JP2002355698A - Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor - Google Patents

Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor

Info

Publication number
JP2002355698A
JP2002355698A JP2001163977A JP2001163977A JP2002355698A JP 2002355698 A JP2002355698 A JP 2002355698A JP 2001163977 A JP2001163977 A JP 2001163977A JP 2001163977 A JP2001163977 A JP 2001163977A JP 2002355698 A JP2002355698 A JP 2002355698A
Authority
JP
Japan
Prior art keywords
water
sludge
supercritical
separated
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001163977A
Other languages
Japanese (ja)
Other versions
JP2002355698A5 (en
Inventor
Osamu Nakamori
理 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2001163977A priority Critical patent/JP2002355698A/en
Publication of JP2002355698A publication Critical patent/JP2002355698A/en
Publication of JP2002355698A5 publication Critical patent/JP2002355698A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of supercritical water oxidative decomposition of organic sludge capable of suppressing ammonia, nitric acid, nitrous acid and total nitrogen in treated water. SOLUTION: In a method for concentrating organic sludge obtained by biologically treating organic wastewater to separate the same into concentrated sludge and separated water to oxidize and decompose the concentrated sludge in the presence of supercritical water under a condition not lower than the critical temperature of water and not less than the critical pressure thereof, separated water is added to a supercritical water oxidizing reaction system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥に代表さ
れる有機性廃水の生物処理装置から発生する有機性汚泥
の酸化処理方法およびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for oxidizing organic sludge generated from a biological treatment apparatus for organic wastewater represented by sewage sludge.

【0002】[0002]

【従来の技術】従来、下水汚泥等を酸化処理する方法と
して、主に焼却による方法が一般的であった。しかしな
がら、下水汚泥は水分含有量が97〜98%と高いた
め、下水汚泥を焼却処理するためには、予め下水汚泥を
スクリュープレス型脱水機等の脱水手段により脱水し、
焼却可能な範囲までその水分量を低減させる必要があっ
た。
2. Description of the Related Art Heretofore, as a method of oxidizing sewage sludge and the like, a method of mainly incineration has been generally used. However, since the sewage sludge has a high water content of 97 to 98%, in order to incinerate the sewage sludge, the sewage sludge is previously dehydrated by a dehydration means such as a screw press type dehydrator.
It was necessary to reduce the water content to the extent that it could be incinerated.

【0003】一方近年になり、超臨界状態の水を用い
て、下水汚泥を直接酸化処理する方法が提案されてい
る。下水を生物処理装置で処理して得られる下水汚泥
は、発熱量が低いため、通常5〜15重量%に下水汚泥
を濃縮して超臨界水酸化処理するのが一般的である。
On the other hand, in recent years, a method of directly oxidizing sewage sludge using water in a supercritical state has been proposed. Since sewage sludge obtained by treating sewage with a biological treatment apparatus has a low calorific value, it is general that the sewage sludge is concentrated to 5 to 15% by weight and subjected to a supercritical water oxidation treatment.

【0004】図4を参照して、従来の濃縮汚泥を超臨界
水酸化する超臨界水酸化装置を説明する。図4は従来の
超臨界水酸化装置の構成を示すフローシートである。従
来の超臨界水酸化装置30は、図4に示すように、超臨
界水酸化反応を行う反応器として、チューブラー状の長
い耐圧密閉型反応器31を備え、反応器31の上流に
は、濃縮汚泥を供給する濃縮汚泥ポンプ39と酸素を供
給する空気圧縮機40と反応物を予熱する二重管式熱交
換器32を、反応器31の下流には、反応生成物を冷却
する熱交換器33及び冷却器34を備えている。反応器
31に供給される濃縮汚泥は、不図示の生物処理装置に
より処理された下水汚泥を、遠心濃縮機等の濃縮機42
で濃縮されたものである。下水汚泥を濃縮して得られる
分離液は、系外へ排出される。
With reference to FIG. 4, a conventional supercritical water oxidation apparatus for supercritical water oxidation of concentrated sludge will be described. FIG. 4 is a flow sheet showing the configuration of a conventional supercritical water oxidation apparatus. As shown in FIG. 4, the conventional supercritical water oxidation apparatus 30 includes a tubular long pressure-resistant closed reactor 31 as a reactor for performing a supercritical water oxidation reaction, and upstream of the reactor 31, A concentrated sludge pump 39 for supplying the concentrated sludge, an air compressor 40 for supplying the oxygen, a double-tube heat exchanger 32 for preheating the reactants, and a heat exchanger for cooling the reaction products downstream of the reactor 31. A device 33 and a cooler are provided. The concentrated sludge supplied to the reactor 31 is obtained by converting sewage sludge treated by a biological treatment device (not shown) into a concentrator 42 such as a centrifugal concentrator.
It is concentrated in. The separated liquid obtained by concentrating the sewage sludge is discharged out of the system.

【0005】熱交換器33で反応生成物を冷却すること
により、熱媒は高温となり、二重管式熱交換器32で被
処理物混合流体を予熱する熱源として使用される。更
に、超臨界水酸化装置30は、反応器31内の圧力を制
御する圧力制御弁35を冷却器34の下流に、反応生成
物をガスとスラリーとに気液分離する気液分離器36を
圧力制御弁35の下流に、及び、スラリー状の反応生成
物を固液分離して、無機固形物を反応生成物から分離す
る固液分離器37を備えている。固液分離器37で分離
された無機固形物は、主として、反応物中に含まれ、反
応に寄与しなかったものであって、加えて、超臨界水酸
化反応により生成した塩を含むこともある。
When the reaction product is cooled by the heat exchanger 33, the temperature of the heat medium becomes high, and the heat medium is used by the double-tube heat exchanger 32 as a heat source for preheating the mixed fluid to be processed. Further, the supercritical water oxidation apparatus 30 includes a pressure control valve 35 for controlling the pressure in the reactor 31 downstream of the cooler 34 and a gas-liquid separator 36 for gas-liquid separation of the reaction product into gas and slurry. A solid-liquid separator 37 is provided downstream of the pressure control valve 35 and separates a solid reaction product from the reaction product by solid-liquid separation of a slurry-like reaction product. The inorganic solids separated by the solid-liquid separator 37 are mainly contained in the reactants and did not contribute to the reaction, and may also contain salts generated by the supercritical water oxidation reaction. is there.

【0006】従来の超臨界水酸化分解装置において汚泥
の濃度が低い場合は、補助燃料を供給して超臨界水酸化
する必要があった。
[0006] When the concentration of sludge is low in the conventional supercritical water oxidation cracking apparatus, it is necessary to supply an auxiliary fuel to perform supercritical water oxidation.

【0007】下水汚泥の超臨界水酸化処理において、安
定して効率的に処理するためには、汚泥の流動性を確保
しながら、補助燃料の供給を減らし、超臨界水酸化分解
後の処理流体を処理するための特別な後段処理を必要と
しないことが重要である。
[0007] In the supercritical water oxidation treatment of sewage sludge, in order to stably and efficiently treat the sludge, the supply of auxiliary fuel is reduced while ensuring the fluidity of the sludge, and the processing fluid after the supercritical water oxidation decomposition is processed. It is important that no special post-processing is required to process

【0008】しかしながら、汚泥中の単位有機物量あた
りの発熱量は低いため、補助燃料を減らすためには、効
率的に熱回収を行うとともに、汚泥の濃度を高くする必
要がある。しかし、汚泥の濃度が上昇すると、汚泥の流
動性は極端に低下し、汚泥を超臨界水酸化分解装置に供
給することが困難となる。
However, since the calorific value per unit amount of organic matter in the sludge is low, it is necessary to efficiently recover heat and increase the sludge concentration in order to reduce the amount of auxiliary fuel. However, when the concentration of the sludge increases, the fluidity of the sludge extremely decreases, and it becomes difficult to supply the sludge to the supercritical hydroxylation decomposition apparatus.

【0009】また、近年閉鎖系水域の富栄養化問題か
ら、窒素、リンの排出規制が強化される傾向にあること
から、超臨界水酸化分解した後の処理水中に窒素、リン
が極力残存しないようにすることが求められている。
In recent years, due to the problem of eutrophication in closed water bodies, the regulation of nitrogen and phosphorus emissions has tended to be strengthened. Therefore, nitrogen and phosphorus do not remain as much as possible in treated water after supercritical hydroxylation decomposition. It is required to do so.

【0010】これらのことを満足する手段として、特開
平11−90494号公報には、熱交換量に応じて汚泥
濃度を5〜15%程度に調整し、反応温度を600℃以
上とすることにより、汚泥の流動性を維持しつつ、補助
燃料をなくし、処理水中に窒素を残存させずに下水汚泥
を超臨界水酸化処理する方法が記載されている。
[0010] As means for satisfying these requirements, JP-A-11-90494 discloses that the sludge concentration is adjusted to about 5 to 15% in accordance with the amount of heat exchange, and the reaction temperature is set to 600 ° C or higher. A method is described in which auxiliary fluid is eliminated while maintaining the fluidity of sludge, and supercritical water oxidation of sewage sludge is performed without leaving nitrogen in the treated water.

【0011】これまで下水汚泥の超臨界水酸化におい
て、下水汚泥中の窒素成分はすべて加水分解により一端
アンモニアとなり、アンモニアが酸化されて硝酸および
亜硝酸となり、アンモニアと硝酸または亜硝酸の反応に
より処理水中から窒素成分が消失すると考えられてきた
(下記反応式(1)〜(3)参照)。
Heretofore, in supercritical water oxidation of sewage sludge, all nitrogen components in sewage sludge are once converted to ammonia by hydrolysis, ammonia is oxidized to nitric acid and nitrous acid, and treated by the reaction of ammonia with nitric acid or nitrous acid. It has been considered that nitrogen components disappear from water (see the following reaction formulas (1) to (3)).

【0012】 下水汚泥中の窒素成分 + H2O → NH4 … (1) NH4 + O2 → NO2 or NO3 … (2) NH4 + NO2 or NO3 → N2 or N2O … (3) この一連の反応において、反応式(2)で示したアンモ
ニアの酸化速度が律速となっており、反応式(1)の加
水分解によるアンモニアの生成および反応式(3)のア
ンモニアと硝酸または亜硝酸との反応は迅速に起こるた
め、硝酸または亜硝酸は処理水中に残存せず、アンモニ
アを完全に酸化させることで、処理水中から全ての窒素
成分を除去できると考えられていた。
[0012] Nitrogen component in sewage sludge + H 2 O → NH 4 ... (1) NH 4 + O 2 → NO 2 or NO 3 ... (2) NH 4 + NO 2 or NO 3 → N 2 or N 2 O (3) In this series of reactions, the rate of oxidation of ammonia shown in reaction formula (2) is rate-determining, and the production of ammonia by hydrolysis in reaction formula (1) and the conversion of ammonia in reaction formula (3) Since the reaction with nitric acid or nitrous acid occurs rapidly, it was considered that nitric acid or nitrous acid did not remain in the treated water, and that all nitrogen components could be removed from the treated water by completely oxidizing ammonia.

【0013】しかしながら、下水汚泥の超臨界水酸化分
解について詳細に検討したところ、汚泥中のアンモニア
以外の有機態窒素は、450℃程度の低温では反応式
(4)に示すように加水分解によるアンモニア生成が主
反応となり、500℃以上の高温になると反応式(5)
に示すように酸化による硝酸または亜硝酸の生成が主反
応となることが確認された。
However, when the supercritical hydroxylation of sewage sludge was examined in detail, organic nitrogen other than ammonia in the sludge was converted to ammonia by hydrolysis at a low temperature of about 450 ° C. as shown in reaction formula (4). Formation is the main reaction, and when the temperature rises to 500 ° C. or higher, the reaction formula (5)
As shown in the above, it was confirmed that the production of nitric acid or nitrous acid by oxidation was the main reaction.

【0014】 有機態窒素 + H2O → NH4 … (4) 有機態窒素 + O2 → NO2 or NO3 … (5) 下水汚泥濃度を5〜15%程度まで濃縮した場合、濃縮
された汚泥中の有機態窒素の比率が多くなるため、反応
温度を550℃程度の高温で超臨界水酸化処理すると、
処理水中に硝酸および亜硝酸が残存する。一方、濃縮さ
れた汚泥を反応温度400℃程度の低温で超臨界水酸化
処理すると、有機態窒素であってもアンモニア生成が主
反応となり、かつ汚泥中に含まれるアンモニアも残存す
るため、処理水中には大量のアンモニアが残存する。
Organic nitrogen + H 2 O → NH 4 (4) Organic nitrogen + O 2 → NO 2 or NO 3 (5) When the concentration of sewage sludge was concentrated to about 5 to 15%, the concentration was increased. Because the ratio of organic nitrogen in the sludge increases, if the reaction temperature is supercritically hydroxylated at a high temperature of about 550 ° C,
Nitric acid and nitrous acid remain in the treated water. On the other hand, when the concentrated sludge is subjected to supercritical water oxidation at a low reaction temperature of about 400 ° C., even in the case of organic nitrogen, ammonia production becomes the main reaction, and the ammonia contained in the sludge also remains. A large amount of ammonia remains.

【0015】従って、下水汚泥を超臨界水酸化処理する
場合、低温ではアンモニアが残存し、高温では硝酸が残
存するため、処理水中の全窒素を低減することが困難と
なる。
Therefore, when sewage sludge is subjected to supercritical water oxidation, ammonia remains at low temperatures and nitric acid remains at high temperatures, making it difficult to reduce total nitrogen in the treated water.

【0016】[0016]

【発明が解決しようとする課題】上述のように、下水汚
泥等の有機性汚泥の超臨界水酸化処理においては、反応
温度が低温ではアンモニアが残存し、高温では硝酸およ
び亜硝酸が残存するため、反応温度を厳密に制御するこ
とが必要となる。例えば、固形物濃度10%(重量%)
まで濃縮した濃縮汚泥の場合には、反応温度を500℃
前後に固定することで、処理水中のアンモニアが極微少
となり、硝酸または亜硝酸の残存量をある程度抑制でき
るが、全窒素としては100mg/L程度残存する場合
が多い。
As described above, in supercritical water oxidation of organic sludge such as sewage sludge, ammonia remains at a low reaction temperature, and nitric acid and nitrous acid remain at a high reaction temperature. It is necessary to control the reaction temperature strictly. For example, solid matter concentration 10% (% by weight)
In the case of concentrated sludge that has been concentrated to
By fixing the front and rear sides, the amount of ammonia in the treated water becomes extremely small, and the residual amount of nitric acid or nitrous acid can be suppressed to some extent, but about 100 mg / L of total nitrogen often remains.

【0017】この場合、硝酸および亜硝酸の生成を抑え
るためには反応温度を低下させればよいが、反応温度を
少しでも低下させすぎると、逆にアンモニアが残存し、
場合によってはTOC成分も残存することがある。TO
C成分が残存すると、窒素、リンの排出規制がない場合
の排水基準も満たさないため、反応温度を500℃以上
とすることが必要となり、この条件では硝酸または亜硝
酸の生成を抑制することは難しくなる。
In this case, in order to suppress the production of nitric acid and nitrous acid, the reaction temperature may be lowered, but if the reaction temperature is lowered too much, ammonia remains on the contrary,
In some cases, the TOC component may also remain. TO
If the C component remains, the reaction temperature must be 500 ° C. or higher because the drainage standard in the case where there is no regulation of nitrogen and phosphorus emission is not satisfied. It becomes difficult.

【0018】本発明が解決しようとする課題は、従来の
超臨界水を用いた下水汚泥等の有機性汚泥の酸化処理の
欠点を解消し、処理水中の、アンモニア、硝酸および亜
硝酸と全窒素を抑制することができる、有機性汚泥の超
臨界水酸化分解方法および超臨界水酸化分解装置を提供
することにある。
An object of the present invention is to solve the drawbacks of the conventional oxidation treatment of organic sludge such as sewage sludge using supercritical water, and to remove ammonia, nitric acid and nitrous acid and total nitrogen in treated water. It is an object of the present invention to provide a method and a device for supercritically hydrolyzing organic sludge, which can suppress the occurrence of organic sludge.

【0019】[0019]

【課題を解決するための手段】本発明者らは、下水汚泥
を超臨界水酸化して実験を重ねた結果、下水汚泥を濃縮
する際に得られる分離水は従来系外へ排出していたが、
この分離水を超臨界水酸化反応系に添加することによ
り、上記課題が解決されることを見出し、本発明を完成
するに至った。
Means for Solving the Problems The inventors of the present invention have repeated experiments with supercritical water oxidation of sewage sludge, and as a result, separated water obtained when concentrating sewage sludge has been discharged outside the conventional system. But,
By adding this separated water to the supercritical water oxidation reaction system, it was found that the above-mentioned problem was solved, and the present invention was completed.

【0020】すなわち、上記課題を解決するための第1
の発明は、有機性排水を生物処理して得られる有機性汚
泥を濃縮汚泥と分離水に濃縮分離し、水の臨界温度以上
でかつ臨界圧力以上の条件で、超臨界水の存在下に、該
濃縮汚泥を酸化分解する方法において、該分離水を超臨
界水酸化反応系に添加することを特徴とする有機性汚泥
の超臨界水酸化分解方法に関するものである。
That is, a first solution for solving the above-mentioned problem.
The invention of the present invention, the organic sludge obtained by biological treatment of the organic wastewater is concentrated and separated into concentrated sludge and separated water, at a temperature above the critical temperature of water and above the critical pressure, in the presence of supercritical water, The present invention relates to a method for oxidatively decomposing concentrated sludge, wherein the separated water is added to a supercritical water oxidation reaction system, the method comprising supercritical water oxidation and decomposition of organic sludge.

【0021】また、上記課題を解決するための第2の発
明は、超臨界水中で有機性汚泥および酸化剤を反応さ
せ、有機性汚泥を超臨界水酸化分解する装置において、
有機性汚泥を濃縮汚泥と分離水に分離する濃縮分離手段
と、濃縮汚泥および酸化剤を水の臨界圧力以上に加圧供
給する加圧供給手段と、該加圧供給手段から加圧供給さ
れた濃縮汚泥および酸化剤からなる被処理物混合流体の
超臨界水酸化反応を行う反応器と、該反応器に前記分離
水を供給する分離水供給手段と、該反応器から流出する
反応後の処理流体を冷却する冷却手段と、該冷却手段か
ら流出する冷却された処理流体を取り出す取り出し手段
を備えたことを特徴とする超臨界水酸化分解装置に関す
るものである。
According to a second aspect of the present invention, there is provided an apparatus for reacting an organic sludge and an oxidizing agent in supercritical water to supercritically decompose the organic sludge.
A concentration separation means for separating the organic sludge into concentrated sludge and separated water, a pressurized supply means for pressurizing the concentrated sludge and the oxidizing agent to a pressure higher than the critical pressure of water, and a pressurized supply from the pressurized supply means A reactor for performing a supercritical water oxidation reaction of a mixed fluid of a substance to be treated composed of a concentrated sludge and an oxidizing agent, separation water supply means for supplying the separation water to the reactor, and post-reaction treatment flowing out of the reactor The present invention relates to a supercritical hydroxylation decomposition apparatus comprising a cooling means for cooling a fluid, and a take-out means for taking out a cooled processing fluid flowing out of the cooling means.

【0022】また、上記課題を解決する第3の発明は、
超臨界水中で有機性汚泥および酸化剤を反応させ、有機
性汚泥を超臨界水酸化分解する装置において、有機性汚
泥を濃縮汚泥と分離水に分離する濃縮分離手段と、分離
水の一部を該濃縮汚泥に供給する分離水供給手段と、濃
縮汚泥、分離水および酸化剤を水の臨界圧力以上に加圧
供給する加圧供給手段と、該加圧供給手段から加圧供給
された濃縮汚泥、分離水および酸化剤からなる被処理物
混合流体の超臨界水酸化反応を行う反応器と、該反応器
から流出する反応後の処理流体を冷却する冷却手段と、
該冷却手段から流出する冷却された処理流体を取り出す
取り出し手段を備えたことを特徴とする超臨界水酸化分
解装置に関するものである。
A third aspect of the present invention for solving the above problems is:
In a device that reacts organic sludge and an oxidizing agent in supercritical water and supercritically hydrolyzes organic sludge, a concentration separation means for separating organic sludge into concentrated sludge and separated water, and a part of separated water Separation water supply means for supplying the concentrated sludge, pressurized supply means for supplying concentrated sludge, separated water and oxidizing agent at a pressure higher than the critical pressure of water, and concentrated sludge pressurized and supplied from the pressurized supply means A reactor for performing a supercritical water oxidation reaction of the mixed fluid of the object to be treated comprising separated water and an oxidizing agent, and a cooling means for cooling the treated fluid after the reaction flowing out of the reactor,
The present invention relates to a supercritical hydroxylation decomposition apparatus comprising a take-out means for taking out a cooled processing fluid flowing out of the cooling means.

【0023】分離液を添加することにより、アンモニア
の比率が適度に増加するため分離液の添加がない場合に
は硝酸および亜硝酸が生成する条件でも硝酸および亜硝
酸を低減させることができる。
[0023] By adding the separating solution, the ratio of ammonia is increased appropriately, so that nitric acid and nitrous acid can be reduced even under conditions where nitric acid and nitrous acid are generated without adding the separating solution.

【0024】[0024]

【発明の実施の形態】本発明における有機性汚泥とは、
生活排水や工場排水等の有機性の排水を生物処理して得
られるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The organic sludge in the present invention is
It is obtained by biological treatment of organic wastewater such as domestic wastewater and industrial wastewater.

【0025】本発明の有機性汚泥の超臨界水酸化分解方
法は、有機性排水を生物処理して得られる有機性汚泥を
濃縮汚泥と分離水に濃縮分離し、濃縮汚泥を超臨界水の
存在下で酸化する際に、この超臨界水酸化反応系に前記
分離水の全部または一部を添加することを特徴とするも
のである。分離水を添加する位置は特に限定されない
が、例えば、分離した濃縮汚泥に添加して、濃縮汚泥と
ともに反応器に加圧供給してもよく、または反応器の後
段もしくは反応器の出口に加圧供給してもよい。
In the method for supercritically hydrolyzing organic sludge according to the present invention, the organic sludge obtained by biological treatment of organic wastewater is concentrated and separated into concentrated sludge and separated water, and the concentrated sludge is separated into supercritical water. When oxidizing below, all or a part of the separated water is added to the supercritical water oxidation reaction system. The position at which the separated water is added is not particularly limited.For example, the separated water may be added to the separated concentrated sludge and supplied to the reactor under pressure together with the concentrated sludge, or the pressure may be supplied to the subsequent stage of the reactor or the outlet of the reactor May be supplied.

【0026】超臨界水酸化反応は、超臨界状態の水と酸
化剤の存在下に濃縮汚泥の酸化分解を行うものである。
反応器において行なわれる超臨界水酸化反応は、水を超
臨界状態とする温度、圧力条件であれば特に限定される
ものではないが、例えば、温度374℃以上、好ましく
は500〜650℃、かつ圧力22MPa以上、好まし
くは22〜25MPaの条件とすればよい。酸化剤とし
ては、例えば空気、純酸素、過酸化水素、液体酸素を挙
げることができ、これらの酸化剤は化学量論要求量以上
用いればよい。超臨界水酸化分解を行う反応器は、パイ
プ(管状)型が好ましい。
In the supercritical water oxidation reaction, the concentrated sludge is oxidatively decomposed in the presence of supercritical water and an oxidizing agent.
The supercritical hydroxylation reaction performed in the reactor is not particularly limited as long as the temperature and pressure conditions bring water to a supercritical state. For example, the temperature is 374 ° C or higher, preferably 500 to 650 ° C, and The pressure may be 22 MPa or more, preferably 22 to 25 MPa. Examples of the oxidizing agent include air, pure oxygen, hydrogen peroxide, and liquid oxygen. These oxidizing agents may be used in a stoichiometrically required amount or more. The reactor for performing the supercritical hydroxylation decomposition is preferably a pipe (tubular) type.

【0027】水は、超臨界状態では、有機物やガス状物
質に対して良好な溶媒となるため、反応器内では超臨界
水、有機物および酸化剤は均一相を形成し、超臨界水酸
化反応が進行し、極めて短時間のうちに有機物は酸化分
解される。
Since water is a good solvent for organic substances and gaseous substances in the supercritical state, supercritical water, organic substances and oxidizing agent form a homogeneous phase in the reactor, and the supercritical water oxidation reaction The organic matter is oxidatively decomposed in a very short time.

【0028】有機性汚泥を濃縮分離する濃縮分離手段と
しては、例えば遠心濃縮、重力濃縮、加圧浮上濃縮等の
手段を挙げることができる。
Examples of the means for concentration and separation of the organic sludge include means such as centrifugal concentration, gravity concentration, and pressure flotation concentration.

【0029】有機性汚泥の濃縮により、所定の濃度に濃
縮された濃縮汚泥と、固形物から分離された分離液が排
出される。この時、原料となる下水汚泥、濃縮汚泥、分
離液の代表的な組成を表1に示す。
By the concentration of the organic sludge, the concentrated sludge concentrated to a predetermined concentration and the separated liquid separated from the solid matter are discharged. At this time, Table 1 shows typical compositions of the sewage sludge, the concentrated sludge, and the separated liquid as raw materials.

【0030】[0030]

【表1】 [Table 1]

【0031】濃縮汚泥の濃度は、5〜15重量%、好ま
しくは8〜12重量%の範囲で適宜決定すればよい。濃
縮汚泥の濃度が5重量%未満では、発熱量が低いため補
助燃料が大量に必要であり、かつ処理量が増加するとい
う点で、15重量%を超えると、汚泥の流動性が悪化し
て加圧供給が困難になるという点で好ましくない。
The concentration of the concentrated sludge may be appropriately determined within the range of 5 to 15% by weight, preferably 8 to 12% by weight. When the concentration of the concentrated sludge is less than 5% by weight, a large amount of auxiliary fuel is required because the calorific value is low, and the amount of treatment increases. When the concentration exceeds 15% by weight, the fluidity of the sludge deteriorates. It is not preferable in that the supply under pressure becomes difficult.

【0032】本発明において、濃縮汚泥を超臨界水酸化
する場合、処理流体中に有機物を残存させないため、反
応温度を500℃以上、好ましくは500〜550℃に
設定する必要がある。
In the present invention, when the concentrated sludge is subjected to supercritical water oxidation, the reaction temperature must be set to 500 ° C. or higher, preferably 500 to 550 ° C., in order to prevent organic substances from remaining in the treatment fluid.

【0033】分離液の添加量は、処理流体中のアンモニ
ア、硝酸、亜硝酸の濃度を測定して、これらの物質が最
小となるように制御すればよい。しかし、処理流体中の
アンモニア、硝酸、亜硝酸を測定する分析機器は高価で
あるため、より安価に制御するために、処理流体のpH
を測定する方法が挙げられる。処理流体のpHが低下す
る場合は、硝酸または亜硝酸が生成していることが考え
られるため、分離液の添加量を増やす。逆にpHが増大
する場合は、アンモニアが生成していることが考えられ
るので、分離液の添加量を減らす。
The amount of the separated liquid to be added may be controlled by measuring the concentrations of ammonia, nitric acid and nitrous acid in the processing fluid and minimizing these substances. However, analytical instruments for measuring ammonia, nitric acid, and nitrous acid in the processing fluid are expensive.
Is measured. If the pH of the processing fluid decreases, it is considered that nitric acid or nitrous acid has been generated, so the amount of the separation liquid added is increased. Conversely, when the pH increases, it is conceivable that ammonia has been generated, so the amount of the separation liquid to be added is reduced.

【0034】以下、図面を用いて本発明の実施形態を説
明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0035】(第1実施形態)図1のフロー図により、
本発明の第1実施形態を説明する。
(First Embodiment) Referring to the flowchart of FIG.
A first embodiment of the present invention will be described.

【0036】本発明の超臨界水酸化分解装置は、図1に
示すように、超臨界水酸化反応を行う反応器として、チ
ューブラー状(管状)の長い耐圧密閉型反応器10を備
え、反応器10の上流には、下水の生物処理設備から供
給される下水汚泥等の有機性汚泥を濃縮分離する濃縮分
離手段2と濃縮分離手段2により濃縮分離された濃縮汚
泥を貯留する濃縮汚泥タンク6を有し、濃縮汚泥等の被
処理物流体を水の臨界圧力以上に加圧供給する加圧供給
手段としての加圧供給ポンプ26と、酸化剤を加圧供給
する加圧供給手段としての加圧供給ポンプ28(酸化剤
が酸素等の気体の場合は加圧供給コンプレッサ)と、被
処理物混合流体を予熱する予熱手段としての二重管式熱
交換器の予熱器12を備えている。
As shown in FIG. 1, the supercritical hydroxylation / decomposition apparatus of the present invention includes a tubular (tubular) long pressure-resistant closed type reactor 10 as a reactor for performing a supercritical hydroxylation reaction. Upstream of the vessel 10, a concentration separation means 2 for concentration and separation of organic sludge such as sewage sludge supplied from a sewage biological treatment facility, and a concentration sludge tank 6 for storing the concentration sludge concentrated and separated by the concentration separation means 2 And a pressure supply pump 26 as a pressure supply means for supplying a fluid to be treated such as concentrated sludge to a pressure higher than the critical pressure of water, and a pressure supply means as a pressure supply means for pressurizing and supplying an oxidant. A pressure supply pump 28 (a pressurized supply compressor when the oxidizing agent is a gas such as oxygen) and a preheater 12 of a double tube heat exchanger as preheating means for preheating the mixed fluid to be processed.

【0037】なお、濃縮分離手段2から得られる分離液
の一部は、分離液供給手段4により、反応器10へ加圧
供給される。
A part of the separation liquid obtained from the concentration separation means 2 is supplied to the reactor 10 under pressure by the separation liquid supply means 4.

【0038】反応器10の下流には、二重管式の熱交換
器14と、反応後の処理流体を冷却する冷却器16を備
えている。予熱器、反応器、熱交換器および冷却器から
なる超臨界水酸化分解装置の流路は、略同一の径を有し
ている。
Downstream of the reactor 10, a double tube heat exchanger 14 and a cooler 16 for cooling the processed fluid after the reaction are provided. The flow passages of the supercritical water splitting and cracking apparatus including the preheater, the reactor, the heat exchanger, and the cooler have substantially the same diameter.

【0039】更に、超臨界水酸化分解装置は、反応器1
0内の圧力を制御する圧力制御弁18を冷却器16の下
流に備えている。冷却された処理流体を取り出す手段と
して、ガスとスラリーとに気液分離する気液分離器20
を圧力制御弁18の下流に、及び、スラリー状の反応生
成物を固液分離して、無機固形物を反応生成物から分離
する固液分離器22を備えている。固液分離器22で分
離された無機固形物は、主として、反応物中に含まれ、
反応に寄与しなかったものであって、加えて、超臨界水
酸化反応により生成した塩を含むこともある。
Further, the supercritical water splitting / decomposing apparatus comprises a reactor 1
A pressure control valve 18 for controlling the pressure within 0 is provided downstream of the cooler 16. As means for taking out the cooled processing fluid, a gas-liquid separator 20 for gas-liquid separation into gas and slurry is used.
Is provided downstream of the pressure control valve 18 and a solid-liquid separator 22 that separates the inorganic solid from the reaction product by solid-liquid separation of the slurry-like reaction product. The inorganic solid separated by the solid-liquid separator 22 is mainly contained in the reaction product,
It does not contribute to the reaction and may additionally contain a salt formed by the supercritical hydroxylation reaction.

【0040】反応器から流出する処理流体のアンモニ
ア、硝酸、亜硝酸を測定し、これらの窒素化合物が最小
となるように、分離液供給手段4を制御して、添加する
分離液の量をコントロールする。すなわち、被処理流体
中の硝酸または亜硝酸の濃度が増加するときは、分離液
の添加量を増やし、アンモニアの濃度が増加するとき
は、分離液の添加量を減らせばよい。
The ammonia, nitric acid, and nitrous acid of the processing fluid flowing out of the reactor are measured, and the amount of the added separation liquid is controlled by controlling the separation liquid supply means 4 so that these nitrogen compounds are minimized. I do. That is, when the concentration of nitric acid or nitrous acid in the fluid to be treated increases, the amount of the separation liquid added may be increased, and when the concentration of ammonia increases, the amount of the separation liquid may be decreased.

【0041】(第2実施形態)図2のフロー図により、
本発明の第2実施形態を説明する。
(Second Embodiment) Referring to the flowchart of FIG.
A second embodiment of the present invention will be described.

【0042】図1と同一の構成要素には同一の番号を付
し、詳細な説明は省略する。図2のフロー図が図1と異
なるのは、超臨界水酸化分解後の処理流体のpHを測定
するpH測定器8を備え、測定結果に応じて、分離液の
添加量をフィードバック制御するようにした点である。
The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description will be omitted. The flow chart of FIG. 2 is different from that of FIG. 1 in that a pH measuring device 8 for measuring the pH of the processing fluid after supercritical hydroxylation decomposition is provided, and the amount of the separated solution added is feedback-controlled according to the measurement result. It is the point which was made.

【0043】すなわち、処理流体のpHが低下する場合
は、処理流体中の硝酸または亜硝酸の濃度が増加してい
ることが考えられる。その場合は、分離液供給手段4を
制御して、分離液の供給量を増やせばよい。
That is, when the pH of the processing fluid decreases, it is considered that the concentration of nitric acid or nitrous acid in the processing fluid has increased. In that case, the separation liquid supply means 4 may be controlled to increase the supply amount of the separation liquid.

【0044】また、処理流体のpHが上昇する場合は、
処理流体中のアンモニアの濃度が増加していることが考
えられる。その場合は、分離液供給手段4を制御して、
分離液の供給量を減らせばよい。 (第3実施形態)図示しないが、以下のような実施形態
としてもよい。
When the pH of the processing fluid rises,
It is considered that the concentration of ammonia in the processing fluid has increased. In that case, the separation liquid supply means 4 is controlled to
What is necessary is just to reduce the supply amount of the separation liquid. (Third Embodiment) Although not shown, the following embodiment may be adopted.

【0045】第1実施形態および第2実施形態では、分
離液を反応器の後半部分に供給する例を示したが、分離
液を濃縮汚泥タンクと加圧供給ポンプの間の配管に供給
し、濃縮汚泥とともに反応器へ加圧供給してもよい。こ
のような実施形態を採用することにより、分離液の供給
手段として、加圧型でない、通常のポンプを用いること
ができる。
In the first and second embodiments, an example has been shown in which the separated liquid is supplied to the latter half of the reactor. However, the separated liquid is supplied to the pipe between the concentrated sludge tank and the pressurized supply pump. The pressure may be supplied to the reactor together with the concentrated sludge. By adopting such an embodiment, it is possible to use an ordinary pump that is not a pressurized type as a means for supplying the separated liquid.

【0046】[0046]

【実施例】実施例1 反応温度520℃、反応圧力24MPa、反応時間2
分、酸素比1.5という条件で表1に示した固形物濃度
10.0%の濃縮汚泥を処理した。また、表1に示した
固形物濃度1.4%の分離液をその供給量を制御しなが
ら反応器後段に加圧供給した。運転開始1時間後には、
反応温度が530℃となり、処理水pHが低下したた
め、分離液供給量を増やした。
EXAMPLES Example 1 Reaction temperature 520 ° C., reaction pressure 24 MPa, reaction time 2
The concentrated sludge having a solid concentration of 10.0% shown in Table 1 was treated under the conditions of an oxygen ratio of 1.5 for each minute. Separation liquid having a solid concentration of 1.4% shown in Table 1 was supplied under pressure to the latter stage of the reactor while controlling the supply amount. One hour after the start of operation,
Since the reaction temperature reached 530 ° C. and the pH of the treated water dropped, the supply amount of the separation liquid was increased.

【0047】その結果、運転開始2時間後にはNO3
Nが低下した。
As a result, two hours after the start of operation, NO 3
N decreased.

【0048】4時間後には反応温度が500℃に低下
し、処理水pHが上昇したため分離液供給量を減らし
た。
After 4 hours, the reaction temperature dropped to 500 ° C. and the pH of the treated water rose, so that the supply amount of the separation liquid was reduced.

【0049】その結果、5時間後にはNH4 −Nが低減
した。結果を表2に示す
As a result, NH 4 —N was reduced after 5 hours. The results are shown in Table 2.

【0050】[0050]

【表2】 [Table 2]

【0051】表2の結果をプロットしたグラフを図3に
示す。
FIG. 3 is a graph plotting the results of Table 2.

【0052】表2の結果から明らかなように、反応温度
が変動しても分離液供給量を制御することにより、処理
水中のアンモニア、硝酸を低減することが可能であっ
た。なお、表2には記載していないが、亜硝酸も生成し
ており、その濃度は概ね硝酸の1/5程度であった。
As is evident from the results in Table 2, it was possible to reduce the amount of ammonia and nitric acid in the treated water by controlling the supply amount of the separated solution even when the reaction temperature fluctuated. Although not shown in Table 2, nitrous acid was also generated, and its concentration was about 1/5 of that of nitric acid.

【0053】[0053]

【発明の効果】請求項1に記載した本発明により、従来
用いられていなかった分離液を超臨界水酸化反応系に添
加することにより、アンモニア、硝酸、亜硝酸の生成を
極力抑制して有機性汚泥を超臨界水酸化分解することが
できる。
According to the first aspect of the present invention, the production of ammonia, nitric acid, and nitrous acid is suppressed as much as possible by adding a conventionally used separation liquid to the supercritical water oxidation reaction system. Supercritical water hydroxide can decompose sludge.

【0054】請求項2に記載した本発明により、上記効
果に加えて、補助燃料の使用量を抑制して、適切な規模
で安定して運転することができる。
According to the second aspect of the present invention, in addition to the effects described above, the amount of auxiliary fuel used can be suppressed, and stable operation can be performed on an appropriate scale.

【0055】請求項3に記載した本発明により、上記効
果に加えて、下水汚泥に含まれる有機物をより酸化分解
することができる。
According to the third aspect of the present invention, in addition to the above effects, organic substances contained in sewage sludge can be further oxidatively decomposed.

【0056】請求項4に記載の本発明により、上記効果
に加えて、低コストで超臨界水酸化反応を制御すること
ができる。
According to the present invention, in addition to the above effects, the supercritical hydroxylation reaction can be controlled at low cost.

【0057】請求項5に記載の本発明により、従来用い
られていなかった分離液を超臨界水酸化反応系に添加す
ることにより、アンモニア、硝酸、亜硝酸の生成を極力
抑制して下水汚泥を超臨界水酸化分解することができ、
超臨界水酸化分解装置を長期間安定して運転することが
できる。
According to the fifth aspect of the present invention, by adding a separation liquid that has not been used conventionally to a supercritical water oxidation reaction system, the generation of ammonia, nitric acid and nitrous acid is suppressed as much as possible to reduce sewage sludge. Can be supercritical hydroxylated decomposition,
The supercritical hydroxylation decomposition apparatus can be operated stably for a long period of time.

【0058】請求項6に記載の本発明により、請求項5
に記載の発明の効果に加えて高圧ポンプの使用台数を減
らすことができる。
According to the present invention described in claim 6, according to claim 5,
And the number of high-pressure pumps used can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示すフロー図。FIG. 1 is a flowchart showing a first embodiment of the present invention.

【図2】本発明の第2実施形態を示すフロー図。FIG. 2 is a flowchart showing a second embodiment of the present invention.

【図3】実施例1における、処理流体中の各成分の濃度
と経過時間を表すグラフ。
FIG. 3 is a graph showing the concentration of each component in the processing fluid and the elapsed time in Example 1.

【図4】従来の超臨界水酸化装置を示すフロー図。FIG. 4 is a flowchart showing a conventional supercritical water oxidation apparatus.

【符号の説明】[Explanation of symbols]

2 濃縮分離手段 4 分離液供給手段 6 濃縮汚泥タンク 8 pH測定器 10 反応器 12 予熱器 14 熱交換器 16 冷却器 18 圧力制御弁 20 気液分離器 22 固液分離器 24 熱媒用配管 26 加圧供給ポンプ 28 加圧供給ポンプ 2 Concentration / separation means 4 Separation liquid supply means 6 Concentrated sludge tank 8 pH meter 10 Reactor 12 Preheater 14 Heat exchanger 16 Cooler 18 Pressure control valve 20 Gas-liquid separator 22 Solid-liquid separator 24 Heat medium pipe 26 Pressurized supply pump 28 Pressurized supply pump

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 有機性排水を生物処理して得られる有機
性汚泥を濃縮汚泥と分離水に濃縮分離し、水の臨界温度
以上でかつ臨界圧力以上の条件で、超臨界水の存在下
に、該濃縮汚泥を酸化分解する方法において、該分離水
を超臨界水酸化反応系に添加することを特徴とする有機
性汚泥の超臨界水酸化分解方法。
An organic sludge obtained by biologically treating an organic wastewater is concentrated and separated into concentrated sludge and separated water, and is subjected to supercritical water at a temperature not lower than the critical temperature of the water and not lower than the critical pressure. A method for oxidatively decomposing the concentrated sludge, wherein the separated water is added to a supercritical water oxidation reaction system.
【請求項2】 濃縮汚泥の固形物濃度が5〜15重量%
であることを特徴とする請求項1に記載の超臨界水酸化
分解方法。
2. The concentrated sludge has a solid matter concentration of 5 to 15% by weight.
The supercritical hydroxylation decomposition method according to claim 1, wherein
【請求項3】 酸化分解の温度が500℃以上であるこ
とを特徴とする請求項1または2に記載の超臨界水酸化
分解方法。
3. The method of claim 1, wherein the oxidative decomposition temperature is 500 ° C. or higher.
【請求項4】 超臨界水酸化分解された処理流体のpH
を測定し、分離水の添加量を制御することを特徴とする
請求項1ないし3のいずれか1項に記載の超臨界水酸化
分解方法。
4. The pH of a processing fluid subjected to supercritical hydroxylation decomposition
4. The method of claim 1, wherein the amount of the separated water is controlled.
【請求項5】 超臨界水中で有機性汚泥および酸化剤を
反応させ、有機性汚泥を超臨界水酸化分解する装置にお
いて、有機性汚泥を濃縮汚泥と分離水に分離する濃縮分
離手段と、濃縮汚泥および酸化剤を水の臨界圧力以上に
加圧供給する加圧供給手段と、該加圧供給手段から加圧
供給された濃縮汚泥および酸化剤からなる被処理物混合
流体の超臨界水酸化反応を行う反応器と、該反応器に前
記分離水を供給する分離水供給手段と、該反応器から流
出する反応後の処理流体を冷却する冷却手段と、該冷却
手段から流出する冷却された処理流体を取り出す取り出
し手段を備えたことを特徴とする超臨界水酸化分解装
置。
5. An apparatus for reacting an organic sludge and an oxidizing agent in supercritical water to supercritically hydrolyze and decompose the organic sludge, comprising: a concentration separation means for separating the organic sludge into a concentrated sludge and a separation water; Pressurized supply means for supplying pressurized sludge and an oxidant to a pressure higher than the critical pressure of water, and a supercritical water oxidation reaction of a mixture fluid to be treated comprising concentrated sludge and oxidant supplied from the pressurized supply means , A separated water supply means for supplying the separated water to the reactor, a cooling means for cooling the reaction fluid flowing out of the reactor after the reaction, and a cooled treatment flowing out of the cooling means A supercritical hydroxylation decomposition apparatus comprising a take-out means for taking out a fluid.
【請求項6】 超臨界水中で有機性汚泥および酸化剤を
反応させ、有機性汚泥を超臨界水酸化分解する装置にお
いて、有機性汚泥を濃縮汚泥と分離水に分離する濃縮分
離手段と、分離水の一部を該濃縮汚泥に供給する分離水
供給手段と、濃縮汚泥、分離水および酸化剤を水の臨界
圧力以上に加圧供給する加圧供給手段と、該加圧供給手
段から加圧供給された濃縮汚泥、分離水および酸化剤か
らなる被処理物混合流体の超臨界水酸化反応を行う反応
器と、該反応器から流出する反応後の処理流体を冷却す
る冷却手段と、該冷却手段から流出する冷却された処理
流体を取り出す取り出し手段を備えたことを特徴とする
超臨界水酸化分解装置。
6. An apparatus for reacting an organic sludge and an oxidizing agent in supercritical water to supercritically hydrolyze and decompose the organic sludge, comprising: a concentration separation means for separating the organic sludge into concentrated sludge and separated water; Separated water supply means for supplying a part of water to the concentrated sludge, pressurized supply means for supplying concentrated sludge, separated water and an oxidizing agent at a pressure equal to or higher than the critical pressure of water, and pressurization from the pressurized supply means A reactor for performing a supercritical water oxidation reaction of the mixture fluid to be treated comprising the supplied concentrated sludge, separated water and an oxidizing agent, a cooling means for cooling the treated fluid flowing out of the reactor after the reaction, A supercritical hydroxylation decomposition apparatus comprising a take-out means for taking out a cooled processing fluid flowing out of the means.
【請求項7】 反応器から流出する処理流体のpHを測
定する手段を備え、処理流体のpHにより、前記分離水
供給手段から供給される分離水の供給量を制御すること
を特徴とする請求項5または6に記載の超臨界水酸化分
解装置。
7. The apparatus according to claim 1, further comprising means for measuring the pH of the processing fluid flowing out of the reactor, wherein the supply amount of the separation water supplied from the separation water supply means is controlled by the pH of the processing fluid. Item 7. A supercritical hydroxylation decomposition apparatus according to item 5 or 6.
JP2001163977A 2001-05-31 2001-05-31 Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor Pending JP2002355698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163977A JP2002355698A (en) 2001-05-31 2001-05-31 Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163977A JP2002355698A (en) 2001-05-31 2001-05-31 Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2002355698A true JP2002355698A (en) 2002-12-10
JP2002355698A5 JP2002355698A5 (en) 2008-02-28

Family

ID=19006848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163977A Pending JP2002355698A (en) 2001-05-31 2001-05-31 Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2002355698A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989371A (en) * 2012-11-20 2013-03-27 重庆绿色智能技术研究院 Corrosion-resistant anti-clogging organic pollutant supercritical water oxidation system
CN106734055A (en) * 2016-11-22 2017-05-31 中国科学院重庆绿色智能技术研究院 A kind of on-site treatment method of oil gas field well site oil-based drill cuttings
PL422686A1 (en) * 2017-08-29 2019-01-28 Instytut Chemii Organicznej Polskiej Akademii Nauk Flow apparatus intended to continuously conduct processes under high pressure
CN112408575A (en) * 2020-10-22 2021-02-26 西安交通大学 Nitrogen removal device for supercritical water oxidation of high-concentration nitrogen-containing organic wastewater
CN115028332A (en) * 2022-05-19 2022-09-09 同济大学 Flue gas denitration and sludge anaerobic digestion cooperative treatment circulation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145056A (en) * 1975-08-06 1976-04-17 Teruyoshi Nakamoto
JPH1190494A (en) * 1997-09-25 1999-04-06 Japan Sewage Works Agency Method for supercritical hydroxylation of organic sludge
JP2002273482A (en) * 2001-03-22 2002-09-24 Kurita Water Ind Ltd Method and equipment for treating human waste and/or sludge in septic tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145056A (en) * 1975-08-06 1976-04-17 Teruyoshi Nakamoto
JPH1190494A (en) * 1997-09-25 1999-04-06 Japan Sewage Works Agency Method for supercritical hydroxylation of organic sludge
JP2002273482A (en) * 2001-03-22 2002-09-24 Kurita Water Ind Ltd Method and equipment for treating human waste and/or sludge in septic tank

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989371A (en) * 2012-11-20 2013-03-27 重庆绿色智能技术研究院 Corrosion-resistant anti-clogging organic pollutant supercritical water oxidation system
CN106734055A (en) * 2016-11-22 2017-05-31 中国科学院重庆绿色智能技术研究院 A kind of on-site treatment method of oil gas field well site oil-based drill cuttings
PL422686A1 (en) * 2017-08-29 2019-01-28 Instytut Chemii Organicznej Polskiej Akademii Nauk Flow apparatus intended to continuously conduct processes under high pressure
CN112408575A (en) * 2020-10-22 2021-02-26 西安交通大学 Nitrogen removal device for supercritical water oxidation of high-concentration nitrogen-containing organic wastewater
CN115028332A (en) * 2022-05-19 2022-09-09 同济大学 Flue gas denitration and sludge anaerobic digestion cooperative treatment circulation method
CN115028332B (en) * 2022-05-19 2024-03-26 同济大学 Flue gas denitration and sludge anaerobic digestion cooperative treatment circulation method

Similar Documents

Publication Publication Date Title
CA2074947C (en) Process for oxidation of materials in water at supercritical temperatures
EP2559667B1 (en) Method and system for the treatment of wastewater containing persistent substances
EP2927197A1 (en) System for treating coal gasification wastewater, and method for treating coal gasification wastewater
JPH0377691A (en) Treatment of waste water
JP2010516446A (en) Wet air oxidation method using recirculation catalyst
CN101659484B (en) Catalytic oxidation method capable of recycling waste residues
US4000068A (en) Polluted water purification
JP2007105627A (en) Method for treating nitrate-containing waste liquid and device therefor
JP4703227B2 (en) Wastewater treatment method
CN101717146B (en) Method for treating catalytic ozone oxidation water
JP5020490B2 (en) Organic sludge treatment method and organic sludge treatment equipment
JP2002355698A (en) Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor
CN101257975A (en) Method for treating wastes from terephthalic acid process
JP2000033355A (en) Treatment of organic waste using high-temperature and high-pressure steam
JP4834942B2 (en) Organic waste processing method and processing apparatus
CN106630312A (en) Coking phenol-cyanogen wastewater treatment system, treatment method and application
JP2002355699A (en) Supercritical water oxidative decomposition method for organic sludge and apparatus therefor
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP2003236594A (en) Apparatus for treating sludge
JP2005246153A (en) High temperature/high pressure treatment method for organic waste
JP2000167570A (en) Treatment of waste water
KR100770823B1 (en) Method and apparatus for decomposing nitrogen containing organic compounds
JP4671520B2 (en) Organic solids processing system
JP2004041974A (en) Method and equipment for treating organic waste liquid

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019