JP3437408B2 - Supercritical water oxidation method and apparatus - Google Patents
Supercritical water oxidation method and apparatusInfo
- Publication number
- JP3437408B2 JP3437408B2 JP13236597A JP13236597A JP3437408B2 JP 3437408 B2 JP3437408 B2 JP 3437408B2 JP 13236597 A JP13236597 A JP 13236597A JP 13236597 A JP13236597 A JP 13236597A JP 3437408 B2 JP3437408 B2 JP 3437408B2
- Authority
- JP
- Japan
- Prior art keywords
- supercritical water
- temperature
- reactor
- neutralizing agent
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超臨界水酸化方法
及び装置に関し、例えば難分解性の廃棄物・廃液や有害
物質を含む廃棄物・廃液などの分解反応によって生成し
た流体中に酸を含むことになる物質を分解対象とする場
合に好適に用いられる超臨界水酸化方法とこれに用いる
超臨界水酸化装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical water oxidation method and apparatus, for example, an acid in a fluid generated by a decomposition reaction of hardly decomposable waste / waste liquid or waste / waste liquid containing harmful substances. The present invention relates to a supercritical water oxidation method preferably used when a substance to be contained is to be decomposed and a supercritical water oxidation apparatus used for the method.
【0002】[0002]
【従来技術】従来より、難分解性の廃棄物・廃液や有害
物質を含む廃棄物・廃液など、環境に排出されると問題
を招く物質を完全に分解して安全な物質として廃棄する
技術が求められ、これらの廃棄物・廃液等を完全分解処
理するのに適した超臨界水酸化法が提案されている(例
えば特公平1−38532号公報)。2. Description of the Related Art Conventionally, there has been a technology for completely decomposing substances that cause problems when discharged into the environment, such as hardly decomposable wastes / liquids and wastes / liquids containing harmful substances, and disposing as safe substances. A supercritical water oxidation method that has been sought and is suitable for completely decomposing these wastes and waste liquids has been proposed (for example, Japanese Patent Publication No. 1-38532).
【0003】これは、従来の焼却炉で行われる燃焼法で
は、部分的な低温部分の発生による分解の不十分性によ
って例えば塩素化合物の分解ではダイオキシン等の毒性
の強い物質を生成する虞れがあり、また燃焼ガスを大気
に放出するために有害物質が拡散してしまうという問題
があるのに対し、超臨界水酸化の処理は、水の超臨界条
件下(温度374℃以上で圧力22MPa以上)で、超
臨界水を分解反応の媒体として利用して、分解対象の有
機物を水と二酸化炭素にまで完全に分解できる方法であ
って、熱分解、加水分解及び酸化分解が同時に進行して
非常に大きな反応速度を達成できるだけでなく、クロー
ズドな系で完全分解ができる点で優れているからであ
る。This is because, in the conventional combustion method performed in an incinerator, there is a possibility that a highly toxic substance such as dioxin may be generated in the decomposition of a chlorine compound due to insufficient decomposition due to generation of a partial low temperature part. However, while there is a problem that harmful substances diffuse because the combustion gas is released to the atmosphere, supercritical water oxidation is performed under supercritical water conditions (temperature of 374 ° C or higher and pressure of 22 MPa or higher). ) Is a method of completely decomposing organic matter to be decomposed into water and carbon dioxide by using supercritical water as a medium for the decomposition reaction, and thermal decomposition, hydrolysis and oxidative decomposition proceed at the same time. This is because it is excellent not only in achieving a large reaction rate, but also in being able to completely decompose in a closed system.
【0004】すなわち超臨界水酸化法は、水の臨界条
件、すなわち臨界温度374℃及び臨界圧力22MPa
を越えた条件下の水(超臨界水)はその極性が温度と圧
力で制御可能となってパラフィン形炭化水素やベンゼン
等の非極性物質も溶解することができ、酸素等のガスと
も任意の割合で単一相で混在するという有機物酸化分解
用の反応溶媒として極めて優れた特性を示すこと、分解
対象物の炭素含有率が数%あれば酸化熱だけで臨界温度
以上に昇温可能であるため、熱エネルギー的に非常に優
れていること、特に、ほとんどの難分解性有機物や有害
有機廃棄物を超臨界水中で加水分解反応や熱分解反応を
適切にコントロールすることにより完全に分解できると
いう極めて優れた作用があること、また、処理を閉鎖系
の装置内で行えることなどの点で、有害有機物の分解処
理に極めて適している。That is, in the supercritical water oxidation method, the critical condition of water is, that is, the critical temperature is 374 ° C. and the critical pressure is 22 MPa.
Water under supercritical conditions (supercritical water) can have its polarity controlled by temperature and pressure, and can also dissolve non-polar substances such as paraffinic hydrocarbons and benzene, and can be used with any gas such as oxygen. It exhibits extremely excellent characteristics as a reaction solvent for oxidative decomposition of organic substances, which is mixed in a single phase in proportion, and if the carbon content of the decomposition target is several%, it is possible to raise the temperature above the critical temperature only by heat of oxidation. Therefore, it is extremely excellent in terms of thermal energy, and in particular, most hardly decomposable organic substances and harmful organic wastes can be completely decomposed by appropriately controlling the hydrolysis reaction or thermal decomposition reaction in supercritical water. It is extremely suitable for the decomposition treatment of harmful organic substances because it has an extremely excellent action and can be treated in a closed system.
【0005】このような超臨界水酸化の処理技術を提案
するものとしては、例えば、原理と基本フローを開示す
る上記特公平1−38532号公報が知られている。こ
れに開示の方法では、分解対象物はフィードポンプで昇
圧されエジェクターで超臨界水と混合し、加熱した後、
反応器に導入される。反応器では空気圧縮機からの高圧
空気が酸化剤として導入されて酸化分解が行なわれる。
処理後の超臨界水は、一部をエジェクターに再循環し、
残りの部分はエネルギー回収に利用される。ただしこの
文献には反応器の詳細が示されておらず、管状,円筒状
及び流動床式のものが採用できるという記述があるにす
ぎない。As a proposal of such a supercritical water oxidation treatment technique, for example, Japanese Patent Publication No. 1-38532, which discloses the principle and basic flow, is known. In the method disclosed therein, the decomposition target is pressurized by a feed pump, mixed with supercritical water by an ejector, and heated,
It is introduced into the reactor. In the reactor, high-pressure air from the air compressor is introduced as an oxidant to carry out oxidative decomposition.
Part of the treated supercritical water is recycled to the ejector,
The remaining part is used for energy recovery. However, the details of the reactor are not shown in this document, and there is only a description that tubular, cylindrical, and fluidized beds can be adopted.
【0006】特表平3−500264号公報には、超臨
界水酸化に用いられる反応器が、例えば無機塩や無機塩
生成物質を含まない廃液を分解対象とした場合に適する
反応器型式として管状反応器の使用が開示され、また、
無機塩を含むかあるいは中和剤の添加を媒介して反応後
に無機塩を生成する有機性廃液を分解対象とした場合に
適した反応器型式として、いわゆるベッセル型と称され
る縦筒型の反応器が開示されている。In Japanese Patent Publication No. 3-500264, a reactor used for supercritical water oxidation is a tubular type as a reactor type suitable for decomposition of waste liquid containing no inorganic salt or inorganic salt-producing substance. The use of a reactor is disclosed, and also
As a reactor type suitable for decomposing an organic waste liquid containing an inorganic salt or mediating the addition of a neutralizing agent to produce an inorganic salt after the reaction, a so-called vessel type vertical cylinder type A reactor is disclosed.
【0007】ところで、超臨界水酸化によって処理しよ
うとする分解対象物の主なものの一つに難分解性有機物
や有害有機物があり、これらの多くは、塩素や硫黄、あ
るいは窒素、リンを含むため、これらの物質を超臨界水
酸化処理すると酸(塩酸、硫酸、硝酸及びリン酸)を生
成する場合が多いので、反応器材の保護のために耐酸腐
食対策としてこれらの酸をアルカリで中和する操作を行
うことが提案されている。ただし、この中和操作で生成
するNaCl等の無機塩は超臨界水にはほとんど溶解せ
ず、しかも管壁面等に対して付着性が高いことが知られ
ている。By the way, one of the main decomposition products to be treated by supercritical water oxidation is persistent organic substances and harmful organic substances, and most of them contain chlorine, sulfur, nitrogen or phosphorus. , When these substances are supercritically hydroxylated, they often produce acids (hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid), so neutralize these acids with alkali as a measure against acid corrosion to protect the reactor materials. It is suggested to do the operation. However, it is known that an inorganic salt such as NaCl generated by this neutralization operation is hardly dissolved in supercritical water and has high adhesion to the wall surface of the pipe.
【0008】このことは、超臨界水酸化法により高濃度
の塩素、硫黄、窒素、リン等の原子を含む物質を処理す
る場合には、耐酸腐食の対策のためには中和処理が必要
であるものの、中和処理を行う結果として生ずる中和塩
が反応器や排出系の管路の閉塞を引き起こすという問題
の解決が求められることを意味する。そこでこの問題を
解決する方法として、上記特表平3−500264号の
提案では、ベッセル型式の反応器の底部に亜臨界水を供
給・排出する手段を設けて、超臨界水酸化の反応で生成
する酸をアルカリで中和して塩とし、この塩の比重が重
いことを利用して上記亜臨界水に落下させることで比重
の軽い流体(超臨界水,揮発性ガス等)と分けた形で排
出する方法を提案している。This means that when a substance containing a high concentration of atoms such as chlorine, sulfur, nitrogen and phosphorus is treated by the supercritical water oxidation method, a neutralization treatment is necessary to prevent acid corrosion. However, this means that a solution of the problem that the neutralized salt produced as a result of the neutralization treatment causes blockage of the reactor or discharge system pipeline is required. Therefore, as a method of solving this problem, in the proposal of the above-mentioned Japanese Patent Publication No. 3-500264, a means for supplying / discharging subcritical water is provided at the bottom of the vessel of the vessel type to generate it by the reaction of supercritical water oxidation. The acid is neutralized with an alkali to form a salt, and by taking advantage of the heavy specific gravity of this salt, it is dropped into the above-mentioned subcritical water to separate it from a fluid with a low specific gravity (supercritical water, volatile gas, etc.) We propose a method of discharging in.
【0009】上述のように、ベッセル型の反応器は、ベ
ッセル反応器内の上部に超臨界ゾーン、下部に亜臨界ゾ
ーンを形成させ、該反応器内で析出し密度差で下向に移
動した無機塩を亜臨界ゾーンで塩移送用の水に溶解させ
て排出する方法のものであるため、反応器からの排出系
が、反応器上部からの水及び揮発性のガスからなる分解
生成流体(超臨界水、余剰酸素、二酸化炭素及び窒素の
混合物)の排出系と、反応器下部からのブライン流(塩
化ナトリウム等の無機塩を含む塩移送用水)の排出系の
二つがあり、これら二つの排出系それぞれに熱回収、冷
却及び減圧工程が必要となって、装置の構成が複雑で設
備投資が嵩む。また制御上及び維持管理上も管状反応器
を使用する場合に比べて複雑になるという問題がある。As described above, in the vessel type reactor, a supercritical zone is formed in the upper part of the vessel reactor and a subcritical zone is formed in the lower part of the vessel reactor, and the particles are deposited in the reactor and moved downward due to the difference in density. Since it is a method of dissolving the inorganic salt in water for salt transfer in the subcritical zone and discharging it, the discharge system from the reactor has a decomposition product fluid (water from the upper part of the reactor and a volatile gas) There are two discharge systems, one for the supercritical water, a mixture of excess oxygen, carbon dioxide and nitrogen) and one for the brine stream (water for salt transfer containing inorganic salts such as sodium chloride) from the bottom of the reactor. Heat recovery, cooling, and depressurization steps are required for each discharge system, which complicates the apparatus configuration and increases equipment investment. In addition, there is a problem in that control and maintenance are more complicated than when a tubular reactor is used.
【0010】更に、ベッセル型式の反応器では、その内
壁への塩化ナトリウム等の無機塩の付着があるため、こ
れを掻き落とすスクレーパ等の付属的な装置を設備しな
ければならないという問題もある。Further, in the vessel-type reactor, there is a problem that an inorganic salt such as sodium chloride adheres to the inner wall of the reactor, so that an additional device such as a scraper for scraping it off must be provided.
【0011】[0011]
【発明が解決しようとする課題】以上述べたように、超
臨界水酸化の技術は、有機物の分解処理に有効な技術で
あるが、主に難分解性有機物や有害有機物に代表される
酸を生成する物質を含む分解対象物の酸化分解処理を、
工業的規模でコストや装置の耐久性などを考慮して実施
できるようにするためには更に解決すべき課題がある。As described above, the technique of supercritical water oxidation is an effective technique for the decomposition treatment of organic substances, but mainly the acid represented by hardly decomposable organic substances and harmful organic substances is used. Oxidative decomposition treatment of the decomposition target including the generated substance,
There is a further problem to be solved in order to be able to carry out the process on an industrial scale in consideration of cost and durability of the device.
【0012】本発明者らはこのような現状に鑑みて鋭意
研究を進め本発明をなすに至ったものである。The inventors of the present invention have made earnest researches in view of the above-mentioned circumstances, and completed the present invention.
【0013】すなわち本発明の目的の一つは、超臨界水
酸化によって生成した酸の中和を確実に行うことで、装
置を酸腐食から保護できて、安全性、耐久性に優れた処
理を実現することができる超臨界水酸化法及びこれに用
いる装置を提供するところにある。That is, one of the objects of the present invention is to ensure the neutralization of the acid generated by supercritical water oxidation, so that the equipment can be protected from acid corrosion and the treatment excellent in safety and durability can be performed. An object is to provide a supercritical water oxidation method that can be realized and an apparatus used therefor.
【0014】本発明の他の目的は、上記の確実な中和に
よる装置の酸腐食からの保護と共に、中和で生成した塩
が反応器や排出系管路の内壁に付着する問題を解消でき
る超臨界水酸化法及びこれに用いる装置を提供するとこ
ろにある。Another object of the present invention is to prevent the above-mentioned problem of acid corrosion of the equipment by the reliable neutralization and to solve the problem that the salt produced by the neutralization adheres to the inner wall of the reactor or the discharge system pipeline. It is an object to provide a supercritical water oxidation method and an apparatus used therefor.
【0015】本発明の更に他の目的は、中和反応で生成
した塩の反応器や排出系管路の壁面への付着を防止でき
るようにすることで、酸を生成する有機物、特に難分解
性有機物や有害有機物を低コストに効率よく分解できる
超臨界水酸化法及びこれに用いる装置を提供するところ
にある。Still another object of the present invention is to prevent the salt formed by the neutralization reaction from adhering to the wall surface of the reactor or the discharge system pipeline, thereby making it possible to produce an acid-producing organic substance, particularly a difficult-to-decompose substance. It is an object of the present invention to provide a supercritical water oxidation method capable of efficiently decomposing volatile organic substances and harmful organic substances at low cost, and an apparatus used therefor.
【0016】[0016]
【課題を解決するための手段および作用】上記の目的は
本願の特許請求の範囲に記載した各請求項の発明により
達成される。The above-mentioned objects can be achieved by the inventions of the respective claims described in the claims of the present application.
【0017】本願請求項1の超臨界水酸化方法の発明
は、水の臨界点以上の温度,圧力の超臨界水雰囲気を形
成した縦筒型反応器の内に分解対象物を連続的に供給す
ると共に、超臨界水の存在下で酸化分解し、生成した酸
化分解物を含む流体を上記縦筒型反応器に接続した排出
管路から連続的に排出し、上記流体に含まれる酸基を中
和剤で中和する超臨界水酸化処理において、上記排出管
路内で、酸基による酸腐食作用が実質的にない水の臨界
温度以上の高温の状態に維持しながら分解生成物を含む
流体への中和剤添加を行い、かつ該添加時又は添加直後
に中和生成塩が十分に溶解する温度範囲になるようにし
たことを特徴とする。 The invention of the supercritical water oxidation method according to claim 1 of the present invention continuously supplies the decomposition target into a vertical cylindrical reactor in which a supercritical water atmosphere having a temperature and pressure above the critical point of water is formed. The acid generated by oxidative decomposition in the presence of supercritical water
In a supercritical water oxidation treatment in which a fluid containing chemical decomposition products is continuously discharged from a discharge pipe connected to the vertical tubular reactor, and an acid group contained in the fluid is neutralized with a neutralizing agent, the discharge is performed. tube
In the road, the criticality of water , where there is virtually no acid corrosion due to acid groups
Contains decomposition products while maintaining a high temperature above the temperature
Neutralizer is added to the fluid, and during or immediately after the addition
In the temperature range where the neutralization salt is sufficiently dissolved.
Characterized in that was.
【0018】[0018]
【0019】[0019]
【0020】本発明者等がこれらの各発明をなすに至っ
たのは次のことによる。すなわち、従来の酸の生成を伴
う超臨界水酸化処理においては、中和剤は分解対象物や
超臨界水等と共に反応器の始端部から供給されていた。
これは、反応によって酸が生成する超臨界水酸化反応で
は、反応器を保護するために反応領域で中和が行われる
ことが必要と考えられるからである。The present inventors arrived at each of these inventions as follows. That is, in the conventional supercritical water oxidation treatment involving the generation of acid, the neutralizing agent was supplied from the starting end of the reactor together with the decomposition target and supercritical water.
This is because in the supercritical water oxidation reaction in which an acid is produced by the reaction, it is considered necessary to perform neutralization in the reaction region in order to protect the reactor.
【0021】ところが、本発明者等が超臨界水酸化の条
件を様々に変更して研究を繰り返したところ、反応器で
はなく分解生成した流体の排出系管路においてピンホー
ルの発生することが知見され、その状況を更に観察、分
析したところ、酸腐食の問題は反応器内よりもむしろ超
臨界水酸化で生成された流体の温度が冷却された段階で
生ずるという従来の技術理解とは異なる事実,現象を見
い出した。そしてこの現象が起こるのは次のような反応
メカニズムに基づくものと推定された。すなわち、超臨
界水酸化により分解した生成流体中の酸基(例えばハロ
ゲン等)は超臨界水中では遊離していて酸として反応器
等の壁面を腐食する作用がないかあるいは極めて弱いの
に対し、分解生成流体が冷却されて超臨界水が液体
(水)に相転移したときにはその遊離酸基が液中に急激
に溶解して局所的に酸濃度を上昇させ、高濃度の酸の作
用を生じて反応器等の壁面を腐食すると考えられるので
ある。そこで本発明者等は、反応器内が最も過酷な酸腐
食環境にあると考えていた従来の技術理解とは異なる観
点から、生成する酸の中和操作を再検討したところ、中
和剤の添加は要するに酸による腐食を防ぐためであるか
ら、本発明者等の知見した事実に基づけば、酸基が液体
に溶解して酸腐食の問題を生ずる段階で中和反応が行わ
れていればよく必ずしも反応器内での中和反応を必須と
するものではないと理解される。一方、中和生成塩は高
温の超臨界水には一般にほとんど溶解せず、しかも強い
付着性をもっており、したがって、中和反応で生成した
塩が十分に溶解することができ、しかも酸基による酸腐
食の問題がない状態で中和反応を行うことができれば、
酸による腐食の防止と共に管路閉塞につながる塩付着の
問題を併せて効果的に解消できることになる。本発明者
等はかかる着目点を技術的に実証する試験を重ねて上記
各発明をなすに至ったのである。However, when the inventors of the present invention repeated the research with variously changing the conditions of supercritical water oxidation, it was found that pinholes were generated not in the reactor but in the discharge system pipeline of the fluid produced by decomposition. Further observation and analysis of the situation revealed that the problem of acid corrosion is different from the conventional technical understanding that the temperature of the fluid produced by supercritical water oxidation occurs at the cooling stage rather than in the reactor. , I found a phenomenon. It was presumed that this phenomenon occurred based on the following reaction mechanism. In other words, the acid groups (for example, halogens) in the product fluid decomposed by supercritical water oxidation are free in supercritical water and have no or extremely weak action of corroding the wall surface of the reactor as an acid. When the decomposition product fluid is cooled and supercritical water undergoes a phase transition to liquid (water), its free acid groups are rapidly dissolved in the liquid to locally increase the acid concentration, causing the action of high-concentration acid. Therefore, it is considered that the walls of the reactor are corroded. Therefore, the present inventors have re-examined the neutralization operation of the generated acid from a viewpoint different from the conventional technical understanding that the reactor was considered to be in the most severe acid corrosive environment. Since the addition is in order to prevent corrosion due to acid, based on the fact that the present inventors have found, if the acid group is dissolved in the liquid to cause a problem of acid corrosion, if the neutralization reaction is performed. It is often understood that the neutralization reaction in the reactor is not always essential. On the other hand, the neutralization salt is generally insoluble in high-temperature supercritical water and has strong adhesiveness. Therefore, the salt produced by the neutralization reaction can be sufficiently dissolved, and the acid formed by the acid group If the neutralization reaction can be performed without corrosion problems,
In addition to preventing corrosion due to acid, the problem of salt adhesion leading to blockage of the pipeline can be effectively eliminated. The inventors of the present invention have made the above-described inventions by repeating tests that technically demonstrate such points of interest.
【0022】上記の各発明においては、縦筒型の反応器
内を超臨界雰囲気に維持して分解対象物を十分に超臨界
酸化させることが重要であり、またその反応の結果、分
解して生成された流体を排出管路に排出した後に、その
排出管路の途中で中和剤を添加することが重要である。In each of the above inventions, it is important to maintain the inside of the vertical cylinder type reactor in a supercritical atmosphere to sufficiently supercritically oxidize an object to be decomposed, and as a result of the reaction, it is decomposed. After discharging the produced fluid to the discharge line, it is important to add the neutralizing agent in the middle of the discharge line.
【0023】そして請求項1の発明においては、この添
加により該生成流体が「酸基による酸腐食が実質的にな
くかつ中和生成塩が十分に溶解する温度の状態にある」
ようにされる。本明細書において「酸基」という場合
は、塩酸等を生ずる塩素等のハロゲンの他、その原子単
独でいわゆる酸基を構成するものではないが、硫酸,硝
酸,リン酸等の酸を生ずることになる硫黄,窒素,リン
等を含むものとする。According to the first aspect of the invention, this addition causes the produced fluid to be "at a temperature at which there is substantially no acid corrosion due to an acid group and the neutralized product salt is sufficiently dissolved."
To be done. In the present specification, the term "acid group" does not constitute a so-called acid group by its atom alone in addition to halogen such as chlorine which produces hydrochloric acid, but it produces an acid such as sulfuric acid, nitric acid or phosphoric acid. It contains sulfur, nitrogen, phosphorus, etc.
【0024】このような物質を含む代表的な分解対象有
機物は、残留性有機汚染物質(POPs:Persistent O
rganic Pollutants )あるいは残留性有害生物蓄積物質
(PTBs:Persistent Toxic Bio-accumlatives )で
あり、代表的な物質としては環境基準において有害物質
指定されているPCBs、トリクロロエチレン、テトラ
クロロエチレン、廃農薬等の有機塩素化合物が挙げられ
これらは一般に難分解性物質である。またこれらの他
に、有機臭素化合物等のハロゲン化合物や、硫黄化合
物、窒素化合物、リン化合物等も挙げられる。Typical organic substances to be decomposed containing such substances are persistent organic pollutants (POPs: Persistent O 2).
rganic Pollutants) or Persistent Toxic Bio-accumlatives (PTBs. These are generally persistent substances. In addition to these, halogen compounds such as organic bromine compounds, sulfur compounds, nitrogen compounds, phosphorus compounds and the like are also included.
【0025】上記の「酸腐食が実質的にない温度の状
態」というのは、超臨界水が液体(水)に相転移する臨
界温度(374℃)を越えた温度域をいうが、実施装置
における温度変動などを考慮すれば、一般的には374
℃以上、好ましくは450℃以上とするのが好ましい。
「中和生成塩が十分に溶解する温度の状態」というの
は、生成する塩の種類により同じでないので一律に温度
限界として決められないが、例えば塩が塩化ナトリウム
の場合には、500℃,25MPaの超臨界水に対する
溶解度は約100ppmであるのに対し、450℃程度
を下回る超臨界水に対しては数%のオーダーで溶解す
る。したがって塩として塩化ナトリウムを生成する中和
剤を使用する場合には、中和剤を添加した分解生成流体
の温度状態が一般的には374〜450℃、好ましくは
400〜450℃であるようにするのが適当である場合
が多い。「十分に溶解」とは塩が壁面等に付着して閉塞
の問題を招かないようにできることをいう。他の種類の
塩が生成される場合には、上記と同様にその塩が十分に
溶解する温度が上記温度状態(範囲)の上限とされる。
このような他の種類の塩が十分溶解する温度範囲は必要
に応じて試験を行うことで求めることができる。なお本
発明において用いることができる中和剤としては、水酸
化ナトリウム、水酸化カリウム等のアルカリ水酸化物を
代表的に挙げることができるが、これに限定されるもの
ではない。添加は一般に水溶液の形で行うのが好まし
い。The above-mentioned "state of temperature at which there is substantially no acid corrosion" refers to a temperature range above the critical temperature (374 ° C.) at which supercritical water undergoes a phase transition to liquid (water). In consideration of temperature fluctuations in
It is preferable that the temperature is not lower than ° C, preferably not lower than 450 ° C.
The "state of temperature at which the salt produced by neutralization is sufficiently dissolved" is not the same depending on the type of salt produced, and therefore cannot be uniformly set as the temperature limit. For example, when the salt is sodium chloride, 500 ° C, The solubility in supercritical water of 25 MPa is about 100 ppm, while the solubility in supercritical water below about 450 ° C. is on the order of several%. Therefore, when a neutralizing agent that produces sodium chloride is used as a salt, the temperature state of the decomposition product fluid to which the neutralizing agent is added is generally 374 to 450 ° C, preferably 400 to 450 ° C. It is often appropriate to do this. "Sufficiently dissolved" means that salt can be prevented from adhering to the wall surface or the like and causing the problem of clogging. When another type of salt is produced, the temperature at which the salt is sufficiently dissolved is set as the upper limit of the temperature state (range) as described above.
The temperature range in which such other types of salts are sufficiently dissolved can be determined by conducting tests as necessary. As the neutralizing agent that can be used in the present invention, alkali hydroxides such as sodium hydroxide and potassium hydroxide can be typically mentioned, but the neutralizing agent is not limited thereto. It is generally preferred to make the addition in the form of an aqueous solution.
【0026】上記請求項1の発明は、中和剤の添加を、
中和反応で生成する塩の溶解度が低い(ほとんど溶解し
ない)高温の流体(分解生成流体)に対して行うことを
特徴の一つとする。例えば、生成する塩が塩化ナトリウ
ムである場合には反応温度(例えば500℃以上)〜4
50℃の範囲で中和剤の添加が行われる。中和剤添加
は、超臨界水酸化による分解対象物の完全分解に影響が
ないように、排出管路において行なわれる。また、中和
剤を添加した直後の分解生成流体の温度を、中和反応で
生成する塩を十分に溶解することができる温度にまで冷
却することをもう一つの特徴とする。この冷却のために
は、添加する中和剤に低温の水溶液を用いて生成流体の
温度を低下させるか、冷却手段を用いて温度を低下させ
る方法が例示される。低下させた後の温度は臨界温度以
上であっても以下であってもよい。The invention described in claim 1, the addition of Neutralization agents,
One of the features is that it is performed on a high temperature fluid (decomposition product fluid) in which the solubility of the salt produced by the neutralization reaction is low (almost not dissolved). For example, when the salt formed is sodium chloride, the reaction temperature (for example, 500 ° C. or higher) to 4
The neutralizing agent is added within the range of 50 ° C. The addition of the neutralizing agent is carried out in the discharge pipe line so as not to affect the complete decomposition of the decomposition object by the supercritical water oxidation. Further, the temperature of the decomposition product fluid immediately after addition of the Neutralization agent, and another wherein the cooling to the salt produced by the neutralization reaction at a temperature that can sufficiently dissolve. For this cooling, a method of lowering the temperature of the produced fluid by using a low temperature aqueous solution as a neutralizing agent to be added or a method of lowering the temperature by using a cooling means is exemplified. The temperature after lowering may be higher or lower than the critical temperature.
【0027】さらに請求項1の発明の特徴は、中和剤の
添加を、中和反応で生成する塩の溶解度が高い温度であ
って、かつ臨界温度よりも高い温度範囲にある流体(分
解生成流体)に対して行うところにある。 Furthermore feature of the invention of claim 1, the addition of Neutralization agent, a temperature is high solubility of the salt produced in the neutralization reaction, and the fluid (decomposition products in the temperature range higher than the critical temperature Fluid) .
【0028】以上の請求項1の発明の構成において、超
臨界水雰囲気は、通常は分解対象物である有機物と超臨
界水及び酸化剤を臨界圧(22MPa)以上の加圧下で
反応器に供給することにより該分解対象有機物が臨界温
度(374℃)以上で形成され、これは従来から知られ
ているいわゆるベッセル型の反応器を用いた超臨界水酸
化法の技術を用いて行うことができる。ただし本発明に
おいては、反応器内は全域に渡って超臨界雰囲気に維持
される。超臨界水は、分解対象物と別に供給することも
できるし混合して供給することもできる。また分解対象
物が必要量の水を含み、かつ分解対象物の自燃により超
臨界水雰囲気が維持できる場合には、反応当初のみ超臨
界水を供給すればよい。なお超臨界水雰囲気は、反応器
に超臨界水を供給しない方法によっても形成することが
できる。In the above-mentioned structure of the invention of claim 1, in the supercritical water atmosphere, the organic substance, which is usually an object of decomposition, the supercritical water and the oxidizing agent are supplied to the reactor under a pressure higher than the critical pressure (22 MPa). By doing so, the organic substance to be decomposed is formed at a critical temperature (374 ° C.) or higher, and this can be performed by using a conventionally known technique of a supercritical water oxidation method using a so-called Bessel type reactor. . However, in the present invention, a supercritical atmosphere is maintained throughout the reactor. The supercritical water may be supplied separately from the decomposition target or may be mixed and supplied. When the decomposition target contains a required amount of water and the supercritical water atmosphere can be maintained by self-combustion of the decomposition target, supercritical water may be supplied only at the beginning of the reaction. The supercritical water atmosphere can also be formed by a method in which supercritical water is not supplied to the reactor.
【0029】この方法としては例えば、縦筒型反応器の
周囲に例えば電熱コイル等の発熱体を配置し、反応器の
周囲から加熱して反応器内部に熱を加える方法を挙げる
ことができる。Examples of this method include a method in which a heating element such as an electric heating coil is arranged around a vertical cylindrical reactor, and heating is performed from around the reactor to apply heat to the inside of the reactor.
【0030】この方法によれば、反応器に分解対象物で
ある有機物と酸化剤と分解対象物に必要量の水が含まれ
ていない場合には水とを供給し、反応器の周囲に設置し
た発熱体から熱を伝えることにより反応器内部を加熱
し、反応器内部を超臨界水雰囲気とすることができる。
なお、分解対象物の自燃により超臨界水酸化が維持でき
る場合には、反応当初のみ発熱体から熱を与え、自燃が
十分継続するようにした以降は発熱体からの熱供給を中
断することもできる。また分解対象有機物等は必要に応
じ予熱して供給することができる。酸化剤としては空
気、酸素ガスの他、過酸化水素水等の液相酸化剤を用い
ることもできる。According to this method, the organic substance which is the decomposition target, the oxidant, and water when the decomposition target does not contain the required amount of water are supplied to the reactor and installed around the reactor. It is possible to heat the inside of the reactor by transmitting heat from the heating element, and to make the inside of the reactor a supercritical water atmosphere.
If supercritical water oxidation can be maintained by self-combustion of the decomposition object, heat is applied from the heating element only at the beginning of the reaction, and heat supply from the heating element may be interrupted after the self-combustion is sufficiently continued. it can. The decomposition target organic matter and the like can be preheated and supplied as necessary. As the oxidant, in addition to air and oxygen gas, a liquid phase oxidant such as hydrogen peroxide solution can be used.
【0031】上記の各発明を実施するための装置型式
は、縦筒型のいわゆるベッセル型反応器であればよく、
一般的には容器の上部中央から分解対象物,超臨界水及
び酸化剤を供給する方式のものが用いられるが、前述し
た通り発熱体を設置する方式でもよい。The apparatus type for carrying out each of the above inventions may be a vertical cylinder type so-called Bessel type reactor,
Generally, a system of supplying the decomposition target, supercritical water and an oxidant from the upper center of the container is used, but a system of installing a heating element as described above may be used.
【0032】排出管路を流通する流体に対して中和剤を
添加する操作は、例えば、反応のために設定した超臨界
圧の状態に加圧した中和剤水溶液を、排出管路に接続し
た注入パイプを介して注入することで行うことができ
る。The operation of adding the neutralizing agent to the fluid flowing through the discharge pipeline is carried out by, for example, connecting the neutralizing agent aqueous solution pressurized to the supercritical pressure set for the reaction to the discharge pipeline. It can be performed by injecting through the injection pipe.
【0033】本発明の超臨界水酸化法は、超臨界水雰囲
気中で対象物を完全分解する臨界圧力,臨界温度(22
MPa,374℃)を越えた条件で実施されるものであ
れば限定されることなく適用されるが、本発明方法が特
に好ましく適用される難分解性物質を超臨界水酸化して
分解処理する場合の条件としては、一般に、温度が40
0℃以上、好ましくは600〜650℃前後で、反応圧
力が22〜50MPa、好ましくは22〜25MPa前
後とするのが適当である場合が多い。反応時間は1〜1
0分、好ましくは1〜2分程度である。The supercritical water oxidation method of the present invention uses the critical pressure and the critical temperature (22) for completely decomposing an object in a supercritical water atmosphere.
MPa, 374 ° C.). However applied without being limited as long even for the Ru is carried out at conditions beyond, decomposing the hardly decomposable substance present invention method is particularly preferably applied by supercritical water oxidation In general, the conditions are as follows:
It is often appropriate that the reaction pressure is 0 ° C or higher, preferably 600 to 650 ° C, and the reaction pressure is 22 to 50 MPa, preferably 22 to 25 MPa. Reaction time is 1 to 1
It is 0 minutes, preferably about 1 to 2 minutes.
【0034】上記の各発明によれば、中和剤の注入(添
加)後に生成した塩は、超臨界水あるいは水に十分に溶
解するので、排出管路の壁面への付着の虞れがなく、し
たがって該管路が閉塞する虞れを実質的に解消すること
ができ、しかも反応器の酸による腐食のおそれもない。According to each of the above inventions, since the salt formed after the injection (addition) of the neutralizing agent is sufficiently dissolved in supercritical water or water, there is no risk of sticking to the wall surface of the discharge pipeline. Therefore, it is possible to substantially eliminate the risk of blockage of the pipeline, and there is no risk of acid corrosion of the reactor.
【0035】請求項2の発明は、上記請求項1の発明に
おいて、中和剤の添加で生成する塩が塩化ナトリウムで
あり、排出管路を流通する流体の中和剤添加時点の温度
が450℃以上であることを特徴とし、請求項3の発明
は、上記請求項1の発明において、中和剤の添加で生成
する塩が塩化ナトリウムであり、排出管路を流通する流
体の中和剤添加時点の温度が450℃以下であることを
特徴とする。According to a second aspect of the present invention, in the above-mentioned first aspect , the salt produced by the addition of the neutralizing agent is sodium chloride, and the temperature of the fluid flowing through the discharge pipe at the time of adding the neutralizing agent is 450. ℃ characterized in that or more, of the invention of claim 3, in the invention described in claim 1, a salt generated by addition of a neutralizing agent is sodium chloride, neutralizer fluid flowing in the discharge pipe The temperature at the time of addition is 450 ° C. or less.
【0036】これらの発明によれば、中和剤として最も
代表的な水酸化ナトリウムを用いて中和反応の操作を行
わせることができ、また後者の発明では、450℃以下
の温度範囲で超臨界水酸化を実施する場合に対応でき
る。According to these inventions, the most representative sodium hydroxide can be used as the neutralizing agent to carry out the operation of the neutralization reaction. It can be applied when performing critical water oxidation.
【0037】請求項4の発明は、上記の各発明におい
て、添加する中和剤が低温(例えば常温)の水溶液であ
ることを特徴とする。The invention of claim 4 is characterized in that, in each of the above inventions, the neutralizing agent to be added is an aqueous solution at a low temperature (for example, room temperature).
【0038】この発明によれば、中和剤水溶液を添加す
ることによって分解生成流体の温度を低下させることが
でき、添加位置や添加前の流体の温度にもよるが、塩が
十分に溶解する温度まで該流体の温度を低下させること
ができて、熱交換器等の他の冷却手段を省略できる場合
がある。According to the present invention, the temperature of the decomposition product fluid can be lowered by adding the neutralizing agent aqueous solution, and the salt is sufficiently dissolved depending on the addition position and the temperature of the fluid before the addition. In some cases, the temperature of the fluid can be lowered to the temperature, and other cooling means such as a heat exchanger can be omitted.
【0039】請求項5の発明は、上記の各発明におい
て、中和反応の後に分解生成流体を水の臨界温度以下に
冷却することを特徴とする。The invention of claim 5 is characterized in that, in each of the above inventions, the decomposition product fluid is cooled to below the critical temperature of water after the neutralization reaction.
【0040】この発明によれば、中和反応で酸を確実に
塩にした後に分解生成流体の温度を臨界温度以下に低下
させるので、臨界温度近傍での腐食の原因が除去され
る。According to the present invention, the temperature of the decomposition product fluid is lowered to the critical temperature or lower after the acid is surely converted to the salt by the neutralization reaction, so that the cause of the corrosion near the critical temperature is removed.
【0041】請求項6の超臨界水酸化装置の発明は、請
求項1の方法に用いる装置であって、縦筒型の耐圧性容
器からなる超臨界水酸化反応用の反応器と、該反応器内
に分解対象物,酸化剤を連続供給する分解対象物及び酸
化剤の供給手段と、超臨界水酸化の反応により分解生成
された流体を該反応器から反応器外に排出するように接
続された排出管路と、この排出管路内を流通する流体に
含まれる酸基を中和するために該排出管路の途中に設け
られた中和剤添加手段と、を備えたことを特徴とする。The invention of the supercritical water oxidation apparatus of claim 6 is a contract
A device for use in the method of claim 1, comprising a reactor for a supercritical water oxidation reaction , which comprises a vertical cylindrical pressure-resistant container, and a decomposition target and a decomposition target for continuously supplying an oxidant into the reactor. A means for supplying an oxidant, a discharge pipe line connected to discharge the fluid decomposed and produced by the reaction of supercritical water oxidation from the reactor to the outside of the reactor, and a fluid flowing in the discharge pipe line. And a neutralizing agent addition means provided in the middle of the discharge pipe line for neutralizing the acid groups contained in.
【0042】上記構成において、反応器は、望ましくは
例えば耐酸腐食性合金(例えば高温での耐酸化性に優れ
たインコネル等)などを用いて構成することができる。
中和剤添加手段は、超臨界水酸化の反応に悪影響を与え
ないように、排出系管路に、管の周壁に接続することで
設けられる。中和剤は水溶液の形で用いられるのが好ま
しく、限定されるものではないが、例えば、高圧圧入ポ
ンプなどの加圧系を用いて中和剤タンクから反応器内に
圧入するか、反応容器内よりも高圧に加圧したタンクか
ら圧入することができる。中和剤を添加する系路には必
要に応じて開閉弁、流量制御弁などを設けることがで
き、また中和剤の濃度調整装置などを設けることもでき
る。In the above-mentioned structure, the reactor can desirably be composed of, for example, an acid-corrosion-resistant alloy (for example, Inconel or the like having excellent oxidation resistance at high temperature).
The neutralizing agent adding means is provided by connecting the discharge system pipeline to the peripheral wall of the tube so as not to adversely affect the reaction of supercritical water oxidation. The neutralizing agent is preferably used in the form of an aqueous solution, but is not limited thereto. For example, a pressurizing system such as a high-pressure press-fitting pump is used to press the neutralizing agent into the reactor from the neutralizing agent tank, or the reaction vessel. It can be press-fitted from a tank pressurized to a pressure higher than the inside. An on-off valve, a flow rate control valve, etc. may be provided in the system path to which the neutralizing agent is added, and a concentration adjusting device for the neutralizing agent may be provided.
【0043】なお、分解対象有機物、酸化剤等は、通
常、反応器の中央部からノズル等を用いて供給され、中
和剤添加手段を除いた、分解対象物等の供給系、分解生
成流体の排出系などの構成は、従来から知られている超
臨界水酸化装置と同様に構成することができる。The organic substance to be decomposed, the oxidant, etc. are usually supplied from the central part of the reactor using a nozzle or the like, and the supply system for the substance to be decomposed excluding the neutralizing agent addition means, the decomposition product fluid. The exhaust system and the like can be configured in the same manner as the conventionally known supercritical water oxidation apparatus.
【0044】この発明によれば、塩の生成を伴う主に難
分解性物質の超臨界水酸化による処理を、排出管路の閉
塞や酸腐食の問題を招くことなく実施することができ
る。According to the present invention, the treatment by supercritical water oxidation of a hardly decomposable substance, which is accompanied by the formation of salt, can be carried out without causing problems such as clogging of the discharge pipe line and acid corrosion.
【0045】請求項7の発明は、上記の装置発明におけ
る排出管路の途中に設けた中和剤添加手段の位置が、流
体に含まれる酸基による酸腐食が実質的にない位置とし
たことを特徴とする。According to a seventh aspect of the present invention, the position of the neutralizing agent addition means provided in the middle of the discharge pipe line in the above invention of the apparatus is the flow rate.
Acid corrosion by acid groups contained in the body, characterized in that a substantially such have position.
【0046】この発明によれば、分解対象物や処理操作
の設定にしたがって、排出管路の始端部からの距離に沿
って決まる温度分布の適当な位置に中和剤添加手段を設
けることができる。 According to the present invention, the neutralizing agent adding means can be provided at an appropriate position in the temperature distribution determined along the distance from the starting end of the discharge pipe according to the setting of the decomposition target and the processing operation. It
【0047】請求項8の発明は、請求項6の発明におい
て、排出管路の途中に設けた中和剤添加手段の位置が、
中和生成塩の溶解度が低い(ほとんど溶解しない)水の
臨界温度以上の流体が流通する位置であって、かつ添加
する中和剤は、添加によって該流体の温度を中和生成塩
が十分に溶解する温度に冷却することができる低温水溶
液としたことを特徴とする。According to an eighth aspect of the invention, in the invention of the sixth aspect , the position of the neutralizing agent addition means provided in the middle of the discharge pipe line is
Water with low solubility of the neutralization salt (almost insoluble)
A neutralizing agent added at a position where a fluid having a temperature equal to or higher than the critical temperature flows, and the neutralizing agent to be added is a low temperature aqueous solution capable of cooling the temperature of the fluid to a temperature at which the salt for neutralization is sufficiently dissolved. Characterize.
【0048】この発明によれば、上記請求項7の場合と
同様に、排出管路の始端部からの距離に沿って決まる温
度分布の適当な位置に中和剤添加手段を設けることがで
き、低温の中和剤水溶液の添加と同時ないし直後に塩は
十分に溶解できる温度となる。その位置は排出管路の始
端部ないし排出管路の終端部とされ、生成する塩が塩化
ナトリウムである場合には、一般的には分解生成流体の
温度が反応温度〜450℃、好ましくは500〜450
℃の位置とされる。According to the present invention, as in the case of the above-mentioned claim 7 , the neutralizing agent adding means can be provided at an appropriate position of the temperature distribution determined along the distance from the starting end of the discharge pipeline. Simultaneously with or immediately after the addition of the low temperature neutralizing agent aqueous solution, the salt reaches a temperature at which it can be sufficiently dissolved. The position is the start end of the discharge pipe or the end of the discharge pipe. When the salt produced is sodium chloride, the temperature of the decomposition product fluid is generally the reaction temperature to 450 ° C., preferably 500. ~ 450
The position is ℃.
【0049】請求項9の発明は、上記の各装置発明の縦
筒型反応器が、供給部として分解対象物,酸化剤の供給
口を有すると共に、排出部として、超臨界水酸化の反応
により生成した流体を排出管路に排出する一つの排出口
のみを有することを特徴とする。According to a ninth aspect of the present invention, the vertical cylindrical reactor of each of the above inventions has a supply port for the decomposition target and the oxidant as a supply part, and a discharge part as a result of a supercritical water oxidation reaction. It is characterized by having only one discharge port for discharging the generated fluid to the discharge pipe line.
【0050】この発明によれば、従来の塩移送水の供給
径路,排出径路が設けられないので、装置の構造が簡単
になり、また制御も容易となる。According to the present invention, since the conventional salt transfer water supply path and salt discharge water path are not provided, the structure of the apparatus is simplified and the control is facilitated.
【0051】請求項10の発明は、上記の各装置発明に
おいて、中和剤添加手段を設けた位置ないしその後段の
排出管路に、流通する流体を冷却するための冷却手段を
設けたことを特徴とし、この発明によれば、分解生成流
体が冷却手段によって冷却されて、酸の中和と、生成し
た塩の水への溶解が確実に行われる。According to a tenth aspect of the present invention, in each of the above-mentioned apparatus inventions, a cooling means for cooling the flowing fluid is provided at the position where the neutralizing agent adding means is provided or at the subsequent discharge pipe line. Characteristically, according to the present invention, the decomposition product fluid is cooled by the cooling means to ensure the neutralization of the acid and the dissolution of the produced salt in water.
【0052】[0052]
実施形態1
図1は本発明の方法を実施する装置の構成概要を示した
ものであり、1はいわゆるベッセル型の反応器であり、
縦円筒型の耐圧容器として高温耐酸性の材料により形成
されている。そしてこの反応器1の天井部の中央には二
重管ノズル2が組付けられいて、廃液供給管3から、水
の臨界圧(22MPa)以上に加圧された有機性廃液等
の分解対象物が該二重管ノズル2の内管を通して反応器
1内に吹き込まれると共に、超臨界水供給管4から超臨
界水及び酸化剤としての空気の混合流体が、二重管ノズ
ル2の外管を通して反応器1内に吹き込まれるようにな
っている。これによって、二重管ノズル2から吹き込れ
た(廃液+超臨界水+空気)が22〜25MPaの超臨
界圧力下で混合した流体となり、廃液中の有機物の酸化
によって例えば600〜650℃で超臨界水酸化反応を
持続的に継続する。なお、有機性廃液中に必要量の水を
含み、かつ廃液中の有機物の酸化熱によって超臨界水雰
囲気が維持できる場合は、反応の当初のみ超臨界水を供
給し、以後は超臨界水の供給をしなくともよい。また廃
液供給管3には、供給する流体(廃液)を予め所定温度
(例えば400℃程度)まで加熱する予熱器(図示せ
ず)を設けてもよい。なお、各供給管3,4から供給す
る流体は適宜必要な装置(図示せず)を用いて加圧され
る。Embodiment 1 FIG. 1 shows a schematic configuration of an apparatus for carrying out the method of the present invention, in which 1 is a so-called Bessel type reactor,
The vertical cylindrical pressure-resistant container is made of a high-temperature and acid-resistant material. A double pipe nozzle 2 is attached to the center of the ceiling of the reactor 1, and an object to be decomposed such as an organic waste liquid pressurized from the waste liquid supply pipe 3 to a critical pressure (22 MPa) or higher of water. Is blown into the reactor 1 through the inner tube of the double tube nozzle 2, and a mixed fluid of supercritical water and air as an oxidant from the supercritical water supply tube 4 passes through the outer tube of the double tube nozzle 2. It is designed to be blown into the reactor 1. As a result, the liquid (waste liquid + supercritical water + air) blown from the double pipe nozzle 2 becomes a mixed fluid under a supercritical pressure of 22 to 25 MPa, and at 600 to 650 ° C., for example, due to the oxidation of organic matter in the waste liquid. Continue supercritical hydroxylation reaction. If the organic waste liquid contains a necessary amount of water and the supercritical water atmosphere can be maintained by the heat of oxidation of the organic matter in the waste liquid, supercritical water is supplied only at the beginning of the reaction, and thereafter, the supercritical water is supplied. It does not have to be supplied. Further, the waste liquid supply pipe 3 may be provided with a preheater (not shown) for heating the supplied fluid (waste liquid) to a predetermined temperature (for example, about 400 ° C.) in advance. The fluid supplied from each of the supply pipes 3 and 4 is pressurized using an appropriate device (not shown).
【0053】5は超臨界水酸化反応で分解して生成され
た流体(以下「処理流体」という)を反応器1から排出
する排出管であり、耐酸性材料から構成され、例えば反
応器1の天井部から内部に開口するように接続され、反
応器1内で超臨界水酸化反応により完全に分解された処
理流体は、この排出管5を通して反応器1外に排出され
る。Reference numeral 5 is a discharge pipe for discharging from the reactor 1 a fluid generated by decomposition in the supercritical water oxidation reaction (hereinafter referred to as "treatment fluid"), which is made of an acid resistant material, for example, in the reactor 1. The processing fluid, which is connected to the ceiling from the ceiling and is completely decomposed by the supercritical water oxidation reaction in the reactor 1, is discharged to the outside of the reactor 1 through the discharge pipe 5.
【0054】そしてこの排出管5の途中には、中和剤タ
ンク及び加圧手段(いずれも図示せず)からの中和剤供
給管6が、例えば水酸化ナトリウム等の中和剤を排出管
5内を流通する処理流体に対して注入(添加)するよう
に接続され、これにより、該処理流体に中和剤が注入添
加されることで、該処理流体に含まれている酸基の中和
が行われる。In the middle of the discharge pipe 5, a neutralizer supply pipe 6 from a neutralizer tank and a pressurizing means (neither is shown) is used to discharge the neutralizer such as sodium hydroxide. 5 is connected so as to inject (add) to the processing fluid flowing through the inside of the processing fluid 5, whereby a neutralizing agent is injected and added to the processing fluid, so that the acid group contained in the processing fluid is The sum is done.
【0055】この中和剤を添加する部分の処理流体の温
度は、酸基が酸として腐食作用を生ずることがない温度
以上であることが必要であり、理論的には水の臨界温度
以上、装置の温度変動等を考慮すれば、該臨界温度より
もある程度高い400℃以上とされ、中和剤の添加によ
り生ずる無機塩が塩化ナトリウムである場合には、反応
温度〜450℃とすることもできる。中和剤添加後の処
理流体の温度が450℃を越える場合には、中和剤添加
直後に、処理流体の温度が塩化ナトリウムの溶解度の高
い温度範囲である450℃以下となるようにされる。こ
のような処理流体の温度の低下(冷却)は、例えば熱交
換器等の冷却手段を用いることもできるが、最も簡単に
は、中和剤に低温の水溶液を用いこれの所定量を添加す
ることによって処理流体の温度低下が生ずるようにする
方法を挙げることができる。The temperature of the treatment fluid in the portion to which the neutralizing agent is added needs to be a temperature above which the acid group does not cause a corrosive action as an acid, and theoretically, above the critical temperature of water, Considering the temperature fluctuation of the apparatus, the temperature is set to 400 ° C or higher, which is higher than the critical temperature to some extent, and when the inorganic salt generated by the addition of the neutralizing agent is sodium chloride, the reaction temperature may be set to 450 ° C. it can. When the temperature of the treatment fluid after the addition of the neutralizing agent exceeds 450 ° C., immediately after the addition of the neutralizing agent, the temperature of the treatment fluid is adjusted to 450 ° C. or lower which is a temperature range in which the solubility of sodium chloride is high. . To lower (cool) the temperature of such a treatment fluid, a cooling means such as a heat exchanger can be used, but the simplest is to use a low temperature aqueous solution as a neutralizing agent and add a predetermined amount of this. As a result, the temperature of the processing fluid may be lowered.
【0056】このように、処理流体の温度が水の臨界温
度付近まで低下した時点において既に酸基の中和が終了
させておくようにすることで、水が超臨界水から液に相
転移するときの酸基の水への急激な溶解による高濃度の
酸の生成を防ぐことができる。As described above, the neutralization of the acid groups is already completed at the time when the temperature of the treatment fluid is lowered to around the critical temperature of water, whereby the water undergoes a phase transition from supercritical water to liquid. It is possible to prevent generation of a high concentration of acid due to rapid dissolution of the acid group in water.
【0057】酸基の中和反応を行った処理流体は、冷
却,減圧,気液分離等の必要な処理を行い、装置外に排
出される。The treatment fluid which has undergone the neutralization reaction of the acid groups is subjected to necessary treatments such as cooling, decompression and gas-liquid separation, and then discharged to the outside of the apparatus.
【0058】[0058]
【実施例】以下、本発明の効果を確認するために行った
実施例、比較例について説明する。EXAMPLES Examples and comparative examples conducted to confirm the effects of the present invention will be described below.
【0059】実施例1
上述した図1のベッセル型の反応器1を有する超臨界水
酸化装置を使用して、超臨界水酸化に伴って塩を生ずる
物質を含む下記表1の成分からなる物質を分解対象物の
試料とし、該反応器1から処理流体を排出する排出管5
の所定位置(図2のTC−6〜TC−7の間)から、中
和剤(水酸化ナトリウム水溶液)を添加する方法で超臨
界水酸化の処理を行なった。Example 1 Using the supercritical water oxidation apparatus having the vessel-type reactor 1 of FIG. 1 described above, the materials consisting of the components shown in the following Table 1 including the materials that produce salts with supercritical water oxidation A discharge pipe 5 for discharging the processing fluid from the reactor 1
The supercritical water oxidation was carried out by a method of adding a neutralizing agent (sodium hydroxide aqueous solution) from a predetermined position (between TC-6 and TC-7 in FIG. 2).
【0060】[0060]
【表1】 [Table 1]
【0061】超臨界水酸化の条件は次の通りである。The conditions for supercritical water oxidation are as follows.
【0062】(試験条件)
温度・圧力 :650℃,25MPa
酸化剤 :空気
反応器 :図1に示したベッセル型反応器;内径
50mm×高さ1050mm
中和剤 :水酸化ナトリウム水溶液、濃度530
ppm(トリクロロエチレンが完全分解したときに生ず
るCl- イオンの約1.2倍モル量)、温度20℃、添
加量9.6ml/min
流量(SCW):8ml/min
(試料) :2ml/min
(空気) :1.6Nm3 /hr(試料の分解対象物を
100%分解するのに必要な理論量の1.8倍)。(Test conditions) Temperature / pressure: 650 ° C., 25 MPa Oxidizing agent: Air reactor: Vessel type reactor shown in FIG. 1; Inner diameter 50 mm × height 1050 mm Neutralizer: Sodium hydroxide aqueous solution, concentration 530
ppm (about 1.2 times the molar amount of Cl − ions generated when trichlorethylene is completely decomposed), temperature 20 ° C., addition amount 9.6 ml / min Flow rate (SCW): 8 ml / min (sample): 2 ml / min ( Air): 1.6 Nm 3 / hr (1.8 times the theoretical amount required for 100% decomposition of the decomposition target of the sample).
【0063】(試験結果)
(1) 試験は上記の試験条件で600分間に渡り行な
ったが、反応器1内の圧力上昇は起こらず、連続した試
験を行なうことができた。また、反応器1及び排出管5
の温度分布を調べて、その測定点と温度を図2に示し
た。なお温度分布の測定は、熱伝対を反応器内に各々挿
入することにより行なった。(Test Results) (1) The test was carried out for 600 minutes under the above test conditions, but the pressure inside the reactor 1 did not rise, and continuous tests could be carried out. Also, the reactor 1 and the discharge pipe 5
The temperature distribution was investigated and the measurement points and temperatures are shown in FIG. The temperature distribution was measured by inserting thermocouples into the reactor.
【0064】(2) 中和剤水溶液の添加前の処理流体
の温度は、TC−6の位置で621℃であるのに対し、
添加後のTC−7の位置では288℃である。これによ
り酸基の酸腐食作用がなく、かつ塩の溶解度が低い高温
の状態の処理流体に対して中和剤水溶液を添加すること
で処理流体が水の臨界温度以下まで急激に低下され、下
記(3)により管内壁に塩が付着することなく水に溶解
して排出されたことが分かる。また試験を繰り返し行っ
てもTC−6〜TC−7の付近で管にピンホールの発生
はなく、酸による腐食が十分に防止されることが確認さ
れた。(2) While the temperature of the treatment fluid before the addition of the neutralizing agent aqueous solution is 621 ° C. at the TC-6 position,
It is 288 ° C. at the position of TC-7 after the addition. As a result, by adding the neutralizing agent aqueous solution to the treatment fluid in a high temperature state where the acid group does not have an acid corrosive action and the solubility of the salt is low, the treatment fluid is rapidly lowered to below the critical temperature of water. It can be seen from (3) that salt was dissolved in water and discharged without adhering to the inner wall of the pipe. Further, it was confirmed that no pinhole was formed in the pipe in the vicinity of TC-6 to TC-7 even after repeating the test, and the corrosion by the acid was sufficiently prevented.
【0065】(3) 反応器から排出された処理流体
(処理液)中に含まれる成分を、ガスクロマトグラフィ
ーGC−311(HNU SYSTEMS社製,光イオ
ン化検出器)により測定し、また、Cl- ,Na+ イオ
ンはイオンクロマトグラフィーDX−AQ(日本ダイオ
ネクス社製)を用いて測定したところ下記表2の通りで
あった。[0065] (3) the component contained in the reactor is discharged from the process fluid (treatment solution), was determined by gas chromatography GC-311 (HNU SYSTEMS Co., photoionization detector), also, Cl - , Na + ions were measured by using ion chromatography DX-AQ (manufactured by Nippon Dionex Co., Ltd.) and the results are shown in Table 2 below.
【0066】[0066]
【表2】 [Table 2]
【0067】この表2の結果から分かるように、試料
(分解対象物)のトリクロロエチレンは実質的に完全分
解されたことが分かる。As can be seen from the results shown in Table 2, trichlorethylene in the sample (decomposition object) was substantially completely decomposed.
【0068】また、処理液のCl- イオン濃度から計算
されるpHは2.9であるのに対し、処理液のpHは
6.1であり、超臨界水酸化で生成した塩酸が水酸化ナ
トリウムで中和されていることが確認された。なお処理
液のpHが6.1を示すのは二酸化炭素の溶存による。Further, the pH calculated from the Cl − ion concentration of the treatment liquid is 2.9, whereas the pH of the treatment liquid is 6.1, and the hydrochloric acid produced by supercritical water oxidation is sodium hydroxide. It was confirmed that it was neutralized by. It should be noted that the treatment liquid having a pH of 6.1 is due to the dissolution of carbon dioxide.
【0069】次に処理液中のNa+ イオン濃度から、次
式によりNa+ イオンの回収率を求めた。Next, the recovery rate of Na + ions was determined from the Na + ion concentration in the treatment liquid by the following formula.
【0070】[0070]
【数1】 [Equation 1]
【0071】この計算の結果、Na+ イオンの回収率は
101%となり、このことは、中和反応に寄与しなかっ
たNa+ イオンは処理液(分解生成流体)と共に流れた
ことを示し、反応器および排出系管路内で塩の析出が起
っていないことが確認された。As a result of this calculation, the recovery rate of Na + ions was 101%, which means that Na + ions that did not contribute to the neutralization reaction flowed together with the treatment liquid (decomposition product fluid). It was confirmed that precipitation of salt did not occur in the vessel and discharge system pipeline.
【0072】比較例1
次に比較のために、図3に示すように、ベッセル型反応
器101の底部に塩移送のための亜臨界水を供給・排出
する構成、すなわち純水供給管107と処理液(ブライ
ン)排水管108を接続し、廃液供給管103、超臨界
水供給管104及び空気供給管109の各供給ラインを
反応器101の二重管ノズル102に接続すると共に、
中和剤は超臨界水に混合して供給するようにした従来の
超臨界水酸化装置によって、超臨界水酸化の処理を行っ
た。Comparative Example 1 Next, for comparison, as shown in FIG. 3, a structure in which subcritical water for salt transfer is supplied to and discharged from the bottom of the vessel-type reactor 101, that is, a pure water supply pipe 107. A treatment liquid (brine) drain pipe 108 is connected, each supply line of a waste liquid supply pipe 103, a supercritical water supply pipe 104, and an air supply pipe 109 is connected to a double pipe nozzle 102 of a reactor 101, and
The neutralizing agent was subjected to supercritical water oxidation by a conventional supercritical water oxidation apparatus which was mixed with supercritical water and supplied.
【0073】なお、試験に用いた分解対象物の試料は、
実施例1と同じトリクロロエチレン(TCE)を水−イ
ソプロピルアルコール(IPA)混合溶液に溶解させて
135g/hrで供給した。The sample of the decomposition object used in the test is
The same trichlorethylene (TCE) as in Example 1 was dissolved in a water-isopropyl alcohol (IPA) mixed solution and supplied at 135 g / hr.
【0074】超臨界水酸化の条件は次の通りである。The conditions for supercritical water oxidation are as follows.
【0075】(試験条件)
温度・圧力 :650℃,25MPa
酸化剤 :空気
反応器 :図3に示したベッセル型反応器;内径
50mm×高さ1050mm
中和剤 :水酸化ナトリウム水溶液(トリクロロ
エチレンが完全分解したときに生ずるCl- イオンと等
しいモル量)を超臨界水に混合して供給
流量(SCW):150リットル/hr
流量(IPA):41.5リットル/hr
IPA濃度 :20.4%
(空気) :1.5Nm3 /hr(試料の分解対象物を
100%分解するのに必要な理論量の1.5倍)。(Test conditions) Temperature / pressure: 650 ° C., 25 MPa Oxidizing agent: Air reactor: Vessel type reactor shown in FIG. 3; Inner diameter 50 mm × height 1050 mm Neutralizer: Sodium hydroxide aqueous solution (trichloroethylene is completely (Molecular amount equivalent to Cl − ion generated upon decomposition) is mixed with supercritical water, and supply flow rate (SCW): 150 liters / hr Flow rate (IPA): 41.5 liters / hr IPA concentration: 20.4% ( Air): 1.5 Nm 3 / hr (1.5 times the theoretical amount required for 100% decomposition of the decomposition target of the sample).
【0076】(試験結果)
(1) 試験は上記の条件で360分間に渡り行なった
が、反応器1内の圧力上昇は起こらず、連続した試験を
行なうことができた。また、反応器1及び排出管5の温
度分布を調べて、その測定点と温度を図3に示した。こ
の温度分布図から分かるように、反応器101内の温度
が反応温度から臨界温度以下の温度の広範囲に分布し、
また排出管には高温の処理流体が排出されており、反応
器内の温度分布が一様でないことが分かる。(Test Results) (1) The test was carried out under the above conditions for 360 minutes, but the pressure inside the reactor 1 did not rise, and continuous tests could be carried out. Further, the temperature distributions of the reactor 1 and the discharge pipe 5 were examined, and the measurement points and temperatures thereof are shown in FIG. As can be seen from this temperature distribution diagram, the temperature in the reactor 101 is distributed over a wide range from the reaction temperature to a temperature below the critical temperature,
Further, it can be seen that the high temperature processing fluid is discharged to the discharge pipe, and the temperature distribution in the reactor is not uniform.
【0077】(2) 処理流体の温度は、超臨界ゾーン
の亜臨界ゾーン近傍の位置TC−5で450℃であり、
亜臨界ゾーンの位置TC−6では125℃であるため、
TC−5〜TC−6の間に臨界温度を含む温度分布が存
在することが分かる。(2) The temperature of the processing fluid is 450 ° C. at the position TC-5 near the subcritical zone of the supercritical zone,
At position TC-6 in the subcritical zone, the temperature is 125 ° C, so
It can be seen that there is a temperature distribution including the critical temperature between TC-5 and TC-6.
【0078】(3) 反応器から排出された処理流体
(処理液)中に含まれる成分を、ガスクロマトグラフィ
ーGC−311(HNU SYSTEMS社製,光イオ
ン化検出器:前出)により測定し、また、Cl- ,Na
+ イオンはイオンクロマトグラフィーDX−AQ(日本
ダイオネクス社製)を用いて測定したところ下記表3の
通りであった。(3) The components contained in the processing fluid (processing solution) discharged from the reactor were measured by gas chromatography GC-311 (manufactured by HNU SYSTEMS, photoionization detector: mentioned above), and , Cl -, Na
The + ion was as shown in Table 3 below when measured using ion chromatography DX-AQ (manufactured by Nippon Dionex).
【0079】[0079]
【表3】 [Table 3]
【0080】また、処理液(メイン)のpHは2.8、
処理液(ブライン)のpHは5.9であった。The pH of the treatment liquid (main) is 2.8,
The pH of the treatment liquid (brine) was 5.9.
【0081】次に処理液中のNa+ イオン濃度から、次
式によりNa+ イオンの回収率を求めた。Next, the recovery rate of Na + ions was calculated from the Na + ion concentration in the treatment liquid by the following formula.
【0082】[0082]
【数2】 [Equation 2]
【0083】この計算の結果、Na+ イオンの回収率は
30%となり、このことは、塩(NaCl)あるいは水
酸化ナトリウム(NaOH)が反応器101内または排
出管105内で析出して残存していることを示してい
る。As a result of this calculation, the recovery rate of Na + ions was 30%, which means that salt (NaCl) or sodium hydroxide (NaOH) was deposited and remained in the reactor 101 or the discharge pipe 105. It indicates that
【0084】したがって、この比較例1の中和剤を超臨
界水と共に供給した方法では、反応器あるいは配管内で
塩あるいは水酸化ナトリウムが析出して中和が十分に行
われていないと判断される。Therefore, in the method of supplying the neutralizing agent of Comparative Example 1 together with the supercritical water, it was judged that salt or sodium hydroxide was deposited in the reactor or the pipe and the neutralization was not sufficiently performed. It
【0085】比較例2
更に、比較のために図4の旋回状に延設した管状反応器
を備えた超臨界水酸化処理を行う装置を使用して、超臨
界水酸化の処理を行った。Comparative Example 2 Further, for comparison, a supercritical water oxidation treatment was carried out by using an apparatus for performing a supercritical water oxidation treatment equipped with a tubular reactor extending in a swirl shape in FIG.
【0086】試験は、塩を生ずる物質を含む下記表4の
成分からなる物質を分解対象物の試料として、中和剤の
添加を行なわずに超臨界水酸化を行なった。In the test, a substance consisting of the components shown in Table 4 below including a substance which produces a salt was used as a sample of a substance to be decomposed, and supercritical water oxidation was carried out without adding a neutralizing agent.
【0087】[0087]
【表4】 [Table 4]
【0088】超臨界水酸化の条件は次の通りである。The conditions for supercritical water oxidation are as follows.
【0089】(試験条件)
温度・圧力 :650℃,25MPa
酸化剤 :空気
反応器 :図4に示した管状反応器(コイル型リ
アクター);内径5mm×130m
流量(SCW):8ml/min
(試料) :2ml/min
(空気) :1.6Nm3 /hr(試料の分解対象物を
100%分解するのに必要な理論量の1.8倍)。(Test conditions) Temperature / pressure: 650 ° C., 25 MPa Oxidizing agent: Air reactor: Tubular reactor (coil type reactor) shown in FIG. 4; Inner diameter 5 mm × 130 m Flow rate (SCW): 8 ml / min (Sample) ): 2 ml / min (air): 1.6 Nm 3 / hr (1.8 times the theoretical amount required for 100% decomposition of the decomposition target of the sample).
【0090】(試験結果)
(1) 以上によって720分間に渡り試験を行ない、
その時の管状反応器に温度分布を調べて図4に示した。(Test Results) (1) By the above, a test was conducted for 720 minutes,
The temperature distribution in the tubular reactor at that time was investigated and the result is shown in FIG.
【0091】(2) 反応器から排出された処理流体
(処理液)中に含まれる成分、及びCl- イオンを実施
例1と同様にして測定したところ下記表5の通りであっ
た。(2) The components contained in the treatment fluid (treatment liquid) discharged from the reactor and the Cl − ions were measured in the same manner as in Example 1, and the results are shown in Table 5 below.
【0092】[0092]
【表5】 [Table 5]
【0093】この表5の結果から分かるように、試料
(分解対象物)のうちの有機塩素化合物は実質的に完全
分解されたが、処理液のCl- イオン濃度が高く、pH
は3.1で塩酸が超臨界水酸化で生成されていることが
確認された。As can be seen from the results shown in Table 5, the organochlorine compound in the sample (decomposition target) was substantially completely decomposed, but the Cl - ion concentration of the treatment liquid was high, and the pH was low.
In 3.1, it was confirmed that hydrochloric acid was generated by supercritical water oxidation.
【0094】(3) 反応器始端部から120m付近の
反応器の周壁にピンホールが約幅2mに渡って発生し
た。この状況を図5に示した。(3) A pinhole was generated in a width of about 2 m on the peripheral wall of the reactor about 120 m from the starting end of the reactor. This situation is shown in FIG.
【0095】この始端部から120m付近は、図4の温
度分布の図から分かるように反応器内の温度したがって
分解生成流体である処理液の温度が水の臨界温度374
℃の近傍にある温度域であった。As can be seen from the temperature distribution diagram of FIG. 4, the temperature in the reactor, that is, the temperature of the treatment liquid, which is a decomposition product fluid, in the vicinity of 120 m from the start end is the critical temperature of water 374
The temperature range was in the vicinity of ° C.
【0096】この比較試験により、反応器あるいは処理
流体の流通する管路の酸腐食の問題が、水の臨界温度近
傍において発生することが確認された。By this comparative test, it was confirmed that the problem of acid corrosion of the reactor or the pipeline through which the treatment fluid flows occurs near the critical temperature of water.
【0097】[0097]
【発明の効果】以上述べたように、本願発明によれば、
ベッセル型(縦筒型)の反応容器内で分解対象物を超臨
界水酸化によって十分に分解させることができ、処理流
体の排出管の途中で、反応により生成した酸の中和を確
実に行えるので、装置を酸の腐食から保護でき、安全
性、耐久性に優れた処理を実現できるという効果が奏さ
れると共に、中和反応で生成した塩が反応器や排出系管
路の壁面に付着する問題を解消でき、反応器や管路の閉
塞の虞れがなくなるため、難分解性有機物や有害有機物
などの酸を生成する有機物の連続処理を好適に実現でき
る。As described above, according to the present invention,
The decomposition target can be sufficiently decomposed by supercritical water oxidation in a vessel type (vertical cylinder type) reaction vessel, and the acid generated by the reaction can be reliably neutralized in the middle of the discharge pipe of the processing fluid. As a result, the equipment can be protected from acid corrosion, and the treatment with excellent safety and durability can be achieved, and the salt generated by the neutralization reaction adheres to the wall surface of the reactor and the discharge system pipeline. Since the above problem can be solved and there is no fear of clogging of the reactor or the pipeline, continuous treatment of organic substances that generate acids such as hardly decomposable organic substances and harmful organic substances can be suitably realized.
【0098】また、上記の酸による腐蝕防止と共に中和
塩の付着防止を同時に達成できるため、ベッセル型反応
器に、塩移送水を供給・排出するための構造を設ける必
要がなく、制御が容易でしかも設備コストも安価な超臨
界水酸化設備による工業的規模の実施装置として極めて
優れている。Further, since it is possible to simultaneously prevent the corrosion by the above-mentioned acid and the adhesion of the neutralized salt, it is not necessary to provide the vessel type reactor with a structure for supplying / discharging the salt transfer water, and the control is easy. Moreover, the equipment cost is extremely excellent as an industrial scale implementation device using a supercritical water oxidation equipment.
【図1】本願発明の超臨界水酸化方法を実施するのに用
いられる実施形態1の装置の構成概要をフロー示した
図。FIG. 1 is a flowchart showing a schematic configuration of an apparatus of Embodiment 1 used for carrying out a supercritical water oxidation method of the present invention.
【図2】図1の装置を使用して超臨界水酸化の処理を行
った実施例1の操作概要と、温度分布を示した図。FIG. 2 is a diagram showing an operation outline and temperature distribution of Example 1 in which supercritical water oxidation was performed using the apparatus of FIG.
【図3】図3の従来のベッセル型反応器を使用して超臨
界水酸化の処理を行った比較例1の操作概要と、温度分
布を示した図。FIG. 3 is a diagram showing an operation outline and temperature distribution of Comparative Example 1 in which supercritical water oxidation was performed using the conventional Bessel-type reactor of FIG.
【図4】図4の管状反応器を使用して超臨界水酸化の処
理を行った比較例2の操作概要と、温度分布を示した
図。4 is a diagram showing an operation outline and temperature distribution of Comparative Example 2 in which supercritical water oxidation was carried out using the tubular reactor of FIG.
【図5】比較例2の処理を行なった場合に発生したピン
ホールの状況を示した図。FIG. 5 is a diagram showing a situation of pinholes generated when the process of Comparative Example 2 is performed.
1・・・ベッセル型の反応器、2・・・二重管ノズル、
3・・・廃液(分解対象物)供給管、4・・・超臨界水
供給管、5・・・処理液(処理流体)排出管、6・・・
中和剤供給管、101・・・ベッセル型の反応器、10
2・・・二重管ノズル、103・・・廃液(分解対象
物)供給管、104・・・超臨界水供給管、105・・
・処理液(メイン)排出管、107・・・純水供給管、
108・・・処理液(ブライン)排出管、109・・・
空気供給管、201・・・管状反応器、203・・・廃
液(分解対象物)供給管、204・・・超臨界水供給
管、205・・・処理液排出管、209・・・空気供給
管。1 ... Bessel type reactor, 2 ... double tube nozzle,
3 ... Waste liquid (decomposition target) supply pipe, 4 ... Supercritical water supply pipe, 5 ... Treatment liquid (treatment fluid) discharge pipe, 6 ...
Neutralizer supply pipe, 101 ... Vessel type reactor, 10
2 ... Double pipe nozzle, 103 ... Waste liquid (decomposition target) supply pipe, 104 ... Supercritical water supply pipe, 105 ...
・ Processing liquid (main) discharge pipe, 107 ... Pure water supply pipe,
108 ... Treatment liquid (brine) discharge pipe, 109 ...
Air supply pipe, 201 ... Tubular reactor, 203 ... Waste liquid (decomposition target) supply pipe, 204 ... Supercritical water supply pipe, 205 ... Treatment liquid discharge pipe, 209 ... Air supply tube.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 1/66 540 C02F 1/66 540H (72)発明者 大江 太郎 埼玉県戸田市川岸1丁目4番9号 オル ガノ株式会社総合研究所内 (72)発明者 川崎 慎一朗 埼玉県戸田市川岸1丁目4番9号 オル ガノ株式会社総合研究所内 (56)参考文献 特開 平7−275872(JP,A) 特開 平9−85075(JP,A) 特開 平8−38853(JP,A) 特公 平1−38532(JP,B2) 特表 平5−504093(JP,A) 米国特許5591415(US,A) 米国特許5133877(US,A) 米国特許5571424(US,A) 米国特許5571423(US,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/74 C02F 1/66 B01J 3/00,19/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C02F 1/66 540 C02F 1/66 540H (72) Inventor Taro Oe 1-4-9 Kawagishi, Toda City, Saitama Organo Co., Ltd. Research Institute (72) Inventor Shinichiro Kawasaki 1-4-9 Kawagishi, Toda City, Saitama Organo Research Institute (56) Reference JP-A-7-258772 (JP, A) JP-A-9-85075 (JP, A) JP-A-8-38853 (JP, A) JP-B 1-338532 (JP, B2) JP-A-5-504093 (JP, A) US Pat. No. 5591415 (US, A) US Pat. US, A) US Patent 5571424 (US, A) US Patent 5571423 (US, A) (58) Fields investigated (Int.Cl. 7 , DB name) C02F 1/74 C02F 1/66 B01J 3 / 00,19 / 00
Claims (10)
雰囲気を形成した縦筒型反応器の内に分解対象物を連続
的に供給すると共に、超臨界水の存在下で酸化分解し、
生成した酸化分解物を含む流体を上記縦筒型反応器に接
続した排出管路から連続的に排出し、上記流体に含まれ
る酸基を中和剤で中和する超臨界水酸化処理において、
上記排出管路内で、酸基による酸腐食作用が実質的にな
い水の臨界温度以上の高温の状態に維持しながら分解生
成物を含む流体への中和剤添加を行い、かつ該添加時又
は添加直後に中和生成塩が十分に溶解する温度範囲にな
るようにすることを特徴とする超臨界水酸化方法。1. An object to be decomposed is continuously supplied into a vertical cylindrical reactor in which a supercritical water atmosphere having a temperature and pressure higher than the critical point of water is formed, and oxidative decomposition is performed in the presence of supercritical water. and,
A fluid containing the produced oxidative decomposition product is continuously discharged from a discharge pipe connected to the vertical cylindrical reactor, and in a supercritical water oxidation treatment of neutralizing an acid group contained in the fluid with a neutralizing agent,
In the above-mentioned discharge pipeline, decomposition products are generated while maintaining a high temperature above the critical temperature of water , where there is virtually no acid corrosion effect due to acid groups.
The neutralizing agent is added to the fluid containing the product, and
Immediately after the addition, the neutralization product salt is in a temperature range where it is sufficiently dissolved.
Supercritical water method characterized by the so that.
する塩が塩化ナトリウムであり、排出管路を流通する流
体の中和剤添加時点の温度が450℃以上であることを
特徴とする超臨界水酸化方法。2. The salt according to claim 1, wherein the salt produced by the addition of the neutralizing agent is sodium chloride, and the temperature of the fluid flowing through the discharge pipeline at the time of adding the neutralizing agent is 450 ° C. or higher. Supercritical water oxidation method.
する塩が塩化ナトリウムであり、排出管路を流通する流
体の中和剤添加時点の温度が450℃以下の水の超臨界
水温度の範囲であることを特徴とする超臨界水酸化方
法。3. The supercritical water according to claim 1, wherein the salt produced by the addition of the neutralizing agent is sodium chloride, and the temperature of the fluid flowing through the discharge pipe at the time of adding the neutralizing agent is 450 ° C. or lower.
A supercritical water oxidation method characterized by being in the range of water temperature .
添加する中和剤が低温の水溶液であることを特徴とする
超臨界水酸化方法。4. The method according to any one of claims 1 to 3 ,
A supercritical water oxidation method in which the neutralizing agent to be added is a low temperature aqueous solution.
中和反応の後に分解生成物を含む流体を水の臨界温度以
下に冷却することを特徴とする超臨界水酸化方法。5. The method according to any one of claims 1 to 4 ,
A supercritical water oxidation method comprising cooling a fluid containing decomposition products to a temperature below the critical temperature of water after the neutralization reaction.
化反応用の反応器と、該反応器内に分解対象物,酸化剤
を連続供給する分解対象物及び酸化剤の供給手段と、超
臨界水酸化の反応により分解生成された流体を該反応器
から反応器外に排出するように接続された排出管路と、
この排出管路内を流通する流体に含まれる酸基を中和す
るために該排出管路の途中に設けられた中和剤添加手段
と、を備えたことを特徴とする請求項1の方法に用いる
超臨界水酸化装置。6. A reactor for a supercritical water oxidation reaction, which comprises a vertical cylindrical pressure-resistant container, and a means for supplying a decomposition target and an oxidizer for continuously supplying a decomposition target and an oxidizer into the reactor. A discharge pipe connected so as to discharge the fluid decomposed and produced by the reaction of supercritical water oxidation from the reactor to the outside of the reactor,
The method according to claim 1, further comprising: a neutralizing agent addition means provided in the middle of the discharge pipeline for neutralizing acid groups contained in the fluid flowing in the discharge pipeline. used <br/> supercritical water oxidation unit.
けた中和剤添加手段の位置が、流体に含まれる酸基によ
る酸腐食作用が実質的にない位置であることを特徴とす
る超臨界水酸化装置。7. The method of claim 6, and wherein the position of the neutralizing agent adding means provided in the middle of the discharge line is, acid corrosive action by acid groups contained in the fluid is substantially a have positions Supercritical water oxidation equipment.
けた中和剤添加手段の位置が、中和生成塩の溶解度が低
い水の臨界温度以上の流体が流通する位置であって、か
つ添加する中和剤は、添加によって該流体の温度を中和
生成塩が十分に溶解する温度に冷却することができる低
温水溶液としたことを特徴とする超臨界水酸化装置。8. The position of the neutralizing agent addition means provided in the middle of the discharge pipe line according to claim 6 , is a position where a fluid having a low solubility of the neutralization salt is above the critical temperature of water , Further, the neutralizing agent to be added is a supercritical water oxidation apparatus characterized by being a low temperature aqueous solution capable of cooling the temperature of the fluid to a temperature at which the neutralization salt is sufficiently dissolved by the addition.
上記の縦筒型反応器は、供給部として分解対象物,酸化
剤の供給口を有すると共に、排出部として、超臨界水酸
化の反応により生成した酸化分解物を含む流体を排出管
路に排出する一つの排出口のみを有することを特徴とす
る超臨界水酸化装置。9. In any of the claims 6 to 8,
The above-mentioned vertical cylinder type reactor has a supply port for a decomposition target and an oxidizing agent as a supply part, and as a discharge part, discharges a fluid containing an oxidative decomposition product generated by a reaction of supercritical water oxidation to a discharge pipeline. A supercritical water oxidation apparatus having only one outlet.
て、中和剤添加手段を設けた位置ないしその後段の排出
管路に、流通する流体を冷却するための冷却手段を設け
たことを特徴とする超臨界水酸化装置。10. In any of the claims 6 to 9, and characterized in that the discharge line position to the subsequent stage is provided a neutralizing agent addition means and a cooling means for cooling the fluid flowing Supercritical water oxidation equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13236597A JP3437408B2 (en) | 1997-05-22 | 1997-05-22 | Supercritical water oxidation method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13236597A JP3437408B2 (en) | 1997-05-22 | 1997-05-22 | Supercritical water oxidation method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10314769A JPH10314769A (en) | 1998-12-02 |
JP3437408B2 true JP3437408B2 (en) | 2003-08-18 |
Family
ID=15079675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13236597A Expired - Fee Related JP3437408B2 (en) | 1997-05-22 | 1997-05-22 | Supercritical water oxidation method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3437408B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4922500B2 (en) * | 2001-06-11 | 2012-04-25 | オルガノ株式会社 | Supercritical water reactor |
CN102295366B (en) * | 2011-08-04 | 2013-06-19 | 丰城向华水基科学技术有限公司 | Process of waste water oxidation treatment by supercritical water and reaction apparatus thereof |
US10688464B2 (en) | 2017-06-05 | 2020-06-23 | General Atomics | Corrosion inhibition in hydrothermal processing |
CN107311320B (en) * | 2017-06-07 | 2020-10-09 | 上海市环境工程设计科学研究院有限公司 | Scale inhibitor for treating wastewater by supercritical water oxidation technology and application thereof |
-
1997
- 1997-05-22 JP JP13236597A patent/JP3437408B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10314769A (en) | 1998-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3987646B2 (en) | Hydrothermal reaction treatment method and hydrothermal reaction treatment vessel | |
US5543057A (en) | Supercritical water oxidation of organics using a mobile surface | |
AU747415B2 (en) | Method and apparatus for treating salt streams | |
JP3437408B2 (en) | Supercritical water oxidation method and apparatus | |
WO2022155271A1 (en) | Hydrothermal system for treatment of adsorbent regeneration byproducts | |
JP3345285B2 (en) | How to start and stop supercritical water oxidation equipment | |
JP4455703B2 (en) | Supercritical water reactor | |
JP3437409B2 (en) | Supercritical water oxidation method and apparatus | |
JP3464897B2 (en) | Supercritical water oxidation method and apparatus | |
JP2002102672A (en) | Method and apparatus for hydrothermal reaction | |
JP4267791B2 (en) | Supercritical water treatment equipment | |
JP3836270B2 (en) | Method for shutting down supercritical water reactor | |
JP2003299941A (en) | Hydrothermal oxidative reaction treatment apparatus and method using the same | |
Brunner | Extraction and destruction of waste with supercritical water | |
JP4922500B2 (en) | Supercritical water reactor | |
JP3482306B2 (en) | Supercritical water oxidation method and apparatus for organic chlorine compounds | |
JP2001170664A (en) | Supercritical water treating device | |
JPH10137774A (en) | Method of supplying liquid to supercritical water oxidizing reactor, device therefor and super critical water oxidizing device | |
KR100778332B1 (en) | Apparatus and method for chemical agent disposal by a 2-step process | |
JP3816218B2 (en) | Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms | |
JP3607624B2 (en) | Method and apparatus for decomposing organic compounds | |
JP2001269566A (en) | Supercritical water reaction apparatus | |
JP3437737B2 (en) | Supercritical water reactor | |
Son et al. | Effect of NaOH on the decomposition of halogenated hydrocarbon by supercritical water oxidation | |
JP3669881B2 (en) | Method and apparatus for decomposing a hardly decomposable substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080606 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |