JP2001269566A - Supercritical water reaction apparatus - Google Patents

Supercritical water reaction apparatus

Info

Publication number
JP2001269566A
JP2001269566A JP2000088172A JP2000088172A JP2001269566A JP 2001269566 A JP2001269566 A JP 2001269566A JP 2000088172 A JP2000088172 A JP 2000088172A JP 2000088172 A JP2000088172 A JP 2000088172A JP 2001269566 A JP2001269566 A JP 2001269566A
Authority
JP
Japan
Prior art keywords
supercritical water
nozzle
reactor
liquid
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000088172A
Other languages
Japanese (ja)
Other versions
JP2001269566A5 (en
Inventor
Masanori Oonobu
正紀 大信
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000088172A priority Critical patent/JP2001269566A/en
Publication of JP2001269566A publication Critical patent/JP2001269566A/en
Publication of JP2001269566A5 publication Critical patent/JP2001269566A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supercritical water reaction apparatus capable of stably treating a liquid to be treated in which an inorganic salt is dissolved in addition to organic matter. SOLUTION: The supercritical water reaction apparatus is constituted so as to treat the liquid to be treated in which the inorganic salt is dissolved in addition to organic matter and has the same constitution as a conventional supercritical water reaction apparatus excepting the constitution of an inlet nozzle. This apparatus has a principal part 10 equipped with an inlet nozzle 18 piercing a flange 16 closing the upper opening 14 of a vertical reactor 12 to communicate with the interior of the reactor 12 and connected to an inflow pipe 72 and a cooling jacket 20 provided as an annular opening part, which surrounds the periphery of the inlet nozzle 18, along the inlet nozzle 18 to cool the inlet nozzle 18. A supply pipe 24 for supplying a cooling medium to the cooling jacket 20 is connected to the lower end of the cooling jacket 20 and a discharge pipe 26 for discharging the cooling medium from the cooling jacket 20 is connected to the upper end of the cooling jacket 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界水反応装置
に関し、更に詳細には、有機物に加えて無機塩を溶解し
ている被処理液であっても、長期間にわたり安定して超
臨界水反応による処理を行うことのできる超臨界水反応
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical water reactor, and more particularly, to a supercritical water reactor which stably dissolves an inorganic salt in addition to an organic substance for a long period of time. The present invention relates to a supercritical water reactor capable of performing a treatment by a water reaction.

【0002】[0002]

【従来の技術】環境問題に対する認識の高まりと共に、
超臨界水処理装置の適用分野の一つとして、環境汚染物
質の分解、無害化が、注目されている。超臨界水処理装
置とは、超臨界水の反応媒体的性質を利用した超臨界水
反応により、従来技術では分解することが難しかった有
害な難分解性の有機物、例えば、PCB(ポリ塩素化ビ
フェニル)、ダイオキシン、有機塩素系溶剤等を分解し
て、二酸化炭素、水、無機塩などの無害な生成物に転化
する装置であって、その実用化が試みられている。
2. Description of the Related Art With increasing awareness of environmental issues,
As one of application fields of a supercritical water treatment apparatus, attention has been paid to decomposition and detoxification of environmental pollutants. A supercritical water treatment device is a harmful hard-to-decompose organic substance, such as PCB (polychlorinated biphenyl), which is difficult to decompose in the prior art by a supercritical water reaction utilizing the properties of a reaction medium of supercritical water. ), A device that decomposes dioxins, organic chlorinated solvents, and the like and converts them into harmless products such as carbon dioxide, water, and inorganic salts.

【0003】超臨界水とは、超臨界状態にある水、即
ち、水の臨界点を越えた状態にある水を言い、詳しく
は、臨界温度、即ち374.1℃以上の温度で、かつ水
の臨界圧力、即ち22.04MPa以上の圧力下にある
状態の水を言う。超臨界水は、有機物を溶解する溶解能
が高く、有機化合物に多い非極性物質をも完全に溶解す
ることができる一方、逆に、金属、塩等の無機物に対す
る溶解能は著しく低い。また、超臨界水は、酸素や窒素
などの気体と任意の割合で混合して単一相を構成するこ
とができる。
[0003] Supercritical water refers to water that is in a supercritical state, that is, water that is beyond the critical point of water, and more specifically, has a critical temperature, that is, a temperature of 374.1 ° C or higher, and Of water under a critical pressure of 22.04 MPa or more. Supercritical water has a high ability to dissolve organic substances and can completely dissolve non-polar substances, which are abundant in organic compounds, but has a very low ability to dissolve inorganic substances such as metals and salts. The supercritical water can be mixed with a gas such as oxygen or nitrogen at an arbitrary ratio to form a single phase.

【0004】ところで、ダイオキシン等の有機塩素系化
合物を含む被処理液は、無機酸とアルカリ金属又はアル
カリ土金属との化合物である無機塩、及び金属イオン
(以下、簡単に無機塩と総称する)を溶解していること
が多い。有機物に加えて無機塩を溶解した被処理液を超
臨界水反応により処理する際には、超臨界水の無機塩溶
解能が極めて小さいことを考慮して、通常、2ゾーン方
式の超臨界水反応装置が使用されている。
The liquid to be treated containing an organic chlorine compound such as dioxin includes an inorganic salt which is a compound of an inorganic acid and an alkali metal or an alkaline earth metal, and a metal ion (hereinafter simply referred to as an inorganic salt). Is often dissolved. When treating a liquid to be treated in which an inorganic salt is dissolved in addition to an organic substance by a supercritical water reaction, in consideration of the extremely small inorganic salt dissolving ability of the supercritical water, a two-zone supercritical water is usually used. A reactor is used.

【0005】ここで、図5を参照して、有機物に加えて
無機塩を含む被処理液を超臨界水反応により処理する、
従来の超臨界水処理装置の基本的な構成を説明する。図
5は従来の超臨界水処理装置の構成を示すフローシー
ト、図6は入口ノズルの構成を示す断面図である。図5
に示す超臨界水処理装置60は、超臨界水反応を行わせ
る反応器として、2ゾーン方式の耐圧密閉型の縦型反応
器62を備えた、いわゆるモダープロセス方式の装置で
あって、従来から、有機物に加えて無機塩を溶解した被
処理液、或いは超臨界水処理中に無機塩が析出する被処
理液を処理する超臨界水反応装置として最適な装置と評
価されている。
Here, referring to FIG. 5, a liquid to be treated containing an inorganic salt in addition to an organic substance is treated by a supercritical water reaction.
The basic configuration of a conventional supercritical water treatment device will be described. FIG. 5 is a flow sheet showing the configuration of a conventional supercritical water treatment apparatus, and FIG. 6 is a sectional view showing the configuration of an inlet nozzle. FIG.
The supercritical water treatment apparatus 60 shown in FIG. 1 is a so-called modal process type apparatus having a two-zone pressure-resistant closed vertical reactor 62 as a reactor for performing a supercritical water reaction. It has been evaluated as an optimal apparatus as a supercritical water reactor for treating a liquid to be treated in which an inorganic salt is dissolved in addition to an organic substance, or a liquid to be treated in which an inorganic salt is precipitated during supercritical water treatment.

【0006】反応器62の上部では、水の臨界点以上の
条件、即ち超臨界条件が維持され、超臨界水を滞留させ
る超臨界水域64が形成され、超臨界水域64との仮想
的界面66を介して反応器62の下部には、水の臨界温
度より低い温度に維持され、亜臨界水を滞留させる亜臨
界水域68が形成されている。反応器62の上部には、
入口ノズル70を介して超臨界水反応により処理する被
処理液及び酸化剤を超臨界水域64に流入させる流入管
72が接続されている。入口ノズル70は、図6に示す
ように、反応器62の上部開口部を閉止するフランジ7
3を貫通するように設けられている。フランジ73は、
反応器62の胴フランジ62aに図示しないボルト締め
等によってフランジ結合されている。図6中、70a
は、入口ノズル70と流入管72を接続させる継ぎ手で
ある。
In the upper part of the reactor 62, conditions above the critical point of water, that is, supercritical conditions are maintained, a supercritical water area 64 for retaining supercritical water is formed, and a virtual interface 66 with the supercritical water area 64 is formed. In the lower part of the reactor 62 through the sub-critical water region 68 is formed at a temperature lower than the critical temperature of water, and the sub-critical water is retained. In the upper part of the reactor 62,
An inflow pipe 72 that allows the liquid to be treated and the oxidant to flow into the supercritical water zone 64 through the inlet nozzle 70 is connected to the supercritical water area 64. As shown in FIG. 6, the inlet nozzle 70 is provided with a flange 7 for closing the upper opening of the reactor 62.
3 is provided. The flange 73 is
It is flange-connected to the body flange 62a of the reactor 62 by bolting (not shown) or the like. In FIG. 6, 70a
Is a joint for connecting the inlet nozzle 70 and the inflow pipe 72.

【0007】流入管72には、超臨界水反応により処理
すべき有機物に加えて無機塩を溶解した被処理液を送入
する被処理液ライン74、有機物を酸化させる酸化剤と
して空気を送入する空気ライン76、及び、超臨界水又
は超臨界水生成用の補給水を送入する超臨界水ライン7
8が合流している。
The inflow pipe 72 is supplied with a liquid to be treated 74 in which an inorganic substance is dissolved in addition to the organic substance to be treated by the supercritical water reaction, and air is supplied as an oxidizing agent for oxidizing the organic substance. And a supercritical water line 7 for feeding supercritical water or makeup water for producing supercritical water.
8 have joined.

【0008】また、被処理液中の有機塩素化合物によっ
て生成する塩酸を中和するためにアルカリ中和剤を供給
する中和剤ライン80が、被処理液ライン74に接続さ
れている。被処理液及び中和剤は、流入管72及び入口
ノズル70を通って反応器62内の超臨界水域64内に
導入される。被処理液中の有機塩素化合物及びその他の
有機物は、超臨界水域64内で瞬時に酸化分解される。
超臨界水反応の過程で、被処理液に含有された有機塩素
化合物の塩素は、アルカリ中和剤と中和して塩となり、
超臨界水域64から亜臨界水域68に移行する。また、
被処理液に溶解していた無機塩も、超臨界水域64内で
析出し、亜臨界水域68に移行する。
A neutralizing agent line 80 for supplying an alkali neutralizing agent for neutralizing hydrochloric acid generated by the organic chlorine compound in the liquid to be treated is connected to the liquid to be treated line 74. The liquid to be treated and the neutralizing agent are introduced into the supercritical water zone 64 in the reactor 62 through the inflow pipe 72 and the inlet nozzle 70. Organochlorine compounds and other organic substances in the liquid to be treated are instantaneously oxidized and decomposed in the supercritical water area 64.
In the course of the supercritical water reaction, the chlorine of the organic chlorine compound contained in the liquid to be treated is neutralized with an alkali neutralizing agent to form a salt,
The supercritical water area 64 shifts to the subcritical water area 68. Also,
The inorganic salt dissolved in the liquid to be treated also precipitates in the supercritical water area 64 and moves to the subcritical water area 68.

【0009】反応器62の上部には、更に、処理液ライ
ン86が接続され、被処理液中の有機物は、超臨界水反
応により、主として水と二酸化炭素になって処理液と共
に超臨界水域64から処理液ライン86を通って流出す
る。処理液ライン86には、図示しないが、処理液を冷
却する冷却器、及び反応器62内の圧力を制御する圧力
制御弁、気液分離器等が設けてある。尚、必要に応じ
て、超臨界水域に補助燃料を供給する補助燃料ラインを
流入管72に接続することもある。
A treatment liquid line 86 is further connected to the upper part of the reactor 62, and organic substances in the liquid to be treated are mainly converted into water and carbon dioxide by a supercritical water reaction, and together with the treatment liquid, a supercritical water area 64 is formed. From the processing solution line 86. Although not shown, the processing liquid line 86 is provided with a cooler for cooling the processing liquid, a pressure control valve for controlling the pressure in the reactor 62, a gas-liquid separator, and the like. If necessary, an auxiliary fuel line for supplying auxiliary fuel to a supercritical water area may be connected to the inflow pipe 72.

【0010】一方、反応器62の下部には、亜臨界水ラ
イン82及び亜臨界排水ライン84が接続され、亜臨界
水ライン82は亜臨界水域68に亜臨界水を供給し、ま
た亜臨界排水ライン84は超臨界水反応及び中和反応に
より生成した塩を溶解している亜臨界水を排水として亜
臨界水域68から排出する。図示しないが、亜臨界排水
ライン84には、亜臨界排水を所定温度に降温する冷却
器、所定圧力に減圧する減圧装置、更には気液分離/固
液分離装置等が設けてある。
On the other hand, a subcritical water line 82 and a subcritical drainage line 84 are connected to a lower portion of the reactor 62. The subcritical water line 82 supplies subcritical water to the subcritical water area 68, The line 84 discharges the subcritical water in which the salt generated by the supercritical water reaction and the neutralization reaction is dissolved from the subcritical water area 68 as wastewater. Although not shown, the subcritical drain line 84 is provided with a cooler for lowering the temperature of the subcritical wastewater to a predetermined temperature, a decompression device for reducing the pressure to a predetermined pressure, a gas-liquid separation / solid-liquid separation device, and the like.

【0011】[0011]

【発明が解決しようとする課題】しかし、上述の従来の
超臨界水反応装置で、有機物に加えて無機塩を溶解した
被処理液を超臨界水反応により処理しようとすると、反
応器の入口ノズルが比較的短時間で閉塞するために、長
時間にわたり安定した超臨界水処理を継続して行うこと
が難しいという問題があった。例えば、都市ゴミを燃焼
する燃焼炉等から回収した飛灰を水に投入したときに得
られる上澄み水は、ダイオキシン等の有機塩素化合物に
加えて塩化カルシウム、硫酸カルシウム等の無機塩を
0.5重量%程度溶解している。この上澄み水を超臨界
水反応により処理する場合、被処理液中の硫酸カルシウ
ム及び塩化カルシウムが、反応器の入口ノズルに析出
し、比較的短時間で入口ノズルを閉塞させる。
However, in the above-mentioned conventional supercritical water reaction apparatus, when a liquid to be treated in which an inorganic salt is dissolved in addition to an organic substance is to be treated by a supercritical water reaction, an inlet nozzle of the reactor is required. However, there is a problem that it is difficult to continuously perform a stable supercritical water treatment for a long time because the clogging is performed in a relatively short time. For example, supernatant water obtained when throwing fly ash collected from a combustion furnace or the like for burning municipal garbage into water contains inorganic chlorides such as calcium chloride and calcium sulfate in addition to organochlorine compounds such as dioxin by 0.5%. It dissolves about by weight%. When this supernatant water is treated by the supercritical water reaction, calcium sulfate and calcium chloride in the liquid to be treated precipitate at the inlet nozzle of the reactor, and close the inlet nozzle in a relatively short time.

【0012】また、有機物に加えて無機塩を溶解した被
処理液に超臨界水反応処理を施す際、空気或いは酸素ガ
ス等の気体酸化剤を導入することなく、有機物の分解反
応を行うこともあるが、このときには、特に、被処理液
中の無機塩が析出し易い。
When a supercritical water reaction treatment is performed on a liquid to be treated in which an inorganic salt is dissolved in addition to an organic substance, a decomposition reaction of the organic substance may be carried out without introducing a gas oxidizing agent such as air or oxygen gas. However, at this time, particularly, the inorganic salt in the liquid to be treated tends to precipitate.

【0013】そこで、本発明の目的は、有機物に加えて
無機塩を溶解した被処理液を長時間にわたり安定して処
理できる超臨界水反応装置を提供することである。
Accordingly, an object of the present invention is to provide a supercritical water reactor capable of stably treating a liquid to be treated in which an inorganic salt is dissolved in addition to an organic substance for a long time.

【0014】[0014]

【課題を解決するための手段】本発明者は、無機塩の析
出原因を研究した結果、次のことを突き止めた。つま
り、反応器内の温度の高い超臨界水域に接している反応
器上部の温度は、殆ど超臨界水の温度に近くまで上昇し
ていて、例えば400℃程度になる。従って、反応器の
上部壁を貫通するように設けられた入口ノズルの温度も
極めて高い。その結果、被処理液が入口ノズルを通過す
るにつれて、被処理液の温度が上昇して被処理液の無機
塩溶解度が低下するために、無機塩が析出することが判
った。そして、入口ノズルを350℃以下に冷却するこ
とにより、無機塩の析出を実質的に抑制できることも見
い出した。
The present inventors have studied the causes of the precipitation of inorganic salts and as a result found the following. That is, the temperature of the upper part of the reactor, which is in contact with the supercritical water region having a high temperature in the reactor, almost rises to a temperature close to the supercritical water, and becomes, for example, about 400 ° C. Accordingly, the temperature of the inlet nozzle provided to penetrate the upper wall of the reactor is also extremely high. As a result, it was found that as the liquid to be treated passes through the inlet nozzle, the temperature of the liquid to be treated increases and the solubility of the inorganic salt in the liquid to be treated decreases, so that inorganic salts precipitate. It has also been found that by cooling the inlet nozzle to 350 ° C. or lower, the precipitation of inorganic salts can be substantially suppressed.

【0015】上記目的を達成するために、本発明に係る
超臨界水反応装置(以下、第1の発明と言う)は、超臨
界水を収容する縦型反応器を備え、反応器の容器壁を貫
通して設けられた被処理液の入口ノズルから反応器内の
超臨界水中に被処理液を導入して超臨界水反応を行わせ
る超臨界水反応装置において、入口ノズルに沿って入口
ノズルの周りに二重管状に設けられ、入口ノズルを冷却
する冷却ジャケットと、冷却ジャケットの一方の端部に
接続され、冷却媒体を冷却ジャケットに供給する供給管
と、冷却ジャケットの他方の端部に接続され、冷却ジャ
ケットから冷却媒体を排出する排出管とを備えているこ
とを特徴している。
In order to achieve the above object, a supercritical water reactor according to the present invention (hereinafter referred to as a first invention) includes a vertical reactor containing supercritical water, and a vessel wall of the reactor. In a supercritical water reactor for introducing a liquid to be treated into the supercritical water in the reactor from the inlet nozzle of the liquid to be treated, which is provided through, and performing a supercritical water reaction, the inlet nozzle along the inlet nozzle A cooling jacket for cooling the inlet nozzle, a supply pipe connected to one end of the cooling jacket for supplying a cooling medium to the cooling jacket, and a cooling jacket for cooling the inlet nozzle. And a discharge pipe connected to the cooling jacket to discharge the cooling medium from the cooling jacket.

【0016】入口ノズルと冷却ジャケットとの間の壁厚
は、反応器内の圧力と冷却媒体との圧力差に抗する強度
の厚さとする。第1の発明の好適な実施態様では、供給
管が冷却ジャケットの下端部に、排出管が冷却ジャケッ
トの上端部に、それぞれ、接続されている。これによ
り、供給管からジャケットの下端部に供給された冷却媒
体は、入口ノズルを冷却して温度が上昇するにつれて上
方に流れ、上端部から流出する。冷却媒体は入口ノズル
を冷却できる限り、種類、組成を問わず、例えば水、空
気を冷却媒体として使用することができる。水を使って
場合には、ジャケット内で気化させ、気化熱を冷却用に
使用しても良い。望ましくは、入口ノズルと冷却ジャケ
ットとの間に介在するノズル壁の入口ノズル流出口近傍
の温度を測定し、入口ノズル流出口近傍のノズル壁の温
度が350℃以下になるように冷却媒体の流量を制御す
るようにした、ノズル壁の温度制御装置を備える。これ
により、無機塩の析出を一層確実に抑制して、長期間に
わたる安定した超臨界水反応を行うことができる。
The wall thickness between the inlet nozzle and the cooling jacket should be strong enough to resist the pressure difference between the pressure in the reactor and the cooling medium. In a preferred embodiment of the first invention, the supply pipe is connected to the lower end of the cooling jacket, and the discharge pipe is connected to the upper end of the cooling jacket. As a result, the cooling medium supplied from the supply pipe to the lower end of the jacket flows upward as the temperature of the cooling medium rises by cooling the inlet nozzle, and flows out from the upper end. As long as the cooling medium can cool the inlet nozzle, for example, water and air can be used as the cooling medium regardless of the type and composition. If water is used, it may be vaporized in the jacket, and the heat of vaporization may be used for cooling. Desirably, the temperature near the inlet nozzle outlet of the nozzle wall interposed between the inlet nozzle and the cooling jacket is measured, and the flow rate of the cooling medium is set so that the temperature of the nozzle wall near the inlet nozzle outlet is 350 ° C. or less. And a temperature control device for controlling the temperature of the nozzle wall. Thereby, precipitation of the inorganic salt can be suppressed more reliably, and a stable supercritical water reaction can be performed for a long period of time.

【0017】また、本発明に係る別の超臨界水反応装置
(以下、第2の発明と言う)は、超臨界水を収容する縦
型反応器を備え、反応器の容器壁を貫通して設けられた
被処理液の入口ノズルから反応器内の超臨界水中に被処
理液を導入して超臨界水反応を行わせる超臨界水反応装
置において、入口ノズルが、内筒ノズルと、内筒ノズル
の外側を二重管状に囲む外筒ノズルとからなる2流体ノ
ズルとして構成され、内筒ノズルを被処理液の流入経路
とし、内筒ノズルと外筒ノズルと間の環状部を内筒ノズ
ルを冷却する冷却媒体の流入経路とすることを特徴とし
ている。
Another supercritical water reactor according to the present invention (hereinafter referred to as a second invention) includes a vertical reactor containing supercritical water, and penetrates a vessel wall of the reactor. In a supercritical water reactor for introducing the liquid to be treated into the supercritical water in the reactor from the provided liquid inlet nozzle and performing a supercritical water reaction, the inlet nozzle has an inner cylinder nozzle and an inner cylinder. A two-fluid nozzle composed of an outer cylinder nozzle surrounding the outside of the nozzle in a double tubular manner, the inner cylinder nozzle is used as an inflow path of the liquid to be treated, and an annular portion between the inner cylinder nozzle and the outer cylinder nozzle is an inner cylinder nozzle. And a cooling medium inflow path for cooling the cooling medium.

【0018】第2の発明では、冷却媒体として液体、例
えば水を使用することにより、水を反応器内に導入し、
超臨界水の補給水の一部として使用する。また、温度の
低い被処理液を別途冷却媒体として導入することによ
り、併せて反応器内で超臨界水反応による処理を施すこ
とができる。
In the second invention, water is introduced into the reactor by using a liquid, for example, water as a cooling medium,
Used as part of the supercritical water makeup water. Further, by separately introducing a low-temperature liquid to be treated as a cooling medium, it is possible to additionally perform a treatment by a supercritical water reaction in the reactor.

【0019】第2の発明の好適な実施態様では、内筒ノ
ズルの流出口が、外筒ノズルの内側にある。これによ
り、被処理液と冷却媒体とを混合して、反応器内に導入
することができるので、反応器内の温度分布を乱すよう
なことが生じない。第2の発明の更に好適な実施態様で
は、内筒ノズルの流出口近傍の内筒ノズルの温度を測定
し、内筒ノズルの温度が350℃以下になるように冷却
媒体の流量を制御するようにした、2流体ノズルの温度
制御装置を備えている。これにより、無機塩の析出を一
層確実に抑制して、長期間にわたる安定した超臨界水反
応を行うことができる。
In a preferred embodiment of the second invention, the outlet of the inner cylinder nozzle is inside the outer cylinder nozzle. Thus, the liquid to be treated and the cooling medium can be mixed and introduced into the reactor, so that the temperature distribution in the reactor is not disturbed. In a further preferred embodiment of the second invention, the temperature of the inner cylinder nozzle near the outlet of the inner cylinder nozzle is measured, and the flow rate of the cooling medium is controlled so that the temperature of the inner cylinder nozzle becomes 350 ° C. or lower. A two-fluid nozzle temperature controller. Thereby, the precipitation of the inorganic salt can be more reliably suppressed, and a stable supercritical water reaction can be performed for a long period of time.

【0020】第1及び第2の発明は、2ゾーン方式の反
応器にも、また反応器内が全域にわたり超臨界水域であ
る反応器にも適用できる。
The first and second aspects of the present invention can be applied to a two-zone reactor or a reactor in which the entire reactor is a supercritical water zone.

【0021】[0021]

【発明の実施の形態】以下に、添付図面を参照し、実施
形態例を挙げて本発明の実施の形態を具体的かつ詳細に
説明する。実施形態例1 本実施形態例は第1の発明に係る超臨界水反応装置の実
施形態の一例であって、図1は本実施形態例の超臨界水
反応装置の要部である入口ノズル及びその近傍に設けら
れた冷却ジャケットの構成を示す縦断面図、及び図2は
図1の線I−Iでの入口ノズル及び冷却ジャケットの横
断面図である。本実施形態例の超臨界水反応装置は、有
機物に加えて無機塩を溶解した被処理液を超臨界水反応
により処理する装置であって、入口ノズルの構成を除い
て、前述した従来の超臨界水反応装置60と同じ構成を
備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment 1 This embodiment is an example of an embodiment of the supercritical water reactor according to the first invention, and FIG. 1 shows an inlet nozzle and a main part of the supercritical water reactor of this embodiment. FIG. 2 is a longitudinal sectional view showing the configuration of the cooling jacket provided in the vicinity thereof, and FIG. 2 is a transverse sectional view of the inlet nozzle and the cooling jacket taken along line II in FIG. The supercritical water reactor of the present embodiment is an apparatus for treating a liquid to be treated in which an inorganic salt is dissolved in addition to an organic substance by a supercritical water reaction. It has the same configuration as the critical water reactor 60.

【0022】本実施形態例の超臨界水反応装置は、要部
10として、図1及び図2に示すように、従来の超臨界
水反応装置60に設けた反応器62と同じ構成の縦型反
応器12を備え、一端で流入管72に接続され、反応器
12の上部開口14を閉止するフランジ16を貫通し
て、他端で反応器12内に連通する入口ノズル18と、
入口ノズル18に沿って入口ノズル18の周りを囲む環
状開口部として設けられ、入口ノズル18を冷却する冷
却ジャケット20とを備えている。入口ノズル18と冷
却ジャケット20との間には環状壁21が介在してい
る。フランジ16は、反応器12の上端の胴フランジ2
2にボルト締め(図示せず)でフランジ結合されてい
る。また、図1中、23は、入口ノズル18を流入管7
2に接続する継ぎ手である。
As shown in FIGS. 1 and 2, a supercritical water reactor of the present embodiment has a vertical type reactor having the same structure as a reactor 62 provided in a conventional supercritical water reactor 60 as shown in FIGS. An inlet nozzle 18 comprising the reactor 12, connected at one end to the inlet pipe 72, through a flange 16 closing the upper opening 14 of the reactor 12 and communicating at the other end into the reactor 12;
A cooling jacket 20 is provided along the inlet nozzle 18 and is provided as an annular opening surrounding the inlet nozzle 18 and cools the inlet nozzle 18. An annular wall 21 is interposed between the inlet nozzle 18 and the cooling jacket 20. The flange 16 is provided at the upper body flange 2 of the reactor 12.
2 is flanged by bolting (not shown). In FIG. 1, reference numeral 23 denotes an inlet nozzle 18 connected to the inflow pipe 7.
2 is a joint to be connected.

【0023】冷却ジャケット20の下端部には、冷却媒
体を冷却ジャケット20に供給する供給管24が接続さ
れ、冷却ジャケット20の上端部には、冷却ジャケット
20から冷却媒体を排出する排出管26が接続されてい
る。本実施形態例では、冷却媒体として水を使い、入口
ノズル18の温度が350℃以上に上がらないように設
定された流量の水を流す。
A supply pipe 24 for supplying a cooling medium to the cooling jacket 20 is connected to a lower end of the cooling jacket 20, and a discharge pipe 26 for discharging the cooling medium from the cooling jacket 20 is provided at an upper end of the cooling jacket 20. It is connected. In the present embodiment, water is used as a cooling medium, and water is supplied at a flow rate set so that the temperature of the inlet nozzle 18 does not rise to 350 ° C. or higher.

【0024】供給管24から水を冷却ジャケット20に
導入して冷却ジャケット20と入口ノズル18との間の
環状壁21を冷却させつつ排出管26から排出すること
により、入口ノズル18を流れる被処理液の温度が35
0℃以上に昇温されない。よって、従来に比べて、被処
理液中の無機塩の析出が著しく減少し、従来のように、
入口ノズル18が閉塞するようなことは生じない。
Water is introduced into the cooling jacket 20 from the supply pipe 24 and discharged from the discharge pipe 26 while cooling the annular wall 21 between the cooling jacket 20 and the inlet nozzle 18, so that the processing target flowing through the inlet nozzle 18 is processed. Liquid temperature is 35
Does not rise above 0 ° C. Therefore, the precipitation of the inorganic salt in the liquid to be treated is remarkably reduced as compared with the related art.
No blockage of the inlet nozzle 18 occurs.

【0025】実施形態例1の改変例 本改変例は、要部30として、実施形態例1の構成に加
えて、入口ノズル18と冷却ジャケット20との間の環
状壁21の温度を制御する温度制御システムを備えてい
る。温度制御システムは、図3に示すように、入口ノズ
ル18と冷却ジャケット20との間の環状壁21の温度
を測定する温度計32と、排出管26に設けられた流量
調節弁34と、温度計32から出力された温度測定値に
基づいて環状壁21の温度が設定値、例えば350℃に
なるように流量調節弁34を調節して冷却ジャケット2
0を流れる水量を調整する温度制御装置36とから構成
されている。尚、図3は実施形態例1の改変例の構成を
示す模式図である。本改変例では、温度制御システムを
備えることにより、更に確実に、被処理液の温度上昇を
抑制し、被処理液中の無機塩の析出を防止することがで
きる。
Modification of Embodiment 1 In this modification, as a main part 30, in addition to the structure of Embodiment 1, a temperature for controlling the temperature of the annular wall 21 between the inlet nozzle 18 and the cooling jacket 20 is set. It has a control system. As shown in FIG. 3, the temperature control system includes a thermometer 32 for measuring the temperature of the annular wall 21 between the inlet nozzle 18 and the cooling jacket 20, a flow control valve 34 provided on the discharge pipe 26, The cooling jacket 2 is adjusted by adjusting the flow control valve 34 so that the temperature of the annular wall 21 becomes a set value, for example, 350 ° C., based on the temperature measurement value output from the meter 32.
And a temperature control device 36 for adjusting the amount of water flowing through zero. FIG. 3 is a schematic diagram showing a configuration of a modification of the first embodiment. In the present modification, by providing the temperature control system, it is possible to more reliably suppress the temperature rise of the liquid to be treated and prevent the precipitation of the inorganic salt in the liquid to be treated.

【0026】実施形態例2 本実施形態例は第2の発明に係る超臨界水反応装置の実
施形態の一例であって、図4は本実施形態例の超臨界水
反応装置の要部である入口ノズルとして設けられた2流
体ノズルの構成を示す部分破断側面図である。本実施形
態例の超臨界水反応装置は、有機物に加えて無機塩を溶
解した被処理液を超臨界水反応により処理する装置であ
って、入口ノズルの構成を除いて、前述した従来の超臨
界水反応装置60と同じ構成を備えている。本実施形態
例の超臨界水反応装置は、要部40として、図4に示す
ように、縦型反応器12の上部開口14を閉止するフラ
ンジ16を貫通して、一端が反応器12の超臨界水域に
貫入するように設けられ、他端で流入管72及び冷却媒
体の供給管24に接続された2流体ノズル42を備えて
いる。フランジ16は、反応器12の上端の胴フランジ
(図示せず)にボルト締め(図示せず)でフランジ結合
されている。
Embodiment 2 This embodiment is an example of an embodiment of the supercritical water reactor according to the second invention, and FIG. 4 is a main part of the supercritical water reactor of this embodiment. It is a partial fracture side view showing composition of a two-fluid nozzle provided as an entrance nozzle. The supercritical water reactor of the present embodiment is an apparatus for treating a liquid to be treated in which an inorganic salt is dissolved in addition to an organic substance by a supercritical water reaction. It has the same configuration as the critical water reactor 60. As shown in FIG. 4, the supercritical water reactor of the embodiment of the present embodiment penetrates the flange 16 for closing the upper opening 14 of the vertical reactor 12 as shown in FIG. The two-fluid nozzle 42 is provided so as to penetrate the critical water area, and is connected at the other end to the inflow pipe 72 and the cooling medium supply pipe 24. The flange 16 is connected to the upper body flange (not shown) of the reactor 12 by bolting (not shown).

【0027】本実施形態例の2流体ノズル42は、内筒
ノズル44と、内筒ノズル44の外側を二重筒状に囲む
外筒ノズル46とから構成され、内筒ノズル44を流入
管72に接続させて内筒ノズル44の内側を被処理液の
流入経路とし、内筒ノズル44と外筒ノズル46と間の
環状部48を冷却媒体の供給管24に接続させ、内筒ノ
ズル44及び内筒ノズル44内を流れる被処理液を冷却
する冷却媒体の流入経路としている。そして、2流体ノ
ズル42は、内筒ノズル44の流出口が外筒ノズル46
の内側にあるように、構成されている。
The two-fluid nozzle 42 of the present embodiment comprises an inner cylinder nozzle 44 and an outer cylinder nozzle 46 surrounding the inner cylinder nozzle 44 in a double cylinder shape. The inside of the inner cylinder nozzle 44 is used as an inflow path of the liquid to be treated, and the annular portion 48 between the inner cylinder nozzle 44 and the outer cylinder nozzle 46 is connected to the supply pipe 24 for the cooling medium. It is an inflow path of a cooling medium for cooling the liquid to be processed flowing in the inner cylinder nozzle 44. In the two-fluid nozzle 42, the outlet of the inner cylinder nozzle 44 is connected to the outer cylinder nozzle 46.
It is configured to be inside.

【0028】本実施形態例では、冷却媒体として水を使
い、内筒ノズル44の温度が350℃以上に上がらない
ように設定された流量の水を環状部48に流す。供給管
24から水を環状部48に導入して内筒ノズル44を冷
却させつつ内筒ノズル44内を流れる被処理液と外筒ノ
ズル46の流出口で混合させて反応器12内に導入する
ことにより、内筒ノズル44を流れる被処理液の温度が
350℃以上に昇温されない。よって、従来に比べて、
被処理液中の無機塩の析出が著しく減少し、従来のよう
に、入口ノズルが閉塞するようなことは生じない。
In this embodiment, water is used as a cooling medium, and water is supplied to the annular portion 48 at a flow rate set so that the temperature of the inner cylinder nozzle 44 does not rise to 350 ° C. or more. Water is introduced from the supply pipe 24 into the annular portion 48 to cool the inner cylinder nozzle 44, mix with the liquid to be treated flowing in the inner cylinder nozzle 44 at the outlet of the outer cylinder nozzle 46, and introduce the water into the reactor 12. As a result, the temperature of the liquid to be processed flowing through the inner cylinder nozzle 44 is not raised to 350 ° C. or higher. Therefore, compared to the past,
Precipitation of inorganic salts in the liquid to be treated is remarkably reduced, and the inlet nozzle is not blocked as in the related art.

【0029】実施形態例2の改変例として、実施形態例
1の改変例1と同じように、内筒ノズル44のノズル壁
の温度を制御する温度制御システムを備え、これによ
り、更に確実に、内筒ノズル44のノズル壁、従って被
処理液の温度上昇を抑制し、被処理液中の無機塩の析出
を防止することができる。
As a modification of the second embodiment, similarly to the first modification of the first embodiment, a temperature control system for controlling the temperature of the nozzle wall of the inner cylinder nozzle 44 is provided. The temperature rise of the nozzle wall of the inner cylinder nozzle 44, that is, the temperature of the liquid to be treated can be suppressed, and the precipitation of inorganic salts in the liquid to be treated can be prevented.

【0030】実施形態例1及び2は、その改変例も含め
て、2ゾーン方式の反応器にも、また反応器内全域が超
臨界水域である方式の反応器にも適用できる。また、有
機物に加えて無機塩を溶解した被処理液に超臨界水反応
による分解処理を施すときには、空気或いは酸素ガス等
の気体酸化剤を被処理液と共に導入しないこともある。
このときには、被処理液中の無機塩が入口ノズルで析出
し易いが、実施形態例1及び2、並びにその改変例を適
用することにより、被処理液中の無機塩の析出を大幅に
低減することができる。
The first and second embodiments can be applied to a two-zone type reactor including a modified example thereof, and also to a type of reactor in which the entire area inside the reactor is a supercritical water area. Further, when performing a decomposition treatment by a supercritical water reaction on a liquid to be treated in which an inorganic salt is dissolved in addition to an organic substance, a gas oxidizing agent such as air or oxygen gas may not be introduced together with the liquid to be treated.
At this time, the inorganic salt in the liquid to be treated is easily precipitated at the inlet nozzle. However, by applying the first and second embodiments and the modifications thereof, the precipitation of the inorganic salt in the liquid to be treated is greatly reduced. be able to.

【0031】[0031]

【発明の効果】第1の発明によれば、被処理液を反応器
に導入する入口ノズルの周りに冷却ジャケットを設け、
冷却ジャケットを流れる冷却媒体によって入口ノズル及
び入口ノズル内を流れる被処理液を冷却することによ
り、入口ノズルでの無機塩の析出を防止している。第2
の発明によれば、被処理液を反応器に導入する入口ノズ
ルとして二重管状の2流体ノズルを設け、内筒ノズルを
被処理液の流入経路とし、内筒ノズルと外筒ノズルと間
の環状部を内筒ノズルを冷却する冷却媒体の流入経路と
し、環状部を流れる冷却媒体によって内筒ノズル及び内
筒ノズル内を流れる被処理液を冷却することにより、入
口ノズルでの無機塩の析出を防止している。第1及び第
2の発明を適用することにより、有機物に加えて無機塩
を溶解した被処理液を安定して継続的に超臨界水反応処
理することができる。
According to the first invention, a cooling jacket is provided around an inlet nozzle for introducing a liquid to be treated into a reactor,
By cooling the inlet nozzle and the liquid to be processed flowing in the inlet nozzle by the cooling medium flowing through the cooling jacket, precipitation of inorganic salts at the inlet nozzle is prevented. Second
According to the invention, a double tubular two-fluid nozzle is provided as an inlet nozzle for introducing the liquid to be treated into the reactor, the inner cylinder nozzle is used as an inflow path of the liquid to be treated, and the inner cylinder nozzle and the outer cylinder nozzle Precipitation of inorganic salts at the inlet nozzle by cooling the inner cylinder nozzle and the liquid to be processed flowing through the inner cylinder nozzle by the cooling medium flowing through the annular part, and using the annular part as an inflow path of a cooling medium for cooling the inner cylinder nozzle. Has been prevented. By applying the first and second inventions, a liquid to be treated in which an inorganic salt is dissolved in addition to an organic substance can be stably and continuously subjected to a supercritical water reaction treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の超臨界水反応装置の要部である
入口ノズル及びその近傍に設けられたジャケットの構成
を示す断面図である。
FIG. 1 is a cross-sectional view showing a configuration of an inlet nozzle, which is a main part of a supercritical water reactor of Embodiment 1, and a jacket provided near the inlet nozzle.

【図2】図1の線I−Iでの入口ノズルの横断面図であ
る。
FIG. 2 is a cross-sectional view of the inlet nozzle taken along line II of FIG. 1;

【図3】実施形態例1の改変例の構成を示す模式図であ
る。
FIG. 3 is a schematic diagram illustrating a configuration of a modification of the first embodiment.

【図4】実施形態例2の超臨界水反応装置の要部である
入口ノズルとして設けられた2流体ノズルの構成を示す
部分破断側面図である。
FIG. 4 is a partially broken side view showing a configuration of a two-fluid nozzle provided as an inlet nozzle, which is a main part of the supercritical water reactor of Embodiment 2.

【図5】従来の超臨界水処理装置の構成を示すフローシ
ートである。
FIG. 5 is a flow sheet showing a configuration of a conventional supercritical water treatment apparatus.

【図6】入口ノズルの構成を示す断面図である。FIG. 6 is a sectional view showing a configuration of an inlet nozzle.

【符号の説明】[Explanation of symbols]

60 従来の超臨界水処理装置 62 反応器 62a 胴フランジ 64 超臨界水域 66 仮想的界面 68 亜臨界水域 70 入口ノズル 70a 継ぎ手 72 流入管 73 フランジ 74 被処理液ライン 76 空気ライン 78 超臨界水ライン 80 中和剤ライン 82 亜臨界水ライン 84 亜臨界排水ライン 86 処理液ライン 10 実施形態例1の超臨界水反応装置の要部 12 反応器 14 上部開口 16 フランジ 18 入口ノズル 20 冷却ジャケット 21 環状壁 22 胴フランジ 23 継ぎ手 24 供給管 26 排出管 30 実施形態例1の改変例の超臨界水反応装置の要部 32 温度計 34 流量調節弁 36 温度制御装置 40 実施形態例2の超臨界水反応装置の要部 42 2流体ノズル 44 内筒ノズル 46 外筒ノズル 48 環状部 Reference Signs List 60 Conventional supercritical water treatment apparatus 62 Reactor 62a Body flange 64 Supercritical water area 66 Virtual interface 68 Subcritical water area 70 Inlet nozzle 70a Joint 72 Inflow pipe 73 Flange 74 Liquid line to be treated 76 Air line 78 Supercritical water line 80 Neutralizer line 82 Subcritical water line 84 Subcritical drainage line 86 Treatment liquid line 10 Main part of supercritical water reactor of Embodiment 1 12 Reactor 14 Upper opening 16 Flange 18 Inlet nozzle 20 Cooling jacket 21 Annular wall 22 Body flange 23 Joint 24 Supply pipe 26 Discharge pipe 30 Principal part of supercritical water reactor of modified example of Embodiment 1 32 Thermometer 34 Flow control valve 36 Temperature controller 40 Supercritical water reactor of Embodiment 2 Main part 42 Two-fluid nozzle 44 Inner cylinder nozzle 46 Outer cylinder nozzle 48 Annular part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 超臨界水を収容する縦型反応器を備え、
反応器の容器壁を貫通して設けられた被処理液の入口ノ
ズルから反応器内の超臨界水中に被処理液を導入して超
臨界水反応を行わせる超臨界水反応装置において、 入口ノズルに沿って入口ノズルの周りに二重管状に設け
られ、入口ノズルを冷却する冷却ジャケットと、 冷却ジャケットの一方の端部に接続され、冷却媒体を冷
却ジャケットに供給する供給管と、 冷却ジャケットの他方の端部に接続され、冷却ジャケッ
トから冷却媒体を排出する排出管とを備えていることを
特徴とする超臨界水反応装置。
1. A vertical reactor containing supercritical water is provided.
In a supercritical water reactor for introducing a liquid to be treated into supercritical water in the reactor and performing a supercritical water reaction from an inlet nozzle for the liquid to be treated provided through the vessel wall of the reactor, A cooling jacket provided in a double tubular shape around the inlet nozzle and cooling the inlet nozzle, a supply pipe connected to one end of the cooling jacket and supplying a cooling medium to the cooling jacket, A discharge pipe connected to the other end and discharging a cooling medium from a cooling jacket.
【請求項2】 供給管が冷却ジャケットの下端部に、排
出管が冷却ジャケットの上端部に、それぞれ、接続され
ていることを特徴とする請求項1に記載の超臨界水反応
装置。
2. The supercritical water reactor according to claim 1, wherein the supply pipe is connected to a lower end of the cooling jacket, and the discharge pipe is connected to an upper end of the cooling jacket.
【請求項3】 入口ノズルと冷却ジャケットとの間に介
在するノズル壁の入口ノズル流出口近傍の温度を測定
し、入口ノズル流出口近傍のノズル壁の温度が350℃
以下になるように冷却媒体の流量を制御するようにし
た、ノズル壁の温度制御装置を備えていることを特徴と
する請求項1又は2に記載の超臨界水反応装置。
3. The temperature of the nozzle wall interposed between the inlet nozzle and the cooling jacket near the inlet nozzle outlet is measured, and the temperature of the nozzle wall near the inlet nozzle outlet is 350 ° C.
The supercritical water reactor according to claim 1 or 2, further comprising a temperature control device for the nozzle wall, which controls the flow rate of the cooling medium as follows.
【請求項4】 冷却媒体が水又は空気であることを特徴
とする請求項1から3のうちのいずれか1項に記載の超
臨界水反応装置。
4. The supercritical water reactor according to claim 1, wherein the cooling medium is water or air.
【請求項5】 超臨界水を収容する縦型反応器を備え、
反応器の容器壁を貫通して設けられた被処理液の入口ノ
ズルから反応器内の超臨界水中に被処理液を導入して超
臨界水反応を行わせる超臨界水反応装置において、 入口ノズルが、内筒ノズルと、内筒ノズルの外側を二重
管状に囲む外筒ノズルとからなる2流体ノズルとして構
成され、 内筒ノズルを被処理液の流入経路とし、内筒ノズルと外
筒ノズルと間の環状部を内筒ノズルを冷却する冷却媒体
の流入経路とすることを特徴とする超臨界水反応装置。
5. A vertical reactor containing supercritical water,
In a supercritical water reactor for introducing a liquid to be treated into supercritical water in the reactor and performing a supercritical water reaction from an inlet nozzle for the liquid to be treated provided through the vessel wall of the reactor, Is configured as a two-fluid nozzle composed of an inner cylinder nozzle and an outer cylinder nozzle that surrounds the outside of the inner cylinder nozzle as a double tube. The inner cylinder nozzle is used as an inflow path of the liquid to be treated, and the inner cylinder nozzle and the outer cylinder nozzle A supercritical water reactor characterized in that the annular portion between the two is used as an inflow path of a cooling medium for cooling the inner cylinder nozzle.
【請求項6】 内筒ノズルの流出口が、外筒ノズルの内
側にあることを特徴とする請求項5に記載の超臨界水反
応装置。
6. The supercritical water reactor according to claim 5, wherein the outlet of the inner cylinder nozzle is inside the outer cylinder nozzle.
【請求項7】 内筒ノズルの流出口近傍の内筒ノズルの
温度を測定し、内筒ノズルの温度が350℃以下になる
ように冷却媒体の流量を制御するようにした、2流体ノ
ズルの温度制御装置を備えていることを特徴とする請求
項5又は6に記載の超臨界水反応装置。
7. A two-fluid nozzle which measures the temperature of the inner cylinder nozzle near the outlet of the inner cylinder nozzle and controls the flow rate of the cooling medium so that the temperature of the inner cylinder nozzle becomes 350 ° C. or less. The supercritical water reactor according to claim 5, further comprising a temperature controller.
【請求項8】 冷却媒体が水又は温度の低い被処理液で
あることを特徴とする請求項5から7のうちのいずれか
1項に記載の超臨界水反応装置。
8. The supercritical water reactor according to claim 5, wherein the cooling medium is water or a liquid to be treated having a low temperature.
JP2000088172A 2000-03-28 2000-03-28 Supercritical water reaction apparatus Pending JP2001269566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088172A JP2001269566A (en) 2000-03-28 2000-03-28 Supercritical water reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088172A JP2001269566A (en) 2000-03-28 2000-03-28 Supercritical water reaction apparatus

Publications (2)

Publication Number Publication Date
JP2001269566A true JP2001269566A (en) 2001-10-02
JP2001269566A5 JP2001269566A5 (en) 2007-03-15

Family

ID=18604084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088172A Pending JP2001269566A (en) 2000-03-28 2000-03-28 Supercritical water reaction apparatus

Country Status (1)

Country Link
JP (1) JP2001269566A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043552A (en) * 2004-08-03 2006-02-16 Japan Organo Co Ltd Hydrothermal reaction process and its apparatus
JP2008207132A (en) * 2007-02-27 2008-09-11 National Univ Corp Shizuoka Univ Hydrothermal oxidation decomposition apparatus
JP2013000677A (en) * 2011-06-17 2013-01-07 National Institute Of Advanced Industrial Science & Technology High-temperature high-pressure fluid mixing apparatus
JP2013136045A (en) * 2011-11-28 2013-07-11 Ricoh Co Ltd Apparatus and method for treatment of waste liquid
JP2013169541A (en) * 2012-02-23 2013-09-02 Ricoh Co Ltd Fluid purification device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277683A (en) * 1993-02-24 1994-10-04 Sulzer Chemtech Ag Method and device for purifying waste liquor by moist oxidation in supercritical state
JPH0985075A (en) * 1995-09-22 1997-03-31 Japan Organo Co Ltd High pressure reaction method and apparatus therefor
JPH10503706A (en) * 1994-07-13 1998-04-07 アールピーシー ウェイスト マネージメント サービシィズ,インコーポレーテッド Turbulent cold wall reactor
JPH10137774A (en) * 1996-11-13 1998-05-26 Japan Organo Co Ltd Method of supplying liquid to supercritical water oxidizing reactor, device therefor and super critical water oxidizing device
JPH10151340A (en) * 1996-11-22 1998-06-09 Nakamichi Yamazaki Method for spraying raw material grain in continuous hydrothermal reaction and device therefor
JPH10296076A (en) * 1997-04-23 1998-11-10 Ebara Corp Device and method for supercritical reaction
JPH11226584A (en) * 1998-02-17 1999-08-24 Japan Organo Co Ltd Method for supercritical hydroxylation and reaction apparatus therefor
JP2000024490A (en) * 1998-07-08 2000-01-25 Mitsubishi Heavy Ind Ltd Pcb hot water decomposition treating device
JP2001149768A (en) * 1999-11-30 2001-06-05 Komatsu Ltd Hydrothermal reaction device
JP2001198451A (en) * 2000-01-19 2001-07-24 Komatsu Ltd Hydrothermal reactor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277683A (en) * 1993-02-24 1994-10-04 Sulzer Chemtech Ag Method and device for purifying waste liquor by moist oxidation in supercritical state
JPH10503706A (en) * 1994-07-13 1998-04-07 アールピーシー ウェイスト マネージメント サービシィズ,インコーポレーテッド Turbulent cold wall reactor
JPH0985075A (en) * 1995-09-22 1997-03-31 Japan Organo Co Ltd High pressure reaction method and apparatus therefor
JPH10137774A (en) * 1996-11-13 1998-05-26 Japan Organo Co Ltd Method of supplying liquid to supercritical water oxidizing reactor, device therefor and super critical water oxidizing device
JPH10151340A (en) * 1996-11-22 1998-06-09 Nakamichi Yamazaki Method for spraying raw material grain in continuous hydrothermal reaction and device therefor
JPH10296076A (en) * 1997-04-23 1998-11-10 Ebara Corp Device and method for supercritical reaction
JPH11226584A (en) * 1998-02-17 1999-08-24 Japan Organo Co Ltd Method for supercritical hydroxylation and reaction apparatus therefor
JP2000024490A (en) * 1998-07-08 2000-01-25 Mitsubishi Heavy Ind Ltd Pcb hot water decomposition treating device
JP2001149768A (en) * 1999-11-30 2001-06-05 Komatsu Ltd Hydrothermal reaction device
JP2001198451A (en) * 2000-01-19 2001-07-24 Komatsu Ltd Hydrothermal reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043552A (en) * 2004-08-03 2006-02-16 Japan Organo Co Ltd Hydrothermal reaction process and its apparatus
JP2008207132A (en) * 2007-02-27 2008-09-11 National Univ Corp Shizuoka Univ Hydrothermal oxidation decomposition apparatus
JP2013000677A (en) * 2011-06-17 2013-01-07 National Institute Of Advanced Industrial Science & Technology High-temperature high-pressure fluid mixing apparatus
JP2013136045A (en) * 2011-11-28 2013-07-11 Ricoh Co Ltd Apparatus and method for treatment of waste liquid
JP2013169541A (en) * 2012-02-23 2013-09-02 Ricoh Co Ltd Fluid purification device

Similar Documents

Publication Publication Date Title
JP3297680B2 (en) Supercritical reactor and method
US20110294083A1 (en) Molten Salt Treatment System and Process
JP3583606B2 (en) Supercritical water oxidation method and reactor
JP2001269566A (en) Supercritical water reaction apparatus
KR100249496B1 (en) Process for oxidizing liquid wastes containing organic compounds using supercritical water and catalytic oxidation
JP4455703B2 (en) Supercritical water reactor
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JP3836270B2 (en) Method for shutting down supercritical water reactor
JP2001170664A (en) Supercritical water treating device
JP4267791B2 (en) Supercritical water treatment equipment
JP4107637B2 (en) Hydrothermal reactor
JP3486522B2 (en) Supercritical water reactor and method of operating supercritical water reactor
JP3437408B2 (en) Supercritical water oxidation method and apparatus
JP4355246B2 (en) High temperature and high pressure treatment equipment for organic waste
JP2003236594A (en) Apparatus for treating sludge
JP3464897B2 (en) Supercritical water oxidation method and apparatus
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms
JP2002361069A (en) Supercritical hydroreaction apparatus and vessel
JPH09299966A (en) Supercritical water oxidizing method and device therefor
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
KR19990075322A (en) Oxidative Decomposition Process of Wastewater Containing Organics Using Supercritical Water Oxidation
JPH10137774A (en) Method of supplying liquid to supercritical water oxidizing reactor, device therefor and super critical water oxidizing device
JPH10314768A (en) Method for oxidation of supercritical water
JP2002001089A (en) Supercritical water reaction apparatus and container

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622