JP3686778B2 - Operation method of supercritical water reactor - Google Patents

Operation method of supercritical water reactor Download PDF

Info

Publication number
JP3686778B2
JP3686778B2 JP09063399A JP9063399A JP3686778B2 JP 3686778 B2 JP3686778 B2 JP 3686778B2 JP 09063399 A JP09063399 A JP 09063399A JP 9063399 A JP9063399 A JP 9063399A JP 3686778 B2 JP3686778 B2 JP 3686778B2
Authority
JP
Japan
Prior art keywords
liquid
reactor
supercritical water
treated
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09063399A
Other languages
Japanese (ja)
Other versions
JP2000279791A (en
JP2000279791A5 (en
Inventor
慎一朗 川崎
太郎 大江
治 高橋
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP09063399A priority Critical patent/JP3686778B2/en
Publication of JP2000279791A publication Critical patent/JP2000279791A/en
Publication of JP2000279791A5 publication Critical patent/JP2000279791A5/ja
Application granted granted Critical
Publication of JP3686778B2 publication Critical patent/JP3686778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界水反応装置の運転方法に関し、更に詳細には、超臨界水反応装置を運転して、単位体積当たりの酸化発熱量が異なる複数種の被処理液を同時に反応器に導入し、超臨界水の存在下で超臨界水反応を行う際、超臨界水反応装置を円滑に起動し、安定して運転する方法に関するものである。
【0002】
【従来の技術】
環境問題に対する認識の高まりと共に、有機物の酸化、分解能力の高い超臨界水反応を利用して、環境汚染物質を分解、無害化する試みが注目されている。すなわち、超臨界水の高い反応性を利用した超臨界水反応により、従来技術では分解することが難しかった有害な難分解性の有機物、例えば、PCB(ポリ塩素化ビフェニル)、ダイオキシン、有機塩素系溶剤等を分解して、二酸化炭素、窒素、水、無機塩などの無害な生成物に転化する試みである。
【0003】
超臨界水反応装置とは、超臨界水の高い反応性を利用して有機物を分解する装置であって、例えば、難分解性の有害な有機物を分解して無害な二酸化炭素と水に転化したり、難分解性の高分子化合物を分解して有用な低分子化合物に転化したりするために、現在、その実用化が盛んに研究されている。
超臨界水とは、超臨界状態にある水、即ち、水の臨界点を越えた状態にある水を言い、詳しくは、374.1℃以上の温度で、かつ22.04MPa以上の圧力下にある状態の水を言う。超臨界水は、有機物を溶解する溶解能が高く、有機化合物に多い非極性物質をも完全に溶解することができる一方、逆に、金属、塩等の無機物に対する溶解能は著しく低い。また、超臨界水は、酸素や窒素などの気体と任意の割合で混合して単一相を構成することができる。
【0004】
ここで、図3を参照して、超臨界水反応装置の基本的な構成を説明する。図3は超臨界水反応装置の基本的構成を示すフローシートである。
超臨界水反応装置10は、超臨界水の存在下で超臨界水反応により有害な有機物を含む被処理液を処理する装置であって、図3に示すように、超臨界水反応を行う反応器として、縦型の耐圧密閉型反応器12を備え、反応器12から処理液を流出させる処理液管14に、順次、処理液を冷却する冷却器16、反応器12内の圧力を制御する圧力制御弁18、及び、処理液をガスと液体とに気液分離する気液分離器20を備えている。
尚、縦型反応容器は、通常、固形物の含有率が低い被処理液を処理するのに適しており、固形物の含有率が高い被処理液を処理する際には、パイプ状のチューブラー反応器を使用することが多い。
【0005】
超臨界水反応装置10は、超臨界水反応に供する反応物を反応器12に供給する供給系統として、被処理液ポンプ24と、空気圧縮機28とを備え、有機物を含む被処理液を被処理液管22を介して反応器12に送入し、かつ、空気送入管26及び被処理液管22を介して酸化剤として空気を被処理液と共に反応器12に送入する。
【0006】
更に、超臨界水反応装置10は、必要に応じて、反応器12での超臨界水反応を維持するのに必要な熱エネルギー源として補助燃料を反応器12に送入する補助燃料管(図示せず)、及び反応器12で超臨界水反応により処理液中の有機物から発生した塩素等を中和するアルカリ剤を反応器12に送入するアルカリ剤送入管(図示せず)を被処理液管22に合流させている。
【0007】
なお、被処理液と処理液とを熱交換させて処理液を冷却するとともに被処理液を昇温して熱回収を図る熱交換器(図示せず)を冷却器16の上流の処理液管14に、又は被処理液を予熱する予熱器を反応器12の上流の被処理液管22に設けることもある。また、超臨界水の補給水管を被処理液管22に接続することもある。
更には、反応器12の下部に亜臨界水領域を設け、反応器12内で生じた無機塩類を亜臨界水領域に沈降させ、除去する機構を設けることもある。
【0008】
【発明が解決しようとする課題】
ところで、超臨界水反応による有機物処理の優れた点及び効果が評価されて行くと共に、例えば被処理液の発生源に超臨界水反応装置を設置し、単位体積当たりの発熱量が相互に異なる種類の有機物をそれぞれ含む複数の被処理液を同時に超臨界水反応装置で処理することが行われるようになっている。
【0009】
例えば、図2に示すように、2種類の被処理液を処理する超臨界水反応装置30では、2台の処理液ポンプ24A、Bを設け、被処理液管22を介して処理液ポンプ24Aと反応器12とを接続し、被処理液管22に接続する被処理液管22Bを設け、被処理液管22B及び被処理液管22を介して被処理液ポンプ2Bと反応器12とを接続している。
そして、処理液ポンプ24Aと被処理液ポンプ24Bによって、被処理液Aと被処理液Bとを同時に処理することも多い。
【0010】
しかし、被処理液Aと被処理液Bとを超臨界水処理するために、超臨界水反応装置の起動時及び通常運転時に、被処理液Aと被処理液Bを反応器に送液する際に、反応器の温度が変動して、特に反応器の温度が上昇して処理を安定して行うことが難しいという問題があった。
【0011】
そこで、本発明の目的は、単位体積当たりの発熱量の異なる複数種の被処理を超臨界水処理する際に、特にその起動時において超臨界水反応装置を円滑に起動し、安定して運転する方法を提供することである。
【0012】
【課題を解決するための手段】
本発明者は、上述のような被処理液A及びBのように、種類の異なる有機物を含む複数種の被処理液を反応器に送入して超臨界水反応装置を起動し、運転する際に、反応器の温度が急激に上昇し、また圧力条件が変動する原因を調べ、次のことを見い出した。
通常、超臨界水反応装置への被処理液の送入では、被処理液中の有機物の濃度、更に詳しく言えば被処理液の単位体積当たりの有機物による酸化発熱量がほぼ一定になるように被処理液Aおよび被処理液Bを混合調整して反応器に送入している。
【0013】
ところで、たとえば有機物濃度の高い被処理液B、即ち単位体積当たりの酸化発熱量が高い被処理液Bを送入して、次いで有機物濃度の低い被処理液A、即ち単位体積当たりの酸化発熱量が低い被処理液Aを反応器に送入した場合、混合部から反応器までの配管内に満たされている被処理液Bに見かけ上の被処理液Aの流量も加算されるので、被処理液Bが多量に反応器内に流入する。
その結果、単位時間当たりの発熱量が反応器内で増大して、反応器の温度が上昇することを見い出した。
【0014】
そこで、上述のような種類の異なる有機物を異なる濃度で含む複数種の被処理液、即ち単位体積当たりの酸化発熱量の異なる複数種の被処理液、例えば第1の被処理液と第2の被処理液とを処理する超臨界水反応装置を起動する際には、先ず、単位体積当たりの酸化発熱量が低い第1の被処理液を反応器に送入して定常状態にし、次いで第1の被処理液に加えて、単位体積当たりの酸化発熱量が高い第2の被処理液を送入することにより、上述の問題発生を回避することを着想し、研究の末に、本発明方法を完成するに到った。
【0015】
また、超臨界水反応装置の運転中に、第1の被処理液に加えて、第2の被処理液を反応器に送入する際には、上述の問題発生を回避するためには、2の被処理液の単位体積当たりの酸化発熱量が、第1の被処理液の単位体積当たりの酸化発熱量より高いことが必要であると考え、研究の末に本発明方法を完成するに到った。
【0016】
上記目的を達成するためには、上述の知見に基づいて、本発明に係る超臨界水反応装置の運転方法は、単位体積当たりの酸化発熱量が異なる複数種の被処理液を同時に反応器に導入し、超臨界水の存在下で超臨界水反応を行う超臨界水反応装置の運転方法であって、超臨界水反応装置を起動する際には、
空気を送入して反応器の圧力を所定圧力に昇圧する第1のステップと、
空気の送入を継続しつつ、超臨界水を反応器に流入し、反応器内の温度を第1の所定温度に昇温する第2のステップと、
超臨界水の流入を継続しつつ、第1の被処理液を反応器に導入して、酸化反応を開始させる第3のステップと、
第1の被処理液に加えて、単位体積当たりの酸化発熱量が第1の被処理液より高い第2の被処理液を反応器に供給する第4のステップと、
反応器の温度が第2の所定温度に到達した時点で、超臨界水の流入を停止させる第5のステップと
を有することを特徴としている。
【0017】
本発明方法で、第1の所定温度とは、通常、約390℃である。また、第2の所定温度とは、超臨界水反応の温度条件であって、500℃から550℃の範囲にある。
【0018】
【発明の実施の形態】
以下に、実施形態例を示す図1を参照して、本発明の実施の形態を具体的かつ詳細に説明する。
実施形態例1
本実施形態例は、本発明に係る超臨界水反応装置の運転方法を超臨界水反応装置30の起動に適用した実施形態の一例である。
本実施形態例では、先ず、空気圧縮機28を起動して、高圧空気を反応器12に送入し、反応器12の圧力を所定圧力に昇圧する。
次いで、高圧空気の送入を継続しつつ、超臨界水ライン40を経由して超臨界水を流入し、反応器12内の温度を所定温度、例えば390℃に昇温する。
なお、超臨界水ライン40には、ヒータや熱交換機等の加熱器41が付設され、水を加熱器41によって加熱し、超臨界水とする。
超臨界水の流入を継続しつつ、被処理液ポンプ24Aを起動して、被処理液のうちの単位体積当たりの酸化発熱量が低い被処理液Aを反応器12に導入して、酸化反応を開始させる。
【0019】
次いで、被処理液Aに加えて、被処理液ポンプ24Bを起動して、単位体積当たりの酸化発熱量が被処理液Aより高い被処理液Bを反応器に供給する。
反応器12の温度が上昇した時点で、超臨界水の流入量を徐々に低下させ、反応器12の温度が500℃〜550℃の範囲の所定温度に到達した時点で、超臨界水の流入を停止し、超臨界水反応を安定して継続させる。
【0020】
本実施形態例では、被処理液管22に滞留する被処理液Aの単位体積当たりの酸化発熱量が被処理液Bの単位体積当たりの酸化発熱量より低いので、従来のように、反応器に送入管路に滞留した、単位体積当たりの酸化発熱量が高い被処理液が、高い流量で送入される単位体積当たりの酸化発熱量が低い被処理液に押し出されて、反応器12の温度が急激に上昇するようなことは生じない。
【0022】
【発明の効果】
本発明方法によれば、単位体積当たりの酸化発熱量が相互に異なる複数種の被処理液を処理する超臨界水反応装置の運転では、起動の際、先ず単位体積当たりの酸化発熱量が低い第1の被処理液を反応器に送入して定常状態にし、次いで第1の被処理液に加えて第1の被処理液より単位体積当たりの酸化発熱量が高い第2の被処理液を送入する。また、被処理液の切り換え、ないし追加送入の場合にも、先ず、第1の被処理液を送入し、次いで第1の被処理液より単位体積当たりの酸化発熱量が高い第2の被処理液を送入する。
これにより、従来のように、反応器に送入管路に滞留した、単位体積当たりの酸化発熱量が高い被処理液が、高い流量で送入される単位体積当たりの酸化発熱量が低い被処理液に押し出されて、多量に反応器に流入することがないので、反応器での急激な温度上昇が起きずに、安定した温度制御を行うことができる。
【図面の簡単な説明】
【図1】超臨界水反応装置の基本的構成を示すフローシートである。
【図2】2種類の被処理液を処理する従来の超臨界水反応装置の構成を示すフローシートである。
【図3】 一種類の被処理液を処理する従来の超臨界水反応装置の構成を示すローシートである。
【符号の説明】
10 超臨界水反応装置
12 反応器
14 処理液管
16 冷却器
18 圧力制御弁
20 気液分離器
22 被処理液管
22B 被処理液管
24 被処理液ポンプ
24A、B 被処理液ポンプ
26 空気送入管
28 空気圧縮機
30 2種類の被処理液を処理する超臨界水反応装置
40 超臨界水ライン
41 加熱器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a supercritical water reactor. More specifically, the supercritical water reactor is operated, and a plurality of kinds of liquids having different oxidation heat generation per unit volume are simultaneously introduced into the reactor. In addition, the present invention relates to a method for smoothly starting a supercritical water reactor and performing a stable operation when performing a supercritical water reaction in the presence of supercritical water.
[0002]
[Prior art]
With increasing awareness of environmental issues, attention has been paid to attempts to decompose and detoxify environmental pollutants using supercritical water reactions with high oxidation and decomposition capabilities of organic matter. That is, due to the supercritical water reaction utilizing the high reactivity of supercritical water, harmful and hardly decomposable organic substances that have been difficult to be decomposed by the prior art, such as PCB (polychlorinated biphenyl), dioxin, and organic chlorine It is an attempt to decompose solvents and convert them into harmless products such as carbon dioxide, nitrogen, water and inorganic salts.
[0003]
A supercritical water reactor is a device that decomposes organic substances using the high reactivity of supercritical water. For example, it decomposes harmful organic substances that are difficult to decompose and converts them into harmless carbon dioxide and water. In order to decompose difficult-to-decompose high-molecular compounds and convert them into useful low-molecular compounds, their practical application is currently being actively studied.
Supercritical water refers to water in a supercritical state, that is, water in a state exceeding the critical point of water, and more specifically, at a temperature of 374.1 ° C. or higher and a pressure of 22.04 MPa or higher. Says water in a certain state. Supercritical water has a high ability to dissolve organic substances, and can completely dissolve non-polar substances that are abundant in organic compounds. Conversely, the ability to dissolve inorganic substances such as metals and salts is extremely low. Supercritical water can be mixed with a gas such as oxygen or nitrogen at an arbitrary ratio to form a single phase.
[0004]
Here, the basic configuration of the supercritical water reactor will be described with reference to FIG. FIG. 3 is a flow sheet showing the basic configuration of the supercritical water reactor.
The supercritical water reaction apparatus 10 is an apparatus for treating a liquid to be treated containing harmful organic substances by supercritical water reaction in the presence of supercritical water, and performs a supercritical water reaction as shown in FIG. As a reactor, a vertical pressure-resistant sealed reactor 12 is provided, and a cooling liquid 16 for cooling the processing liquid and a pressure in the reactor 12 are sequentially controlled in a processing liquid pipe 14 for allowing the processing liquid to flow out from the reactor 12. A pressure control valve 18 and a gas-liquid separator 20 for separating the processing liquid into gas and liquid are provided.
The vertical reaction vessel is usually suitable for processing a liquid to be processed having a low solid content, and a pipe-shaped tube when processing a liquid to be processed having a high solid content. In many cases, a reactor is used.
[0005]
The supercritical water reactor 10 is provided with a liquid pump 24 to be processed and an air compressor 28 as a supply system for supplying a reactant to be supplied to the supercritical water reaction to the reactor 12, and receives a liquid to be processed containing organic matter. Air is fed into the reactor 12 together with the liquid to be treated together with the liquid to be treated through the air pipe 26 and the liquid pipe 22 to be treated.
[0006]
Further, the supercritical water reaction apparatus 10 supplies an auxiliary fuel pipe (see FIG. 5) for supplying auxiliary fuel to the reactor 12 as a heat energy source necessary for maintaining the supercritical water reaction in the reactor 12 as necessary. And an alkaline agent feeding pipe (not shown) for feeding an alkaline agent that neutralizes chlorine generated from organic substances in the treatment liquid by supercritical water reaction in the reactor 12 to the reactor 12. The processing liquid pipe 22 is merged.
[0007]
In addition, a heat exchanger (not shown) that heat-recovers the process liquid by heat-exchanging the process liquid and the process liquid and raising the temperature of the process liquid to recover the heat is disposed upstream of the cooler 16. 14 or a preheater for preheating the liquid to be treated may be provided in the liquid pipe 22 to be treated upstream of the reactor 12. Further, a supercritical water replenishment water pipe may be connected to the liquid pipe 22 to be treated.
Furthermore, a subcritical water region may be provided in the lower part of the reactor 12, and a mechanism may be provided for causing the inorganic salts generated in the reactor 12 to settle and remove in the subcritical water region.
[0008]
[Problems to be solved by the invention]
By the way, excellent points and effects of organic matter treatment by supercritical water reaction are being evaluated, and for example, a supercritical water reactor is installed at the source of the liquid to be treated, and the calorific values per unit volume are different from each other. A plurality of liquids to be treated containing the organic substances are simultaneously treated in a supercritical water reactor.
[0009]
For example, as shown in FIG. 2, the two types of supercritical water reactor 30 for processing liquid to be treated, the two treated liquid pump 24A, B are provided, the liquid to be treated through a treated liquid pipe 22 A pump 24A and the reactor 12 are connected to each other, and a liquid pipe 22B to be processed connected to the liquid pipe 22 to be processed is provided, which reacts with the liquid pump 2 4 B to be processed through the liquid pipe 22B and the liquid pipe 22 to be processed. The device 12 is connected.
Then, the liquid to be treated pump 24A and the liquid to be treated pump 24B, often simultaneously process the liquid to be treated A and the liquid to be treated B.
[0010]
However, in order to perform the supercritical water treatment of the liquid to be processed A and the liquid to be processed B, the liquid to be processed A and the liquid to be processed B are sent to the reactor when the supercritical water reactor is started up and during normal operation. However, there has been a problem that the temperature of the reactor fluctuates, in particular, the temperature of the reactor rises and it is difficult to carry out the treatment stably.
[0011]
Therefore, an object of the present invention is to smoothly start a supercritical water reactor when a plurality of types of liquids to be treated with different calorific values per unit volume are treated, particularly at the time of starting, and stably It is to provide a way to drive.
[0012]
[Means for Solving the Problems]
The present inventor sends a plurality of types of liquids containing different kinds of organic substances to the reactor, such as the liquids A and B to be processed as described above, and starts and operates the supercritical water reactor. At the same time, the cause of the rapid increase in the temperature of the reactor and the fluctuation of the pressure condition was investigated, and the following was found.
Normally, when the liquid to be treated is fed into the supercritical water reactor, the concentration of organic matter in the liquid to be treated, more specifically, the amount of oxidation heat generated by the organic matter per unit volume of the liquid to be treated is substantially constant. The liquid to be processed A and the liquid to be processed B are mixed and adjusted and sent to the reactor.
[0013]
By the way, for example, a treatment liquid B having a high organic substance concentration, that is, a treatment liquid B having a high oxidation calorific value per unit volume is fed, and then a treatment liquid A having a low organic substance concentration, that is, an oxidation calorific value per unit volume. When the liquid A to be processed is fed into the reactor, the apparent flow rate of the liquid A to be processed is added to the liquid B to be processed in the pipe from the mixing section to the reactor. A large amount of the processing liquid B flows into the reactor.
As a result, it was found that the calorific value per unit time increases in the reactor, and the temperature of the reactor rises.
[0014]
Therefore, a plurality of types of processing liquids containing different kinds of organic substances as described above at different concentrations, that is, a plurality of types of processing liquids having different oxidation heat generation amounts per unit volume, for example, the first processing liquid and the second processing liquid. When starting the supercritical water reactor for treating the liquid to be treated, first, the first liquid to be treated having a low oxidation calorific value per unit volume is sent to the reactor to be in a steady state, and then The present invention has been conceived to avoid the above-mentioned problems by sending a second liquid to be treated having a high oxidation calorific value per unit volume in addition to the liquid to be treated 1. It came to complete the method.
[0015]
In addition, during operation of the supercritical water reactor, in order to avoid occurrence of the above-described problem when the second liquid to be treated is fed into the reactor in addition to the first liquid to be treated, The oxidation heat generation amount per unit volume of the second treatment liquid is considered to be higher than the oxidation heat generation amount per unit volume of the first treatment liquid, and the method of the present invention is completed after the research. It reached.
[0016]
In order to achieve the above object, based on the above-mentioned knowledge, the operation method of the supercritical water reactor according to the present invention simultaneously uses a plurality of types of liquids to be treated with different oxidation calorific values per unit volume in the reactor. It is a method of operating a supercritical water reactor that introduces and performs a supercritical water reaction in the presence of supercritical water, and when starting the supercritical water reactor,
A first step of introducing air to increase the pressure in the reactor to a predetermined pressure;
A second step of flowing supercritical water into the reactor while continuing to feed air, and raising the temperature in the reactor to a first predetermined temperature;
A third step of introducing the first liquid to be treated into the reactor and starting the oxidation reaction while continuing the inflow of supercritical water;
A fourth step of supplying, in addition to the first liquid to be treated, a second liquid to be treated whose oxidation heat generation amount per unit volume is higher than that of the first liquid to be treated;
And a fifth step of stopping the inflow of supercritical water when the temperature of the reactor reaches the second predetermined temperature.
[0017]
In the method of the present invention, the first predetermined temperature is usually about 390 ° C. The second predetermined temperature is a temperature condition for the supercritical water reaction and is in the range of 500 ° C to 550 ° C.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described specifically and in detail with reference to FIG. 1 showing an embodiment.
Embodiment 1
The present embodiment is an example of an embodiment in which the operation method of the supercritical water reactor according to the present invention is applied to the startup of the supercritical water reactor 30.
In this embodiment, first, the air compressor 28 is started, high-pressure air is fed into the reactor 12, and the pressure in the reactor 12 is increased to a predetermined pressure.
Next, supercritical water is introduced through the supercritical water line 40 while continuing the high-pressure air feeding, and the temperature in the reactor 12 is raised to a predetermined temperature, for example, 390 ° C.
The supercritical water line 40 is provided with a heater 41 such as a heater or a heat exchanger, and the water is heated by the heater 41 to obtain supercritical water.
While continuing the inflow of supercritical water, the liquid pump 24A to be treated is started, and the liquid A to be treated having a low oxidation calorific value per unit volume of the liquid to be treated is introduced into the reactor 12, and the oxidation reaction To start.
[0019]
Next, in addition to the liquid A to be processed, the liquid pump 24B to be processed is started to supply the liquid B to be processed whose oxidation heat generation amount per unit volume is higher than that of the liquid A to be processed.
When the temperature of the reactor 12 rises, the amount of inflow of supercritical water is gradually reduced, and when the temperature of the reactor 12 reaches a predetermined temperature in the range of 500 ° C. to 550 ° C., the inflow of supercritical water And the supercritical water reaction is continued stably.
[0020]
In the present embodiment example, the oxidation heat generation amount per unit volume of the liquid to be processed A staying in the liquid tube 22 to be processed is lower than the oxidation heat generation amount per unit volume of the liquid B to be processed. The liquid to be treated having a high oxidation calorific value per unit volume that is retained in the feed pipe is pushed out into the liquid to be treated having a low oxidation calorific value per unit volume that is fed at a high flow rate. There will be no sudden rise in temperature.
[0022]
【The invention's effect】
According to the method of the present invention, in the operation of a supercritical water reactor that treats a plurality of types of liquids to be treated with different amounts of oxidation heat generated per unit volume, first, the amount of oxidation heat generated per unit volume is low when starting up. The first liquid to be treated is sent to the reactor to be in a steady state, and then the second liquid to be treated has a higher oxidation heat generation amount per unit volume than the first liquid to be treated in addition to the first liquid to be treated. Send in. Further, in the case of switching or additional feeding of the liquid to be treated, the first liquid to be treated is first fed, and then the second calorific value of oxidation per unit volume is higher than that of the first liquid to be treated. Feed the liquid to be processed.
Thus, as in the past, the liquid to be treated having a high oxidation calorific value per unit volume, which is retained in the feed pipe in the reactor, has a low oxidation calorific value per unit volume fed at a high flow rate. Since it is not pushed out by the treatment liquid and flows into the reactor in a large amount, stable temperature control can be performed without causing a rapid temperature rise in the reactor.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing the basic configuration of a supercritical water reactor.
FIG. 2 is a flow sheet showing the configuration of a conventional supercritical water reactor for treating two types of liquids to be treated.
3 is a full Roshito showing the configuration of a conventional supercritical water reactor for processing one type of liquid to be treated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Supercritical water reactor 12 Reactor 14 Process liquid pipe 16 Cooler 18 Pressure control valve 20 Gas-liquid separator 22 Processed liquid pipe 22B Processed liquid pipe 24 Processed liquid pump 24A, B Processed liquid pump 26 Air supply Inlet pipe 28 Air compressor 30 Supercritical water reactor 40 for treating two kinds of liquids to be treated Supercritical water line 41 Heater

Claims (1)

単位体積当たりの酸化発熱量が異なる複数種の被処理液を同時に反応器に導入し、超臨界水の存在下で超臨界水反応を行う超臨界水反応装置の運転方法であって、超臨界水反応装置を起動する際には、
空気を送入して反応器の圧力を所定圧力に昇圧する第1のステップと、
空気の送入を継続しつつ、超臨界水を反応器に流入し、反応器内の温度を第1の所定温度に昇温する第2のステップと、
超臨界水の流入を継続しつつ、第1の被処理液を反応器に導入して、酸化反応を開始させる第3のステップと、
第1の被処理液に加えて、単位体積当たりの酸化発熱量が第1の被処理液より高い第2の被処理液を反応器に供給する第4のステップと、
反応器の温度が第2の所定温度に到達した時点で、超臨界水の流入を停止させる第5のステップと
を有することを特徴とする超臨界水反応装置の運転方法。
A supercritical water reactor operating method in which multiple types of liquids with different oxidation heat generation per unit volume are introduced into the reactor at the same time and supercritical water reaction is performed in the presence of supercritical water. When starting the water reactor,
A first step of introducing air to increase the pressure in the reactor to a predetermined pressure;
A second step of flowing supercritical water into the reactor while continuing to feed air, and raising the temperature in the reactor to a first predetermined temperature;
A third step of introducing the first liquid to be treated into the reactor while continuing the inflow of supercritical water to start the oxidation reaction;
A fourth step of supplying, in addition to the first liquid to be treated, a second liquid to be treated whose oxidation heat generation amount per unit volume is higher than that of the first liquid to be treated;
And a fifth step of stopping the inflow of supercritical water when the temperature of the reactor reaches a second predetermined temperature.
JP09063399A 1999-03-31 1999-03-31 Operation method of supercritical water reactor Expired - Fee Related JP3686778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09063399A JP3686778B2 (en) 1999-03-31 1999-03-31 Operation method of supercritical water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09063399A JP3686778B2 (en) 1999-03-31 1999-03-31 Operation method of supercritical water reactor

Publications (3)

Publication Number Publication Date
JP2000279791A JP2000279791A (en) 2000-10-10
JP2000279791A5 JP2000279791A5 (en) 2005-03-17
JP3686778B2 true JP3686778B2 (en) 2005-08-24

Family

ID=14003906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09063399A Expired - Fee Related JP3686778B2 (en) 1999-03-31 1999-03-31 Operation method of supercritical water reactor

Country Status (1)

Country Link
JP (1) JP3686778B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386268C (en) * 2006-06-05 2008-05-07 西安交通大学 Super critical water treatment system of waste organic liquid pollution less discharge and resources utilization
DE102007052325A1 (en) * 2007-03-29 2009-05-07 Erk Eckrohrkessel Gmbh Method for the sliding temperature control of chemical substances with defined inlet and outlet temperatures in a heater and device for carrying out the method
JP2015016401A (en) * 2013-07-09 2015-01-29 株式会社リコー Waste liquid treatment apparatus

Also Published As

Publication number Publication date
JP2000279791A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
AU2002338425A1 (en) Process for hydrothermal treatment of materials
EP1390302A1 (en) Process for hydrothermal treatment of materials
JP3686778B2 (en) Operation method of supercritical water reactor
JP3440835B2 (en) Organic waste treatment method using high temperature and high pressure steam
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JP2001121167A (en) Batchwise supercritical water reaction apparatus
JP3836270B2 (en) Method for shutting down supercritical water reactor
JPH10328699A (en) Supercritical hydroxylation reactor
JP3801807B2 (en) Supercritical water reactor
JP3486522B2 (en) Supercritical water reactor and method of operating supercritical water reactor
JPH07275871A (en) Supercritical water oxidation treatment method of harmful substance and apparatus therefor
CN111268783B (en) Method for oxidative degradation of material containing organic matters by circulating water
JP2003340262A (en) Method and apparatus for treating hydrothermal reaction
JP2006043552A (en) Hydrothermal reaction process and its apparatus
JP2001120986A (en) Batch type supercritical water reaction apparatus
JP2001120987A (en) Batch type supercritical water reaction apparatus
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2002095953A (en) Reaction device for supercritical water
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JPH10314766A (en) Supercritical water reaction apparatus
JP3801803B2 (en) Descale removal method for supercritical water oxidation equipment
JPH10314768A (en) Method for oxidation of supercritical water
JP2000229274A (en) Wet combustion device and treatment of carbon based compound
JP2006000732A (en) Hydrothermal reaction method and its apparatus
JP2003164750A (en) Method and apparatus for treating waste liquid after analysis

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees