JP2002355699A - Supercritical water oxidative decomposition method for organic sludge and apparatus therefor - Google Patents

Supercritical water oxidative decomposition method for organic sludge and apparatus therefor

Info

Publication number
JP2002355699A
JP2002355699A JP2001163983A JP2001163983A JP2002355699A JP 2002355699 A JP2002355699 A JP 2002355699A JP 2001163983 A JP2001163983 A JP 2001163983A JP 2001163983 A JP2001163983 A JP 2001163983A JP 2002355699 A JP2002355699 A JP 2002355699A
Authority
JP
Japan
Prior art keywords
reaction
organic sludge
supercritical
sludge
supercritical water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001163983A
Other languages
Japanese (ja)
Other versions
JP2002355699A5 (en
Inventor
Hiroaki Miwa
宏明 三羽
Shigeru Machida
茂 町田
Hiroshi Suzugaki
裕志 鈴垣
Shinji Ito
新治 伊藤
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
Organo Corp
Original Assignee
Japan Sewage Works Agency
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, Organo Corp, Japan Organo Co Ltd filed Critical Japan Sewage Works Agency
Priority to JP2001163983A priority Critical patent/JP2002355699A/en
Publication of JP2002355699A publication Critical patent/JP2002355699A/en
Publication of JP2002355699A5 publication Critical patent/JP2002355699A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supercritical water oxidative decomposition method for organic sludge capable of eliminating the defect of the conventional oxidation treatment of organic sludge such as sewage sludge or the like using supercritical water and capable of suppressing ammonia, nitric acid, nitrous acid and total nitrogen in treated water. SOLUTION: In a method for reacting organic sludge and an oxidizing agent in supercritical water to perform the supercritical water oxidative decomposition of organic sludge, the solid concentration of organic sludge is set to 5% or more to perform supercritical water oxidative reaction at 450-550 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥に代表さ
れる有機性廃水の生物処理装置から発生する有機性汚泥
の酸化処理方法およびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for oxidizing organic sludge generated from a biological treatment apparatus for organic wastewater represented by sewage sludge.

【0002】[0002]

【従来の技術】従来、下水汚泥等の有機性汚泥を酸化処
理する方法として、主に焼却による方法が一般的であっ
た。しかしながら、下水汚泥は水分含有量が97〜98
%と高いため、下水汚泥を焼却処理するためには、予め
下水汚泥をスクリュープレス型脱水機等の脱水手段によ
り脱水し、焼却可能な範囲までその水分量を低減させる
必要があった。
2. Description of the Related Art Heretofore, as a method of oxidizing organic sludge such as sewage sludge, a method of mainly incineration has been generally used. However, sewage sludge has a water content of 97-98.
Therefore, in order to incinerate the sewage sludge, it was necessary to dehydrate the sewage sludge in advance by a dehydrating means such as a screw press type dehydrator, and to reduce the water content to a range where incineration is possible.

【0003】一方近年になり、超臨界状態の水を用い
て、下水汚泥を直接酸化処理する方法が提案されてい
る。下水を生物処理装置で処理して得られる下水汚泥
は、発熱量が低いため、通常5〜15重量%に下水汚泥
を濃縮して超臨界水酸化処理するのが一般的である。
On the other hand, in recent years, a method of directly oxidizing sewage sludge using water in a supercritical state has been proposed. Since sewage sludge obtained by treating sewage with a biological treatment apparatus has a low calorific value, it is general that the sewage sludge is concentrated to 5 to 15% by weight and subjected to a supercritical water oxidation treatment.

【0004】図3を参照して、従来の濃縮汚泥を超臨界
水酸化する超臨界水酸化装置を説明する。図3は従来の
超臨界水酸化装置の構成を示すフローシートである。従
来の超臨界水酸化装置30は、図3に示すように、超臨
界水酸化反応を行う反応器として、チューブラー状の長
い耐圧密閉型反応器31を備え、反応器31の上流に
は、濃縮汚泥を供給する濃縮汚泥ポンプ39と酸素を供
給する空気圧縮機40と反応物を予熱する二重管式熱交
換器32を、反応器31の下流には、反応生成物を冷却
する熱交換器33及び冷却器34を備えている。反応器
31に供給される濃縮汚泥は、不図示の生物処理装置に
より処理された下水汚泥を、遠心濃縮機等の濃縮機42
で濃縮されたものである。下水汚泥を濃縮して得られる
分離液は、系外へ排出される。
Referring to FIG. 3, a conventional supercritical water oxidation apparatus for supercritical water oxidation of concentrated sludge will be described. FIG. 3 is a flow sheet showing the configuration of a conventional supercritical water oxidation apparatus. As shown in FIG. 3, the conventional supercritical water oxidation apparatus 30 includes a tubular long pressure-resistant closed reactor 31 as a reactor for performing a supercritical water oxidation reaction, and upstream of the reactor 31, A concentrated sludge pump 39 for supplying the concentrated sludge, an air compressor 40 for supplying the oxygen, and a double-tube heat exchanger 32 for preheating the reactants, and a heat exchanger for cooling the reaction products downstream of the reactor 31 A device 33 and a cooler 34 are provided. The concentrated sludge supplied to the reactor 31 is obtained by converting sewage sludge treated by a biological treatment device (not shown) into a concentrator 42 such as a centrifugal concentrator.
It is concentrated in. The separated liquid obtained by concentrating the sewage sludge is discharged out of the system.

【0005】熱交換器33で反応生成物を冷却すること
により、熱媒は高温となり、二重管式熱交換器32で被
処理物混合流体を予熱する熱源として使用される。更
に、超臨界水酸化装置30は、反応器31内の圧力を制
御する圧力制御弁35を冷却器34の下流に、反応生成
物をガスとスラリーとに気液分離する気液分離器36を
圧力制御弁35の下流に、及び、スラリー状の反応生成
物を固液分離して、無機固形物を反応生成物から分離す
る固液分離器37を備えている。固液分離器37で分離
された無機固形物は、主として、反応物中に含まれ、反
応に寄与しなかったものであって、加えて、超臨界水酸
化反応により生成した塩を含むこともある。
When the reaction product is cooled by the heat exchanger 33, the temperature of the heat medium becomes high, and the heat medium is used by the double-tube heat exchanger 32 as a heat source for preheating the mixed fluid to be processed. Further, the supercritical water oxidation apparatus 30 includes a pressure control valve 35 for controlling the pressure in the reactor 31 downstream of the cooler 34 and a gas-liquid separator 36 for gas-liquid separation of the reaction product into gas and slurry. A solid-liquid separator 37 is provided downstream of the pressure control valve 35 and separates a solid reaction product from the reaction product by solid-liquid separation of a slurry-like reaction product. The inorganic solids separated by the solid-liquid separator 37 are mainly contained in the reactants and did not contribute to the reaction, and may also contain salts generated by the supercritical water oxidation reaction. is there.

【0006】従来の超臨界水酸化分解装置において汚泥
の濃度が低い場合は、補助燃料を供給して超臨界水酸化
する必要があった。
[0006] When the concentration of sludge is low in the conventional supercritical water oxidation cracking apparatus, it is necessary to supply an auxiliary fuel to perform supercritical water oxidation.

【0007】下水汚泥の超臨界水酸化処理において、安
定して効率的に処理するためには、汚泥の流動性を確保
しながら、補助燃料の供給を減らし、超臨界水酸化分解
後の処理流体を処理するための特別な後段処理を必要と
しないことが重要である。
[0007] In the supercritical water oxidation treatment of sewage sludge, in order to stably and efficiently treat the sludge, the supply of auxiliary fuel is reduced while ensuring the fluidity of the sludge, and the processing fluid after the supercritical water oxidation decomposition is processed. It is important that no special post-processing is required to process

【0008】しかしながら、汚泥中の単位有機物量あた
りの発熱量は低いため、補助燃料を減らすためには、効
率的に熱回収を行うとともに、汚泥の濃度を高くする必
要がある。しかし、汚泥の濃度が上昇すると、汚泥の流
動性は極端に低下し、汚泥を超臨界水酸化分解装置に供
給することが困難となる。
However, since the calorific value per unit amount of organic matter in the sludge is low, it is necessary to efficiently recover heat and increase the sludge concentration in order to reduce the amount of auxiliary fuel. However, when the concentration of the sludge increases, the fluidity of the sludge extremely decreases, and it becomes difficult to supply the sludge to the supercritical hydroxylation decomposition apparatus.

【0009】また、近年閉鎖系水域の富栄養化問題か
ら、窒素、リンの排出規制が強化される傾向にあること
から、超臨界水酸化分解した後の処理水中に窒素、リン
が極力残存しないようにすることが求められている。
In recent years, due to the problem of eutrophication in closed water bodies, the regulation of nitrogen and phosphorus emissions has tended to be strengthened. Therefore, nitrogen and phosphorus do not remain as much as possible in treated water after supercritical hydroxylation decomposition. It is required to do so.

【0010】これらのことを満足する手段として、特開
平11−90494号公報には、熱交換量に応じて汚泥
濃度を5〜15%程度に調整し、反応温度を600℃以
上とすることにより、汚泥の流動性を維持しつつ、補助
燃料をなくし、処理水中に窒素を残存させずに下水汚泥
を超臨界水酸化処理する方法が記載されている。
[0010] As means for satisfying these requirements, JP-A-11-90494 discloses that the sludge concentration is adjusted to about 5 to 15% in accordance with the amount of heat exchange, and the reaction temperature is set to 600 ° C or higher. A method is described in which auxiliary fluid is eliminated while maintaining the fluidity of sludge, and supercritical water oxidation of sewage sludge is performed without leaving nitrogen in the treated water.

【0011】これまで下水汚泥の超臨界水酸化におい
て、下水汚泥中の窒素成分はすべて加水分解により一端
アンモニアとなり、アンモニアが酸化されて硝酸および
亜硝酸となり、アンモニアと硝酸および亜硝酸の反応に
より処理水中から窒素成分が消失すると考えられてきた
(下記反応式(1)〜(3)参照)。
Heretofore, in supercritical water oxidation of sewage sludge, all nitrogen components in sewage sludge are once converted to ammonia by hydrolysis, ammonia is oxidized to nitric acid and nitrous acid, and treated by the reaction of ammonia with nitric acid and nitrous acid. It has been considered that nitrogen components disappear from water (see the following reaction formulas (1) to (3)).

【0012】 下水汚泥中の窒素成分 + H2O → NH4 … (1 ) NH4 + O2 → NO2 and NO3 … (2) NH4 + NO2 and NO3 → N2 or N2O … (3) この一連の反応において、反応式(2)で示したアンモ
ニアの酸化速度が律速となっており、反応式(1)の加
水分解によるアンモニアの生成および反応式(3)のア
ンモニアと硝酸または亜硝酸との反応は迅速に起こるた
め、硝酸または亜硝酸は処理水中に残存せず、アンモニ
アを完全に酸化させることで、処理水中から全ての窒素
成分を除去できると考えられていた。そのためには60
0℃以上の高温で超臨界水酸化分解を行う必要があると
考えられていた。
[0012] The nitrogen component + H 2 O → NH 4 ... (1) NH 4 + O 2 → NO 2 and NO 3 ... (2) NH 4 + NO 2 and NO 3 → N 2 or N 2 O in sewage sludge (3) In this series of reactions, the rate of oxidation of ammonia shown in reaction formula (2) is rate-determining, and the production of ammonia by hydrolysis in reaction formula (1) and the conversion of ammonia in reaction formula (3) Since the reaction with nitric acid or nitrous acid occurs quickly, it was considered that nitric acid or nitrous acid did not remain in the treated water, and that all nitrogen components could be removed from the treated water by completely oxidizing ammonia. For that, 60
It was thought that it was necessary to carry out supercritical hydroxylation at a high temperature of 0 ° C. or higher.

【0013】しかしながら、下水汚泥の超臨界水酸化分
解について詳細に検討したところ、汚泥中のアンモニア
以外の有機態窒素は、450℃程度の低温では反応式
(4)に示すように加水分解によるアンモニア生成が主
反応となり、500℃以上の高温になると反応式(5)
に示すように酸化による硝酸および亜硝酸の生成が主反
応となることが確認された。
However, when the supercritical hydroxylation of sewage sludge was examined in detail, organic nitrogen other than ammonia in the sludge was converted to ammonia by hydrolysis at a low temperature of about 450 ° C. as shown in reaction formula (4). Formation is the main reaction, and when the temperature rises to 500 ° C. or higher, the reaction formula (5)
As shown in the figure, it was confirmed that the production of nitric acid and nitrous acid by oxidation was the main reaction.

【0014】 有機態窒素 + H2O → NH4 … (4) 有機態窒素 + O2 → NO2 or NO3 … (5) 下水汚泥濃度を5〜15%程度まで濃縮した場合、濃縮
された汚泥中の有機態窒素の比率が多くなるため、反応
温度を550℃程度の高温で超臨界水酸化処理すると、
処理水中に硝酸および亜硝酸が残存する。一方、濃縮さ
れた汚泥を反応温度400℃程度の低温で超臨界水酸化
処理すると、有機態窒素であってもアンモニア生成が主
反応となり、かつ汚泥中に含まれるアンモニアも残存す
るため、処理水中には大量のアンモニアが残存する。
Organic nitrogen + H 2 O → NH 4 (4) Organic nitrogen + O 2 → NO 2 or NO 3 (5) When the concentration of sewage sludge was concentrated to about 5 to 15%, the concentration was increased. Because the ratio of organic nitrogen in the sludge increases, if the reaction temperature is supercritically hydroxylated at a high temperature of about 550 ° C,
Nitric acid and nitrous acid remain in the treated water. On the other hand, when the concentrated sludge is subjected to supercritical water oxidation at a low reaction temperature of about 400 ° C., even in the case of organic nitrogen, ammonia production becomes the main reaction, and the ammonia contained in the sludge also remains. A large amount of ammonia remains.

【0015】従って、下水汚泥を超臨界水酸化処理する
場合、低温ではアンモニアが残存し、高温では硝酸が残
存するため、処理水中の全窒素を低減することが困難と
なる。
Therefore, when sewage sludge is subjected to supercritical water oxidation, ammonia remains at low temperatures and nitric acid remains at high temperatures, making it difficult to reduce total nitrogen in the treated water.

【0016】なお、下水汚泥の濃縮により、所定の濃度
に濃縮された濃縮汚泥と、固形物から分離された分離液
が排出される。この時、原料汚泥、濃縮汚泥、分離液の
代表的な組成を表1に示す。
[0016] By the concentration of the sewage sludge, the concentrated sludge concentrated to a predetermined concentration and the separated liquid separated from the solid matter are discharged. At this time, Table 1 shows typical compositions of the raw sludge, the concentrated sludge, and the separated liquid.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示すように、原料汚泥中のアンモニ
アの比率に比べて、濃縮汚泥ではアンモニアの比率が増
加するのに対して、分離液ではアンモニアの比率が増加
する。すなわち、濃縮操作により、水溶性であるアンモ
ニアは分離液側に流出し、濃縮汚泥には有機態窒素の比
率が増加し、結果として、相対的に濃縮汚泥中には窒素
含有有機化合物の濃度が増加するものと思われる。その
結果、反応温度550℃以上では硝酸および亜硝酸の生
成量が残存アンモニア量よりも増加するため、処理水中
に硝酸および亜硝酸が残存するものと考えられる。
As shown in Table 1, as compared with the ratio of ammonia in the raw sludge, the ratio of ammonia increases in the concentrated sludge, whereas the ratio of ammonia increases in the separated liquid. That is, by the concentration operation, the water-soluble ammonia flows out to the separated liquid side, and the ratio of organic nitrogen in the concentrated sludge increases. As a result, the concentration of the nitrogen-containing organic compound in the concentrated sludge relatively decreases. It seems to increase. As a result, at a reaction temperature of 550 ° C. or higher, the production amounts of nitric acid and nitrous acid are larger than the residual ammonia amount, and it is considered that nitric acid and nitrous acid remain in the treated water.

【0019】[0019]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来の超臨界水を用いた下水汚泥等の有機
性汚泥の酸化処理の欠点を解消し、処理水中の、アンモ
ニア、硝酸および亜硝酸と全窒素を抑制することができ
る有機性汚泥の超臨界水酸化分解方法および超臨界水酸
化分解装置を提供することにある。
The problem to be solved by the present invention is to solve the drawback of the conventional oxidation treatment of organic sludge such as sewage sludge using supercritical water, and to solve the problem of ammonia and nitric acid in treated water. It is another object of the present invention to provide a method and apparatus for supercritical hydroxylation and decomposition of organic sludge which can suppress nitrous acid and total nitrogen.

【0020】[0020]

【課題を解決するための手段】上記課題を解決するため
の第1の発明は、超臨界水中で有機性汚泥および酸化剤
を反応させて有機性汚泥を超臨界水酸化分解する方法に
おいて、該有機性汚泥の固形物濃度を5%以上とし、か
つ450〜550℃で超臨界水酸化反応させることを特
徴とする有機性汚泥の超臨界水酸化分解方法に関するも
のである。
Means for Solving the Problems A first invention for solving the above-mentioned problems is a method for supercritically hydrolyzing organic sludge by reacting organic sludge and an oxidizing agent in supercritical water. The present invention relates to a method for supercritically hydrolyzing organic sludge, wherein the solid concentration of organic sludge is 5% or more and a supercritical hydroxylation reaction is performed at 450 to 550 ° C.

【0021】上記課題を解決するための第2の発明は、
超臨界水中で固形物濃度5以上の有機性汚泥および酸化
剤を反応させ、該有機性汚泥を超臨界水酸化分解する装
置において、該有機性汚泥よび酸化剤の被処理物混合流
体を水の臨界圧力以上に加圧供給する被処理物供給手段
と、該被処理物混合流体の超臨界水酸化反応を行う反応
器と、該反応器から流出する反応後の処理流体を冷却す
る冷却手段と、該冷却手段から流出する冷却された処理
流体を取り出す取り出し手段を備えた超臨界水酸化分解
装置であって、処理流体の性状を測定する測定手段と、
測定手段で測定された処理流体の性状に応じて、超臨界
水酸化反応の反応温度を450〜550℃に制御する反
応温度制御手段を設けたことを特徴とする超臨界水酸化
分解装置に関するものである。
A second invention for solving the above problems is:
In an apparatus for reacting an organic sludge with a solid concentration of 5 or more and an oxidizing agent in supercritical water and supercritically hydrolyzing the organic sludge, the mixed fluid of the organic sludge and the oxidizing agent is treated with water. A treatment object supply means for supplying a pressure at or above a critical pressure, a reactor for performing a supercritical hydroxylation reaction of the treatment object mixed fluid, and a cooling means for cooling a reaction fluid after reaction flowing out of the reaction vessel; A supercritical hydroxylation decomposition apparatus having a take-out means for taking out a cooled processing fluid flowing out of the cooling means, and a measuring means for measuring properties of the processing fluid;
A supercritical water oxidation decomposition apparatus characterized in that reaction temperature control means for controlling the reaction temperature of the supercritical water oxidation reaction to 450 to 550 ° C. according to the properties of the processing fluid measured by the measurement means is provided. It is.

【0022】[0022]

【発明の実施の形態】本発明における有機性汚泥とは、
生活排水や工場排水等の有機性の排水を生物処理して得
られるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The organic sludge in the present invention is
It is obtained by biological treatment of organic wastewater such as domestic wastewater and industrial wastewater.

【0023】第1の本発明は、超臨界水中で有機性汚泥
および酸化剤を反応させて有機性汚泥を超臨界水酸化分
解する方法において、固形物濃度を5%(重量%)以上
に濃縮された有機性汚泥を450〜550℃で超臨界水
酸化することを特徴とするものである。
According to a first aspect of the present invention, there is provided a method for reacting an organic sludge and an oxidizing agent in supercritical water to supercritically hydrolyze the organic sludge, wherein the solid matter concentration is increased to 5% (% by weight) or more. The organic sludge obtained is subjected to supercritical water oxidation at 450 to 550 ° C.

【0024】超臨界水とは超臨界状態の水であるが、本
発明においては、22MPa以上、好ましくは22〜2
5MPaの圧力で、温度を450〜550℃に制御して
濃縮された有機性汚泥を超臨界水酸化することにより、
処理水中の、アンモニア、硝酸および亜硝酸と全窒素を
抑制することができる。
The supercritical water is water in a supercritical state. In the present invention, the water is 22 MPa or more, preferably 22 to 2 MPa.
At a pressure of 5 MPa, the temperature is controlled at 450 to 550 ° C., and the concentrated organic sludge is supercritically hydroxylated,
Ammonia, nitric acid, nitrous acid and total nitrogen in the treated water can be suppressed.

【0025】超臨界水酸化反応は、超臨界状態の水と酸
化剤の存在下に濃縮汚泥の酸化分解を行うものである
が、本発明は従来600℃以上で超臨界水酸化分解処理
していたものを、450〜550℃に制御し、かつ5%
以上に濃縮した有機性汚泥を超臨界水酸化分解処理する
ことを特徴とする。
In the supercritical water oxidation reaction, the concentrated sludge is oxidatively decomposed in the presence of supercritical water and an oxidizing agent. In the present invention, the supercritical water oxidation treatment is conventionally performed at 600 ° C. or higher. Is controlled at 450-550 ° C. and 5%
The concentrated organic sludge is subjected to a supercritical hydroxylation decomposition treatment.

【0026】本発明における、反応温度は450〜55
0℃、好ましくは480〜520℃であるが、この最適
反応温度は、原料となる濃縮有機性汚泥中のアンモニア
と有機態窒素の比率により、変動するものである。例え
ば、約10% の汚泥濃度の濃縮汚泥を500 ℃で反応させる
と、反応温度領域において、酸化反応により生成する硝
酸および亜硝酸の合計量と、元来汚泥に含まれるアンモ
ニアおよび加水分解反応により生成するアンモニアの合
計量が、アンモニアと硝酸または亜硝酸から窒素又は亜
酸化窒素を生成する反応の理論等量となり、アンモニア
と硝酸または亜硝酸はこの反応温度領域で迅速に反応す
るため、反応終了後の処理水中にはアンモニア、硝酸、
亜硝酸が残存しない。
In the present invention, the reaction temperature is 450-55.
The temperature is 0 ° C., preferably 480 to 520 ° C., but the optimum reaction temperature varies depending on the ratio of ammonia and organic nitrogen in the concentrated organic sludge used as the raw material. For example, when concentrated sludge with a sludge concentration of about 10% is reacted at 500 ° C, the total amount of nitric acid and nitrous acid generated by the oxidation reaction in the reaction temperature range, and the ammonia and the hydrolysis reaction originally contained in the sludge, The total amount of ammonia produced is the theoretical equivalent of the reaction that produces nitrogen or nitrous oxide from ammonia and nitric acid or nitrous acid, and ammonia and nitric acid or nitrous acid react quickly in this reaction temperature range. Ammonia, nitric acid,
No nitrous acid remains.

【0027】処理対象となる有機性汚泥の汚泥濃度は、
固形物濃度5%(重量%)以上であることが必要であ
る。5%未満では、有機性汚泥中のアンモニアの比率が
高くなるため、有機態窒素の反応で窒素成分がすべて硝
酸および亜硝酸になったとしても、アンモニアの残存量
の方が多く、処理水中にアンモニアが残存してしまう。
有機性汚泥の汚泥濃度の上限は特に限定されないが、あ
まり高濃度では、有機性汚泥の流動性が低下して操作性
が悪化してしまうため、15%程度を上限とすることが
好ましい。有機性汚泥を濃縮分離する濃縮分離手段とし
ては、例えば遠心濃縮、重力濃縮、加圧浮上濃縮等の手
段を挙げることができる。
The sludge concentration of the organic sludge to be treated is as follows:
It is necessary that the solid concentration is 5% (% by weight) or more. If it is less than 5%, the ratio of ammonia in the organic sludge will be high. Therefore, even if all the nitrogen components are converted to nitric acid and nitrous acid by the reaction of organic nitrogen, the remaining amount of ammonia is larger than that in the treated water. Ammonia remains.
The upper limit of the sludge concentration of the organic sludge is not particularly limited. However, if the concentration is too high, the fluidity of the organic sludge decreases and the operability deteriorates. Therefore, the upper limit is preferably about 15%. Examples of the concentration and separation means for concentrating and separating organic sludge include means such as centrifugal concentration, gravity concentration, and pressure flotation concentration.

【0028】本発明における酸化剤としては、例えば空
気、純酸素、過酸化水素、液体酸素を挙げることがで
き、これらの酸化剤は化学量論要求量以上用いればよ
い。超臨界水酸化分解を行う反応器は、パイプ(管状)
型が好ましい。
Examples of the oxidizing agent in the present invention include air, pure oxygen, hydrogen peroxide, and liquid oxygen. These oxidizing agents may be used in a stoichiometric amount or more. The reactor for supercritical hydroxylation decomposition is a pipe (tubular)
Molds are preferred.

【0029】水は、超臨界状態では、有機物やガス状物
質に対して良好な溶媒となるため、反応器内では超臨界
水、有機物および酸化剤は均一相を形成し、超臨界水酸
化反応が進行し、反応温度によっては極めて短時間のう
ちに有機物は酸化分解される。しかし本発明おける反応
温度は比較的低温であるため、反応時間が短い場合に
は、有機物が未分解となる場合があるので、反応時間は
1分以上、好ましくは2〜3分とする。それにより有機
物が未分解で残存することを防ぐことができる。
Since water is a good solvent for organic substances and gaseous substances in the supercritical state, supercritical water, organic substances and oxidizing agent form a homogeneous phase in the reactor, and the supercritical water oxidation reaction The organic matter is oxidatively decomposed in a very short time depending on the reaction temperature. However, since the reaction temperature in the present invention is relatively low, if the reaction time is short, the organic substance may not be decomposed. Therefore, the reaction time is 1 minute or more, preferably 2 to 3 minutes. This can prevent the organic matter from remaining undecomposed.

【0030】超臨界水酸化分解反応の温度を450〜5
50℃に制御する方法としては、処理水の性状を測定す
ることによりフィードバック制御すればよい。
The temperature of the supercritical hydroxylation decomposition reaction is 450 to 5
As a method of controlling the temperature to 50 ° C., feedback control may be performed by measuring properties of the treated water.

【0031】処理水の性状とは、処理水中のアンモニ
ア、硝酸、亜硝酸の濃度や処理水のpH等である。
The properties of the treated water include the concentrations of ammonia, nitric acid, and nitrous acid in the treated water, the pH of the treated water, and the like.

【0032】例えば、処理水中のアンモニア、硝酸、亜
硝酸の濃度を測定して制御するには、以下のようにして
行えばよい。例えば、処理水中のアンモニア濃度が一定
値より高い場合は、反応温度が低下していると考えられ
るので、反応温度を上げればよく、また硝酸および亜硝
酸濃度が一定値より高い場合は反応温度が上昇している
と考えられるので、反応温度を下げればよい。
For example, in order to measure and control the concentrations of ammonia, nitric acid and nitrous acid in the treated water, the following may be performed. For example, when the ammonia concentration in the treated water is higher than a certain value, it is considered that the reaction temperature is lowered.Therefore, the reaction temperature may be increased, and when the nitric acid and nitrite concentrations are higher than the certain values, the reaction temperature may be lower. Since the reaction temperature is considered to be rising, the reaction temperature may be lowered.

【0033】なお、処理水の性状としてpHを測定する
ことによっても、反応温度を制御することも可能であ
る。例えば、反応温度が低い場合は、アンモニアの生成
により処理水のpHが上昇し、反応温度が高い場合は、
硝酸および亜硝酸の生成により処理水のpHが低下する
ので、処理水のpHを測定することにより反応温度をフ
ィードバック制御することができる。
The reaction temperature can also be controlled by measuring the pH of the treated water. For example, when the reaction temperature is low, the pH of the treated water increases due to the generation of ammonia, and when the reaction temperature is high,
Since the pH of the treated water decreases due to the production of nitric acid and nitrous acid, the reaction temperature can be feedback-controlled by measuring the pH of the treated water.

【0034】反応温度を低下させるには、水または発熱
量の低い分離液(有機性汚泥を濃縮する際に得られる分
離液)を反応系に供給すればよく、反応温度を上昇させ
るには、イソプロピルアルコール等の補助燃料を反応系
に供給すればよい。水または分離液の供給量と補助燃料
の供給量を制御することにより、反応温度を450〜5
50℃に制御することができる。
To lower the reaction temperature, water or a separation liquid having a low calorific value (separation liquid obtained when condensing organic sludge) may be supplied to the reaction system. An auxiliary fuel such as isopropyl alcohol may be supplied to the reaction system. By controlling the supply amount of water or the separated liquid and the supply amount of the auxiliary fuel, the reaction temperature is set to 450 to 5
It can be controlled at 50 ° C.

【0035】以下、図面を用いて、第2の本発明の超臨
界水酸化分解装置を説明する。
The second embodiment of the present invention will be described with reference to the drawings.

【0036】図1のフロー図により、第2の本発明の一
実施形態を説明する。
The second embodiment of the present invention will be described with reference to the flowchart of FIG.

【0037】本発明の超臨界水酸化分解装置は、図1に
示すように、超臨界水酸化反応を行う反応器として、チ
ューブラー状(管状)の長い耐圧密閉型反応器10を備
え、反応器10の上流には、下水の生物処理設備から供
給される下水汚泥を濃縮分離する濃縮分離手段2と濃縮
分離手段2により濃縮分離された濃縮汚泥を貯留する濃
縮汚泥タンク6を有し、濃縮分離手段2から分離された
分離液を貯留する分離液タンク3を有している。濃縮分
離手段2では、原料の下水汚泥を固形物濃度5%(重量
%)以上に濃縮する。
As shown in FIG. 1, the supercritical hydroxylation decomposition apparatus of the present invention comprises a tubular (tubular) long pressure-resistant closed type reactor 10 as a reactor for performing a supercritical hydroxylation reaction. In the upstream of the vessel 10, there are provided a concentration separation means 2 for concentration and separation of sewage sludge supplied from the biological treatment equipment for sewage and a concentration sludge tank 6 for storing the concentration sludge concentrated and separated by the concentration separation means 2. It has a separation liquid tank 3 for storing the separation liquid separated from the separation means 2. In the concentration separation means 2, the raw material sewage sludge is concentrated to a solid concentration of 5% (% by weight) or more.

【0038】濃縮汚泥等の被処理物流体を水の臨界圧力
以上に加圧供給する加圧供給手段としての加圧供給ポン
プ26と、酸化剤を加圧供給する加圧供給手段としての
加圧供給ポンプ28(酸化剤が酸素等の気体の場合は加
圧供給コンプレッサ)と、被処理物混合流体を予熱する
予熱手段としての二重管式熱交換器の予熱器12を備え
ている。
A pressurizing and supplying pump 26 as a pressurizing and supplying means for supplying a fluid to be treated such as concentrated sludge to a pressure higher than the critical pressure of water, and a pressurizing and supplying means as a pressurizing and supplying means for supplying an oxidizing agent under pressure. A supply pump 28 (a pressurized supply compressor when the oxidizing agent is a gas such as oxygen) and a preheater 12 of a double-pipe heat exchanger as preheating means for preheating the mixed fluid to be processed.

【0039】また、反応温度を制御するために、補助燃
料を加圧供給するための補助燃料供給手段としての加圧
供給ポンプ5と、分離液タンクから分離液を供給するた
めの分離液供給手段としての供給ポンプ4を備えてい
る。
In order to control the reaction temperature, a pressurized supply pump 5 as auxiliary fuel supply means for pressurized supply of auxiliary fuel, and a separation liquid supply means for supplying separation liquid from a separation liquid tank Supply pump 4 is provided.

【0040】反応器10では、予熱された被処理物混合
流体が超臨界圧力以上、450〜550℃の条件下で、
超臨界水酸化分解される。
In the reactor 10, the preheated mixed fluid of the object to be treated is heated to a supercritical pressure of 450 to 550 ° C.
Supercritical hydroxylated decomposition.

【0041】反応器10の下流には、二重管式の熱交換
器14と、反応後の処理流体を冷却する冷却器16を備
えている。予熱器、反応器、熱交換器および冷却器から
なる超臨界水酸化分解装置の流路は、略同一の径を有し
ている。
Downstream of the reactor 10, a double-tube heat exchanger 14 and a cooler 16 for cooling the processed fluid after the reaction are provided. The flow passages of the supercritical water splitting and cracking apparatus including the preheater, the reactor, the heat exchanger, and the cooler have substantially the same diameter.

【0042】更に、超臨界水酸化分解装置は、反応器1
0内の圧力を制御する圧力制御弁18を冷却器16の下
流に備えている。冷却された処理流体を取り出す手段と
して、ガスとスラリーとに気液分離する気液分離器20
を圧力制御弁18の下流に、及び、スラリー状の反応生
成物を固液分離して、無機固形物を反応生成物から分離
する固液分離器22を備えている。固液分離器22で分
離された無機固形物は、主として、反応物中に含まれ、
反応に寄与しなかったものであって、加えて、超臨界水
酸化反応により生成した塩を含むこともある。
Further, the supercritical water splitting / decomposing apparatus comprises a reactor 1
A pressure control valve 18 for controlling the pressure within 0 is provided downstream of the cooler 16. As means for taking out the cooled processing fluid, a gas-liquid separator 20 for gas-liquid separation into gas and slurry is used.
Is provided downstream of the pressure control valve 18 and a solid-liquid separator 22 that separates the inorganic solid from the reaction product by solid-liquid separation of the slurry-like reaction product. The inorganic solid separated by the solid-liquid separator 22 is mainly contained in the reaction product,
It does not contribute to the reaction and may additionally contain a salt formed by the supercritical hydroxylation reaction.

【0043】なお、反応器10内の反応温度を450〜
550℃に制御するために、気液分離器20から流出す
る処理流体の性状を測定する測定手段としてのpH測定
手段21が設けられている。処理流体のpH値は、電気
的信号として反応温度制御手段23へ送られる。反応温
度制御手段23としては、フィードバック制御装置など
を挙げることができる。pHの値により、補助燃料およ
び分離液の供給量を制御する。なお、図1では、処理水
の性状を測定する手段としてpH計を例示したが、pH
計以外にも、処理水中のアンモニア、硝酸、亜硝酸の濃
度を直接測定する手段であってもよい。
The reaction temperature in the reactor 10 is set to 450 to
In order to control the temperature to 550 ° C., a pH measuring means 21 is provided as a measuring means for measuring properties of the processing fluid flowing out of the gas-liquid separator 20. The pH value of the processing fluid is sent to the reaction temperature control means 23 as an electric signal. As the reaction temperature control means 23, a feedback control device or the like can be used. The supply amount of the auxiliary fuel and the separated liquid is controlled by the pH value. In FIG. 1, a pH meter is illustrated as a means for measuring the properties of the treated water.
In addition to the meter, a means for directly measuring the concentrations of ammonia, nitric acid, and nitrous acid in the treated water may be used.

【0044】反応器10から流出する処理流体中にアン
モニアが残存すると、処理流体のpHが上昇する。処理
流体中のアンモニア濃度が上昇することは、反応温度が
低下していることが予想されるので(前記反応式
(4))、処理流体のpHが上昇する場合は、反応温度
制御手段23から、補助燃料供給手段5に信号を送り、
補助燃料の供給量を増やして反応温度を上昇させ、硝酸
および亜硝酸の生成量を増やせばよい。
If ammonia remains in the processing fluid flowing out of the reactor 10, the pH of the processing fluid rises. An increase in the concentration of ammonia in the processing fluid is expected to decrease the reaction temperature (the above-mentioned reaction formula (4)). Sends a signal to the auxiliary fuel supply means 5,
The reaction temperature may be raised by increasing the supply amount of the auxiliary fuel, and the production amounts of nitric acid and nitrous acid may be increased.

【0045】また反応器10から流出する処理流体中に
硝酸および亜硝酸が残存すると、処理流体のpHが低下
する。処理流体中の硝酸および亜硝酸の濃度が上昇する
ことは、反応温度が高くなっているいることが予想され
るので(前記反応式(5))、処理流体のpHが低下す
る場合は、反応温度制御手段23から、分離液供給供給
手段4へ信号を送り、発熱量の低い分離液を超臨界水酸
化反応系へ供給することにより、反応温度を低下させ
て、硝酸および亜硝酸の生成量を抑制する。なお、反応
温度を低下させるために、分離液の代わりに水を供給し
てもよい。
When nitric acid and nitrous acid remain in the processing fluid flowing out of the reactor 10, the pH of the processing fluid decreases. An increase in the concentration of nitric acid and nitrous acid in the processing fluid is expected to increase the reaction temperature (the above-mentioned reaction formula (5)). A signal is sent from the temperature control means 23 to the separation liquid supply / supply means 4 to supply the separation liquid having a low calorific value to the supercritical hydroxylation reaction system, thereby lowering the reaction temperature and reducing the production amount of nitric acid and nitrous acid. Suppress. In addition, water may be supplied instead of the separated liquid in order to lower the reaction temperature.

【0046】上述のように反応温度を450〜550℃
に制御することにより。処理水中からアンモニア、硝
酸、亜硝酸を消失させることができる。
As mentioned above, the reaction temperature is 450 to 550 ° C.
By controlling to. Ammonia, nitric acid and nitrous acid can be eliminated from the treated water.

【0047】[0047]

【実施例】実施例1 反応温度510℃、反応圧力24MPa、反応時間2
分、酸素比1.5という条件で、固形物濃度10.0%
の濃縮汚泥を処理水pHが4.8となるようにして超臨
界水酸化反応を行った。なお温度調整にイソプロピルア
ルコール(IPA)および水を使用した。
EXAMPLES Example 1 Reaction temperature 510 ° C., reaction pressure 24 MPa, reaction time 2
The solid content concentration is 10.0% under the condition that the oxygen ratio is 1.5.
Was subjected to a supercritical water oxidation reaction so that the pH of the treated water became 4.8. In addition, isopropyl alcohol (IPA) and water were used for temperature adjustment.

【0048】上記の反応の経過を表2および図2に示し
た。
The progress of the above reaction is shown in Table 2 and FIG.

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】請求項1に記載した本発明方法により、
比較的低い温度で有機性汚泥を超臨界水酸化分解処理す
ることができ、確実に処理水中から窒素を除去すること
ができる。
According to the method of the present invention described in claim 1,
The organic sludge can be subjected to the supercritical hydrolytic decomposition treatment at a relatively low temperature, and nitrogen can be reliably removed from the treated water.

【0051】請求項2に記載した本発明方法により、有
機性汚泥に含まれる有機物も十分に超臨界水酸化分解処
理することができる。
According to the method of the present invention described in claim 2, the organic substances contained in the organic sludge can be sufficiently subjected to the supercritical hydroxylation decomposition treatment.

【0052】請求項3に記載した本発明方法は、処理水
の性状に応じて反応温度を制御することにより、有機性
汚泥の性状が変動しても確実に処理水中から窒素を除去
することができる。
In the method of the present invention described in claim 3, by controlling the reaction temperature according to the properties of the treated water, it is possible to reliably remove nitrogen from the treated water even if the properties of the organic sludge fluctuate. it can.

【0053】請求項4に記載した本発明方法により、上
記効果に加え、処理水のpHを測定して反応温度を制御
することができるため、より簡便に低コスト制御するこ
とができる。
According to the method of the present invention, the reaction temperature can be controlled by measuring the pH of the treated water in addition to the above-mentioned effects, so that the cost can be controlled more easily and at low cost.

【0054】請求項5に記載した本発明装置により、処
理水の性状に応じて反応温度を制御することにより、有
機性汚泥の性状が変動しても確実に処理水中から窒素を
除去することができる。
By controlling the reaction temperature according to the properties of the treated water, the apparatus of the present invention described in claim 5 can reliably remove nitrogen from the treated water even if the properties of the organic sludge fluctuate. it can.

【0055】請求項6および7に記載した本発明装置に
より、上記効果に加え、処理水のpHを測定して反応温
度を制御することができるため、より簡便に低コスト制
御することができる。
According to the apparatus of the present invention described in claims 6 and 7, in addition to the above effects, the pH of the treated water can be measured to control the reaction temperature, so that the cost can be controlled more easily and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置のフロー図。FIG. 1 is a flowchart of the apparatus of the present invention.

【図2】実施例における反応の経過を示すグラフ。FIG. 2 is a graph showing the course of a reaction in Examples.

【図3】従来の超臨界水酸化分解装置のフロー図。FIG. 3 is a flowchart of a conventional supercritical hydroxylation decomposition apparatus.

【符号の説明】[Explanation of symbols]

2 濃縮分離手段 3 分離液タンク 4 分離液供給手段 5 補助燃料供給手段 6 濃縮汚泥タンク 10 反応器 12 予熱器 14 熱交換器 16 冷却器 18 圧力制御弁 20 気液分離器 21 pH測定手段 22 固液分離器 23 反応温度制御手段 24 熱媒用配管 26 加圧供給ポンプ 28 加圧供給ポンプ 2 Concentration and separation means 3 Separation liquid tank 4 Separation liquid supply means 5 Auxiliary fuel supply means 6 Condensed sludge tank 10 Reactor 12 Preheater 14 Heat exchanger 16 Cooler 18 Pressure control valve 20 Gas-liquid separator 21 pH measurement means 22 Solid Liquid separator 23 Reaction temperature control means 24 Heat medium pipe 26 Pressurized supply pump 28 Pressurized supply pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴垣 裕志 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 伊藤 新治 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 鈴木 明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 3K061 AA12 AB01 AC02 BA01 BA08 CA01 DA03 4D059 AA03 BC01 BC02 BE31 BE37 BE41 CB09 DA44 DA47 DB02 EA05 EB06 EB16  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Suzugaki 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation (72) Inventor Shinji Ito 1-2-8 Shinsuna, Koto-ku, Tokyo Olga (72) Inventor Akira Suzuki 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation F-term (reference) 3K061 AA12 AB01 AC02 BA01 BA08 CA01 DA03 4D059 AA03 BC01 BC02 BE31 BE37 BE41 CB09 DA44 DA47 DB02 EA05 EB06 EB16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 超臨界水中で有機性汚泥および酸化剤を
反応させて有機性汚泥を超臨界水酸化分解する方法にお
いて、該有機性汚泥の固形物濃度を5%以上とし、かつ
450〜550℃で超臨界水酸化反応させることを特徴
とする有機性汚泥の超臨界水酸化分解方法。
1. A method of reacting an organic sludge and an oxidizing agent in supercritical water to supercritically hydrolyze the organic sludge, wherein the solid concentration of the organic sludge is 5% or more and 450 to 550. A supercritical water oxidation decomposition method for organic sludge, wherein a supercritical water oxidation reaction is carried out at a temperature of ° C.
【請求項2】 前記超臨界水酸化反応の反応時間が1分
以上であることを特徴とする請求項1に記載の有機性汚
泥の超臨界水酸化分解方法。
2. The method of claim 1, wherein the reaction time of the supercritical hydroxylation reaction is 1 minute or more.
【請求項3】 処理流体の性状を測定して、反応温度を
450〜550℃に制御することを特徴とする請求項1
または2に記載の有機性汚泥の超臨界水酸化分解方法。
3. The method according to claim 1, wherein the reaction temperature is controlled at 450 to 550 ° C. by measuring properties of the processing fluid.
Or the method for supercritically hydrolyzing organic sludge according to 2 above.
【請求項4】 前記処理流体の性状がpHであり、処理
流体のpHが低下する場合は水または有機性汚泥を濃縮
する際に得られる分離液を反応系へ供給し、処理流体の
pHが上昇する場合は補助燃料を供給することにより反
応温度を制御することを特徴とする請求項3に記載の有
機性汚泥の超臨界水酸化分解方法。
4. The process fluid has a pH property, and when the pH of the process fluid decreases, a separation liquid obtained when condensing water or organic sludge is supplied to a reaction system, and the pH of the process fluid is adjusted to a pH value. The method according to claim 3, wherein the reaction temperature is controlled by supplying an auxiliary fuel when the temperature rises.
【請求項5】 超臨界水中で固形物濃度5%以上の有機
性汚泥および酸化剤を反応させ、該有機性汚泥を超臨界
水酸化分解する装置において、該有機性汚泥および酸化
剤の被処理物混合流体を水の臨界圧力以上に加圧供給す
る被処理物供給手段と、該被処理物混合流体の超臨界水
酸化反応を行う反応器と、該反応器から流出する反応後
の処理流体を冷却する冷却手段と、該冷却手段から流出
する冷却された処理流体を取り出す取り出し手段を備え
た超臨界水酸化分解装置であって、処理流体の性状を測
定する測定手段と、測定手段で測定された処理流体の性
状に応じて、超臨界水酸化反応の反応温度を450〜5
50℃に制御する反応温度制御手段を設けたことを特徴
とする超臨界水酸化分解装置。
5. An apparatus for reacting an organic sludge having a solid content of 5% or more and an oxidizing agent in supercritical water and supercritically hydrolyzing the organic sludge to treat the organic sludge and the oxidizing agent. Supply means for supplying the mixed fluid at a pressure equal to or higher than the critical pressure of water, a reactor for performing a supercritical hydroxylation reaction of the mixed fluid, and a processed fluid flowing out of the reactor after the reaction A supercritical hydroxylation decomposition apparatus comprising a cooling means for cooling the processing fluid, a take-out means for taking out a cooled processing fluid flowing out of the cooling means, a measuring means for measuring properties of the processing fluid, and a measuring means for measuring the properties of the processing fluid. Depending on the properties of the processed fluid, the reaction temperature of the supercritical hydroxylation reaction is 450 to 5
A supercritical water splitting / decomposing apparatus comprising a reaction temperature control means for controlling the temperature to 50 ° C.
【請求項6】 前記処理流体の性状が処理流体のpHで
あり、前記測定手段がpH測定手段であることを特徴と
する請求項5に記載の超臨界水酸化分解装置。
6. The supercritical hydroxylation decomposition apparatus according to claim 5, wherein the property of the processing fluid is a pH of the processing fluid, and the measuring means is a pH measuring means.
【請求項7】 前記反応温度制御手段が、処理流体のp
Hが低下する場合は水または有機性汚泥を濃縮する際に
得られる分離液を反応器へ供給し、処理流体のpHが上
昇する場合は補助燃料を供給することにより反応温度を
制御する手段であることを特徴とする請求項6に記載の
超臨界水酸化分解装置。
7. The method according to claim 1, wherein the reaction temperature control means is configured to control the p of the processing fluid.
When H decreases, water or a separated liquid obtained when the organic sludge is concentrated is supplied to the reactor, and when the pH of the processing fluid increases, an auxiliary fuel is supplied to control the reaction temperature. The supercritical water splitting / decomposing apparatus according to claim 6, wherein:
JP2001163983A 2001-05-31 2001-05-31 Supercritical water oxidative decomposition method for organic sludge and apparatus therefor Pending JP2002355699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163983A JP2002355699A (en) 2001-05-31 2001-05-31 Supercritical water oxidative decomposition method for organic sludge and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163983A JP2002355699A (en) 2001-05-31 2001-05-31 Supercritical water oxidative decomposition method for organic sludge and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2002355699A true JP2002355699A (en) 2002-12-10
JP2002355699A5 JP2002355699A5 (en) 2008-06-26

Family

ID=19006854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163983A Pending JP2002355699A (en) 2001-05-31 2001-05-31 Supercritical water oxidative decomposition method for organic sludge and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2002355699A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226583A (en) * 1998-02-16 1999-08-24 Japan Organo Co Ltd Method and apparatus for supercritical hydroxylation of organic matter containing ammonia or organic nitrogen
JP2000140620A (en) * 1998-11-06 2000-05-23 Hitachi Ltd Reactor using supercritical fluid
JP2001087761A (en) * 1999-09-27 2001-04-03 Shinko Pantec Co Ltd Method for concentrating organic waste water and concentrating apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226583A (en) * 1998-02-16 1999-08-24 Japan Organo Co Ltd Method and apparatus for supercritical hydroxylation of organic matter containing ammonia or organic nitrogen
JP2000140620A (en) * 1998-11-06 2000-05-23 Hitachi Ltd Reactor using supercritical fluid
JP2001087761A (en) * 1999-09-27 2001-04-03 Shinko Pantec Co Ltd Method for concentrating organic waste water and concentrating apparatus therefor

Similar Documents

Publication Publication Date Title
EP1198424B1 (en) A method of and arrangement for continuous hydrolysis of organic material
Qi et al. Decomposition of aniline in supercritical water
EP2927197A1 (en) System for treating coal gasification wastewater, and method for treating coal gasification wastewater
CN101993143A (en) System and method for processing alkaline residue wastewater by utilizing supercritical water oxidation method
TWI507363B (en) Treatment of Copper Etching Waste
EP3131855B1 (en) Catalytic method for produced water treatment
JP2002355698A (en) Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor
JP3440835B2 (en) Organic waste treatment method using high temperature and high pressure steam
JP2002355699A (en) Supercritical water oxidative decomposition method for organic sludge and apparatus therefor
JP2002355697A (en) Supercritical water oxidative decomposition apparatus and method
JP7333262B2 (en) High-concentration iron-based flocculant and method for producing the same
JP2001121167A (en) Batchwise supercritical water reaction apparatus
JP3356206B2 (en) Wastewater treatment method
JP2003236594A (en) Apparatus for treating sludge
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP2002355696A (en) Supercritical water oxidative decomposition apparatus
JP3686778B2 (en) Operation method of supercritical water reactor
JP3792856B2 (en) Supercritical water oxidation method for organic sludge
JP4674040B2 (en) Sludge treatment method under conditions of high temperature and high pressure
CN216337102U (en) Isopropyl alcohol effluent disposal system
CN217895360U (en) A device that is used for high salt of PO SM, high COD waste water treatment
JP2003236592A (en) Method for treating organic sludge
KR100770823B1 (en) Method and apparatus for decomposing nitrogen containing organic compounds
CN116969630A (en) Treatment method of high ammonia nitrogen wastewater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208