あるいは最終電子受容体との間で電子10の授受が行われるが、負極1に鉄(III)イオンやマンガン(IV)イオンなどを保持させておくと、これらが最終電子受容体として作用し、負極1に電子を受け渡すことが可能となる。
The organic matter 8 put into the negative electrode chamber 2 is metabolized by the anaerobic microorganism 7, and in the process, generates electrons 10 and releases hydrogen ions 9 as metabolites.
On the other hand, in the metabolic mechanism by the anaerobic microorganism 7, electrons 10 are exchanged intracellularly or with the final electron acceptor, but the negative electrode 1 is made to hold iron (III) ions, manganese (IV) ions, or the like. Then, these act as a final electron acceptor, and can transfer electrons to the negative electrode 1.

負極1に取り込まれた電子10は、外部回路6を経て正極3へと移動する。また、正極室4には、分子状酸素11が導入されており、白金などを保持した正極3上で電子10及びプロトン透過膜5を通過した水素イオン9と結合することによって水分子12へと変化する。
なお、プロトン透過膜5に関しては、これを利用することにより、水素イオン9を選択的に負極室2から正極室4に透過させることで良好な反応が進行するが、陽イオン交換膜にて代用したり、あるいは透過膜そのものを設置しなくとも反応を進行させることは可能である。
これら一連の反応によって、負極1及び正極3の間で電子10の移動が行われ、電気エネルギーが発生することになる。
The electrons 10 taken into the negative electrode 1 move to the positive electrode 3 through the external circuit 6. Further, molecular oxygen 11 is introduced into the positive electrode chamber 4, and is combined with electrons 10 and hydrogen ions 9 that have passed through the proton permeable membrane 5 on the positive electrode 3 holding platinum or the like to form water molecules 12. Change.
As for the proton permeable membrane 5, by utilizing this, a favorable reaction proceeds by selectively allowing hydrogen ions 9 to permeate from the negative electrode chamber 2 to the positive electrode chamber 4, but a cation exchange membrane can be used instead. It is possible to proceed the reaction without installing the permeable membrane itself.
By a series of these reactions, the electrons 10 are moved between the negative electrode 1 and the positive electrode 3, and electric energy is generated.

このように、微生物燃料電池は有機物を燃料源として電気エネルギーを作り出す装置であるが、同時に有機物を含む廃水を処理することができる装置とも捉えられる。
すなわち、廃水中の有機物は嫌気性微生物の代謝、すなわち微生物の増殖によって分解・除去される。
しかし、嫌気性条件下であるため、有機物から微生物の新しい細胞への変換効率は、水処理系などの好気条件下よりもはるかに低く、微生物の増殖、すなわち汚泥の発生量を低く押さえることができる利点がある。
さらに、微生物燃料電池では、微生物から電子を獲得するが、最終電子受容体として電子を獲得する他に、代謝過程の途中から電子を獲得する方法もあり、この場合は、微生物の新たな増殖を阻害する働きもあるため、さらに汚泥の発生量を減らすことができる。
As described above, the microbial fuel cell is an apparatus that generates electric energy using an organic substance as a fuel source, but can also be regarded as an apparatus that can simultaneously treat wastewater containing the organic substance.
That is, the organic matter in the wastewater is decomposed and removed by the metabolism of anaerobic microorganisms, that is, the growth of microorganisms.
However, because it is under anaerobic conditions, the conversion efficiency from organic matter to new cells of microorganisms is much lower than under aerobic conditions such as water treatment systems, and the growth of microorganisms, that is, the generation of sludge is kept low. There is an advantage that can be.
Furthermore, in microbial fuel cells, electrons are acquired from microorganisms. In addition to acquiring electrons as the final electron acceptor, there is a method of acquiring electrons from the middle of the metabolic process. Since it also has an inhibitory function, the amount of sludge generated can be further reduced.

また、図1における正極室4では、電子10を受け取るために分子状酸素11を導入しているが、この酸素と硝化菌を利用して汚泥返流水中に含まれるアンモニアを硝酸イオンに酸化させることも可能である。
さらに、その後段に脱窒菌を保持した槽を設けることにより、硝酸イオンを窒素ガスヘと還元し、汚泥返流水中からの窒素除去が可能となる。
Further, in the positive electrode chamber 4 in FIG. 1, molecular oxygen 11 is introduced to receive the electrons 10, and ammonia contained in the sludge return water is oxidized to nitrate ions using this oxygen and nitrifying bacteria. It is also possible.
Furthermore, by providing a tank holding denitrifying bacteria in the subsequent stage, nitrate ions can be reduced to nitrogen gas and nitrogen removal from the sludge return water can be performed.

リンに関しては、微生物燃料電池を利用した処理装置を経ることによって多少は減少するが、そのほとんどは処理できないため、従来のように凝集剤等を添加することで除去しなければならない。
ただし、従来と異なり、有機物などが除去されているため、必要以上の凝集汚泥が発生することはなく、従来のように汚泥返流水そのものに凝集剤を添加した場合の汚泥発生量と比較して少量となる。
Phosphorus is somewhat reduced by passing through a treatment apparatus using a microbial fuel cell, but most of it cannot be treated, so it must be removed by adding a flocculant or the like as in the prior art.
However, unlike conventional ones, organic matter is removed, so there is no need to generate more coagulated sludge, compared to the amount of sludge generated when flocculant is added to the sludge return water itself as before. A small amount.

なお、汚泥返流水のうち、特に嫌気性消化汚泥から得られるものには多量の固形物が含まれる場合もあるが、本発明による処理装置の運転を阻害するほどの固形物が含まれる場合には、重力沈降や機械濃縮などによる固液分離を前段に行うが、必要以上に有機物を除去することがないように凝集剤は添加しない。
また、固形物を減らすための別の方法として、可溶化等の物理化学的手法によって、固形物を溶解することができるが、この方法では固液物の量を減らせるばかりでなく、固形物を液化することによる溶液中の有機物濃度の増加、すなわち微生物燃料電池へ投入する燃料の増加が見込まれる。
Of sludge return water, particularly those obtained from anaerobic digested sludge may contain a large amount of solids, but when solids are included that impede the operation of the treatment apparatus according to the present invention. Does solid-liquid separation by gravity sedimentation or mechanical concentration, but does not add a flocculant so as not to remove organic matter more than necessary.
As another method for reducing solids, solids can be dissolved by physicochemical techniques such as solubilization, but this method not only reduces the amount of solid-liquids but also solids. It is expected that the concentration of organic substances in the solution due to liquefaction will be increased, that is, the amount of fuel input to the microbial fuel cell will increase.

図2に、本発明による汚泥返流水の処理装置の一例を示す。
なお、本実施例において対象とした汚泥返流水は嫌気性消化からの返流水を含み、固形物が多く含まれたものとし、これを除去するために固液分離槽を前段に設けている。
汚泥返流水Aは、重力沈殿池13において固液分離が図られ、上澄水Bと沈殿汚泥Cが得られる。
なお、ここで回収された沈殿汚泥Cは、水処理系に返流されるが、もともと汚泥返流水Aに含まれていたものであり、汚泥処理系で新たに発生した汚泥とはならない。
In FIG. 2, an example of the processing apparatus of the sludge return water by this invention is shown.
In addition, the sludge return water which was made into the object in a present Example contains the return water from anaerobic digestion, and shall contain many solid substances, and in order to remove this, the solid-liquid separation tank is provided in the front | former stage.
Sludge return water A is subjected to solid-liquid separation in the gravity sedimentation basin 13 to obtain supernatant water B and precipitated sludge C.
The recovered sludge C collected here is returned to the water treatment system, but was originally contained in the sludge return water A and does not become sludge newly generated in the sludge treatment system.

上澄水Bは、隔壁14によって負極室2と正極室4に隔てられた微生物燃料電池に流入するが、まず嫌気条件下に保たれた負極室2に流入する。
ここでは、負極1に保持された微生物によって、上澄水B中の有機物が分解・除去されるとともに、代謝過程から得られた電子が外部回路6を経て正極3へと導かれる。
なお、本実施例では有機物の分解に携わる微生物を負極1に保持させているが、負極室2内に浮遊させることも可能である。
The supernatant water B flows into the microbial fuel cell separated by the partition wall 14 from the negative electrode chamber 2 and the positive electrode chamber 4, but first flows into the negative electrode chamber 2 kept under anaerobic conditions.
Here, the organic matter in the supernatant water B is decomposed and removed by the microorganisms held in the negative electrode 1, and electrons obtained from the metabolic process are guided to the positive electrode 3 through the external circuit 6.
In the present embodiment, microorganisms involved in the decomposition of organic substances are held in the negative electrode 1, but can be suspended in the negative electrode chamber 2.

有機物が除去された上澄水Bは、隔壁14を越流して正極室4に導かれるが、ここでは散気装置15により空気Dが導入される。
導入された空気Dに含まれる酸素は、白金などを保持させた正極3上で外部回路6を通過してきた電子や上澄水B中の水素イオンと反応して水となる。
また、正極室4には硝化菌が保持されており、上澄水B中のアンモニアイオンが硝酸イオンヘと酸化される。
The supernatant water B from which organic substances have been removed flows through the partition wall 14 and is guided to the positive electrode chamber 4, but here air D is introduced by the air diffuser 15.
Oxygen contained in the introduced air D reacts with electrons passing through the external circuit 6 on the positive electrode 3 holding platinum or the like and hydrogen ions in the supernatant water B to become water.
Further, nitrifying bacteria are held in the positive electrode chamber 4, and ammonia ions in the supernatant water B are oxidized to nitrate ions.

これら一連の処理を受けた溶液は、一次処理水Eとして脱窒槽16へと流入するが、ここではこの脱窒槽16内に保持された脱窒菌の働きにより、硝酸イオンが窒素ガスとして系外に放出・除去される。なお、この脱窒の過程では溶液中の有機物が脱窒菌に利用されるため、さらに除去することが可能である。   The solution that has undergone these series of treatments flows into the denitrification tank 16 as primary treated water E. Here, nitrate ions are removed from the system as nitrogen gas by the action of the denitrifying bacteria retained in the denitrification tank 16. Released / removed. In this denitrification process, organic substances in the solution are used for denitrifying bacteria, and therefore can be further removed.

窒素が除去された溶液は、二次処理水Fとして流出するが、当該溶液中にはまだリンが含まれているため、これを除去するために凝集剤Gが添加され、凝集沈殿槽17においてリン除去とともに固液分離が図られる。
これによって得られる上澄水は、最終処理水Hとして水処理系に返流されるが、十分に有機物等が除去されているため、水処理系に大きな負荷を与えることはない。
一方、凝集沈殿槽17では、固形分として凝集汚泥Iが生じるが、リン以外の有機物等は前段の負極室2、正極室4及び脱窒槽16における処理でほとんどが除去されており、リン凝集汚泥以外の必要以上の汚泥が発生するおそれはない。
The solution from which nitrogen has been removed flows out as the secondary treated water F, but since the solution still contains phosphorus, a flocculant G is added to remove this, and in the coagulation sedimentation tank 17 Solid-liquid separation is achieved with phosphorus removal.
The supernatant water obtained by this is returned to the water treatment system as the final treated water H, but since organic substances and the like have been sufficiently removed, no great load is given to the water treatment system.
On the other hand, in the coagulation sedimentation tank 17, coagulation sludge I is generated as a solid content, but most of organic substances other than phosphorus are removed by the treatment in the negative electrode chamber 2, the positive electrode chamber 4 and the denitrification tank 16 in the previous stage. There is no risk of generating more sludge than necessary.

図3に、微生物燃料電池の原理を利用した汚泥返流水の処理装置の一例を示す。
汚泥返流水Aは、嫌気性条件に保たれた負極室2の下端から上向流として導入される。負極室2の上段には、微生物が保持された負極1が設置されており、汚泥返流水A中の有機物を分解・除去するとともに、微生物から負極1への電子の受け渡し、外部回路6を通じての正極3への電子伝達がなされる。
In FIG. 3, an example of the processing apparatus of sludge return water using the principle of a microbial fuel cell is shown.
The sludge return water A is introduced as an upward flow from the lower end of the negative electrode chamber 2 kept under anaerobic conditions. In the upper part of the negative electrode chamber 2, a negative electrode 1 holding microorganisms is installed, which decomposes and removes organic substances in the sludge return water A, transfers electrons from the microorganisms to the negative electrode 1, and passes through an external circuit 6. Electron transmission to the positive electrode 3 is performed.

負極室2から越流した溶液は、負極室流出液Jとしてその一部が正極室4に導かれるが、それ以外はさらなる処理と負極室2内の上向流流速確保のために循環される。
循環分を除いた負極室流出液Jは、正極室4の下端から上向流として導入される。正極室4の底部には、散気装置15が設けられており、槽内への空気提供がなされるが、空気中の酸素、外部回路6を通過してきた電子及び負極流出液J中の水素イオンが、正極3上で反応し、水分子が生じる。
また、正極4の上段には硝化菌保持担体18が設けられており、保持された硝化菌の働きにより負極室流出液J中のアンモニアイオンを硝酸イオンヘと酸化させる。
A part of the solution overflowed from the negative electrode chamber 2 is led to the positive electrode chamber 4 as the negative electrode chamber effluent J. Other than that, the solution is circulated for further processing and securing an upward flow velocity in the negative electrode chamber 2. .
The negative electrode chamber effluent J excluding the circulation is introduced as an upward flow from the lower end of the positive electrode chamber 4. An air diffuser 15 is provided at the bottom of the positive electrode chamber 4 to provide air into the tank, but oxygen in the air, electrons that have passed through the external circuit 6, and hydrogen in the negative electrode effluent J Ions react on the positive electrode 3 to generate water molecules.
In addition, a nitrifying bacteria holding carrier 18 is provided on the upper stage of the positive electrode 4, and ammonia ions in the negative electrode chamber effluent J are oxidized to nitrate ions by the action of the held nitrifying bacteria.

正極室4から越流する正極室流出液Kは、その一部が処理液Lとして系外に排出されるが、それ以外は正極室4へ循環、あるいは負極室2へ返送される。正極室4に循環される分に関しては、さらなる硝化の促進とともに、この正極室4における適切な上向流流速を確保するために利用される。   A part of the cathode chamber effluent K overflowing from the cathode chamber 4 is discharged out of the system as the treatment liquid L, but the others are circulated to the cathode chamber 4 or returned to the anode chamber 2. The portion circulated to the positive electrode chamber 4 is used for further promoting nitrification and ensuring an appropriate upward flow velocity in the positive electrode chamber 4.

一方、正極室流出液Kのうち負極室2に返送される分に関しては、当該室の下段に設置された脱窒菌保持担体19に保持された脱窒菌の作用により、当該溶液中の硝酸イオンが窒素ガスヘと還元される。
負極室流出液Jは、前述のように流速確保のためにも用いられるが、脱窒に要する時間を確保するためにも必要である。
On the other hand, with respect to the portion of the positive electrode chamber effluent K that is returned to the negative electrode chamber 2, nitrate ions in the solution are caused by the action of the denitrifying bacteria held in the denitrifying bacteria holding carrier 19 installed in the lower stage of the chamber. Reduced to nitrogen gas.
The negative electrode chamber effluent J is used for securing the flow rate as described above, but is also necessary for securing the time required for denitrification.

実施例2で示した二槽式の汚泥返流水処理装置を一槽式の装置とすることも可能であり、その一例の断面図を図4に示す。
汚泥返流水Aは、導入管20を通じて上向流として処理槽21へ投入される。当該槽の内部には、筒状の内壁22が設けられており、投入された汚泥返流水Aは、図4中の破線矢印で示すように、この内壁22の内側を上向流で流れ、その外側と処理槽21の間を下降流の循環液Mとして流れる。
The two-tank sludge return water treatment device shown in Example 2 can be a single-tank device, and a cross-sectional view of an example thereof is shown in FIG.
The sludge return water A is introduced into the treatment tank 21 as an upward flow through the introduction pipe 20. Inside the tank, a cylindrical inner wall 22 is provided, and the introduced sludge return water A flows upward in the inner wall 22 as shown by the broken line arrow in FIG. It flows between the outside and the treatment tank 21 as a circulating fluid M in a downward flow.

内壁22は、前述のように上・下降流を生み出す他に、電極や微生物保持担体及び散気装置を支持する役割も果たす。
すなわち、下端から順番に、脱窒菌保持担体19、負極1、散気装置15、正極3及び硝化菌保持担体18を支持することになる。
なお、本実施例では、脱窒菌保持担体19及び硝化菌保持担体18は、内壁22に固定されるタイプの担体を表しているが、各々流出しないような機構を設けた上で浮遊タイプの担体を使用することも可能である。
The inner wall 22 plays a role of supporting the electrode, the microorganism holding carrier and the air diffuser in addition to generating the upward / downward flow as described above.
That is, the denitrifying bacteria holding carrier 19, the negative electrode 1, the air diffuser 15, the positive electrode 3, and the nitrifying bacteria holding carrier 18 are supported in order from the lower end.
In this embodiment, the denitrifying bacteria holding carrier 19 and the nitrifying bacteria holding carrier 18 represent a type of carrier that is fixed to the inner wall 22, but a floating type carrier provided with a mechanism that does not flow out. Can also be used.

汚泥返流水A中の有機物は、負極1上に保持された微生物によって分解・除去されるとともに、この代謝過程において当該電極に受け渡された電子は外部回路6を通じて上段に設けられた正極3へ移動する。
負極1の上段には、散気装置15が設けられており、空気配管23を通じて空気Dが導入されるが、空気Dに含まれる酸素が、負極1において発生した水素イオンと、外部回路6を通じて正極3に送られた電子とともに、正極3上において反応し水を生成する。
さらに、空気Dに含まれる酸素は、硝化菌保持担体18に保持された硝化菌が、汚泥返流水A中のアンモニアイオンを硝酸イオンに酸化するのに利用されるとともに、残存している有機物をさらに好気的に分解するのに利用される。
The organic matter in the sludge return water A is decomposed and removed by the microorganisms held on the negative electrode 1, and electrons transferred to the electrode in this metabolic process go to the positive electrode 3 provided in the upper stage through the external circuit 6. Moving.
An air diffuser 15 is provided on the upper stage of the negative electrode 1, and air D is introduced through the air pipe 23, and oxygen contained in the air D passes through hydrogen ions generated in the negative electrode 1 and the external circuit 6. It reacts on the positive electrode 3 together with the electrons sent to the positive electrode 3 to generate water.
Further, oxygen contained in the air D is used by the nitrifying bacteria held in the nitrifying bacteria holding carrier 18 to oxidize ammonia ions in the sludge return water A to nitrate ions, and the remaining organic substances are removed. It is also used to decompose aerobically.

内壁22を通過してきた溶液は、一部は越流壁24を越えて、処理水Lとして系外に排出されるが、その他は内壁22と処理槽21の間を下降流の循環液Mとして流れていく。
この間、当該溶液に含まれる酸素は比重が軽いため上方へ移動し大気に放出されたり、残存している有機物等との反応に消費され、当該溶液中の酸素濃度は徐々に低下し、底部ではほぼゼロ、すなわち嫌気状態になる。
A part of the solution that has passed through the inner wall 22 passes through the overflow wall 24 and is discharged out of the system as treated water L, and the other is a circulating fluid M that flows between the inner wall 22 and the treatment tank 21 as a downward flow. It flows.
During this time, the oxygen contained in the solution has a low specific gravity, so it moves upward and is released to the atmosphere, or consumed for the reaction with the remaining organic matter, etc., and the oxygen concentration in the solution gradually decreases, and at the bottom Almost zero, that is, anaerobic state.

処理槽21の底部にまで達した循環液Mは、導入管20から流入する汚泥返流水Aとともに、再び内壁22の内部を上向流として流れるが、内壁22の下端には脱窒菌保持担体19が設けられており、当該担体19に保持された脱窒菌が、循環液M中の硝酸イオンと汚泥返流水A中の有機物を利用して脱窒、すなわち硝酸イオンから窒素ガスヘの還元を行い、これによって溶液からの窒素除去が可能となる。   The circulating fluid M that has reached the bottom of the treatment tank 21 flows again as an upward flow inside the inner wall 22 together with the sludge return water A flowing from the introduction pipe 20, but at the lower end of the inner wall 22, the denitrifying bacteria holding carrier 19. The denitrifying bacteria held in the carrier 19 are denitrified using nitrate ions in the circulating fluid M and organic matter in the sludge return water A, that is, nitrate ions are reduced to nitrogen gas, This makes it possible to remove nitrogen from the solution.

以上、本発明の汚泥返流水の処理方法及び処理装置について、複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、各実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the processing method and processing apparatus of sludge return water of the present invention were explained based on a plurality of examples, the present invention is not limited to the composition described in the above-mentioned example, and is described in each example. The configurations can be appropriately changed without departing from the gist of the configurations, for example, by appropriately combining the configurations.

本発明の汚泥返流水の処理方法及び処理装置は、汚泥返流水を処理する過程で発生する汚泥量を極力少なくし、かつ汚泥返流水そのものを有効に活用するという特性を有していることから、例えば、下水処理場などで好適に用いることができる。   The method and apparatus for treating sludge return water according to the present invention has the characteristics that the amount of sludge generated in the process of treating sludge return water is minimized and the sludge return water itself is effectively utilized. For example, it can be suitably used in a sewage treatment plant.

微生物燃料電池を示す概念図である。It is a conceptual diagram which shows a microbial fuel cell. 本発明の汚泥返流水の処理装置の第1実施例を示すフロー図である。It is a flowchart which shows 1st Example of the processing apparatus of sludge return water of this invention. 本発明の汚泥返流水の二槽式処理装置を示すフロー図である。It is a flowchart which shows the 2 tank type processing apparatus of the sludge return water of this invention. 本発明の汚泥返流水の一槽式処理装置を示す断面図である。It is sectional drawing which shows the 1 tank type processing apparatus of the sludge return water of this invention.

1 負極
2 負極室
3 正極
4 正極室
5 プロトン透過膜
6 外部回路
7 嫌気性微生物
8 有機物
9 水素イオン
10 電子
11 分子状酸素
12 水分子
13 重力沈殿池
14 隔壁
15 散気装置
16 脱窒槽
17 凝集沈殿槽
18 硝化菌保持担体
19 脱窒菌保持担体
20 導入管
21 処理槽
22 内壁
23 空気配管
24 越流壁
A 汚泥返流水
B 上澄水
C 沈殿汚泥
D 空気
E 一次処理水
F 二次処理水
G 凝集剤
H 最終処理水
I 凝集汚泥
J 負極室流出水
K 正極室流出水
L 処理水
M 循環液
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Negative electrode chamber 3 Positive electrode 4 Positive electrode chamber 5 Proton permeable membrane 6 External circuit 7 Anaerobic microorganism 8 Organic substance 9 Hydrogen ion 10 Electron 11 Molecular oxygen 12 Water molecule 13 Gravity sedimentation basin 14 Partition 15 Aeration apparatus 16 Denitrification tank 17 Aggregation Precipitation tank 18 Nitrifying bacteria holding carrier 19 Denitrifying bacteria holding carrier 20 Introduction pipe 21 Treatment tank 22 Inner wall 23 Air piping 24 Overflow wall A Sludge return water B Supernatant water C Precipitation sludge D Air E Primary treated water F Secondary treated water G Aggregation Agent H Final treated water I Aggregated sludge J Anode chamber effluent K Cathode chamber effluent L Treated water M Circulating fluid

Claims (6)

下水処理の過程で発生する最初沈殿池汚泥、最終沈殿池汚泥、又は好気性・嫌気性消化によって得られる消化汚泥等の汚泥を処理する汚泥処理系の中で、汚泥を濃縮・脱水処理することによって生じる汚泥返流水の処理方法において、汚泥返流水中の有機物を微生物燃料電池の燃料源とすることにより除去するに際し、微生物燃料電池の正極側に、酸素ガス又は空気中に含まれる酸素と硝化菌とを導入することを特徴とする汚泥返流水の処理方法。 Concentrate and dewater sludge in a sludge treatment system that treats sludge such as first sedimentation basin sludge, final sedimentation basin sludge, or digested sludge obtained by aerobic / anaerobic digestion during the sewage treatment process. When the organic matter in the sludge return water is removed as a fuel source for the microbial fuel cell, oxygen and nitrogen contained in the oxygen gas or air are nitrified on the positive electrode side of the microbial fuel cell. A method for treating sludge return water, characterized by introducing bacteria . 嫌気状態に保たれた微生物燃料電池の負極側に脱窒菌を導入し、硝酸イオンを含む溶液を該負極側に循環させることを特徴とする請求項記載の汚泥返流水の処理方法。 Introducing denitrifying bacteria to the negative of the microbial fuel cell which is kept in anaerobic conditions, the sludge return running water processing method according to claim 1, wherein the solution is characterized by circulating the negative electrode side containing nitrate ions. 硝化に関与する硝化菌を微生物燃料電池の正極に、脱窒に関与する脱窒菌を該微生物燃料電池の負極に保持することを特徴とする請求項記載の汚泥返流水の処理方法。 The method for treating sludge return water according to claim 2, wherein nitrifying bacteria involved in nitrification are held in the positive electrode of the microbial fuel cell, and denitrifying bacteria involved in denitrification are held in the negative electrode of the microbial fuel cell. 下水処理の過程で発生する最初沈殿池汚泥、最終沈殿池汚泥、又は好気性・嫌気性消化によって得られる消化汚泥等の汚泥を処理する汚泥処理系の中で、汚泥を濃縮・脱水処理することによって生じる汚泥返流水の処理装置において、汚泥返流水が流入し、該汚泥返流水の有機物を燃料源とする微生物燃料電池を設け、該微生物燃料電池の正極側に、酸素ガス又は空気中に含まれる酸素と硝化菌とを導入するようにしたことを特徴とする汚泥返流水の処理装置。 Concentrate and dewater sludge in a sludge treatment system that treats sludge such as first sedimentation basin sludge, final sedimentation basin sludge, or digested sludge obtained by aerobic / anaerobic digestion during the sewage treatment process. In the treatment apparatus for sludge return water produced by the above, sludge return water flows in, a microbial fuel cell using the organic matter of the sludge return water as a fuel source is provided , and contained in oxygen gas or air on the positive electrode side of the microbial fuel cell The sludge return water treatment apparatus is characterized in that oxygen and nitrifying bacteria are introduced . 嫌気状態に保たれた微生物燃料電池の負極側に脱窒菌を導入し、硝酸イオンを含む溶液を該負極側に循環させるようにしたことを特徴とする請求項記載の汚泥返流水の処理装置。 The apparatus for treating sludge return water according to claim 4 , wherein denitrifying bacteria are introduced to the negative electrode side of the microbial fuel cell kept in an anaerobic state, and a solution containing nitrate ions is circulated to the negative electrode side. . 硝化に関与する硝化菌を微生物燃料電池の正極に、脱窒に関与する脱窒菌を該微生物燃料電池の負極に保持せしめたことを特徴とする請求項記載の汚泥返流水の処理装置。 6. The apparatus for treating sludge return water according to claim 5, wherein nitrifying bacteria involved in nitrification are held in the positive electrode of the microbial fuel cell, and denitrifying bacteria involved in denitrification are held in the negative electrode of the microbial fuel cell.
JP2004266629A 2004-09-14 2004-09-14 Method and apparatus for treating sludge return water Expired - Fee Related JP4610977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266629A JP4610977B2 (en) 2004-09-14 2004-09-14 Method and apparatus for treating sludge return water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266629A JP4610977B2 (en) 2004-09-14 2004-09-14 Method and apparatus for treating sludge return water

Publications (2)

Publication Number Publication Date
JP2006081963A JP2006081963A (en) 2006-03-30
JP4610977B2 true JP4610977B2 (en) 2011-01-12

Family

ID=36160893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266629A Expired - Fee Related JP4610977B2 (en) 2004-09-14 2004-09-14 Method and apparatus for treating sludge return water

Country Status (1)

Country Link
JP (1) JP4610977B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944697A (en) * 2015-06-12 2015-09-30 浙江大学 Microbial electrolysis cell-Fenton combined treatment device and process for treating furniture production wastewater
CN107251298A (en) * 2015-03-11 2017-10-13 松下电器产业株式会社 Microbial fuel cells system

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037261A1 (en) * 2005-09-28 2007-04-05 Ebara Corporation Biological power plant, and method of treating organic solid contaminant-containing waste, method of treating organic high molecular substance-containing liquid waste and method of treating organic substance-containing liquid waste by using the biological power plant, and apparatus for conducting these methods
WO2008109911A1 (en) * 2007-03-15 2008-09-18 The University Of Queensland Microbial fuel cell
KR101426985B1 (en) 2008-03-28 2014-08-06 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 Microbial fuel cell
KR101102310B1 (en) 2009-06-26 2012-01-03 연세대학교 산학협력단 Multiple energy recovery and carbon control MERCC in wastewater treatment process
KR101093443B1 (en) 2009-10-30 2011-12-19 코오롱건설주식회사 Sewage disposal device with generating electric power and method for generating electric power of that
JP5222317B2 (en) * 2010-03-31 2013-06-26 三井造船株式会社 Heat exchanger having battery function and methane fermentation treatment system using the heat exchanger
CN102263279A (en) * 2011-07-06 2011-11-30 武汉理工大学 Microbial fuel cell device with artificial wetland aquatic plant electrodes
EP2782180A4 (en) 2011-11-16 2015-08-05 Nat Univ Corp Toyohashi Univ Microbial power generation device, electrode for microbial power generation device, and method for producing same
CN102427142B (en) * 2011-12-13 2013-10-30 南京工业大学 Chlorella microbiological fuel cell reactor
JP5812874B2 (en) * 2012-01-13 2015-11-17 積水化学工業株式会社 Microbial fuel cell system
US9343770B2 (en) * 2012-07-27 2016-05-17 Livolt, LLC Microbial fuel cell, and related systems and methods
CN103043872A (en) * 2013-01-23 2013-04-17 哈尔滨工业大学 Sewage treatment device combining microbial fuel cell and dynamic membrane
CN103159331B (en) * 2013-04-10 2014-06-18 重庆大学 Method and device for simultaneously carrying out wastewater treatment and power generation by using photocatalysis associated microbial fuel cell technology
CN103241895B (en) * 2013-04-28 2014-10-01 哈尔滨工业大学 Membrane biological electrochemical reactor device with high-quality effluent and low membrane pollution
CN103956510A (en) * 2014-04-21 2014-07-30 华南理工大学 Microbial fuel cell with double chambers for simultaneous phosphorus and nitrogen removal
JP2016087497A (en) * 2014-10-30 2016-05-23 国立大学法人 東京大学 Method of treating nitrogen-containing compound containing water
JP6441066B2 (en) * 2014-12-22 2018-12-19 国立大学法人 東京大学 Apparatus for treating nitrogen-containing compound-containing water containing organic nitrogen compound, and method for treating nitrogen-containing compound-containing water containing organic nitrogen compound
JPWO2016136957A1 (en) * 2015-02-27 2017-11-30 東レ株式会社 Organic substance-containing water treatment method and organic substance-containing water treatment apparatus
JP2017159210A (en) * 2016-03-08 2017-09-14 富士電機株式会社 Nitrification denitration type wastewater treatment system
CN105600930B (en) * 2016-03-09 2018-10-26 沈阳建筑大学建筑设计研究院 Denitrogenation dephosphorizing produces electricity device
CN105923945B (en) * 2016-05-16 2018-09-11 浙江工商大学 A kind of bioelectrochemistry auxiliary Non-energy-consumption recycles the device and method of phosphorus in sludge
CN105948223B (en) * 2016-06-30 2019-10-15 河海大学 A kind of microbial fuel cell unit of three battery system and its application
CN106186346A (en) * 2016-09-26 2016-12-07 合肥工业大学 A kind of biological floating foundation of micro-electricity and preparation method thereof and the method for ecological bed strengthened purification water body nitrogen phosphorus based on it
CN106977044B (en) * 2017-03-27 2020-12-29 南京工业大学 Photovoltaic three-dimensional micro-electricity-magnetic field drive reinforced composite anaerobic wastewater treatment system and process
CN107324483A (en) * 2017-07-27 2017-11-07 沈阳建筑大学建筑设计研究院 The many cathode chamber denitrification dephosphorization electricity production devices of biomembrance process
CN107364948A (en) * 2017-07-27 2017-11-21 沈阳建筑大学建筑设计研究院 Activated sludge fado cathode chamber denitrification dephosphorization produces electricity device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256295A (en) * 1994-03-22 1995-10-09 Ngk Insulators Ltd Treatment of sewage return water
JPH08318292A (en) * 1995-05-26 1996-12-03 Tsukishima Kikai Co Ltd Waste water treatment method and apparatus
JPH09155388A (en) * 1995-12-12 1997-06-17 Nkk Corp Denitrification device using biological catalyst
JP2004517437A (en) * 1999-07-07 2004-06-10 コリア インスティテュート オブ サイエンス アンド テクノロジー Biofuel cells using activated sludge for wastewater and wastewater treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256295A (en) * 1994-03-22 1995-10-09 Ngk Insulators Ltd Treatment of sewage return water
JPH08318292A (en) * 1995-05-26 1996-12-03 Tsukishima Kikai Co Ltd Waste water treatment method and apparatus
JPH09155388A (en) * 1995-12-12 1997-06-17 Nkk Corp Denitrification device using biological catalyst
JP2004517437A (en) * 1999-07-07 2004-06-10 コリア インスティテュート オブ サイエンス アンド テクノロジー Biofuel cells using activated sludge for wastewater and wastewater treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251298A (en) * 2015-03-11 2017-10-13 松下电器产业株式会社 Microbial fuel cells system
CN104944697A (en) * 2015-06-12 2015-09-30 浙江大学 Microbial electrolysis cell-Fenton combined treatment device and process for treating furniture production wastewater

Also Published As

Publication number Publication date
JP2006081963A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4610977B2 (en) Method and apparatus for treating sludge return water
KR101093443B1 (en) Sewage disposal device with generating electric power and method for generating electric power of that
JP2000015288A (en) Waste water treatment method and apparatus
JP2007160147A (en) Advanced sewage treatment method and system
JP5814768B2 (en) Nitrogen-containing organic wastewater treatment system and treatment method
JP6749313B2 (en) Water treatment method and water treatment device
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP5262735B2 (en) Anaerobic treatment method and apparatus
JP5166014B2 (en) Equipment for removing dissolved hydrogen sulfide in anaerobic treatment
JP5858763B2 (en) Nitrogen-containing organic wastewater treatment system and treatment method
JP2006305488A (en) Method of treating organic sludge
JPH0531490A (en) Biological treatment of organic sewage
JP4642635B2 (en) High concentration organic waste liquid treatment method and apparatus
JP2006167512A (en) Apparatus and method for treating methane fermented substance
JP4631162B2 (en) Organic waste treatment methods
KR20180012519A (en) Method for removing nitrogen through bioelectrochemical system and the device for the system
KR20140093441A (en) Low energy consumption type waste water treatment apparatus and its operation method
KR20020079029A (en) A zero-sludge -discharging membrane bioreactor(Z-MBR) activated sludge process
JP2017018861A (en) Method for removing nitrogen and nitrogen removal device
JP6113611B2 (en) Organic wastewater treatment system
KR100714825B1 (en) Method for treating sewage and high organic loading wastewater by anaerobic/oxic process with membrane and biological aerated filter
KR20010007939A (en) Advanced Treatment Process of Domestic Wastewater by Biological and Chemical
KR20000026051A (en) Tertiary treatment of wastewater using digested sludge
JP2001232388A (en) Method and apparatus for treating waste liquor
JP2009195783A (en) Organic wastewater treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees