JP3486522B2 - Supercritical water reactor and method of operating supercritical water reactor - Google Patents

Supercritical water reactor and method of operating supercritical water reactor

Info

Publication number
JP3486522B2
JP3486522B2 JP13065197A JP13065197A JP3486522B2 JP 3486522 B2 JP3486522 B2 JP 3486522B2 JP 13065197 A JP13065197 A JP 13065197A JP 13065197 A JP13065197 A JP 13065197A JP 3486522 B2 JP3486522 B2 JP 3486522B2
Authority
JP
Japan
Prior art keywords
gas
pressure
liquid
temperature
supercritical water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13065197A
Other languages
Japanese (ja)
Other versions
JPH10314767A (en
Inventor
太郎 大江
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP13065197A priority Critical patent/JP3486522B2/en
Publication of JPH10314767A publication Critical patent/JPH10314767A/en
Application granted granted Critical
Publication of JP3486522B2 publication Critical patent/JP3486522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界水反応装置
及び超臨界水反応処理流体の減圧方法に関し、更に詳細
には、安定した超臨界水反応を維持できるように改良し
た超臨界水反応装置及び超臨界水反応処理流体の減圧方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical water reactor and a method for reducing the pressure of a treatment fluid for a supercritical water reaction, and more particularly to a supercritical water reaction improved to maintain a stable supercritical water reaction. The present invention relates to an apparatus and a method for decompressing a supercritical water reaction treatment fluid.

【0002】[0002]

【従来の技術】超臨界水反応装置とは、超臨界水の高い
反応性を利用して有機物を分解する装置であって、例え
ば、難分解性の有害な有機物を分解して無害な二酸化炭
素と水に転化したり、難分解性の高分子化合物を分解し
て有用な低分子化合物に転化したりするために、現在、
その実用化が盛んに研究されている。超臨界水とは、超
臨界状態にある水、即ち、水の臨界点を越えた状態にあ
る水を言い、詳しくは、臨界温度、即ち374.1℃以
上の温度で、かつ水の臨界圧力、即ち22.04MPa
以上の圧力下にある状態の水を言う。超臨界水は、有機
物を溶解する溶解能が高く、有機化合物に多い非極性物
質をも完全に溶解することができ、また、超臨界水は、
酸素や窒素などの気体と任意の割合で混合して単一相を
構成することができる。
2. Description of the Related Art A supercritical water reactor is a device for decomposing organic substances by utilizing high reactivity of supercritical water. For example, carbon dioxide which is harmless by decomposing hardly decomposable harmful organic substances. In order to convert it into water and water, or to decompose difficult-to-decompose polymer compounds into useful low-molecular compounds,
Its practical application is being actively researched. Supercritical water means water in a supercritical state, that is, water in a state of exceeding the critical point of water, and more specifically, at a critical temperature, that is, a temperature of 374.1 ° C. or higher and a critical pressure of water. , Ie 22.04 MPa
It means water under the above pressure. Supercritical water has a high ability to dissolve organic substances and can completely dissolve non-polar substances, which are often found in organic compounds, and supercritical water is
A single phase can be formed by mixing with a gas such as oxygen or nitrogen at an arbitrary ratio.

【0003】環境問題に対する認識の高まりと共に、超
臨界水反応装置の適用分野の一つとして、環境汚染物質
の分解、無害化が、注目されている。すなわち、超臨界
水のこのような性質を利用した超臨界水反応により、従
来技術では分解することが難しかった有害な難分解性の
有機物、例えば、PCB(ポリ塩化ビフェニル)、ダイ
オキシン、有機塩素系溶剤等を分解して、二酸化炭素、
水、無機塩などの無害な生成物に転化する試みである。
With the increasing awareness of environmental problems, the decomposition and detoxification of environmental pollutants are drawing attention as one of the fields of application of supercritical water reactors. That is, due to a supercritical water reaction utilizing such properties of supercritical water, harmful and hardly decomposable organic substances, such as PCB (polychlorinated biphenyl), dioxins, and organic chlorine-based substances, which were difficult to decompose by conventional techniques. Decomposes solvent etc., carbon dioxide,
This is an attempt to convert into harmless products such as water and inorganic salts.

【0004】ここで、超臨界水反応とは、超臨界水内の
反応又は超臨界水を媒体とした反応を意味し、例えば塩
素や硫黄などの塩生成物質を含む難分解性有機物を超臨
界水内で酸化剤、例えば空気により酸化分解する酸化反
応、或いは超臨界水内で高分子有機物を低分子化する分
解反応等が例として挙げられる。これらの超臨界水反応
では、超臨界水が反応物、例えば有機物と酸素とを溶解
する溶媒としてのみ、すなわち反応場としてのみ機能す
る場合もあり、また超臨界水が反応物と反応する場合も
あり、超臨界水が反応に寄与する態様は、複雑でかつ様
々である。
The term "supercritical water reaction" as used herein means a reaction in supercritical water or a reaction using supercritical water as a medium. For example, a non-degradable organic substance containing a salt-forming substance such as chlorine or sulfur is supercritical. Examples thereof include an oxidation reaction in which oxidative decomposition is carried out in water with an oxidant such as air, or a decomposition reaction in which a high molecular weight organic compound is reduced to a low molecular weight in supercritical water. In these supercritical water reactions, supercritical water may function only as a solvent that dissolves reactants, for example, organic matter and oxygen, that is, only as a reaction field, and in some cases supercritical water may react with the reactants. Yes, the manner in which supercritical water contributes to the reaction is complex and varied.

【0005】超臨界水反応は、基本的には、図4に示す
ような超臨界水反応装置によって実施される。超臨界水
反応装置10は、縦型反応容器12を備え、反応容器1
2の上部には、水の臨界点以上の条件、即ち超臨界条件
が維持されている超臨界水領域14が存在している。被
処理水に含まれる有機物中に塩素化合物、硫黄化合物等
の酸形成物質が含まれている場合には、超臨界水反応に
より酸が生成して、反応容器12を腐食するので、中和
剤により中和して塩に転化する。この場合には、通常、
超臨界水領域14との界面16を介して反応容器12の
下部に水の臨界温度より低い温度に維持されている亜臨
界水領域18を形成し、生成した塩を超臨界水領域14
から亜臨界水領域に移行させて再溶解し、後述するよう
に亜臨界排水と共に排出している。超臨界水領域14に
は超臨界水が、亜臨界水領域18には亜臨界水が、それ
ぞれ界面16を介して滞留している。
The supercritical water reaction is basically carried out by a supercritical water reaction device as shown in FIG. The supercritical water reaction apparatus 10 includes a vertical reaction container 12 and a reaction container 1
In the upper part of 2, there is a supercritical water region 14 in which a condition above the critical point of water, that is, a supercritical condition is maintained. When an organic substance contained in the water to be treated contains an acid-forming substance such as a chlorine compound or a sulfur compound, an acid is generated by the supercritical water reaction and corrodes the reaction vessel 12, so the neutralizing agent is used. Neutralize with and convert to salt. In this case, usually
A subcritical water region 18, which is maintained at a temperature lower than the critical temperature of water, is formed in the lower part of the reaction vessel 12 through an interface 16 with the supercritical water region 14, and the produced salt is added to the supercritical water region 14
To the subcritical water region, redissolved, and discharged together with the subcritical drainage as described later. Supercritical water stays in the supercritical water region 14 and subcritical water stays in the subcritical water region 18 via the interface 16, respectively.

【0006】反応容器12の上部には、流入管20が接
続され、超臨界水反応を行う流体が超臨界水領域14に
流入する。流入管20には、超臨界水反応により処理す
る有機物を有する被処理水を送入する被処理水ライン2
2、有機物を酸化させる酸化剤として空気を送入する空
気ライン24、及び、超臨界水領域に超臨界水を供給す
る超臨界水ライン26が合流している。反応容器12の
上部には、更に、処理流体ライン30が接続され、被処
理水中の有機物が、超臨界水反応により、主として水と
二酸化炭素になって処理流体と共に超臨界水領域14か
ら処理流体ライン30を通って流出する。有機物が塩素
系化合物を有する場合には、生成する塩酸を中和するた
めに、被処理水にアルカリ中和剤を添加する中和剤ライ
ン28が被処理水ライン22に接続されており、また、
中和により生じた塩を移行させる亜臨界水領域18が形
成されている。亜臨界水領域18を形成する際には、亜
臨界水ライン32及び亜臨界排水ライン34が反応容器
12の下部に接続され、亜臨界水ライン32は亜臨界水
領域18に亜臨界水を供給し、また亜臨界排水ライン3
4は超臨界水反応及び中和反応により生成した塩を溶解
ないし懸濁している亜臨界水を亜臨界水領域18から亜
臨界排水として排出する。
An inflow pipe 20 is connected to the upper part of the reaction vessel 12 so that a fluid for supercritical water reaction flows into the supercritical water region 14. A treated water line 2 for introducing treated water containing organic matter to be treated by a supercritical water reaction into the inflow pipe 20.
2. An air line 24 for introducing air as an oxidant for oxidizing organic substances and a supercritical water line 26 for supplying supercritical water to the supercritical water region are joined together. A treatment fluid line 30 is further connected to the upper part of the reaction vessel 12, and organic matter in the water to be treated is mainly converted into water and carbon dioxide by the supercritical water reaction, and the treatment fluid flows from the supercritical water region 14 together with the treatment fluid. Outflow through line 30. When the organic substance has a chlorine-based compound, a neutralizer line 28 for adding an alkaline neutralizing agent to the water to be treated is connected to the water to be treated 22 in order to neutralize the hydrochloric acid produced. ,
A subcritical water region 18 for transferring the salt generated by the neutralization is formed. When forming the subcritical water region 18, the subcritical water line 32 and the subcritical drainage line 34 are connected to the lower part of the reaction vessel 12, and the subcritical water line 32 supplies the subcritical water to the subcritical water region 18. And subcritical drainage line 3
Reference numeral 4 discharges the subcritical water in which the salt generated by the supercritical water reaction and the neutralization reaction is dissolved or suspended from the subcritical water region 18 as the subcritical waste water.

【0007】処理流体ライン30には、図4に示すよう
に、冷却器36、減圧弁38、第1気液分離槽40及び
第2気液分離槽42が順次設けてある。反応容器12か
ら流出した処理流体は、冷却器36により熱を回収され
つつ所定温度、例えば約20℃に降温される。次いで、
処理流体は、減圧弁38により減圧され、断熱膨張しつ
つ一部蒸発し、蒸発熱により約15℃に温度低下した状
態で第1気液分離槽40に入る。第1気液分離槽40
で、処理流体は、気液分離し、気体は第1気液分離槽4
0の頂部から第1ガスライン44を経由して大気中に放
出される。一方、液体は、第1液体ライン46を経由
し、減圧により一部蒸発して気液混相流で第2気液分離
槽42に流入する。第2気液分離槽42で、気液混相流
は、気液分離し、気体は第2気液分離槽42の頂部から
第2ガスライン48及び第1ガスライン44を経由して
大気中に放出され、一方、液体は第2液体ライン50を
経由して系外に送水される。
As shown in FIG. 4, the processing fluid line 30 is provided with a cooler 36, a pressure reducing valve 38, a first gas-liquid separation tank 40 and a second gas-liquid separation tank 42 in order. The processing fluid flowing out of the reaction container 12 is cooled to a predetermined temperature, for example, about 20 ° C. while the heat is recovered by the cooler 36. Then
The processing fluid is decompressed by the decompression valve 38, adiabatically expands and partially evaporates, and enters the first gas-liquid separation tank 40 in a state where the temperature is lowered to about 15 ° C. by the heat of evaporation. First gas-liquid separation tank 40
The processing fluid is gas-liquid separated, and the gas is the first gas-liquid separation tank 4
It is released into the atmosphere from the top of 0 via the first gas line 44. On the other hand, the liquid passes through the first liquid line 46 and partially evaporates due to the reduced pressure and flows into the second gas-liquid separation tank 42 in a gas-liquid mixed phase flow. In the second gas-liquid separation tank 42, the gas-liquid mixed phase flow is gas-liquid separated, and the gas is introduced into the atmosphere from the top of the second gas-liquid separation tank 42 via the second gas line 48 and the first gas line 44. On the other hand, the liquid is discharged to the outside of the system via the second liquid line 50.

【0008】処理流体は、急激な圧力降下による減圧弁
38の消耗を防ぐために、2段階で減圧される。減圧の
第1段階では、処理流体は減圧弁38により減圧され
る、第2段階では、第1気液分離槽40と第2気液分離
槽42との間で行われる。減圧弁38は処理流体を減圧
しつつ流量調節し、圧力制御装置52は、反応容器12
内の圧力を所定の圧力、例えば24MPaに維持するよ
うに減圧弁38の弁開度を調整する。第1気液分離槽4
0は、その圧力が例えば10MPaに保持されるように
第1ガスライン44に設けた圧力制御弁54により制御
され、また第1液体ライン46に設けられた調節弁56
を液面制御装置58により調整することにより、槽内の
液面が所定液面に位置するように制御される。第2気液
分離槽42は、その圧力が例えば0.6MPaに保持さ
れるように第2ガスライン48に設けた圧力制御弁60
により制御され、また第2液体ライン50に設けられた
調節弁62を液面制御装置64により調整することによ
り、槽内の液面が所定液面に位置するように制御され
る。
The processing fluid is depressurized in two stages in order to prevent the pressure reducing valve 38 from being consumed due to a sudden pressure drop. In the first stage of depressurization, the processing fluid is depressurized by the decompression valve 38, and in the second stage, it is performed between the first gas-liquid separation tank 40 and the second gas-liquid separation tank 42. The pressure reducing valve 38 regulates the flow rate while reducing the pressure of the processing fluid, and the pressure control device 52 controls the reaction container 12
The valve opening of the pressure reducing valve 38 is adjusted so that the internal pressure is maintained at a predetermined pressure, for example, 24 MPa. First gas-liquid separation tank 4
0 is controlled by a pressure control valve 54 provided in the first gas line 44 so that the pressure is maintained at 10 MPa, and a control valve 56 provided in the first liquid line 46.
By adjusting the liquid level controller 58, the liquid level in the tank is controlled so as to be located at a predetermined liquid level. The second gas-liquid separation tank 42 has a pressure control valve 60 provided in the second gas line 48 so that the pressure thereof is maintained at, for example, 0.6 MPa.
The liquid level in the tank is controlled so that the liquid level in the tank is at a predetermined level by adjusting the control valve 62 provided in the second liquid line 50 by the liquid level control device 64.

【0009】図示しないが、必要に応じて、被処理水ラ
イン22、空気ライン24及び超臨界水ライン26に
は、供給する被処理水、空気及び超臨界水を所定の温度
に昇温し、所定の圧力に昇圧する加熱装置、圧縮機及び
昇圧ポンプがそれぞれ設けてある。
Although not shown, the treated water, air and supercritical water to be fed to the treated water line 22, the air line 24 and the supercritical water line 26 are heated to a predetermined temperature, if necessary. A heating device, a compressor, and a boost pump that boost the pressure to a predetermined pressure are provided.

【0010】[0010]

【発明が解決しようとする課題】しかし、上述の従来の
超臨界水反応装置では、減圧弁、第1気液分離槽及び第
2気液分離槽からなる処理流体系統の2段階圧力制御が
システムの設計思想通りには機能せず、処理流体系統の
機器の運転状態が安定しないという問題があった。例え
ば、超臨界水反応装置のスタートアップでは、第1気液
分離槽及び第2気液分離槽の圧力制御が難しく、特に、
第2気液分離槽の圧力が大きく変動して、時には第2気
液分離槽の設計圧力を超えることもあった。そこで、以
上の問題に照らして、本発明の目的は、処理液体系統の
圧力制御が容易な超臨界水反応装置及び処理液の減圧方
法を提供することである。
However, in the above-mentioned conventional supercritical water reactor, a two-stage pressure control of a processing fluid system consisting of a pressure reducing valve, a first gas-liquid separation tank and a second gas-liquid separation tank is a system. However, there is a problem in that the operation state of the equipment of the processing fluid system is not stable because it does not function according to the design concept. For example, in start-up of a supercritical water reactor, it is difficult to control the pressure of the first gas-liquid separation tank and the second gas-liquid separation tank,
The pressure of the second gas-liquid separation tank may fluctuate greatly and sometimes exceed the design pressure of the second gas-liquid separation tank. Therefore, in view of the above problems, an object of the present invention is to provide a supercritical water reactor in which the pressure of the treatment liquid system can be easily controlled, and a decompression method of the treatment liquid.

【0011】[0011]

【課題を解決するための手段】本発明者らは、処理水の
圧力制御システムが安定しない理由を調べ、以下のこと
を見い出した。即ち、水、二酸化炭素、窒素、酸素、空
気等から構成されている処理流体は、第1気液分離槽4
0に流入した際、主として水からなる液体と、窒素、酸
素、空気等のガスとに気液分離される。二酸化炭素の大
部分は、第1気液分離槽40の圧力10MPa、温度1
5℃という運転条件では、液体として存在し、第2気液
分離槽42に流入し、そこで気体として第2ガスライン
48を経由して大気中に放出される。一方、超臨界水反
応装置のスタートアップ時には、超臨界水反応が開始さ
れていないために、二酸化炭素が殆ど存在しない。その
ため、スタートアップ時には、第2ガスライン48の圧
力制御弁60は殆ど閉止状態にある一方、超臨界水反応
が進行し始めると、二酸化炭素が急激に生成するため
に、第2気液分離槽42からの二酸化炭素の放出量が増
大し、圧力制御が追随できずに、第2気液分離槽42内
の圧力が上昇し、時には設計圧力を超えることもある。
そこで、本発明者らは、通常、第1気液分離槽で放出す
る酸素、窒素等のガス量は二酸化炭素ガス量の10倍程
度であることに注目し、放出ガス量が多い第1気液分離
槽で、二酸化炭素を酸素、窒素等と共に放出するように
すれば、二酸化炭素の生成量の多寡によって圧力制御が
不安定になることを無くすことができると考え、研究の
末に、本発明を完成するに到った。
The present inventors have investigated the reason why the pressure control system for treated water is not stable, and have found out the following. That is, the processing fluid composed of water, carbon dioxide, nitrogen, oxygen, air, etc. is the first gas-liquid separation tank 4
When it flows into 0, it is gas-liquid separated into a liquid mainly composed of water and a gas such as nitrogen, oxygen and air. Most of carbon dioxide has a pressure of 10 MPa and a temperature of 1 in the first gas-liquid separation tank 40.
Under the operating condition of 5 ° C., it exists as a liquid and flows into the second gas-liquid separation tank 42, where it is discharged as a gas into the atmosphere via the second gas line 48. On the other hand, at the start-up of the supercritical water reactor, carbon dioxide hardly exists because the supercritical water reaction has not started. Therefore, at the time of start-up, the pressure control valve 60 of the second gas line 48 is almost closed, while when the supercritical water reaction starts to proceed, carbon dioxide is rapidly generated, so the second gas-liquid separation tank 42 The amount of carbon dioxide released from the tank increases, the pressure control cannot follow, and the pressure in the second gas-liquid separation tank 42 rises, sometimes exceeding the design pressure.
Therefore, the present inventors have noticed that the amount of gas such as oxygen and nitrogen released in the first gas-liquid separation tank is usually about 10 times the amount of carbon dioxide gas, and the first gas with a large amount of released gas is usually noted. By releasing carbon dioxide together with oxygen, nitrogen, etc. in the liquid separation tank, it is possible to prevent pressure control from becoming unstable due to the amount of carbon dioxide produced. The invention was completed.

【0012】 上記目的を達成するために、上述の知見
に基づき、本発明に係る超臨界水反応装置は、超臨界水
が滞留する超臨界水領域を内部に有する反応器を備え、
有機物を含む流体を反応器の超臨界水領域に導入して、
超臨界水内で流体中の有機物を分解し、超臨界状態の二
酸化炭素を含む処理流体として流出させる超臨界水反応
装置において、反応器から処理流体を流出させる処理流
体ラインに設けられ、処理流体を冷却する冷却器と、冷
却器の下流に設けられ、処理流体を断熱膨張させて減圧
すると共に処理流体の温度を冷却器の出口温度より低下
させる減圧弁と、減圧弁の弁開度を調整して、反応器内
の圧力を第1の所定圧力に制御する第1の圧力制御装置
と、減圧弁の下流に設けられ、処理流体を気液に分離す
る第1の気液分離槽と、第1の気液分離槽に流入した処
理流体の温度が二酸化炭素の臨界温度以上であるよう
に、処理流体の冷却器出口温度を調節する温度調節装置
と、第1の気液分離槽で分離された二酸化炭素ガスを含
む気体を放出しつつ、第1の気液分離槽の圧力を第1の
所定圧力より低い第2の所定圧力に制御する第2の圧力
制御装置と、第1の気液分離槽で分離された液体を流入
させて、液体を気液に分離する第2の気液分離槽と、第
2の気液分離槽で分離された気体を放出しつつ、第2の
気液分離槽の圧力を第2の所定圧力より低く、かつ大気
圧を越える第3の所定圧力に制御する第3の圧力制御装
置とを備えていることを特徴としている。
To achieve the above object, based on the above findings, the supercritical water reactor according to the present invention comprises a reactor having a supercritical water region in which supercritical water stays,
Introducing a fluid containing organic matter into the supercritical water region of the reactor,
In a supercritical water reactor that decomposes organic matter in a fluid in supercritical water and causes it to flow out as a treatment fluid containing carbon dioxide in a supercritical state, the treatment fluid is installed in a treatment fluid line that causes the treatment fluid to flow out of the reactor. A cooler that cools the air, a pressure reducing valve that is provided downstream of the cooler, that adiabatically expands the processing fluid to reduce the pressure, and lowers the temperature of the processing fluid below the outlet temperature of the cooler, and adjusts the valve opening of the pressure reducing valve. Then, a first pressure control device for controlling the pressure in the reactor to a first predetermined pressure, a first gas-liquid separation tank provided downstream of the pressure reducing valve for separating the processing fluid into a gas-liquid, Separation in a first gas-liquid separation tank and a temperature control device for adjusting the cooler outlet temperature of the processing fluid so that the temperature of the processing fluid flowing into the first gas-liquid separation tank is equal to or higher than the critical temperature of carbon dioxide. While releasing the gas containing the generated carbon dioxide gas A second pressure control device for controlling the pressure of the first gas-liquid separation tank to a second predetermined pressure lower than the first predetermined pressure, and the liquid separated in the first gas-liquid separation tank are caused to flow in, a second gas-liquid separation tank for separating the liquid into the gas-liquid, while releasing the separated gas body in the second gas-liquid separation tank, than the pressure of the second gas-liquid separation tank a second predetermined pressure low rather, and the atmosphere
And a third pressure control device for controlling to a third predetermined pressure exceeding the pressure.

【0013】本発明で言う二酸化炭素の臨界温度は、3
1.1℃である。本発明で使用する冷却器は、処理流体
を他の流体、例えば被処理流体と熱交換させて冷却する
熱交換器でも、水で冷却する水冷却器でも、空気で冷却
する空冷式冷却器でも良い。本発明で使用する温度調節
装置は、熱交換器による冷却の場合には他の流体の流量
を、水冷却器の場合には水の流量及び/又は水温、空冷
式冷却器の場合には空気を送るファンの回転数等を、そ
れぞれ調節することにより、処理流体の冷却器出口温度
を調節する。冷却器出口温度は、少なくとも、処理流体
が断熱膨張しつつ一部気化し蒸発熱により温度低下する
低下温度分を二酸化炭素の臨界温度に加えた温度であっ
て、例えば低下温度分が8℃とすれば、冷却器出口温度
は8+31.1=約40℃である。低下温度は、処理流
体が第1の所定圧力から第2の所定圧力へ断熱膨張しつ
つ一部気化するとして、気液平衡計算及び熱収支計算に
より求めることができる。
The critical temperature of carbon dioxide referred to in the present invention is 3
It is 1.1 ° C. The cooler used in the present invention may be a heat exchanger that cools a treatment fluid by exchanging heat with another fluid, for example, a fluid to be treated, a water cooler that cools with water, or an air-cooled cooler that cools with air. good. The temperature control device used in the present invention controls the flow rate of another fluid in the case of cooling by a heat exchanger, the flow rate and / or water temperature of water in the case of a water cooler, and air in the case of an air-cooled cooler. The temperature at the outlet of the cooler for the processing fluid is adjusted by adjusting the rotation speed and the like of the fan that sends the heat. The cooler outlet temperature is at least a temperature obtained by adding a lowering temperature component at which the treatment fluid partially vaporizes while adiabatically expanding and lowers due to heat of evaporation to the critical temperature of carbon dioxide, and for example, the lowering temperature component is 8 ° C. If so, the cooler outlet temperature is 8 + 31.1 = about 40 ° C. The lowered temperature can be obtained by the vapor-liquid equilibrium calculation and the heat balance calculation, assuming that the processing fluid partially vaporizes while undergoing adiabatic expansion from the first predetermined pressure to the second predetermined pressure.

【0014】 本発明の超臨界水反応装置では、温度調
節装置に代えて、冷却器で冷却された処理流体を二酸化
炭素の臨界温度以上に加熱する加熱手段を減圧弁と気液
分離槽との間に設けても良い。つまり、本発明に係る別
の超臨界水反応装置は、超臨界水が滞留する超臨界水領
域を内部に有する反応器を備え、有機物を含む流体を反
応器の超臨界水領域に導入して、超臨界水内で流体中の
有機物を分解し、超臨界状態の二酸化炭素を含む処理流
体として流出させる超臨界水反応装置において、反応器
から処理流体を流出させる処理流体ラインに設けられ、
処理流体を冷却する冷却器と、冷却器の下流に設けら
れ、処理流体を断熱膨張させて減圧すると共に処理流体
の温度を冷却器の出口温度より低下させる減圧弁と、減
圧弁の弁開度を調整して、反応器内の圧力を第1の所定
圧力に制御する第1の圧力制御装置と、減圧弁の下流に
設けられ、減圧弁から出た処理流体を加熱する加熱手段
と、加熱手段の下流に設けられ、処理流体を気液に分離
する第1の気液分離槽と、第1の気液分離槽に流入した
処理流体の温度が二酸化炭素の臨界温度以上であるよう
に、加熱手段の加熱温度を調節する温度調節装置と、第
1の気液分離槽で分離された二酸化炭素ガスを含む気体
を放出しつつ、第1の気液分離槽の圧力を第1の所定圧
力より低い第2の所定圧力に制御する第2の圧力制御装
置と、第1の気液分離槽で分離された液体を流入させ
て、液体を気液に分離する第2の気液分離槽と、第2の
気液分離槽で分離された気体を放出しつつ、第2の気液
分離槽の圧力を第2の所定圧力より低く、かつ大気圧を
越える第3の所定圧力に制御する第3の圧力制御装置と
を備えていることを特徴としている。加熱手段は、既知
の加熱手段を使用でき、例えば、スチーム管、電気抵抗
発熱線等を処理流体ラインの配管に沿って付設したり、
或いは処理流体ラインの配管の外側をスチームジャケッ
ト管で取り囲む二重管構造にしても良い。更には、本発
明の超臨界水反応装置では、温度調節装置に代えて、冷
却器で冷却された処理流体を二酸化炭素の臨界温度以上
に加熱する加熱手段を気液分離槽内に設けても良い。加
熱手段は、既知の加熱手段を使用でき、例えばスチーム
コイル管を気液分離槽の下部の液体滞留部に設ける。つ
まり、本発明に係る更に別の超臨界水反応装置は、超臨
界水が滞留する超臨界水領域を内部に有する反応器を備
え、有機物を含む流体を反応器の超臨界水領域に導入し
て、超臨界水内で流体中の有機物を分解し、超臨界状態
の二酸化炭素を含む処理流体として流出させる超臨界水
反応装置において、反応器から処理流体を流出させる処
理流体ラインに設けられ、処理流体を冷却する冷却器
と、冷却器の下流に設けられ、処理流体を断熱膨張させ
て減圧すると共に処理流体の温度を冷却器の出口温度よ
り低下させる減圧弁と、減圧弁の弁開度を調整して、反
応器内の圧力を第1の所定圧力に制御する第1の圧力制
御装置と、減圧弁の下流に設けられ、処理流体を気液に
分離する第1の気液分離槽と、第1の気液分離槽内に設
けられ、気液分離した液体を加熱する加熱手段と、第1
の気液分離槽内の液体の温度が二酸化炭素の臨界温度以
上であるように、加熱手段の加熱温度を調節する温度調
節装置と、第1の気液分離槽で分離された二酸化炭素ガ
スを含む気体を放出しつつ、第1の気液分離槽の圧力を
第1の所定圧力より低い第2の所定圧力に制御する第2
の圧力制御装置と、第1の気液分離槽で分離された液体
を流入させて、液体を気液に分離する第2の気液分離槽
と、第2の気液分離槽で分離された気体を放出しつつ、
第2の気液分離槽の圧力を第2の所定圧力より低く、か
つ大気圧を越える第3の所定圧力に制御する第3の圧力
制御装置とを備えていることを特徴としている。
In the supercritical water reaction device of the present invention, instead of the temperature control device, a heating means for heating the treatment fluid cooled by the cooler to a temperature equal to or higher than the critical temperature of carbon dioxide is provided between the pressure reducing valve and the gas-liquid separation tank. You may provide in between. That is, another supercritical water reactor according to the present invention comprises a reactor having a supercritical water region in which supercritical water stays, and introducing a fluid containing organic matter into the supercritical water region of the reactor. , In a supercritical water reactor for decomposing organic matter in a fluid in supercritical water and flowing out as a processing fluid containing carbon dioxide in a supercritical state, provided in a processing fluid line for flowing out the processing fluid from a reactor,
A cooler for cooling the processing fluid, a pressure reducing valve provided downstream of the cooler for adiabatically expanding the processing fluid to reduce the pressure and lowering the temperature of the processing fluid below the outlet temperature of the cooler, and a valve opening degree of the pressure reducing valve. And a first pressure control device for controlling the pressure in the reactor to a first predetermined pressure, a heating unit provided downstream of the pressure reducing valve for heating the processing fluid discharged from the pressure reducing valve, and a heating unit. A first gas-liquid separation tank provided downstream of the means for separating the processing fluid into a gas-liquid; and the temperature of the processing fluid flowing into the first gas-liquid separation tank is equal to or higher than the critical temperature of carbon dioxide, A temperature control device for controlling the heating temperature of the heating means, and a pressure of the first gas-liquid separation tank is set to a first predetermined pressure while releasing a gas containing carbon dioxide gas separated in the first gas-liquid separation tank. A second pressure control device for controlling to a second lower predetermined pressure, and a first gas-liquid component And allowed to flow into separated in the bath liquid, a second gas-liquid separation tank for separating the liquid into the gas-liquid, while releasing the separated gas body in the second gas-liquid separation tank, a second gas-liquid the pressure in the separation vessel rather low than the second predetermined pressure, and the atmospheric pressure
And a third pressure control device for controlling the pressure to exceed a third predetermined pressure. As the heating means, a known heating means can be used, for example, a steam pipe, an electric resistance heating wire or the like is attached along the pipe of the processing fluid line,
Alternatively, a double pipe structure may be used in which the outside of the pipe of the processing fluid line is surrounded by a steam jacket pipe. Furthermore, in the supercritical water reactor of the present invention, instead of the temperature control device, a heating means for heating the treatment fluid cooled by the cooler to the critical temperature of carbon dioxide or higher may be provided in the gas-liquid separation tank. good. As the heating means, a known heating means can be used, and for example, a steam coil tube is provided in the liquid retaining section below the gas-liquid separation tank. That is, still another supercritical water reactor according to the present invention includes a reactor having a supercritical water region in which supercritical water stays, and introduces a fluid containing organic matter into the supercritical water region of the reactor. In the supercritical water reactor for decomposing organic matter in the fluid in supercritical water and flowing out as a processing fluid containing carbon dioxide in a supercritical state, the processing fluid line for flowing out the processing fluid from the reactor is provided, A cooler for cooling the processing fluid, a pressure reducing valve provided downstream of the cooler for adiabatically expanding the processing fluid to reduce the pressure and lowering the temperature of the processing fluid below the outlet temperature of the cooler, and a valve opening degree of the pressure reducing valve. And a first pressure control device for controlling the pressure in the reactor to a first predetermined pressure, and a first gas-liquid separation tank provided downstream of the pressure reducing valve for separating the processing fluid into a gas-liquid. And is provided in the first gas-liquid separation tank to separate gas-liquid. Heating means for heating the liquid was first
So that the temperature of the liquid in the gas-liquid separation tank is equal to or higher than the critical temperature of carbon dioxide, the temperature control device for adjusting the heating temperature of the heating means and the carbon dioxide gas separated in the first gas-liquid separation tank A second control for controlling the pressure of the first gas-liquid separation tank to a second predetermined pressure lower than the first predetermined pressure while releasing the gas containing the second gas.
And a second gas-liquid separation tank for injecting the liquid separated in the first gas-liquid separation tank to separate the liquid into a gas-liquid and a second gas-liquid separation tank . while releasing the mind body,
The pressure of the second gas-liquid separation tank rather low than the second predetermined pressure, or
And a third pressure control device for controlling to a third predetermined pressure exceeding two atmospheric pressures.

【0015】 本発明に係る超臨界水反応装置の運転方
法は、超臨界水が滞留する超臨界水領域を内部に有する
反応器を備え、有機物を含む流体を反応器の超臨界水領
域に導入して、超臨界水内で流体中の有機物を分解し、
超臨界状態の二酸化炭素を含む処理流体を反応器から流
出させる超臨界水反応装置の運転方法であって、反応器
の圧力を維持しつつ反応器から流出した処理流体を減圧
するに当たり、反応器から流出した処理流体を所定の冷
却温度に冷却する冷却ステップと、冷却された処理流体
を断熱膨張により所定圧力に減圧すると共に処理流体の
温度を所定の冷却温度以下に低下させる第1の減圧ステ
ップと、第1の減圧ステップで減圧された処理流体を気
液分離して、二酸化炭素ガスを含む気体を放出すると共
に液体を流出させる第1の気液分離ステップと、第1の
気液分離ステップで流出した液体を上記所定圧力より低
く、かつ大気圧を越える圧力に減圧する第2の減圧ステ
ップと、第2の減圧ステップで減圧された液体を気液分
離し、分離された気体を放出すると共に残存の液体を流
出させる第2の気液分離ステップとを備え、冷却ステッ
プでは、第1の減圧ステップを経た処理流体の温度が二
酸化炭素の臨界温度以上であるように、所定の冷却温度
を調節することを特徴としている。
A method for operating a supercritical water reactor according to the present invention includes a reactor having a supercritical water region in which supercritical water stays therein, and introducing a fluid containing an organic substance into the supercritical water region of the reactor. To decompose organic matter in the fluid in supercritical water,
A method of operating a supercritical water reactor to efflux treatment fluid comprising carbon dioxide in a supercritical state from the reactor, the reactor
In reducing the pressure of the processing fluid flowing out of the reactor while maintaining the pressure of, a cooling step of cooling the processing fluid flowing out of the reactor to a predetermined cooling temperature, and reducing the cooled processing fluid to a predetermined pressure by adiabatic expansion a first pressure reduction step of reducing the temperature of the process fluid below a predetermined cooling temperature as well as, a depressurized process fluid at a first pressure reduction step with gas-liquid separation, thereby releasing the gas containing carbon dioxide gas The first gas-liquid separation step of causing the liquid to flow out and the liquid flown out in the first gas-liquid separation step below the predetermined pressure.
And a second decompression step that reduces the pressure to a pressure above atmospheric pressure.
And a second gas-liquid separation step in which the liquid depressurized in the second depressurization step is gas-liquid separated, and the separated gas is discharged and the remaining liquid is caused to flow out . It is characterized in that a predetermined cooling temperature is adjusted so that the temperature of the treatment fluid that has gone through the first depressurization step is equal to or higher than the critical temperature of carbon dioxide.

【0016】本明細書で、処理流体とは、被処理液中の
反応対象物の分解により生成した生成物、即ち水、炭酸
ガス等の気体に加えて、超臨界水等を含む流体である。
In the present specification, the treatment fluid is a fluid containing supercritical water or the like in addition to the product produced by the decomposition of the reaction object in the liquid to be treated, that is, gas such as water or carbon dioxide gas. .

【0017】[0017]

【発明の実施の形態】以下に、添付図面を参照し、実施
例を挙げて、本発明の実施の形態を具体的かつ詳細に説
明する。実施例1 本実施例は、本発明に係る超臨界水反応装置の実施例の
一つであって、図1は本実施例の超臨界水反応装置の構
成を示すフローシートである。本実施例の超臨界水反応
装置70は、図4で説明した従来の超臨界水反応装置1
0の構成に加えて、第1気液分離槽40の液体滞留部4
0aの温度が二酸化炭素の臨界温度以上の温度、例えば
35℃になるように処理流体の温度を調節する温度調節
装置72を備えている。温度調節装置72は、第1気液
分離槽40の液体滞留部40aの液体の温度を測定する
温度計74と、冷却器36の冷却水又は他の流体の流量
を調整する流量調節弁76と、温度計74の測定温度に
基づいて流量調節弁76を調節し、処理流体を所定出口
温度にする温度制御装置78とから構成されている。所
定出口温度とは、気液分離槽に流入した処理流体の温度
が二酸化炭素の臨界温度以上であるような温度であっ
て、所定出口温度は、少なくとも、二酸化炭素の臨界温
度に断熱膨張による一部気化により温度低下する低下温
度分を加えた温度であって、例えば40℃である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings and examples. Example 1 This example is one of the examples of the supercritical water reactor according to the present invention, and FIG. 1 is a flow sheet showing the configuration of the supercritical water reactor of this example. The supercritical water reactor 70 of the present embodiment is the conventional supercritical water reactor 1 described in FIG.
In addition to the configuration of 0, the liquid retention part 4 of the first gas-liquid separation tank 40
A temperature adjusting device 72 is provided for adjusting the temperature of the processing fluid so that the temperature of 0a becomes equal to or higher than the critical temperature of carbon dioxide, for example, 35 ° C. The temperature control device 72 includes a thermometer 74 that measures the temperature of the liquid in the liquid retention section 40a of the first gas-liquid separation tank 40, and a flow rate control valve 76 that controls the flow rate of the cooling water or other fluid in the cooler 36. The temperature control device 78 adjusts the flow rate control valve 76 based on the temperature measured by the thermometer 74 to bring the processing fluid to a predetermined outlet temperature. The predetermined outlet temperature is a temperature at which the temperature of the treatment fluid flowing into the gas-liquid separation tank is equal to or higher than the critical temperature of carbon dioxide, and the predetermined outlet temperature is at least one critical temperature of carbon dioxide due to adiabatic expansion. The temperature is, for example, 40 [deg.] C., which is a temperature added with a lowering temperature which is lowered by partial vaporization.

【0018】以上の構成により、本超臨界水反応装置7
0では、第1気液分離槽40の液体滞留部40aの温度
は、二酸化炭素の臨界温度(31.1℃)以上の35℃
に維持され、二酸化炭素は全て気体として第1気液分離
槽40から流出する。一方、第1気液分離槽40から第
1ガスライン44を経由して流出する窒素、酸素及び空
気の量は、生成される二酸化炭素の量の少なくとも10
倍であるから、二酸化炭素が全量排出される場合と、ス
タートアップ時の超臨界水反応開始前で二酸化炭素が排
出されない場合との間で、圧力制御弁54を通過するガ
ス流量は大きくは変わらない。よって、両者の場合と
も、処理流体系統を安定して圧力制御でき、従って超臨
界水反応装置を安定して運転することができる。
With the above structure, the present supercritical water reactor 7
At 0, the temperature of the liquid retention part 40a of the first gas-liquid separation tank 40 is 35 ° C which is higher than the critical temperature of carbon dioxide (31.1 ° C).
The carbon dioxide flows out of the first gas-liquid separation tank 40 as a gas. On the other hand, the amount of nitrogen, oxygen and air flowing out from the first gas-liquid separation tank 40 via the first gas line 44 is at least 10 times the amount of carbon dioxide produced.
Therefore, the flow rate of gas passing through the pressure control valve 54 does not change significantly between the case where the carbon dioxide is completely discharged and the case where the carbon dioxide is not discharged before the start of the supercritical water reaction at the start-up. . Therefore, in both cases, the pressure of the treatment fluid system can be stably controlled, and thus the supercritical water reactor can be stably operated.

【0019】本実施例では、反応容器12から流出した
処理流体を温度調節装置72により制御しつつ40℃ま
で冷却する。次いで、冷却された処理流体を減圧弁38
により10MPaに減圧する。減圧された処理流体は、
断熱膨張による一部気化により温度低下して35℃で、
10MPaに圧力制御されている第1気液分離槽40に
気液混相流で流入し、気液分離する。第1気液分離槽4
0の液体滞留部40aの温度は、二酸化炭素の臨界温度
以上の温度であるから、処理流体中の二酸化炭素の全て
が、気体となって、酸素、窒素の他の気体と共に第1ガ
ラスライン44を経由して大気中に放出される。
In this embodiment, the processing fluid flowing out of the reaction vessel 12 is cooled to 40 ° C. while being controlled by the temperature controller 72. Then, the cooled processing fluid is supplied with a pressure reducing valve 38.
Reduce the pressure to 10 MPa. The depressurized process fluid is
Due to partial vaporization due to adiabatic expansion, the temperature drops to 35 ° C,
It flows into the first gas-liquid separation tank 40 whose pressure is controlled to 10 MPa in a gas-liquid mixed phase flow, and separates it into gas and liquid. First gas-liquid separation tank 4
Since the temperature of the liquid retention portion 40a of 0 is a temperature equal to or higher than the critical temperature of carbon dioxide, all the carbon dioxide in the processing fluid becomes a gas, and the first glass line 44 together with other gases such as oxygen and nitrogen. It is released into the atmosphere via.

【0020】実施例2 本実施例は、本発明に係る超臨界水反応装置の実施例の
一つであって、図2は本実施例の超臨界水反応装置の要
部の構成を示すフローシートである。本実施例の超臨界
水反応装置80は、実施例1の温度調節装置72に代え
て、図2に示すように、減圧弁38と第1気液分離槽4
0との間の処理流体ライン30の配管の外周を囲むよう
に設けたスチームジャケット管81からなる加熱手段
と、加熱手段81により加熱される処理流体の加熱温度
を所定の35℃に制御する温度調節装置82とを備えて
いる。温度調節装置82は、第1気液分離槽40の液体
滞留部40aの液体の温度を測定する温度計84と、ス
チームジャケット管81に流入するスチーム流量を調整
する流量調節弁86と、温度計84の測定温度に基づい
て流量調節弁86を調節し、処理流体を所望の温度、例
えば35℃に昇温する温度制御装置88とから構成され
ている。
Example 2 This example is one of the examples of the supercritical water reactor according to the present invention, and FIG. 2 is a flow chart showing the configuration of the main part of the supercritical water reactor of this example. It is a sheet. As shown in FIG. 2, the supercritical water reaction device 80 of the present embodiment is replaced with the temperature control device 72 of the first embodiment, and the pressure reducing valve 38 and the first gas-liquid separation tank 4 are used.
A heating means comprising a steam jacket pipe 81 provided so as to surround the outer circumference of the pipe of the treatment fluid line 30 between 0 and 0, and a temperature for controlling the heating temperature of the treatment fluid heated by the heating means 81 to a predetermined 35 ° C. And an adjusting device 82. The temperature control device 82 includes a thermometer 84 for measuring the temperature of the liquid in the liquid retention portion 40a of the first gas-liquid separation tank 40, a flow rate control valve 86 for adjusting the steam flow rate flowing into the steam jacket pipe 81, and a thermometer. The temperature control device 88 adjusts the flow rate control valve 86 based on the measured temperature of 84 to raise the temperature of the processing fluid to a desired temperature, for example, 35 ° C.

【0021】以上の構成により、本超臨界水反応装置8
0では、第1気液分離槽40の液体滞留部40aの温度
は、二酸化炭素の臨界温度(31.1℃)以上の35℃
に維持されている。よって、実施例1と同様に、通常運
転時及びスタートアップ時の双方の場合で、処理流体水
系統を安定して圧力制御でき、従って超臨界水反応装置
を安定して運転することができる。
With the above constitution, the present supercritical water reactor 8
At 0, the temperature of the liquid retention part 40a of the first gas-liquid separation tank 40 is 35 ° C which is higher than the critical temperature of carbon dioxide (31.1 ° C).
Has been maintained. Therefore, as in the first embodiment, the pressure of the treated fluid water system can be stably controlled during both the normal operation and the startup, and thus the supercritical water reactor can be stably operated.

【0022】実施例3 本実施例は、本発明に係る超臨界水反応装置の実施例の
一つであって、図3は本実施例の超臨界水反応装置の要
部の構成を示すフローシートである。本実施例の超臨界
水反応装置90は、実施例1の温度調節装置72に代え
て、図3に示すように、第1気液分離槽40の液体滞留
部40aに設けたスチームコイル管91からなる加熱手
段と、加熱手段91により加熱される流体滞留部40a
の液体の加熱温度を所定の35℃に制御する温度調節装
置92とを備えている。加熱手段92は、第1気液分離
槽40の液体滞留部40aの液体の温度を測定する温度
計94と、スチームコイル管91に流入するスチーム流
量を調整する流量調節弁96と、温度計94の測定温度
に基づいて流量調節弁96を調節し、処理液体を所定の
温度、例えば35℃に昇温する温度制御装置98とから
構成されている。
Example 3 This example is one of the examples of the supercritical water reactor according to the present invention, and FIG. 3 is a flow chart showing the configuration of the main part of the supercritical water reactor of this example. It is a sheet. The supercritical water reactor 90 of the present embodiment is, instead of the temperature controller 72 of the first embodiment, as shown in FIG. 3, a steam coil tube 91 provided in the liquid retention section 40a of the first gas-liquid separation tank 40. And a fluid retention part 40a heated by the heating means 91.
And a temperature controller 92 for controlling the heating temperature of the liquid at a predetermined temperature of 35 ° C. The heating means 92 includes a thermometer 94 for measuring the temperature of the liquid in the liquid retention section 40a of the first gas-liquid separation tank 40, a flow rate control valve 96 for adjusting the steam flow rate flowing into the steam coil tube 91, and a thermometer 94. The temperature control device 98 adjusts the flow rate control valve 96 based on the measured temperature to heat the processing liquid to a predetermined temperature, for example, 35 ° C.

【0023】以上の構成により、本超臨界水反応装置9
0では、第1気液分離槽40の液体収容部40aの温度
は、二酸化炭素の臨界温度(31.1℃)以上の35℃
に維持されている。よって、実施例1と同様に、通常運
転時及びスタートアップ時の双方の場合で、処理液体系
統を安定して圧力制御でき、従って超臨界水反応装置を
安定して運転することができる。
With the above structure, the present supercritical water reactor 9
At 0, the temperature of the liquid storage portion 40a of the first gas-liquid separation tank 40 is 35 ° C which is higher than the critical temperature of carbon dioxide (31.1 ° C).
Has been maintained. Therefore, as in Example 1, the pressure of the treated liquid system can be stably controlled during both the normal operation and the startup, and thus the supercritical water reactor can be stably operated.

【0024】[0024]

【発明の効果】本発明によれば、減圧弁の下流の気液分
離槽の液体滞留部の温度を二酸化炭素の臨界温度以上に
維持することにより、二酸化炭素を全て気体として第1
気液分離槽から他の気体と共に流出させているので、二
酸化炭素が全量排出される場合と、スタートアップ時の
超臨界水反応開始前で二酸化炭素が排出されない場合と
の間で、処理流体系統の圧力制御条件が大きく変動せ
ず、よって、両者の場合とも、処理流体系統を安定して
圧力制御でき、従って超臨界水反応装置を安定して運転
することができる。
According to the present invention, by maintaining the temperature of the liquid retention portion of the gas-liquid separation tank downstream of the pressure reducing valve at the critical temperature of carbon dioxide or higher, all carbon dioxide is converted into a gas.
Since it is allowed to flow out from the gas-liquid separation tank together with other gases, the amount of carbon dioxide is completely discharged and the case where carbon dioxide is not discharged before the start of the supercritical water reaction at start-up The pressure control conditions do not fluctuate significantly, and therefore, in both cases, the pressure of the processing fluid system can be stably controlled, and thus the supercritical water reactor can be stably operated.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の超臨界水反応装置の構成を示すフロ
ーシートである。
FIG. 1 is a flow sheet showing the configuration of a supercritical water reactor of Example 1.

【図2】実施例2の超臨界水反応装置の要部の構成を示
すフローシートである。
FIG. 2 is a flow sheet showing the configuration of the main part of the supercritical water reactor of Example 2.

【図3】実施例3の超臨界水反応装置の要部の構成を示
すフローシートである。
FIG. 3 is a flow sheet showing the configuration of the main part of the supercritical water reactor of Example 3.

【図4】従来の超臨界水反応装置の構成を示すフローシ
ートである。
FIG. 4 is a flow sheet showing the structure of a conventional supercritical water reactor.

【符号の説明】[Explanation of symbols]

10 従来の超臨界水反応装置 12 縦型反応容器 14 超臨界水領域 16 界面 18 亜臨界水領域 20 流入管 22 被処理水ライン 24 空気ライン 26 超臨界水ライン 28 中和剤ライン 30 処理流体ライン 32 亜臨界水ライン 34 亜臨界排水ライン 36 冷却器 38 減圧弁 40 第1気液分離槽 42 第2気液分離槽 44 第1ガスライン 46 第1液体ライン 48 第2ガスライン 50 第2液体ライン 52 圧力制御装置 54、60 圧力制御弁 56、62 調節弁 58、64 液面制御装置 70 実施例1の超臨界水反応装置 72、82、92 温度調節装置 74、84、94 温度計 76、86、96 流量調節弁 78、88、98 温度制御装置 80 実施例2の超臨界水反応装置 81 スチームジャケット管 90 実施例3の超臨界水反応装置。 91 スチームコイル管 10 Conventional supercritical water reactor 12 Vertical reaction vessel 14 Supercritical water region 16 interface 18 Subcritical water region 20 Inflow pipe 22 Treated water line 24 air lines 26 Supercritical water line 28 Neutralizer line 30 Processing fluid line 32 Subcritical water line 34 Subcritical drainage line 36 Cooler 38 Pressure reducing valve 40 First gas-liquid separation tank 42 Second gas-liquid separation tank 44 First gas line 46 First liquid line 48 Second gas line 50 Second liquid line 52 Pressure control device 54, 60 Pressure control valve 56,62 Control valve 58, 64 Liquid level control device 70 Supercritical water reactor of Example 1 72, 82, 92 Temperature control device 74, 84, 94 thermometer 76, 86, 96 Flow control valve 78, 88, 98 Temperature controller 80 Supercritical water reactor of Example 2 81 steam jacket tube 90 Supercritical water reactor of Example 3. 91 steam coil tube

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−275872(JP,A) 特開 平7−275870(JP,A) 特開 平8−38853(JP,A) 特表 平3−500254(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/74 B01J 3/00 B01J 3/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-275872 (JP, A) JP-A-7-275870 (JP, A) JP-A-8-38853 (JP, A) Special Table 3- 500254 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C02F 1/74 B01J 3/00 B01J 3/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超臨界水が滞留する超臨界水領域を内部
に有する反応器を備え、有機物を含む流体を反応器の超
臨界水領域に導入して、超臨界水内で流体中の有機物を
分解し、超臨界状態の二酸化炭素を含む処理流体として
流出させる超臨界水反応装置において、 反応器から処理流体を流出させる処理流体ラインに設け
られ、処理流体を冷却する冷却器と、 冷却器の下流に設けられ、処理流体を断熱膨張させて減
圧すると共に処理流体の温度を冷却器の出口温度より低
下させる減圧弁と、 減圧弁の弁開度を調整して、反応器内の圧力を第1の所
定圧力に制御する第1の圧力制御装置と、 減圧弁の下流に設けられ、処理流体を気液に分離する第
1の気液分離槽と、 第1の気液分離槽に流入した処理流体の温度が二酸化炭
素の臨界温度以上であるように、処理流体の冷却器出口
温度を調節する温度調節装置と、 第1の気液分離槽で分離された二酸化炭素ガスを含む気
体を放出しつつ、第1の気液分離槽の圧力を第1の所定
圧力より低い第2の所定圧力に制御する第2の圧力制御
装置と、第1の気液分離槽で分離された液体を流入させ
て、液体を気液に分離する第2の気液分離槽と、 第2の気液分離槽で分離された気体を放出しつつ、第2
の気液分離槽の圧力を第2の所定圧力より低く、かつ大
気圧を越える第3の所定圧力に制御する第3の圧力制御
装置とを備えていることを特徴とする超臨界水反応装
置。
1. A reactor comprising a supercritical water region in which supercritical water is retained, wherein a fluid containing an organic substance is introduced into the supercritical water region of the reactor, and an organic substance in the fluid in the supercritical water is introduced. In a supercritical water reactor for decomposing water and flowing out as a processing fluid containing carbon dioxide in a supercritical state, a cooler provided in a processing fluid line for flowing the processing fluid out of the reactor and cooling the processing fluid, and a cooler Is installed downstream of the pressure reducing valve that adiabatically expands the processing fluid to reduce the pressure and lowers the temperature of the processing fluid below the outlet temperature of the cooler, and adjusts the valve opening of the pressure reducing valve to control the pressure in the reactor. A first pressure control device for controlling to a first predetermined pressure, a first gas-liquid separation tank provided downstream of the pressure reducing valve for separating a processing fluid into a gas-liquid, and a first gas-liquid separation tank. The temperature of the treated fluid is above the critical temperature of carbon dioxide. As described above, the temperature of the cooler outlet temperature of the processing fluid is adjusted, and the pressure of the first gas-liquid separation tank is controlled while releasing the gas containing the carbon dioxide gas separated in the first gas-liquid separation tank. A second pressure control device that controls a second predetermined pressure lower than the first predetermined pressure, and a second pressure control device that allows the liquid separated in the first gas-liquid separation tank to flow in and separate the liquid into a gas-liquid. a gas-liquid separation tank, while releasing the separated gas body in the second gas-liquid separation tank, the second
The pressure of the gas-liquid separation tank rather low than the second predetermined pressure, and a large
And a third pressure control device for controlling the pressure to a third predetermined pressure exceeding atmospheric pressure.
【請求項2】 超臨界水が滞留する超臨界水領域を内部
に有する反応器を備え、有機物を含む流体を反応器の超
臨界水領域に導入して、超臨界水内で流体中の有機物を
分解し、超臨界状態の二酸化炭素を含む処理流体として
流出させる超臨界水反応装置において、 反応器から処理流体を流出させる処理流体ラインに設け
られ、処理流体を冷却する冷却器と、 冷却器の下流に設けられ、処理流体を断熱膨張させて減
圧すると共に処理流体の温度を冷却器の出口温度より低
下させる減圧弁と、 減圧弁の弁開度を調整して、反応器内の圧力を第1の所
定圧力に制御する第1の圧力制御装置と、 減圧弁の下流に設けられ、減圧弁から出た処理流体を加
熱する加熱手段と、 加熱手段の下流に設けられ、処理流体を気液に分離する
第1の気液分離槽と、 第1の気液分離槽に流入した処理流体の温度が二酸化炭
素の臨界温度以上であるように、加熱手段の加熱温度を
調節する温度調節装置と、 第1の気液分離槽で分離された二酸化炭素ガスを含む気
体を放出しつつ、第1の気液分離槽の圧力を第1の所定
圧力より低い第2の所定圧力に制御する第2の圧力制御
装置と、 第1の気液分離槽で分離された液体を流入させて、液体
を気液に分離する第2の気液分離槽と、 第2の気液分離槽で分離された気体を放出しつつ、第2
の気液分離槽の圧力を第2の所定圧力より低く、かつ大
気圧を越える第3の所定圧力に制御する第3の圧力制御
装置とを備えていることを特徴とする超臨界水反応装
置。
2. A reactor comprising a supercritical water region in which supercritical water stays, wherein a fluid containing an organic substance is introduced into the supercritical water region of the reactor, and an organic substance in the fluid in the supercritical water is introduced. In a supercritical water reactor for decomposing water and flowing out as a processing fluid containing carbon dioxide in a supercritical state, a cooler provided in a processing fluid line for flowing the processing fluid out of the reactor and cooling the processing fluid, and a cooler Is installed downstream of the pressure reducing valve that adiabatically expands the processing fluid to reduce the pressure and lowers the temperature of the processing fluid below the outlet temperature of the cooler, and adjusts the valve opening of the pressure reducing valve to control the pressure in the reactor. A first pressure control device for controlling to a first predetermined pressure, a heating means provided downstream of the pressure reducing valve for heating the processing fluid discharged from the pressure reducing valve, and a heating means provided downstream of the heating means for vaporizing the processing fluid. A first gas-liquid separation tank for separating into liquid, Separated in the first gas-liquid separation tank and a temperature control device for adjusting the heating temperature of the heating means so that the temperature of the treatment fluid flowing into the first gas-liquid separation tank is equal to or higher than the critical temperature of carbon dioxide. A second pressure control device for controlling the pressure of the first gas-liquid separation tank to a second predetermined pressure lower than the first predetermined pressure while releasing a gas containing carbon dioxide gas; and a first gas-liquid separation and allowed to flow into separated in the bath liquid, a second gas-liquid separation tank for separating the liquid into the gas-liquid, while releasing the separated gas body in the second gas-liquid separation tank, the second
The pressure of the gas-liquid separation tank rather low than the second predetermined pressure, and a large
And a third pressure control device for controlling the pressure to a third predetermined pressure exceeding atmospheric pressure.
【請求項3】 超臨界水が滞留する超臨界水領域を内部
に有する反応器を備え、有機物を含む流体を反応器の超
臨界水領域に導入して、超臨界水内で流体中の有機物を
分解し、超臨界状態の二酸化炭素を含む処理流体として
流出させる超臨界水反応装置において、 反応器から処理流体を流出させる処理流体ラインに設け
られ、処理流体を冷却する冷却器と、 冷却器の下流に設けられ、処理流体を断熱膨張させて減
圧すると共に処理流体の温度を冷却器の出口温度より低
下させる減圧弁と、 減圧弁の弁開度を調整して、反応器内の圧力を第1の所
定圧力に制御する第1の圧力制御装置と、 減圧弁の下流に設けられ、処理流体を気液に分離する第
1の気液分離槽と、 第1の気液分離槽内に設けられ、気液分離した液体を加
熱する加熱手段と、 第1の気液分離槽内の液体の温度が二酸化炭素の臨界温
度以上であるように、加熱手段の加熱温度を調節する温
度調節装置と、第1の気液分離槽で分離された二酸化炭
素ガスを含む気体を放出しつつ、第1の気液分離槽の圧
力を第1の所定圧力より低い第2の所定圧力に制御する
第2の圧力制御装置と、 第1の気液分離槽で分離された液体を流入させて、液体
を気液に分離する第2の気液分離槽と、 第2の気液分離槽で分離された気体を放出しつつ、第2
の気液分離槽の圧力を第2の所定圧力より低く、かつ大
気圧を越える第3の所定圧力に制御する第3の圧力制御
装置とを備えていることを特徴とする超臨界水反応装
置。
3. A reactor comprising a reactor having therein a supercritical water region in which supercritical water stays, wherein a fluid containing an organic substance is introduced into the supercritical water region of the reactor, and an organic substance in the fluid in the supercritical water is introduced. In a supercritical water reactor for decomposing water and flowing out as a processing fluid containing carbon dioxide in a supercritical state, a cooler provided in a processing fluid line for flowing the processing fluid out of the reactor and cooling the processing fluid, and a cooler Is installed downstream of the pressure reducing valve that adiabatically expands the processing fluid to reduce the pressure and lowers the temperature of the processing fluid below the outlet temperature of the cooler, and adjusts the valve opening of the pressure reducing valve to control the pressure in the reactor. A first pressure control device for controlling a first predetermined pressure, a first gas-liquid separation tank provided downstream of the pressure reducing valve for separating the processing fluid into a gas-liquid, and a first gas-liquid separation tank. A heating means provided for heating the liquid separated into gas and liquid; A temperature control device for adjusting the heating temperature of the heating means so that the temperature of the liquid in the first gas-liquid separation tank is equal to or higher than the critical temperature of carbon dioxide, and the carbon dioxide gas separated in the first gas-liquid separation tank A second pressure control device for controlling the pressure of the first gas-liquid separation tank to a second predetermined pressure lower than the first predetermined pressure while discharging a gas containing by introducing the liquid, a second gas-liquid separation tank for separating the liquid into the gas-liquid, while releasing the separated gas body in the second gas-liquid separation tank, the second
The pressure of the gas-liquid separation tank rather low than the second predetermined pressure, and a large
And a third pressure control device for controlling the pressure to a third predetermined pressure exceeding atmospheric pressure.
【請求項4】 超臨界水が滞留する超臨界水領域を内部
に有する反応器を備え、有機物を含む流体を反応器の超
臨界水領域に導入して、超臨界水内で流体中の有機物を
分解し、超臨界状態の二酸化炭素を含む処理流体を反応
器から流出させる超臨界水反応装置の運転方法であっ
て、反応器の圧力を維持しつつ反応器から流出した処理
流体を減圧するに当たり、 反応器から流出した処理流体を所定の冷却温度に冷却す
る冷却ステップと、 冷却された処理流体を断熱膨張により所定圧力に減圧す
ると共に処理流体の温度を所定の冷却温度以下に低下さ
せる第1の減圧ステップと、第1の減圧ステップで 減圧された処理流体を気液分離し
て、二酸化炭素ガスを含む気体を放出すると共に液体を
流出させる第1の気液分離ステップと、 第1の気液分離ステップで流出した液体を上記所定圧力
より低く、かつ大気圧を越える圧力に減圧する第2の減
圧ステップと、 第2の減圧ステップで減圧された液体を 気液分離し、分
離された気体を放出すると共に残存の液体を流出させる
第2の気液分離ステップとを備え、 冷却ステップでは、第1の減圧ステップを経た処理流体
の温度が二酸化炭素の臨界温度以上であるように、所定
の冷却温度を調節することを特徴とする超臨界水反応装
置の運転方法。
4. A reactor comprising a reactor having therein a supercritical water region in which supercritical water stays, wherein a fluid containing organic matter is introduced into the supercritical water region of the reactor, and organic matter in the fluid in the supercritical water is introduced. Is a method of operating a supercritical water reactor in which a treatment fluid containing carbon dioxide in a supercritical state is discharged from a reactor by decompressing the treatment fluid and depressurizing the treatment fluid flowing out of the reactor while maintaining the pressure of the reactor. At this time, a cooling step of cooling the processing fluid flowing out of the reactor to a predetermined cooling temperature, and a step of reducing the temperature of the cooled processing fluid to a predetermined pressure by adiabatic expansion and lowering the temperature of the processing fluid to a predetermined cooling temperature or less . A first depressurizing step, a first gas-liquid separating step in which the processing fluid depressurized in the first depressurizing step is gas-liquid separated to release a gas containing carbon dioxide gas and to make the liquid flow out. Gas-liquid The predetermined pressure spilled liquid in step
A second reduction that reduces the pressure to below and above atmospheric pressure.
The liquid depressurized in the pressure step and the second depressurization step is separated into gas and liquid and separated .
A second gas-liquid separation step of discharging the separated gas and outflowing the remaining liquid, and in the cooling step, the temperature of the treatment fluid that has passed through the first decompression step is equal to or higher than the critical temperature of carbon dioxide. A method for operating a supercritical water reactor, further comprising adjusting a predetermined cooling temperature.
【請求項5】 第1の減圧ステップを経た処理流体を二
酸化炭素の臨界温度以上に加熱して第1の気液分離ステ
ップに移行させることを特徴とする請求項4に記載の超
臨界水反応装置の運転方法。
5. The supercritical water reaction according to claim 4, wherein the treatment fluid that has undergone the first decompression step is heated to a temperature equal to or higher than the critical temperature of carbon dioxide and transferred to the first gas-liquid separation step. How to operate the device.
JP13065197A 1997-05-21 1997-05-21 Supercritical water reactor and method of operating supercritical water reactor Expired - Fee Related JP3486522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13065197A JP3486522B2 (en) 1997-05-21 1997-05-21 Supercritical water reactor and method of operating supercritical water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13065197A JP3486522B2 (en) 1997-05-21 1997-05-21 Supercritical water reactor and method of operating supercritical water reactor

Publications (2)

Publication Number Publication Date
JPH10314767A JPH10314767A (en) 1998-12-02
JP3486522B2 true JP3486522B2 (en) 2004-01-13

Family

ID=15039355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13065197A Expired - Fee Related JP3486522B2 (en) 1997-05-21 1997-05-21 Supercritical water reactor and method of operating supercritical water reactor

Country Status (1)

Country Link
JP (1) JP3486522B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757452B2 (en) * 2004-04-02 2011-08-24 昭和炭酸株式会社 Gas-liquid separator
JP4984116B2 (en) * 2006-07-07 2012-07-25 独立行政法人産業技術総合研究所 Circulating liquid or supercritical carbon dioxide reaction / treatment equipment
JP5007403B2 (en) * 2007-01-19 2012-08-22 三菱マテリアル株式会社 Method and apparatus for separating high temperature and high pressure water and oil
JP5856471B2 (en) * 2011-12-21 2016-02-09 川崎重工業株式会社 Depressurization system with wear reduction function and reactor equipped with the same

Also Published As

Publication number Publication date
JPH10314767A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5240619A (en) Two-stage subcritical-supercritical wet oxidation
JP3273118B2 (en) High pressure processing equipment
JP2001524871A (en) Apparatus and method for oxidizing indigestible sewage sludge
JP3486522B2 (en) Supercritical water reactor and method of operating supercritical water reactor
JPH11300198A (en) Method for controlling reaction temperature and supercritical water oxidizing device
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JPH067783A (en) Method for starting wet oxidation system
JP3459749B2 (en) Supercritical water reactor
US6190564B1 (en) Two-stage separation process
JP4156761B2 (en) Batch supercritical water reactor
JP2001347102A (en) Deaeration method and deaeration device
JPH10314766A (en) Supercritical water reaction apparatus
JP3686778B2 (en) Operation method of supercritical water reactor
JP2002177975A (en) Supercritical hydroxylation decomposition equipment for organic matter
JP3836270B2 (en) Method for shutting down supercritical water reactor
JP2001269566A (en) Supercritical water reaction apparatus
JP2001170664A (en) Supercritical water treating device
JPH07275871A (en) Supercritical water oxidation treatment method of harmful substance and apparatus therefor
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JPH10314768A (en) Method for oxidation of supercritical water
JPH11156379A (en) Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound
CA2250888C (en) Two-stage separation process
JP2006043552A (en) Hydrothermal reaction process and its apparatus
JP2010259681A (en) Method and apparatus for detoxification treatment of pcb-containing oil
JP3280797B2 (en) Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees