JPH10314769A - Supercritical water oxidizing method and device - Google Patents
Supercritical water oxidizing method and deviceInfo
- Publication number
- JPH10314769A JPH10314769A JP13236597A JP13236597A JPH10314769A JP H10314769 A JPH10314769 A JP H10314769A JP 13236597 A JP13236597 A JP 13236597A JP 13236597 A JP13236597 A JP 13236597A JP H10314769 A JPH10314769 A JP H10314769A
- Authority
- JP
- Japan
- Prior art keywords
- supercritical water
- temperature
- fluid
- reactor
- neutralizing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超臨界水酸化方法
及び装置に関し、例えば難分解性の廃棄物・廃液や有害
物質を含む廃棄物・廃液などの分解反応によって生成し
た流体中に酸を含むことになる物質を分解対象とする場
合に好適に用いられる超臨界水酸化方法とこれに用いる
超臨界水酸化装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for supercritical water oxidation, for example, a method for converting an acid into a fluid produced by a decomposition reaction of a hardly decomposable waste or waste liquid or a waste or waste liquid containing toxic substances. The present invention relates to a supercritical water oxidation method suitably used when a substance to be contained is to be decomposed and a supercritical water oxidation apparatus used for the method.
【0002】[0002]
【従来技術】従来より、難分解性の廃棄物・廃液や有害
物質を含む廃棄物・廃液など、環境に排出されると問題
を招く物質を完全に分解して安全な物質として廃棄する
技術が求められ、これらの廃棄物・廃液等を完全分解処
理するのに適した超臨界水酸化法が提案されている(例
えば特公平1−38532号公報)。2. Description of the Related Art Conventionally, there has been a technology for completely decomposing substances that cause a problem when discharged into the environment, such as hardly decomposable wastes and waste liquids and wastes and waste liquids containing harmful substances, and disposing them as safe substances. There has been proposed a supercritical water oxidation method suitable for completely decomposing these wastes and waste liquids (for example, Japanese Patent Publication No. 1-38532).
【0003】これは、従来の焼却炉で行われる燃焼法で
は、部分的な低温部分の発生による分解の不十分性によ
って例えば塩素化合物の分解ではダイオキシン等の毒性
の強い物質を生成する虞れがあり、また燃焼ガスを大気
に放出するために有害物質が拡散してしまうという問題
があるのに対し、超臨界水酸化の処理は、水の超臨界条
件下(温度374℃以上で圧力22MPa以上)で、超
臨界水を分解反応の媒体として利用して、分解対象の有
機物を水と二酸化炭素にまで完全に分解できる方法であ
って、熱分解、加水分解及び酸化分解が同時に進行して
非常に大きな反応速度を達成できるだけでなく、クロー
ズドな系で完全分解ができる点で優れているからであ
る。[0003] In the conventional combustion method performed in an incinerator, there is a possibility that a highly toxic substance such as dioxin may be generated in the decomposition of a chlorine compound, for example, due to insufficient decomposition due to the partial generation of a low-temperature portion. In addition, while there is a problem that harmful substances are diffused because the combustion gas is released into the atmosphere, the supercritical water oxidation treatment is performed under the supercritical condition of water (at a temperature of 374 ° C. or more and a pressure of 22 MPa or more). ) Is a method that can completely decompose the organic matter to be decomposed into water and carbon dioxide by using supercritical water as a medium for the decomposition reaction. This is because not only can it achieve a very high reaction rate, but also it can be completely decomposed in a closed system.
【0004】すなわち超臨界水酸化法は、水の臨界条
件、すなわち臨界温度374℃及び臨界圧力22MPa
を越えた条件下の水(超臨界水)はその極性が温度と圧
力で制御可能となってパラフィン形炭化水素やベンゼン
等の非極性物質も溶解することができ、酸素等のガスと
も任意の割合で単一相で混在するという有機物酸化分解
用の反応溶媒として極めて優れた特性を示すこと、分解
対象物の炭素含有率が数%あれば酸化熱だけで臨界温度
以上に昇温可能であるため、熱エネルギー的に非常に優
れていること、特に、ほとんどの難分解性有機物や有害
有機廃棄物を超臨界水中で加水分解反応や熱分解反応を
適切にコントロールすることにより完全に分解できると
いう極めて優れた作用があること、また、処理を閉鎖系
の装置内で行えることなどの点で、有害有機物の分解処
理に極めて適している。In the supercritical water oxidation method, the critical conditions of water, namely, a critical temperature of 374 ° C. and a critical pressure of 22 MPa are used.
Water (supercritical water) under the conditions exceeding the temperature can control the polarity by temperature and pressure, and can dissolve non-polar substances such as paraffin hydrocarbons and benzene. It shows excellent properties as a reaction solvent for oxidative decomposition of organic substances, which is mixed in a single phase at a ratio. If the decomposition target has a carbon content of several percent, it can be heated to a critical temperature or higher just by heat of oxidation. Therefore, it is extremely excellent in terms of thermal energy, and in particular, it can completely decompose most hardly decomposable organic substances and hazardous organic wastes in supercritical water by properly controlling the hydrolysis reaction and thermal decomposition reaction. It is extremely suitable for the decomposition treatment of harmful organic substances in that it has an extremely excellent action and that the treatment can be performed in a closed system.
【0005】このような超臨界水酸化の処理技術を提案
するものとしては、例えば、原理と基本フローを開示す
る上記特公平1−38532号公報が知られている。こ
れに開示の方法では、分解対象物はフィードポンプで昇
圧されエジェクターで超臨界水と混合し、加熱した後、
反応器に導入される。反応器では空気圧縮機からの高圧
空気が酸化剤として導入されて酸化分解が行なわれる。
処理後の超臨界水は、一部をエジェクターに再循環し、
残りの部分はエネルギー回収に利用される。ただしこの
文献には反応器の詳細が示されておらず、管状,円筒状
及び流動床式のものが採用できるという記述があるにす
ぎない。[0005] As a proposal of such a supercritical water oxidation treatment technique, for example, Japanese Patent Publication No. 1-38532 discloses the principle and basic flow. In the method disclosed therein, the decomposition target is pressurized by a feed pump, mixed with supercritical water by an ejector, and heated,
It is introduced into the reactor. In the reactor, high-pressure air from an air compressor is introduced as an oxidizing agent to perform oxidative decomposition.
Part of the supercritical water after treatment is recirculated to the ejector,
The rest is used for energy recovery. However, this document does not show details of the reactor, but merely mentions that a tubular, cylindrical or fluidized bed type can be adopted.
【0006】特表平3−500264号公報には、超臨
界水酸化に用いられる反応器が、例えば無機塩や無機塩
生成物質を含まない廃液を分解対象とした場合に適する
反応器型式として管状反応器の使用が開示され、また、
無機塩を含むかあるいは中和剤の添加を媒介して反応後
に無機塩を生成する有機性廃液を分解対象とした場合に
適した反応器型式として、いわゆるベッセル型と称され
る縦筒型の反応器が開示されている。Japanese Unexamined Patent Publication (Kokai) No. 3-500264 discloses that a reactor used for supercritical water oxidation has a tubular shape as a reactor type suitable for decomposing waste liquid not containing inorganic salts or inorganic salt-forming substances. The use of a reactor is disclosed, and
As a reactor type suitable for a case where an organic waste liquid containing an inorganic salt or generating an inorganic salt after the reaction through the addition of a neutralizing agent is to be decomposed, a vertical cylinder type so-called Vessel type is used. A reactor is disclosed.
【0007】ところで、超臨界水酸化によって処理しよ
うとする分解対象物の主なものの一つに難分解性有機物
や有害有機物があり、これらの多くは、塩素や硫黄、あ
るいは窒素、リンを含むため、これらの物質を超臨界水
酸化処理すると酸(塩酸、硫酸、硝酸及びリン酸)を生
成する場合が多いので、反応器材の保護のために耐酸腐
食対策としてこれらの酸をアルカリで中和する操作を行
うことが提案されている。ただし、この中和操作で生成
するNaCl等の無機塩は超臨界水にはほとんど溶解せ
ず、しかも管壁面等に対して付着性が高いことが知られ
ている。[0007] By the way, one of the main decomposed substances to be treated by supercritical water oxidation is a hardly decomposable organic substance or a harmful organic substance. Most of these substances contain chlorine, sulfur, nitrogen, or phosphorus. When these substances are subjected to supercritical water oxidation treatment, acids (hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid) are often generated, so that these acids are neutralized with an alkali as a measure against acid corrosion in order to protect the reactor materials. It is proposed to perform the operation. However, it is known that the inorganic salt such as NaCl generated by this neutralization operation hardly dissolves in supercritical water and has high adhesion to a pipe wall surface or the like.
【0008】このことは、超臨界水酸化法により高濃度
の塩素、硫黄、窒素、リン等の原子を含む物質を処理す
る場合には、耐酸腐食の対策のためには中和処理が必要
であるものの、中和処理を行う結果として生ずる中和塩
が反応器や排出系の管路の閉塞を引き起こすという問題
の解決が求められることを意味する。そこでこの問題を
解決する方法として、上記特表平3−500264号の
提案では、ベッセル型式の反応器の底部に亜臨界水を供
給・排出する手段を設けて、超臨界水酸化の反応で生成
する酸をアルカリで中和して塩とし、この塩の比重が重
いことを利用して上記亜臨界水に落下させることで比重
の軽い流体(超臨界水,揮発性ガス等)と分けた形で排
出する方法を提案している。[0008] This means that when a substance containing a high concentration of atoms such as chlorine, sulfur, nitrogen, and phosphorus is treated by the supercritical water oxidation method, a neutralization treatment is required to prevent acid corrosion. Nevertheless, it means that there is a need for a solution to the problem that the neutralized salt resulting from the neutralization treatment causes a blockage of the reactor or discharge line. In order to solve this problem, Japanese Patent Application Laid-Open No. 3-500264 proposes a method for supplying and discharging subcritical water at the bottom of a vessel of a vessel type, which is formed by the reaction of supercritical water oxidation. The resulting acid is neutralized with an alkali to form a salt, and the salt is dropped into the subcritical water using the heavy specific gravity of the salt to separate it from the light fluid (supercritical water, volatile gas, etc.) It proposes a method of discharging by.
【0009】上述のように、ベッセル型の反応器は、ベ
ッセル反応器内の上部に超臨界ゾーン、下部に亜臨界ゾ
ーンを形成させ、該反応器内で析出し密度差で下向に移
動した無機塩を亜臨界ゾーンで塩移送用の水に溶解させ
て排出する方法のものであるため、反応器からの排出系
が、反応器上部からの水及び揮発性のガスからなる分解
生成流体(超臨界水、余剰酸素、二酸化炭素及び窒素の
混合物)の排出系と、反応器下部からのブライン流(塩
化ナトリウム等の無機塩を含む塩移送用水)の排出系の
二つがあり、これら二つの排出系それぞれに熱回収、冷
却及び減圧工程が必要となって、装置の構成が複雑で設
備投資が嵩む。また制御上及び維持管理上も管状反応器
を使用する場合に比べて複雑になるという問題がある。As described above, in the Bessel type reactor, a supercritical zone is formed in the upper part and a subcritical zone is formed in the lower part in the Bessel reactor, and precipitated and moved downward due to a density difference in the reactor. In this method, the inorganic salt is dissolved in water for transporting the salt in the subcritical zone and then discharged. Therefore, the discharge system from the reactor is provided with a decomposition product fluid (water and volatile gas from the upper part of the reactor). There are two systems, a discharge system for supercritical water, excess oxygen, a mixture of carbon dioxide and nitrogen), and a discharge system for brine flow (water for salt transfer containing inorganic salts such as sodium chloride) from the lower part of the reactor. Heat recovery, cooling and decompression steps are required for each discharge system, which complicates the structure of the apparatus and increases capital investment. In addition, there is a problem that control and maintenance are complicated as compared with the case where a tubular reactor is used.
【0010】更に、ベッセル型式の反応器では、その内
壁への塩化ナトリウム等の無機塩の付着があるため、こ
れを掻き落とすスクレーパ等の付属的な装置を設備しな
ければならないという問題もある。Further, in the vessel type reactor, since an inorganic salt such as sodium chloride adheres to the inner wall of the reactor, there is a problem that an additional device such as a scraper for scraping the inorganic salt must be provided.
【0011】[0011]
【発明が解決しようとする課題】以上述べたように、超
臨界水酸化の技術は、有機物の分解処理に有効な技術で
あるが、主に難分解性有機物や有害有機物に代表される
酸を生成する物質を含む分解対象物の酸化分解処理を、
工業的規模でコストや装置の耐久性などを考慮して実施
できるようにするためには更に解決すべき課題がある。As described above, the supercritical water oxidation technique is an effective technique for the decomposition treatment of organic substances, but mainly uses acids represented by hardly decomposable organic substances and toxic organic substances. The oxidative decomposition treatment of the decomposition target containing the generated substance,
There are further problems to be solved in order to be able to implement the method on an industrial scale in consideration of the cost and the durability of the apparatus.
【0012】本発明者らはこのような現状に鑑みて鋭意
研究を進め本発明をなすに至ったものである。The present inventors have conducted intensive research in view of such a current situation, and have accomplished the present invention.
【0013】すなわち本発明の目的の一つは、超臨界水
酸化によって生成した酸の中和を確実に行うことで、装
置を酸腐食から保護できて、安全性、耐久性に優れた処
理を実現することができる超臨界水酸化法及びこれに用
いる装置を提供するところにある。[0013] That is, one of the objects of the present invention is to ensure the neutralization of the acid generated by supercritical water oxidation, thereby protecting the apparatus from acid corrosion and providing a treatment excellent in safety and durability. An object of the present invention is to provide a supercritical water oxidation method that can be realized and an apparatus used for the method.
【0014】本発明の他の目的は、上記の確実な中和に
よる装置の酸腐食からの保護と共に、中和で生成した塩
が反応器や排出系管路の内壁に付着する問題を解消でき
る超臨界水酸化法及びこれに用いる装置を提供するとこ
ろにある。Another object of the present invention is to protect the apparatus from acid corrosion by the above-mentioned reliable neutralization and to solve the problem that the salt formed by the neutralization adheres to the inner wall of the reactor or the discharge line. It is an object of the present invention to provide a supercritical water oxidation method and an apparatus used for the method.
【0015】本発明の更に他の目的は、中和反応で生成
した塩の反応器や排出系管路の壁面への付着を防止でき
るようにすることで、酸を生成する有機物、特に難分解
性有機物や有害有機物を低コストに効率よく分解できる
超臨界水酸化法及びこれに用いる装置を提供するところ
にある。Still another object of the present invention is to prevent the salt generated by the neutralization reaction from adhering to the walls of the reactor and the discharge line, thereby enabling organic substances which generate acids, especially hardly decomposable substances. It is an object of the present invention to provide a supercritical water oxidation method capable of efficiently decomposing toxic organic substances and harmful organic substances at low cost and an apparatus used for the method.
【0016】[0016]
【課題を解決するための手段および作用】上記の目的は
本願の特許請求の範囲に記載した各請求項の発明により
達成される。The above objects can be attained by the inventions set forth in the claims of the present application.
【0017】本願請求項1の発明は、水の臨界点以上の
温度,圧力の超臨界水雰囲気を形成した縦筒型反応器の
内に分解対象物を連続的に供給すると共に、超臨界水の
存在下で酸化分解して生成した流体を上記縦筒型反応器
に接続した排出管路から連続的に排出し、上記流体に含
まれる酸基は中和剤で中和する超臨界水酸化処理におい
て、上記縦筒型反応器内を酸基による酸腐食作用が実質
的にない高温の状態に維持し、上記排出管路に排出され
た流体に対して中和剤を添加すると共に、該添加時点又
は添加直後の流体の温度を、酸基による酸腐食作用が実
質的になくかつ中和生成塩は十分に溶解する温度の状態
にあるようにしたことを特徴とする。According to the first aspect of the present invention, a decomposition target is continuously supplied into a vertical cylindrical reactor having a supercritical water atmosphere at a temperature and a pressure higher than a critical point of water. The fluid generated by oxidative decomposition in the presence of water is continuously discharged from a discharge line connected to the vertical cylindrical reactor, and the acid groups contained in the fluid are neutralized with a neutralizing agent. In the treatment, the inside of the vertical cylindrical reactor is maintained at a high temperature substantially free of acid corrosion by the acid group, and a neutralizing agent is added to the fluid discharged to the discharge line, The fluid is characterized in that the temperature of the fluid at the time of or immediately after the addition is such that there is substantially no acid corrosion by the acid groups and the neutralized salt is sufficiently dissolved.
【0018】請求項2の発明は、上記超臨界水酸化処理
おいて、上記縦筒型反応器内を酸基による酸腐食作用が
実質的にない高温の状態に維持し、上記排出管路に排出
された中和生成塩の溶解度が小さい高温の流体に対して
中和剤を添加すると共に、中和剤の添加直後の流体の温
度を中和生成塩が十分に溶解する温度範囲に冷却するこ
とを特徴とする。According to a second aspect of the present invention, in the supercritical water oxidation treatment, the inside of the vertical cylindrical reactor is maintained at a high temperature substantially free from an acid corrosion action due to an acid group. A neutralizing agent is added to the discharged high-temperature fluid having a low solubility of the neutralized salt, and the temperature of the fluid immediately after the addition of the neutralizing agent is cooled to a temperature range in which the neutralized salt is sufficiently dissolved. It is characterized by the following.
【0019】請求項3の発明は、上記超臨界水酸化処理
おいて、上記縦筒型反応器内を酸基による酸腐食作用が
実質的にない高温の状態に維持し、上記排出管路に排出
されて水の臨界温度よりも高い温度であって中和生成塩
を十分に溶解する温度範囲にある流体に対して中和剤を
添加することを特徴とする。According to a third aspect of the present invention, in the supercritical water oxidation treatment, the inside of the vertical cylindrical reactor is maintained at a high temperature substantially free of an acid corrosion action due to an acid group, and is provided to the discharge pipe. It is characterized in that a neutralizing agent is added to the fluid discharged and having a temperature higher than the critical temperature of water and in a temperature range in which the neutralized product salt is sufficiently dissolved.
【0020】本発明者等がこれらの各発明をなすに至っ
たのは次のことによる。すなわち、従来の酸の生成を伴
う超臨界水酸化処理においては、中和剤は分解対象物や
超臨界水等と共に反応器の始端部から供給されていた。
これは、反応によって酸が生成する超臨界水酸化反応で
は、反応器を保護するために反応領域で中和が行われる
ことが必要と考えられるからである。The inventor of the present invention has made the following inventions. That is, in the conventional supercritical water oxidation treatment involving generation of an acid, the neutralizing agent is supplied from the starting end of the reactor together with the decomposition target, supercritical water, and the like.
This is because in a supercritical hydroxylation reaction in which an acid is generated by the reaction, it is considered necessary to perform neutralization in the reaction zone in order to protect the reactor.
【0021】ところが、本発明者等が超臨界水酸化の条
件を様々に変更して研究を繰り返したところ、反応器で
はなく分解生成した流体の排出系管路においてピンホー
ルの発生することが知見され、その状況を更に観察、分
析したところ、酸腐食の問題は反応器内よりもむしろ超
臨界水酸化で生成された流体の温度が冷却された段階で
生ずるという従来の技術理解とは異なる事実,現象を見
い出した。そしてこの現象が起こるのは次のような反応
メカニズムに基づくものと推定された。すなわち、超臨
界水酸化により分解した生成流体中の酸基(例えばハロ
ゲン等)は超臨界水中では遊離していて酸として反応器
等の壁面を腐食する作用がないかあるいは極めて弱いの
に対し、分解生成流体が冷却されて超臨界水が液体
(水)に相転移したときにはその遊離酸基が液中に急激
に溶解して局所的に酸濃度を上昇させ、高濃度の酸の作
用を生じて反応器等の壁面を腐食すると考えられるので
ある。そこで本発明者等は、反応器内が最も過酷な酸腐
食環境にあると考えていた従来の技術理解とは異なる観
点から、生成する酸の中和操作を再検討したところ、中
和剤の添加は要するに酸による腐食を防ぐためであるか
ら、本発明者等の知見した事実に基づけば、酸基が液体
に溶解して酸腐食の問題を生ずる段階で中和反応が行わ
れていればよく必ずしも反応器内での中和反応を必須と
するものではないと理解される。一方、中和生成塩は高
温の超臨界水には一般にほとんど溶解せず、しかも強い
付着性をもっており、したがって、中和反応で生成した
塩が十分に溶解することができ、しかも酸基による酸腐
食の問題がない状態で中和反応を行うことができれば、
酸による腐食の防止と共に管路閉塞につながる塩付着の
問題を併せて効果的に解消できることになる。本発明者
等はかかる着目点を技術的に実証する試験を重ねて上記
各発明をなすに至ったのである。However, the inventors of the present invention have repeated studies with various conditions of supercritical water oxidation, and found that pinholes are generated not in the reactor but in the discharge line of the fluid generated by decomposition. When the situation was further observed and analyzed, the fact that the acid corrosion problem occurred in the stage of cooling the fluid produced by supercritical water oxidation rather than in the reactor differs from the conventional technical understanding that , I found a phenomenon. This phenomenon was presumed to be based on the following reaction mechanism. In other words, the acid groups (eg, halogens) in the product fluid decomposed by supercritical water oxidation are free in supercritical water and have no or very weak action as an acid to corrode the walls of the reactor, etc. When the decomposition product fluid is cooled and the supercritical water undergoes a phase transition to liquid (water), its free acid radicals rapidly dissolve in the liquid and locally increase the acid concentration, causing the action of a high concentration of acid. It is thought that the wall of the reactor etc. is corroded. Therefore, the present inventors reexamined the neutralizing operation of the generated acid from a viewpoint different from the conventional technical understanding that the inside of the reactor was considered to be in the most severe acid corrosion environment. Since the addition is in order to prevent corrosion by the acid, the neutralization reaction is carried out at the stage where the acid group is dissolved in the liquid to cause the problem of the acid corrosion, based on the fact that the present inventors have found. It is well understood that a neutralization reaction in the reactor is not necessarily required. On the other hand, the neutralized product salt is generally hardly soluble in high-temperature supercritical water and has strong adhesiveness. Therefore, the salt generated by the neutralization reaction can be sufficiently dissolved, and the acid generated by the acid group If the neutralization reaction can be performed without corrosion problems,
In addition to preventing corrosion by acid, it is possible to effectively solve the problem of salt adhesion leading to blockage of the pipeline. The present inventors have conducted tests for technically verifying such a point of interest, and have reached the above-described inventions.
【0022】上記の各発明においては、縦筒型の反応器
内を超臨界雰囲気に維持して分解対象物を十分に超臨界
酸化させることが重要であり、またその反応の結果、分
解して生成された流体を排出管路に排出した後に、その
排出管路の途中で中和剤を添加することが重要である。In each of the above-mentioned inventions, it is important to maintain the inside of the vertical cylindrical reactor in a supercritical atmosphere to sufficiently supercritically oxidize the decomposition object. After discharging the generated fluid to the discharge line, it is important to add the neutralizing agent in the middle of the discharge line.
【0023】そして請求項1の発明においては、この添
加により該生成流体が「酸基による酸腐食が実質的にな
くかつ中和生成塩が十分に溶解する温度の状態にある」
ようにされる。本明細書において「酸基」という場合
は、塩酸等を生ずる塩素等のハロゲンの他、その原子単
独でいわゆる酸基を構成するものではないが、硫酸,硝
酸,リン酸等の酸を生ずることになる硫黄,窒素,リン
等を含むものとする。According to the first aspect of the present invention, the addition fluid causes the produced fluid to be "at a temperature at which substantially no acid corrosion due to acid groups is caused and the neutralized product salt is sufficiently dissolved".
To be. In the present specification, the term "acid group" does not constitute a so-called acid group by its atoms alone in addition to halogen such as chlorine which generates hydrochloric acid, etc., but may generate an acid such as sulfuric acid, nitric acid or phosphoric acid. Sulfur, nitrogen, phosphorus, etc.
【0024】このような物質を含む代表的な分解対象有
機物は、残留性有機汚染物質(POPs:Persistent O
rganic Pollutants )あるいは残留性有害生物蓄積物質
(PTBs:Persistent Toxic Bio-accumlatives )で
あり、代表的な物質としては環境基準において有害物質
指定されているPCBs、トリクロロエチレン、テトラ
クロロエチレン、廃農薬等の有機塩素化合物が挙げられ
これらは一般に難分解性物質である。またこれらの他
に、有機臭素化合物等のハロゲン化合物や、硫黄化合
物、窒素化合物、リン化合物等も挙げられる。Representative organic substances to be decomposed containing such substances are persistent organic pollutants (POPs: Persistent O.P.).
rganic pollutants) or persistent toxic bio-accumlatives (PTBs). Representative substances are PCBs, trichlorethylene, tetrachloroethylene, and organic pesticides such as waste pesticides, which are designated as harmful substances in environmental standards. These are generally hardly decomposable substances. In addition to these, halogen compounds such as organic bromine compounds, sulfur compounds, nitrogen compounds, phosphorus compounds and the like can also be mentioned.
【0025】上記の「酸腐食が実質的にない温度の状
態」というのは、超臨界水が液体(水)に相転移する臨
界温度(374℃)を越えた温度域をいうが、実施装置
における温度変動などを考慮すれば、一般的には374
℃以上、好ましくは450℃以上とするのが好ましい。
「中和生成塩が十分に溶解する温度の状態」というの
は、生成する塩の種類により同じでないので一律に温度
限界として決められないが、例えば塩が塩化ナトリウム
の場合には、500℃,25MPaの超臨界水に対する
溶解度は約100ppmであるのに対し、450℃程度
を下回る超臨界水に対しては数%のオーダーで溶解す
る。したがって塩として塩化ナトリウムを生成する中和
剤を使用する場合には、中和剤を添加した分解生成流体
の温度状態が一般的には374〜450℃、好ましくは
400〜450℃であるようにするのが適当である場合
が多い。「十分に溶解」とは塩が壁面等に付着して閉塞
の問題を招かないようにできることをいう。他の種類の
塩が生成される場合には、上記と同様にその塩が十分に
溶解する温度が上記温度状態(範囲)の上限とされる。
このような他の種類の塩が十分溶解する温度範囲は必要
に応じて試験を行うことで求めることができる。なお本
発明において用いることができる中和剤としては、水酸
化ナトリウム、水酸化カリウム等のアルカリ水酸化物を
代表的に挙げることができるが、これに限定されるもの
ではない。添加は一般に水溶液の形で行うのが好まし
い。The above "state of a temperature substantially free of acid corrosion" refers to a temperature range exceeding a critical temperature (374 ° C.) at which supercritical water undergoes a phase transition to a liquid (water). Considering the temperature fluctuation at
C. or higher, preferably 450 ° C. or higher.
The "temperature at which the neutralized product salt is sufficiently dissolved" cannot be uniformly determined as the temperature limit because it is not the same depending on the type of the salt to be produced. The solubility in supercritical water at 25 MPa is about 100 ppm, whereas the solubility in supercritical water below 450 ° C. is on the order of several percent. Therefore, when a neutralizing agent that generates sodium chloride is used as a salt, the temperature of the decomposition product fluid to which the neutralizing agent is added is generally 374 to 450 ° C, preferably 400 to 450 ° C. It is often appropriate to do so. "Sufficiently dissolved" means that salt can be prevented from adhering to a wall surface or the like to cause a problem of clogging. When another type of salt is produced, the temperature at which the salt sufficiently dissolves is set as the upper limit of the temperature state (range) as described above.
The temperature range in which such other types of salts are sufficiently dissolved can be determined by conducting tests as necessary. In addition, as a neutralizing agent which can be used in the present invention, an alkali hydroxide such as sodium hydroxide or potassium hydroxide can be typically exemplified, but it is not limited thereto. The addition is generally preferably effected in the form of an aqueous solution.
【0026】上記請求項2の発明は、基本的には上記請
求項1の発明と同様であるが、中和剤の添加を、中和反
応で生成する塩の溶解度が低い(ほとんど溶解しない)
高温の流体(分解生成流体)に対して行うことを特徴の
一つとする。例えば、生成する塩が塩化ナトリウムであ
る場合には反応温度(例えば500℃以上)〜450℃
の範囲で中和剤の添加が行われる。中和剤添加は、超臨
界水酸化による分解対象物の完全分解に影響がないよう
に、排出管路において行なわれる。またこの請求項2の
発明は、中和剤を添加した直後の分解生成流体の温度
を、中和反応で生成する塩を十分に溶解することができ
る温度にまで冷却することをもう一つの特徴とする。こ
の冷却のためには、添加する中和剤に低温の水溶液を用
いて生成流体の温度を低下させるか、冷却手段を用いて
温度を低下させる方法が例示される。低下させた後の温
度は臨界温度以上であっても以下であってもよい。The second aspect of the present invention is basically the same as the first aspect of the present invention, except that the addition of the neutralizing agent has a low solubility (almost no solubility) of the salt formed in the neutralization reaction.
One of the features is that the process is performed on a high-temperature fluid (a decomposition product fluid). For example, when the generated salt is sodium chloride, the reaction temperature (for example, 500 ° C. or higher) to 450 ° C.
The addition of the neutralizing agent is performed within the range. The addition of the neutralizing agent is performed in the discharge line so as not to affect the complete decomposition of the decomposition target by supercritical water oxidation. Another feature of the present invention is that the temperature of the decomposition product fluid immediately after the addition of the neutralizing agent is cooled to a temperature at which the salt generated by the neutralization reaction can be sufficiently dissolved. And For this cooling, a method of lowering the temperature of the generated fluid by using a low-temperature aqueous solution as a neutralizing agent to be added or a method of lowering the temperature by using a cooling means is exemplified. The temperature after the reduction may be higher or lower than the critical temperature.
【0027】上記請求項3の発明は、基本的には上記請
求項1の発明と同様であるが、中和剤の添加を、中和反
応で生成する塩の溶解度が高い温度であって、かつ臨界
温度よりも高い温度範囲にある流体(分解生成流体)に
対して行うものである。生成する塩が塩化ナトリウムで
ある場合には、一般的には600〜450℃、好ましく
は500〜450℃の温度の分解生成流体に対して行わ
れる。低下させた後の温度は臨界温度以上であっても以
下であってもよい。The third aspect of the invention is basically the same as the first aspect of the invention, except that the addition of the neutralizing agent is carried out at a temperature at which the solubility of the salt formed in the neutralization reaction is high, In addition, it is performed on a fluid (decomposition generated fluid) in a temperature range higher than the critical temperature. When the salt to be produced is sodium chloride, it is generally carried out on a decomposition product fluid at a temperature of 600 to 450 ° C, preferably 500 to 450 ° C. The temperature after the reduction may be higher or lower than the critical temperature.
【0028】以上の請求項1〜3の発明の構成におい
て、超臨界水雰囲気は、通常は分解対象物である有機物
と超臨界水及び酸化剤を臨界圧(22MPa)以上の加
圧下で反応器に供給することにより該分解対象有機物が
臨界温度(374℃)以上で形成され、これは従来から
知られているいわゆるベッセル型の反応器を用いた超臨
界水酸化法の技術を用いて行うことができる。ただし本
発明においては、反応器内は全域に渡って超臨界雰囲気
に維持される。超臨界水は、分解対象物と別に供給する
こともできるし混合して供給することもできる。また分
解対象物が必要量の水を含み、かつ分解対象物の自燃に
より超臨界水雰囲気が維持できる場合には、反応当初の
み超臨界水を供給すればよい。なお超臨界水雰囲気は、
反応器に超臨界水を供給しない方法によっても形成する
ことができる。In the above-mentioned structure of the invention according to claims 1 to 3, the supercritical water atmosphere is usually prepared by reacting an organic substance to be decomposed, supercritical water and an oxidizing agent under a pressure higher than the critical pressure (22 MPa). And the organic matter to be decomposed is formed at a critical temperature (374 ° C.) or higher, which is performed by using a conventionally known technique of a supercritical water oxidation method using a so-called Bessel type reactor. Can be. However, in the present invention, the inside of the reactor is maintained in a supercritical atmosphere over the entire region. The supercritical water can be supplied separately from the decomposition target, or can be supplied as a mixture. If the decomposition target contains a necessary amount of water and the supercritical water atmosphere can be maintained by the self-combustion of the decomposition target, supercritical water may be supplied only at the beginning of the reaction. The supercritical water atmosphere is
It can also be formed by a method without supplying supercritical water to the reactor.
【0029】この方法としては例えば、縦筒型反応器の
周囲に例えば電熱コイル等の発熱体を配置し、反応器の
周囲から加熱して反応器内部に熱を加える方法を挙げる
ことができる。As this method, for example, there can be mentioned a method in which a heating element such as an electric heating coil is arranged around a vertical cylindrical reactor, and heating is performed from around the reactor to apply heat to the inside of the reactor.
【0030】この方法によれば、反応器に分解対象物で
ある有機物と酸化剤と分解対象物に必要量の水が含まれ
ていない場合には水とを供給し、反応器の周囲に設置し
た発熱体から熱を伝えることにより反応器内部を加熱
し、反応器内部を超臨界水雰囲気とすることができる。
なお、分解対象物の自燃により超臨界水酸化が維持でき
る場合には、反応当初のみ発熱体から熱を与え、自燃が
十分継続するようにした以降は発熱体からの熱供給を中
断することもできる。また分解対象有機物等は必要に応
じ予熱して供給することができる。酸化剤としては空
気、酸素ガスの他、過酸化水素水等の液相酸化剤を用い
ることもできる。According to this method, the reactor is supplied with an organic substance which is an object to be decomposed, an oxidizing agent, and water when the required amount of water is not contained in the object to be decomposed, and is installed around the reactor. The inside of the reactor can be heated by transferring heat from the heated heating element to make the inside of the reactor a supercritical water atmosphere.
If supercritical water oxidation can be maintained by the self-combustion of the decomposition target, heat may be supplied only from the heating element at the beginning of the reaction, and the heat supply from the heating element may be interrupted after the self-combustion is sufficiently continued. it can. The organic matter to be decomposed can be supplied after being preheated as necessary. As the oxidizing agent, a liquid phase oxidizing agent such as hydrogen peroxide solution can be used in addition to air and oxygen gas.
【0031】上記の各発明を実施するための装置型式
は、縦筒型のいわゆるベッセル型反応器であればよく、
一般的には容器の上部中央から分解対象物,超臨界水及
び酸化剤を供給する方式のものが用いられるが、前述し
た通り発熱体を設置する方式でもよい。The type of the apparatus for carrying out each of the above-mentioned inventions may be a vertical cylinder type so-called Bessel type reactor.
Generally, a method of supplying a decomposition target, supercritical water, and an oxidizing agent from the upper center of the container is used, but a method in which a heating element is provided as described above may be used.
【0032】排出管路を流通する流体に対して中和剤を
添加する操作は、例えば、反応のために設定した超臨界
圧の状態に加圧した中和剤水溶液を、排出管路に接続し
た注入パイプを介して注入することで行うことができ
る。The operation of adding the neutralizing agent to the fluid flowing through the discharge line includes, for example, connecting an aqueous solution of the neutralizing agent pressurized to a supercritical pressure set for the reaction to the discharge line. It can be performed by injecting through a filled injection pipe.
【0033】本発明の超臨界水酸化法は、超臨界水雰囲
気中で対象物を完全分解する臨界圧力,臨界温度(22
MPa,374℃)を越えた条件で実施されるされるも
のであれば限定されることなく適用されるが、本発明方
法が特に好ましく適用される難分解性物質を超臨界水酸
化して分解処理する場合の条件としては、一般に、温度
が400℃以上、好ましくは600〜650℃前後で、
反応圧力が22〜50MPa、好ましくは22〜25M
Pa前後とするのが適当である場合が多い。反応時間は
1〜10分、好ましくは1〜2分程度である。In the supercritical water oxidation method of the present invention, the critical pressure and critical temperature (22
(MPa, 374 ° C.), but any method can be applied without limitation. Conditions for the treatment are, generally, a temperature of 400 ° C. or higher, preferably around 600 to 650 ° C.,
Reaction pressure is 22-50MPa, preferably 22-25M
It is often appropriate to set it to around Pa. The reaction time is about 1 to 10 minutes, preferably about 1 to 2 minutes.
【0034】上記の各発明によれば、中和剤の注入(添
加)後に生成した塩は、超臨界水あるいは水に十分に溶
解するので、排出管路の壁面への付着の虞れがなく、し
たがって該管路が閉塞する虞れを実質的に解消すること
ができ、しかも反応器の酸による腐食のおそれもない。According to each of the above-mentioned inventions, the salt formed after the injection (addition) of the neutralizing agent is sufficiently dissolved in supercritical water or water, so that there is no danger that the salt will adhere to the wall of the discharge pipe. Therefore, it is possible to substantially eliminate the possibility that the pipe is blocked, and there is no possibility that the reactor may be corroded by acid.
【0035】請求項4の発明は、上記請求項2の発明に
おいて、中和剤の添加で生成する塩が塩化ナトリウムで
あり、排出管路を流通する流体の中和剤添加時点の温度
が450℃以上であることを特徴とし、請求項5の発明
は、上記請求項3の発明において、中和剤の添加で生成
する塩が塩化ナトリウムであり、排出管路を流通する流
体の中和剤添加時点の温度が450℃以下であることを
特徴とする。According to a fourth aspect of the present invention, in the second aspect of the present invention, the salt formed by adding the neutralizing agent is sodium chloride, and the temperature of the fluid flowing through the discharge line at the time of adding the neutralizing agent is 450. In a fifth aspect of the present invention, the salt formed by the addition of the neutralizing agent is sodium chloride, and the neutralizing agent for the fluid flowing through the discharge pipe is provided. The temperature at the time of addition is 450 ° C. or lower.
【0036】これらの発明によれば、中和剤として最も
代表的な水酸化ナトリウムを用いて中和反応の操作を行
わせることができ、また後者の発明では、450℃以下
の温度範囲で超臨界水酸化を実施する場合に対応でき
る。According to these inventions, the operation of the neutralization reaction can be carried out using sodium hydroxide, which is the most representative as a neutralizing agent, and in the latter invention, the temperature exceeds 450 ° C. It can cope with the case where critical water oxidation is performed.
【0037】請求項6の発明は、上記の各発明におい
て、添加する中和剤が低温(例えば常温)の水溶液であ
ることを特徴とする。A sixth aspect of the present invention is characterized in that, in each of the above-mentioned inventions, the neutralizing agent to be added is an aqueous solution at a low temperature (for example, normal temperature).
【0038】この発明によれば、中和剤水溶液を添加す
ることによって分解生成流体の温度を低下させることが
でき、添加位置や添加前の流体の温度にもよるが、塩が
十分に溶解する温度まで該流体の温度を低下させること
ができて、熱交換器等の他の冷却手段を省略できる場合
がある。According to the present invention, the temperature of the decomposition product fluid can be lowered by adding the aqueous solution of the neutralizing agent, and the salt is sufficiently dissolved depending on the addition position and the temperature of the fluid before the addition. In some cases, the temperature of the fluid can be reduced to the temperature, and other cooling means such as a heat exchanger can be omitted.
【0039】請求項7の発明は、上記の各発明におい
て、中和反応の後に分解生成流体を水の臨界温度以下に
冷却することを特徴とする。The invention of claim 7 is characterized in that, in each of the above-mentioned inventions, after the neutralization reaction, the decomposition product fluid is cooled to a critical temperature of water or lower.
【0040】この発明によれば、中和反応で酸を確実に
塩にした後に分解生成流体の温度を臨界温度以下に低下
させるので、臨界温度近傍での腐食の原因が除去され
る。According to the present invention, the temperature of the decomposition product fluid is lowered to a critical temperature or lower after the acid is converted into a salt by the neutralization reaction, so that the cause of corrosion near the critical temperature is eliminated.
【0041】請求項8の超臨界水酸化装置の発明は、縦
筒型の耐圧性容器からなる超臨界水酸化反応用の反応器
と、該反応器内に分解対象物,酸化剤を連続供給する分
解対象物及び酸化剤の供給手段と、超臨界水酸化の反応
により分解生成された流体を該反応器から反応器外に排
出するように接続された排出管路と、この排出管路内を
流通する流体に含まれる酸基を中和するために該排出管
路の途中に設けられた中和剤添加手段と、を備えたこと
を特徴とする。The invention of a supercritical water oxidation apparatus according to claim 8 provides a reactor for a supercritical water oxidation reaction comprising a vertical cylindrical pressure-resistant container, and a continuous supply of a substance to be decomposed and an oxidizing agent into the reactor. Supply means for supplying the decomposition object and the oxidizing agent to be decomposed, a discharge pipe connected to discharge the fluid decomposed and generated by the reaction of supercritical hydroxylation from the reactor to the outside of the reactor, and a discharge pipe inside the discharge pipe. And a neutralizing agent adding means provided in the middle of the discharge conduit to neutralize the acid groups contained in the fluid flowing through.
【0042】上記構成において、反応器は、望ましくは
例えば耐酸腐食性合金(例えば高温での耐酸化性に優れ
たインコネル等)などを用いて構成することができる。
中和剤添加手段は、超臨界水酸化の反応に悪影響を与え
ないように、排出系管路に、管の周壁に接続することで
設けられる。中和剤は水溶液の形で用いられるのが好ま
しく、限定されるものではないが、例えば、高圧圧入ポ
ンプなどの加圧系を用いて中和剤タンクから反応器内に
圧入するか、反応容器内よりも高圧に加圧したタンクか
ら圧入することができる。中和剤を添加する系路には必
要に応じて開閉弁、流量制御弁などを設けることがで
き、また中和剤の濃度調整装置などを設けることもでき
る。In the above configuration, the reactor can be desirably made of, for example, an acid-corrosion-resistant alloy (for example, Inconel having excellent oxidation resistance at high temperatures).
The neutralizing agent adding means is provided by being connected to a peripheral pipe wall so as not to adversely affect the supercritical water oxidation reaction. The neutralizing agent is preferably used in the form of an aqueous solution, but is not limited thereto.For example, the neutralizing agent may be pressed into the reactor from a neutralizing agent tank using a pressurizing system such as a high-pressure press-in pump, or the reaction vessel may be used. It can be press-fitted from a tank pressurized to a higher pressure than inside. An on-off valve, a flow control valve, and the like can be provided as necessary in the system to which the neutralizing agent is added, and a concentration adjusting device for the neutralizing agent can be provided.
【0043】なお、分解対象有機物、酸化剤等は、通
常、反応器の中央部からノズル等を用いて供給され、中
和剤添加手段を除いた、分解対象物等の供給系、分解生
成流体の排出系などの構成は、従来から知られている超
臨界水酸化装置と同様に構成することができる。The organic matter to be decomposed, the oxidizing agent, and the like are usually supplied from the center of the reactor using a nozzle or the like, and a supply system for the decomposition object, excluding the neutralizing agent adding means, and a fluid generated by decomposition. The discharge system and the like can be configured similarly to a conventionally known supercritical water oxidation apparatus.
【0044】この発明によれば、塩の生成を伴う主に難
分解性物質の超臨界水酸化による処理を、排出管路の閉
塞や酸腐食の問題を招くことなく実施することができ
る。According to the present invention, the treatment by supercritical hydroxylation of mainly a hardly decomposable substance accompanied by the formation of a salt can be carried out without causing a problem of blockage of an exhaust pipe and acid corrosion.
【0045】請求項9の発明は、上記の装置発明におけ
る排出管路の途中に設けた中和剤添加手段の位置を、酸
基による酸腐食が実質的になくかつ中和生成塩は十分に
溶解する温度の流体が流通する位置としたことを特徴と
する。According to the ninth aspect of the present invention, the position of the neutralizing agent adding means provided in the middle of the discharge pipe in the above-described apparatus invention is substantially free from acid corrosion due to acid groups and the neutralized salt is sufficiently reduced. It is characterized in that it is located at a position where a fluid at a temperature for dissolving flows.
【0046】この発明によれば、分解対象物や処理操作
の設定にしたがって、排出管路の始端部からの距離に沿
って決まる温度分布の適当な位置に中和剤添加手段を設
けることができる。その位置は、生成する塩が塩化ナト
リウムである場合には、一般的には分解生成流体の温度
が600〜450℃、好ましくは500〜450℃の位
置とされる。According to the present invention, the neutralizing agent adding means can be provided at an appropriate position in the temperature distribution determined along the distance from the starting end of the discharge pipe according to the setting of the decomposition object and the processing operation. . In the case where the salt to be produced is sodium chloride, the position is generally a position where the temperature of the decomposition product fluid is 600 to 450 ° C, preferably 500 to 450 ° C.
【0047】請求項10の発明は、請求項8の発明にお
いて、排出管路の途中に設けた中和剤添加手段の位置
が、中和生成塩の溶解度が低い(ほとんど溶解しない)
高温の流体が流通する位置であって、かつ添加する中和
剤は、添加によって該流体の温度を中和生成塩が十分に
溶解する温度に冷却することができる低温水溶液とした
ことを特徴とする。According to a tenth aspect of the present invention, in the eighth aspect of the present invention, the position of the neutralizing agent adding means provided in the middle of the discharge pipe is such that the solubility of the neutralized salt is low (almost insoluble).
It is a low-temperature aqueous solution at a position where a high-temperature fluid flows, and wherein the neutralizing agent to be added can be cooled to a temperature at which the neutralized product salt can be sufficiently dissolved by addition. I do.
【0048】この発明によれば、上記請求項9の場合と
同様に、排出管路の始端部からの距離に沿って決まる温
度分布の適当な位置に中和剤添加手段を設けることがで
き、低温の中和剤水溶液の添加と同時ないし直後に塩は
十分に溶解できる温度となる。その位置は排出管路の始
端部ないし排出管路の終端部とされ、生成する塩が塩化
ナトリウムである場合には、一般的には分解生成流体の
温度が反応温度〜450℃、好ましくは500〜450
℃の位置とされる。According to the present invention, as in the case of the ninth aspect, the neutralizing agent adding means can be provided at an appropriate position of the temperature distribution determined along the distance from the starting end of the discharge pipe, Simultaneously with or immediately after the addition of the low temperature aqueous solution of the neutralizing agent, the salt is brought to a temperature at which it can be sufficiently dissolved. The position may be at the beginning of the discharge line or at the end of the discharge line. When the salt formed is sodium chloride, the temperature of the decomposition product fluid is generally from the reaction temperature to 450 ° C., preferably 500 ° C. ~ 450
° C.
【0049】請求項11の発明は、上記の各装置発明の
縦筒型反応器が、供給部として分解対象物,酸化剤の供
給口を有すると共に、排出部として、超臨界水酸化の反
応により生成した流体を排出管路に排出する一つの排出
口のみを有することを特徴とする。According to an eleventh aspect of the present invention, the vertical cylindrical reactor of each of the above-described apparatus inventions has a supply port for a decomposition target and an oxidizing agent as a supply unit and a supercritical water oxidation reaction as a discharge unit. It is characterized in that it has only one outlet for discharging the generated fluid to the discharge line.
【0050】この発明によれば、従来の塩移送水の供給
径路,排出径路が設けられないので、装置の構造が簡単
になり、また制御も容易となる。According to the present invention, since the conventional supply path and discharge path of the salt transport water are not provided, the structure of the apparatus is simplified and the control is also facilitated.
【0051】請求項12の発明は、上記の各装置発明に
おいて、中和剤添加手段を設けた位置ないしその後段の
排出管路に、流通する流体を冷却するための冷却手段を
設けたことを特徴とし、この発明によれば、分解生成流
体が冷却手段によって冷却されて、酸の中和と、生成し
た塩の水への溶解が確実に行われる。According to a twelfth aspect of the present invention, in each of the above-described apparatus inventions, a cooling means for cooling a flowing fluid is provided at a position where the neutralizing agent adding means is provided or at a discharge pipe at a subsequent stage. According to the present invention, the decomposition product fluid is cooled by the cooling means, so that neutralization of the acid and dissolution of the generated salt in water are reliably performed.
【0052】[0052]
実施形態1 図1は本発明の方法を実施する装置の構成概要を示した
ものであり、1はいわゆるベッセル型の反応器であり、
縦円筒型の耐圧容器として高温耐酸性の材料により形成
されている。そしてこの反応器1の天井部の中央には二
重管ノズル2が組付けられいて、廃液供給管3から、水
の臨界圧(22MPa)以上に加圧された有機性廃液等
の分解対象物が該二重管ノズル2の内管を通して反応器
1内に吹き込まれると共に、超臨界水供給管4から超臨
界水及び酸化剤としての空気の混合流体が、二重管ノズ
ル2の外管を通して反応器1内に吹き込まれるようにな
っている。これによって、二重管ノズル2から吹き込れ
た(廃液+超臨界水+空気)が22〜25MPaの超臨
界圧力下で混合した流体となり、廃液中の有機物の酸化
によって例えば600〜650℃で超臨界水酸化反応を
持続的に継続する。なお、有機性廃液中に必要量の水を
含み、かつ廃液中の有機物の酸化熱によって超臨界水雰
囲気が維持できる場合は、反応の当初のみ超臨界水を供
給し、以後は超臨界水の供給をしなくともよい。また廃
液供給管3には、供給する流体(廃液)を予め所定温度
(例えば400℃程度)まで加熱する予熱器(図示せ
ず)を設けてもよい。なお、各供給管3,4から供給す
る流体は適宜必要な装置(図示せず)を用いて加圧され
る。Embodiment 1 FIG. 1 shows an outline of the configuration of an apparatus for carrying out the method of the present invention, and 1 is a so-called Bessel type reactor,
It is made of a high temperature and acid resistant material as a vertical cylindrical pressure vessel. A double pipe nozzle 2 is attached to the center of the ceiling of the reactor 1, and a decomposition target such as an organic waste liquid or the like pressurized from a waste liquid supply pipe 3 to a pressure higher than the critical pressure of water (22 MPa). Is blown into the reactor 1 through the inner pipe of the double pipe nozzle 2, and a mixed fluid of supercritical water and air as an oxidant is supplied from the supercritical water supply pipe 4 through the outer pipe of the double pipe nozzle 2. It is blown into the reactor 1. Thereby, the (waste liquid + supercritical water + air) blown from the double pipe nozzle 2 becomes a fluid mixed under a supercritical pressure of 22 to 25 MPa, and is oxidized at a temperature of, for example, 600 to 650 ° C. by oxidation of organic matter in the waste liquid. Continue supercritical water oxidation reaction continuously. If the organic waste liquid contains a necessary amount of water and the supercritical water atmosphere can be maintained by the heat of oxidation of the organic matter in the waste liquid, supercritical water is supplied only at the beginning of the reaction, and thereafter, the supercritical water is supplied. It is not necessary to supply. Further, the waste liquid supply pipe 3 may be provided with a preheater (not shown) for heating the fluid (waste liquid) to be supplied to a predetermined temperature (for example, about 400 ° C.) in advance. The fluid supplied from each of the supply pipes 3 and 4 is pressurized using an appropriate device (not shown) as appropriate.
【0053】5は超臨界水酸化反応で分解して生成され
た流体(以下「処理流体」という)を反応器1から排出
する排出管であり、耐酸性材料から構成され、例えば反
応器1の天井部から内部に開口するように接続され、反
応器1内で超臨界水酸化反応により完全に分解された処
理流体は、この排出管5を通して反応器1外に排出され
る。Reference numeral 5 denotes a discharge pipe for discharging a fluid (hereinafter, referred to as a “processing fluid”) generated by the decomposition in the supercritical hydroxylation reaction from the reactor 1, which is made of an acid-resistant material. The processing fluid which is connected to open from the ceiling to the inside and is completely decomposed by the supercritical hydroxylation reaction in the reactor 1 is discharged to the outside of the reactor 1 through the discharge pipe 5.
【0054】そしてこの排出管5の途中には、中和剤タ
ンク及び加圧手段(いずれも図示せず)からの中和剤供
給管6が、例えば水酸化ナトリウム等の中和剤を排出管
5内を流通する処理流体に対して注入(添加)するよう
に接続され、これにより、該処理流体に中和剤が注入添
加されることで、該処理流体に含まれている酸基の中和
が行われる。In the middle of the discharge pipe 5, a neutralizing agent supply pipe 6 from a neutralizing agent tank and pressurizing means (neither is shown) discharges a neutralizing agent such as sodium hydroxide. 5 is connected so as to be injected (added) to the processing fluid flowing through the inside, whereby a neutralizing agent is injected and added to the processing fluid, so that the acid group contained in the processing fluid is removed. Sum is done.
【0055】この中和剤を添加する部分の処理流体の温
度は、酸基が酸として腐食作用を生ずることがない温度
以上であることが必要であり、理論的には水の臨界温度
以上、装置の温度変動等を考慮すれば、該臨界温度より
もある程度高い400℃以上とされ、中和剤の添加によ
り生ずる無機塩が塩化ナトリウムである場合には、反応
温度〜450℃とすることもできる。中和剤添加後の処
理流体の温度が450℃を越える場合には、中和剤添加
直後に、処理流体の温度が塩化ナトリウムの溶解度の高
い温度範囲である450℃以下となるようにされる。こ
のような処理流体の温度の低下(冷却)は、例えば熱交
換器等の冷却手段を用いることもできるが、最も簡単に
は、中和剤に低温の水溶液を用いこれの所定量を添加す
ることによって処理流体の温度低下が生ずるようにする
方法を挙げることができる。It is necessary that the temperature of the processing fluid at the portion where the neutralizing agent is added is not lower than the temperature at which the acid group does not cause corrosive action as an acid. In consideration of temperature fluctuations of the apparatus, the temperature is set to 400 ° C. or higher, which is somewhat higher than the critical temperature, and when the inorganic salt generated by adding the neutralizing agent is sodium chloride, the reaction temperature may be set to 450 ° C. it can. When the temperature of the processing fluid after the addition of the neutralizing agent exceeds 450 ° C., immediately after the addition of the neutralizing agent, the temperature of the processing fluid is set to 450 ° C. or lower, which is a temperature range in which the solubility of sodium chloride is high. . In order to lower (cool) the temperature of the processing fluid, for example, a cooling means such as a heat exchanger can be used. Thus, there can be mentioned a method in which the temperature of the processing fluid is reduced.
【0056】このように、処理流体の温度が水の臨界温
度付近まで低下した時点において既に酸基の中和が終了
させておくようにすることで、水が超臨界水から液に相
転移するときの酸基の水への急激な溶解による高濃度の
酸の生成を防ぐことができる。As described above, the neutralization of the acid groups has already been completed when the temperature of the processing fluid has dropped to near the critical temperature of water, so that water undergoes a phase transition from supercritical water to liquid. The generation of a high-concentration acid due to rapid dissolution of the acid group in water can be prevented.
【0057】酸基の中和反応を行った処理流体は、冷
却,減圧,気液分離等の必要な処理を行い、装置外に排
出される。The processing fluid having undergone the acid group neutralization reaction is subjected to necessary processing such as cooling, decompression, gas-liquid separation and the like, and is discharged out of the apparatus.
【0058】[0058]
【実施例】以下、本発明の効果を確認するために行った
実施例、比較例について説明する。EXAMPLES Examples and comparative examples performed to confirm the effects of the present invention will be described below.
【0059】実施例1 上述した図1のベッセル型の反応器1を有する超臨界水
酸化装置を使用して、超臨界水酸化に伴って塩を生ずる
物質を含む下記表1の成分からなる物質を分解対象物の
試料とし、該反応器1から処理流体を排出する排出管5
の所定位置(図2のTC−6〜TC−7の間)から、中
和剤(水酸化ナトリウム水溶液)を添加する方法で超臨
界水酸化の処理を行なった。Example 1 Using a supercritical water oxidation apparatus having the vessel-type reactor 1 shown in FIG. 1 described above, a substance consisting of the components shown in Table 1 below including a substance that produces a salt with supercritical water oxidation. Is a sample of an object to be decomposed, and a discharge pipe 5 for discharging a processing fluid from the reactor 1
From a predetermined position (between TC-6 and TC-7 in FIG. 2), a supercritical water oxidation treatment was carried out by adding a neutralizing agent (aqueous sodium hydroxide solution).
【0060】[0060]
【表1】 [Table 1]
【0061】超臨界水酸化の条件は次の通りである。The conditions for supercritical water oxidation are as follows.
【0062】(試験条件) 温度・圧力 :650℃,25MPa 酸化剤 :空気 反応器 :図1に示したベッセル型反応器;内径
50mm×高さ1050mm 中和剤 :水酸化ナトリウム水溶液、濃度530
ppm(トリクロロエチレンが完全分解したときに生ず
るCl- イオンの約1.2倍モル量)、温度20℃、添
加量9.6ml/min 流量(SCW):8ml/min (試料) :2ml/min (空気) :1.6Nm3 /hr(試料の分解対象物を
100%分解するのに必要な理論量の1.8倍)。(Test conditions) Temperature and pressure: 650 ° C., 25 MPa Oxidizing agent: Air Reactor: Bessel type reactor shown in FIG. 1; Inner diameter 50 mm × Height 1050 mm Neutralizer: Sodium hydroxide aqueous solution, concentration 530
ppm (about 1.2 times the molar amount of Cl - ions generated when trichlorethylene is completely decomposed), temperature 20 ° C, addition amount 9.6 ml / min flow rate (SCW): 8 ml / min (sample): 2 ml / min ( (Air): 1.6 Nm 3 / hr (1.8 times the theoretical amount required to decompose 100% of a sample to be decomposed).
【0063】(試験結果) (1) 試験は上記の試験条件で600分間に渡り行な
ったが、反応器1内の圧力上昇は起こらず、連続した試
験を行なうことができた。また、反応器1及び排出管5
の温度分布を調べて、その測定点と温度を図2に示し
た。なお温度分布の測定は、熱伝対を反応器内に各々挿
入することにより行なった。(Test Results) (1) The test was performed under the above test conditions for 600 minutes, but the pressure in the reactor 1 did not increase, and a continuous test could be performed. Further, the reactor 1 and the discharge pipe 5
Was examined, and the measurement points and temperatures are shown in FIG. The temperature distribution was measured by inserting a thermocouple into each reactor.
【0064】(2) 中和剤水溶液の添加前の処理流体
の温度は、TC−6の位置で621℃であるのに対し、
添加後のTC−7の位置では288℃である。これによ
り酸基の酸腐食作用がなく、かつ塩の溶解度が低い高温
の状態の処理流体に対して中和剤水溶液を添加すること
で処理流体が水の臨界温度以下まで急激に低下され、下
記(3)により管内壁に塩が付着することなく水に溶解
して排出されたことが分かる。また試験を繰り返し行っ
てもTC−6〜TC−7の付近で管にピンホールの発生
はなく、酸による腐食が十分に防止されることが確認さ
れた。(2) The temperature of the processing fluid before the addition of the neutralizing agent aqueous solution is 621 ° C. at the position of TC-6,
At the position of TC-7 after the addition, the temperature is 288 ° C. By this, there is no acid-corrosion action of the acid group, and the solubility of the salt is low, the processing fluid is rapidly lowered to the critical temperature of water by adding the neutralizing agent aqueous solution to the high-temperature processing fluid, and It can be seen from (3) that the salt was dissolved in water and discharged without causing salt to adhere to the inner wall of the tube. In addition, even when the test was repeated, no pinhole was generated in the pipe near TC-6 to TC-7, and it was confirmed that acid corrosion was sufficiently prevented.
【0065】(3) 反応器から排出された処理流体
(処理液)中に含まれる成分を、ガスクロマトグラフィ
ーGC−311(HNU SYSTEMS社製,光イオ
ン化検出器)により測定し、また、Cl- ,Na+ イオ
ンはイオンクロマトグラフィーDX−AQ(日本ダイオ
ネクス社製)を用いて測定したところ下記表2の通りで
あった。[0065] (3) the component contained in the reactor is discharged from the process fluid (treatment solution), was determined by gas chromatography GC-311 (HNU SYSTEMS Co., photoionization detector), also, Cl - , Na + ions were measured using ion chromatography DX-AQ (manufactured by Nippon Dionex) and found to be as shown in Table 2 below.
【0066】[0066]
【表2】 [Table 2]
【0067】この表2の結果から分かるように、試料
(分解対象物)のトリクロロエチレンは実質的に完全分
解されたことが分かる。As can be seen from the results in Table 2, it can be seen that trichlorethylene in the sample (decomposition target) was substantially completely decomposed.
【0068】また、処理液のCl- イオン濃度から計算
されるpHは2.9であるのに対し、処理液のpHは
6.1であり、超臨界水酸化で生成した塩酸が水酸化ナ
トリウムで中和されていることが確認された。なお処理
液のpHが6.1を示すのは二酸化炭素の溶存による。The pH calculated from the Cl - ion concentration of the processing solution is 2.9, whereas the pH of the processing solution is 6.1, and the hydrochloric acid generated by supercritical water oxidation is sodium hydroxide. Was confirmed to be neutralized. The reason why the pH of the treatment liquid is 6.1 is due to the dissolution of carbon dioxide.
【0069】次に処理液中のNa+ イオン濃度から、次
式によりNa+ イオンの回収率を求めた。Next, from the Na + ion concentration in the processing solution, the recovery rate of Na + ions was determined by the following equation.
【0070】[0070]
【数1】 (Equation 1)
【0071】この計算の結果、Na+ イオンの回収率は
101%となり、このことは、中和反応に寄与しなかっ
たNa+ イオンは処理液(分解生成流体)と共に流れた
ことを示し、反応器および排出系管路内で塩の析出が起
っていないことが確認された。As a result of this calculation, the recovery of Na + ions was 101%, indicating that the Na + ions that did not contribute to the neutralization reaction flowed together with the processing liquid (decomposition fluid). It was confirmed that no precipitation of salt occurred in the vessel and the discharge line.
【0072】比較例1 次に比較のために、図3に示すように、ベッセル型反応
器101の底部に塩移送のための亜臨界水を供給・排出
する構成、すなわち純水供給管107と処理液(ブライ
ン)排水管108を接続し、廃液供給管103、超臨界
水供給管104及び空気供給管109の各供給ラインを
反応器101の二重管ノズル102に接続すると共に、
中和剤は超臨界水に混合して供給するようにした従来の
超臨界水酸化装置によって、超臨界水酸化の処理を行っ
た。COMPARATIVE EXAMPLE 1 Next, for comparison, as shown in FIG. 3, a configuration for supplying and discharging subcritical water for transferring the salt to the bottom of the vessel type reactor 101, that is, a pure water supply pipe 107 and A treatment liquid (brine) drain pipe 108 is connected, and respective supply lines of a waste liquid supply pipe 103, a supercritical water supply pipe 104, and an air supply pipe 109 are connected to the double pipe nozzle 102 of the reactor 101.
The neutralizing agent was subjected to supercritical water oxidation using a conventional supercritical water oxidation apparatus in which supercritical water was mixed and supplied.
【0073】なお、試験に用いた分解対象物の試料は、
実施例1と同じトリクロロエチレン(TCE)を水−イ
ソプロピルアルコール(IPA)混合溶液に溶解させて
135g/hrで供給した。The sample of the decomposition object used in the test was
The same trichloroethylene (TCE) as in Example 1 was dissolved in a mixed solution of water and isopropyl alcohol (IPA) and supplied at 135 g / hr.
【0074】超臨界水酸化の条件は次の通りである。The conditions for supercritical water oxidation are as follows.
【0075】(試験条件) 温度・圧力 :650℃,25MPa 酸化剤 :空気 反応器 :図3に示したベッセル型反応器;内径
50mm×高さ1050mm 中和剤 :水酸化ナトリウム水溶液(トリクロロ
エチレンが完全分解したときに生ずるCl- イオンと等
しいモル量)を超臨界水に混合して供給 流量(SCW):150リットル/hr 流量(IPA):41.5リットル/hr IPA濃度 :20.4% (空気) :1.5Nm3 /hr(試料の分解対象物を
100%分解するのに必要な理論量の1.5倍)。(Test conditions) Temperature and pressure: 650 ° C., 25 MPa Oxidizing agent: Air Reactor: Bessel type reactor shown in FIG. 3; Inner diameter 50 mm × Height 1050 mm Neutralizer: Sodium hydroxide aqueous solution (trichloroethylene completely Cl occurs when disassembled - feed flow ions and an equal molar amount) were mixed in a supercritical water (SCW): 0.99 liters / hr flow rate (IPA): 41.5 liters / hr IPA concentration: 20.4% ( (Air): 1.5 Nm 3 / hr (1.5 times the theoretical amount required to decompose 100% of a sample to be decomposed).
【0076】(試験結果) (1) 試験は上記の条件で360分間に渡り行なった
が、反応器1内の圧力上昇は起こらず、連続した試験を
行なうことができた。また、反応器1及び排出管5の温
度分布を調べて、その測定点と温度を図3に示した。こ
の温度分布図から分かるように、反応器101内の温度
が反応温度から臨界温度以下の温度の広範囲に分布し、
また排出管には高温の処理流体が排出されており、反応
器内の温度分布が一様でないことが分かる。(Test Results) (1) The test was performed for 360 minutes under the above conditions, but the pressure in the reactor 1 did not rise, and a continuous test could be performed. Further, the temperature distribution of the reactor 1 and the discharge pipe 5 was examined, and the measurement points and temperatures are shown in FIG. As can be seen from this temperature distribution diagram, the temperature in the reactor 101 is distributed over a wide range from the reaction temperature to a temperature below the critical temperature,
In addition, a high-temperature processing fluid is discharged to the discharge pipe, which indicates that the temperature distribution in the reactor is not uniform.
【0077】(2) 処理流体の温度は、超臨界ゾーン
の亜臨界ゾーン近傍の位置TC−5で450℃であり、
亜臨界ゾーンの位置TC−6では125℃であるため、
TC−5〜TC−6の間に臨界温度を含む温度分布が存
在することが分かる。(2) The temperature of the processing fluid is 450 ° C. at a position TC-5 near the subcritical zone of the supercritical zone,
Since the temperature is 125 ° C. at the position TC-6 of the subcritical zone,
It can be seen that there is a temperature distribution including the critical temperature between TC-5 and TC-6.
【0078】(3) 反応器から排出された処理流体
(処理液)中に含まれる成分を、ガスクロマトグラフィ
ーGC−311(HNU SYSTEMS社製,光イオ
ン化検出器:前出)により測定し、また、Cl- ,Na
+ イオンはイオンクロマトグラフィーDX−AQ(日本
ダイオネクス社製)を用いて測定したところ下記表3の
通りであった。(3) The components contained in the processing fluid (processing liquid) discharged from the reactor were measured by gas chromatography GC-311 (manufactured by HNU SYSTEMS, photoionization detector: supra). , Cl -, Na
The + ion was measured using ion chromatography DX-AQ (manufactured by Nippon Dionex), and was as shown in Table 3 below.
【0079】[0079]
【表3】 [Table 3]
【0080】また、処理液(メイン)のpHは2.8、
処理液(ブライン)のpHは5.9であった。The pH of the processing solution (main) was 2.8,
The pH of the treatment liquid (brine) was 5.9.
【0081】次に処理液中のNa+ イオン濃度から、次
式によりNa+ イオンの回収率を求めた。Next, from the Na + ion concentration in the processing solution, the recovery rate of Na + ions was determined by the following equation.
【0082】[0082]
【数2】 (Equation 2)
【0083】この計算の結果、Na+ イオンの回収率は
30%となり、このことは、塩(NaCl)あるいは水
酸化ナトリウム(NaOH)が反応器101内または排
出管105内で析出して残存していることを示してい
る。As a result of this calculation, the recovery rate of Na + ions was 30%, which means that salt (NaCl) or sodium hydroxide (NaOH) was precipitated in the reactor 101 or the discharge pipe 105 and remained. It indicates that.
【0084】したがって、この比較例1の中和剤を超臨
界水と共に供給した方法では、反応器あるいは配管内で
塩あるいは水酸化ナトリウムが析出して中和が十分に行
われていないと判断される。Therefore, in the method in which the neutralizing agent of Comparative Example 1 was supplied together with the supercritical water, it was judged that salt or sodium hydroxide was precipitated in the reactor or the pipe and neutralization was not sufficiently performed. You.
【0085】比較例2 更に、比較のために図4の旋回状に延設した管状反応器
を備えた超臨界水酸化処理を行う装置を使用して、超臨
界水酸化の処理を行った。Comparative Example 2 Further, for comparison, supercritical water oxidation was carried out using a device for performing supercritical water oxidation provided with a tubular reactor extended in a swirl shape as shown in FIG.
【0086】試験は、塩を生ずる物質を含む下記表4の
成分からなる物質を分解対象物の試料として、中和剤の
添加を行なわずに超臨界水酸化を行なった。In the test, a substance consisting of the components shown in Table 4 below including a substance that forms a salt was used as a sample of a substance to be decomposed, and supercritical water oxidation was performed without adding a neutralizing agent.
【0087】[0087]
【表4】 [Table 4]
【0088】超臨界水酸化の条件は次の通りである。The conditions for supercritical water oxidation are as follows.
【0089】(試験条件) 温度・圧力 :650℃,25MPa 酸化剤 :空気 反応器 :図4に示した管状反応器(コイル型リ
アクター);内径5mm×130m 流量(SCW):8ml/min (試料) :2ml/min (空気) :1.6Nm3 /hr(試料の分解対象物を
100%分解するのに必要な理論量の1.8倍)。(Test conditions) Temperature / pressure: 650 ° C., 25 MPa Oxidizing agent: Air Reactor: Tubular reactor (coil type reactor) shown in FIG. 4; inner diameter 5 mm × 130 m Flow rate (SCW): 8 ml / min (sample ): 2 ml / min (air): 1.6 Nm 3 / hr (1.8 times the theoretical amount required to decompose 100% of a sample to be decomposed).
【0090】(試験結果) (1) 以上によって720分間に渡り試験を行ない、
その時の管状反応器に温度分布を調べて図4に示した。(Test Results) (1) A test was conducted for 720 minutes as described above.
FIG. 4 shows the temperature distribution of the tubular reactor at that time.
【0091】(2) 反応器から排出された処理流体
(処理液)中に含まれる成分、及びCl- イオンを実施
例1と同様にして測定したところ下記表5の通りであっ
た。(2) The components and Cl - ions contained in the processing fluid (processing liquid) discharged from the reactor were measured in the same manner as in Example 1, and the results are as shown in Table 5 below.
【0092】[0092]
【表5】 [Table 5]
【0093】この表5の結果から分かるように、試料
(分解対象物)のうちの有機塩素化合物は実質的に完全
分解されたが、処理液のCl- イオン濃度が高く、pH
は3.1で塩酸が超臨界水酸化で生成されていることが
確認された。[0093] As can be seen from the results shown in Table 5, the organic chlorine compounds of the sample (decomposition targets) has been substantially completely degraded, Cl processing liquid - high ion concentration, pH
Was 3.1, and it was confirmed that hydrochloric acid was generated by supercritical water oxidation.
【0094】(3) 反応器始端部から120m付近の
反応器の周壁にピンホールが約幅2mに渡って発生し
た。この状況を図5に示した。(3) A pinhole was formed on the peripheral wall of the reactor at about 120 m from the beginning of the reactor over a width of about 2 m. This situation is shown in FIG.
【0095】この始端部から120m付近は、図4の温
度分布の図から分かるように反応器内の温度したがって
分解生成流体である処理液の温度が水の臨界温度374
℃の近傍にある温度域であった。In the vicinity of 120 m from the starting end, as can be seen from the temperature distribution diagram of FIG.
The temperature range was in the vicinity of ° C.
【0096】この比較試験により、反応器あるいは処理
流体の流通する管路の酸腐食の問題が、水の臨界温度近
傍において発生することが確認された。This comparative test confirmed that the problem of acid corrosion of the reactor or the pipeline through which the processing fluid flows occurred near the critical temperature of water.
【0097】[0097]
【発明の効果】以上述べたように、本願発明によれば、
ベッセル型(縦筒型)の反応容器内で分解対象物を超臨
界水酸化によって十分に分解させることができ、処理流
体の排出管の途中で、反応により生成した酸の中和を確
実に行えるので、装置を酸の腐食から保護でき、安全
性、耐久性に優れた処理を実現できるという効果が奏さ
れると共に、中和反応で生成した塩が反応器や排出系管
路の壁面に付着する問題を解消でき、反応器や管路の閉
塞の虞れがなくなるため、難分解性有機物や有害有機物
などの酸を生成する有機物の連続処理を好適に実現でき
る。As described above, according to the present invention,
The substance to be decomposed can be sufficiently decomposed by supercritical water oxidation in a vessel type (vertical cylinder type) reaction vessel, and the acid generated by the reaction can be reliably neutralized in the middle of the treatment fluid discharge pipe. As a result, it is possible to protect the equipment from acid corrosion, and it is possible to achieve safe and durable treatment, and the salt generated by the neutralization reaction adheres to the walls of the reactor and the discharge line. This can eliminate the possibility of clogging of the reactor and the pipeline, so that continuous processing of organic substances that generate acids such as hardly decomposable organic substances and toxic organic substances can be suitably realized.
【0098】また、上記の酸による腐蝕防止と共に中和
塩の付着防止を同時に達成できるため、ベッセル型反応
器に、塩移送水を供給・排出するための構造を設ける必
要がなく、制御が容易でしかも設備コストも安価な超臨
界水酸化設備による工業的規模の実施装置として極めて
優れている。Further, since the above-described prevention of corrosion by the acid and prevention of the adhesion of the neutralized salt can be achieved at the same time, there is no need to provide a structure for supplying and discharging the salt transfer water in the vessel type reactor, and the control is easy. In addition, it is extremely excellent as an industrial-scale implementation device using a supercritical water oxidation facility with low equipment cost.
【図1】本願発明の超臨界水酸化方法を実施するのに用
いられる実施形態1の装置の構成概要をフロー示した
図。FIG. 1 is a flow chart showing an outline of the configuration of an apparatus according to a first embodiment used to carry out the supercritical water oxidation method of the present invention.
【図2】図1の装置を使用して超臨界水酸化の処理を行
った実施例1の操作概要と、温度分布を示した図。FIG. 2 is a diagram showing an operation outline of Example 1 in which supercritical water oxidation treatment was performed using the apparatus of FIG. 1, and a temperature distribution.
【図3】図3の従来のベッセル型反応器を使用して超臨
界水酸化の処理を行った比較例1の操作概要と、温度分
布を示した図。FIG. 3 is a diagram showing an operation outline of Comparative Example 1 in which supercritical water oxidation treatment is performed using the conventional vessel reactor of FIG. 3, and a temperature distribution.
【図4】図4の管状反応器を使用して超臨界水酸化の処
理を行った比較例2の操作概要と、温度分布を示した
図。FIG. 4 is a diagram showing an operation outline of Comparative Example 2 in which supercritical water oxidation treatment is performed using the tubular reactor of FIG. 4, and a temperature distribution.
【図5】比較例2の処理を行なった場合に発生したピン
ホールの状況を示した図。FIG. 5 is a diagram showing a state of a pinhole generated when the processing of Comparative Example 2 is performed.
1・・・ベッセル型の反応器、2・・・二重管ノズル、
3・・・廃液(分解対象物)供給管、4・・・超臨界水
供給管、5・・・処理液(処理流体)排出管、6・・・
中和剤供給管、101・・・ベッセル型の反応器、10
2・・・二重管ノズル、103・・・廃液(分解対象
物)供給管、104・・・超臨界水供給管、105・・
・処理液(メイン)排出管、107・・・純水供給管、
108・・・処理液(ブライン)排出管、109・・・
空気供給管、201・・・管状反応器、203・・・廃
液(分解対象物)供給管、204・・・超臨界水供給
管、205・・・処理液排出管、209・・・空気供給
管。1 ... Vessel type reactor, 2 ... Double tube nozzle,
3 ・ ・ ・ Waste liquid (decomposition target) supply pipe, 4 ・ ・ ・ Supercritical water supply pipe, 5 ・ ・ ・ Treatment liquid (treatment fluid) discharge pipe, 6 ・ ・ ・
Neutralizing agent supply pipe, 101: Bessel type reactor, 10
2 ... double pipe nozzle, 103 ... waste liquid (decomposition target) supply pipe, 104 ... supercritical water supply pipe, 105 ...
・ Treatment liquid (main) discharge pipe, 107 ... pure water supply pipe,
108 ... processing liquid (brine) discharge pipe, 109 ...
Air supply pipe, 201: tubular reactor, 203: waste liquid (decomposition target) supply pipe, 204: supercritical water supply pipe, 205: treatment liquid discharge pipe, 209: air supply tube.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/66 540 C02F 1/66 540H (72)発明者 大江 太郎 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内 (72)発明者 川崎 慎一朗 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/66 540 C02F 1/66 540H (72) Inventor Taro Oe 1-4-9 Kawagishi, Toda City, Saitama Prefecture Organo Corporation Within the Research Institute (72) Inventor Shinichiro Kawasaki 1-4-9 Kawagishi, Toda City, Saitama Prefecture Organo Research Institute
Claims (12)
雰囲気を形成した縦筒型反応器の内に分解対象物を連続
的に供給すると共に、超臨界水の存在下で酸化分解して
生成した流体を上記縦筒型反応器に接続した排出管路か
ら連続的に排出し、上記流体に含まれる酸基は中和剤で
中和する超臨界水酸化処理において、上記縦筒型反応器
内を酸基による酸腐食作用が実質的にない高温の状態に
維持し、上記排出管路に排出された流体に対して中和剤
を添加すると共に、該添加時点又は添加直後の流体の温
度を、酸基による酸腐食作用が実質的になくかつ中和生
成塩は十分に溶解する温度の状態にあるようにしたこと
を特徴とする超臨界水酸化方法。An apparatus for continuously decomposing a substance to be decomposed into a vertical cylindrical reactor having a supercritical water atmosphere at a temperature and pressure higher than a critical point of water, and oxidizing and decomposing in the presence of supercritical water. In a supercritical water oxidation treatment in which the generated fluid is continuously discharged from a discharge pipe connected to the vertical cylinder type reactor and an acid group contained in the fluid is neutralized with a neutralizing agent, the vertical cylinder The reactor is maintained at a high temperature in which there is substantially no acid corrosion by the acid groups, and a neutralizing agent is added to the fluid discharged to the discharge pipe, and at the time of or immediately after the addition. A supercritical water oxidation method, characterized in that the temperature of the fluid is set to a temperature at which there is substantially no acid-corrosion action by the acid groups and the neutralization formed salt is sufficiently dissolved.
雰囲気を形成した縦筒型反応器の内に分解対象物を連続
的に供給すると共に、超臨界水の存在下で酸化分解して
生成した流体を上記縦筒型反応器に接続した排出管路か
ら連続的に排出し、上記流体に含まれる酸基は中和剤で
中和する超臨界水酸化処理において、上記縦筒型反応器
内を酸基による酸腐食作用が実質的にない高温の状態に
維持し、上記排出管路に排出された中和生成塩の溶解度
が小さい高温の流体に対して中和剤を添加すると共に、
中和剤の添加直後の流体の温度を中和生成塩が十分に溶
解する温度範囲に冷却することを特徴とする超臨界水酸
化方法。2. A method for continuously supplying an object to be decomposed into a vertical cylindrical reactor having a supercritical water atmosphere at a temperature and pressure higher than a critical point of water, and oxidative decomposition in the presence of supercritical water. In a supercritical water oxidation treatment in which the generated fluid is continuously discharged from a discharge pipe connected to the vertical cylinder type reactor and an acid group contained in the fluid is neutralized with a neutralizing agent, the vertical cylinder The reactor is maintained at a high temperature in which there is substantially no acid corrosion by the acid groups, and a neutralizing agent is added to the high-temperature fluid having a low solubility of the neutralized product salt discharged into the discharge pipe. Along with
A supercritical water oxidation method, wherein the temperature of the fluid immediately after the addition of the neutralizing agent is cooled to a temperature range in which the neutralized salt is sufficiently dissolved.
雰囲気を形成した縦筒型反応器の内に分解対象物を連続
的に供給すると共に、超臨界水の存在下で酸化分解して
生成した流体を上記縦筒型反応器に接続した排出管路か
ら連続的に排出し、上記流体に含まれる酸基は中和剤で
中和する超臨界水酸化処理において、上記縦筒型反応器
内を酸基による酸腐食作用が実質的にない高温の状態に
維持し、上記排出管路に排出されて水の臨界温度よりも
高い温度であって中和生成塩を十分に溶解する温度範囲
にある流体に対して中和剤を添加することを特徴とする
超臨界水酸化方法。3. A decomposition target is continuously supplied into a vertical cylindrical reactor having a supercritical water atmosphere at a temperature and pressure higher than a critical point of water, and oxidative decomposition is performed in the presence of supercritical water. In a supercritical water oxidation treatment in which the generated fluid is continuously discharged from a discharge pipe connected to the vertical cylinder type reactor and an acid group contained in the fluid is neutralized with a neutralizing agent, the vertical cylinder The reactor is maintained at a high temperature in which there is substantially no acid corrosion due to acid groups, and is discharged to the discharge pipe and is at a temperature higher than the critical temperature of water, so that the neutralized salt is sufficiently dissolved. A supercritical water oxidation method comprising adding a neutralizing agent to a fluid within a temperature range of the supercritical water.
する塩が塩化ナトリウムであり、排出管路を流通する流
体の中和剤添加時点の温度が450℃以上であることを
特徴とする超臨界水酸化方法。4. The method according to claim 2, wherein the salt formed by adding the neutralizing agent is sodium chloride, and the temperature of the fluid flowing through the discharge line at the time of adding the neutralizing agent is 450 ° C. or higher. Supercritical water oxidation method.
する塩が塩化ナトリウムであり、排出管路を流通する流
体の中和剤添加時点の温度が450℃以下であることを
特徴とする超臨界水酸化方法。5. The method according to claim 3, wherein the salt formed by adding the neutralizing agent is sodium chloride, and the temperature of the fluid flowing through the discharge line at the time of adding the neutralizing agent is 450 ° C. or less. Supercritical water oxidation method.
添加する中和剤が低温の水溶液であることを特徴とする
超臨界水酸化方法。6. The method according to claim 1, wherein
A supercritical water oxidation method, wherein the neutralizing agent to be added is a low-temperature aqueous solution.
中和反応の後に分解生成流体を水の臨界温度以下に冷却
することを特徴とする超臨界水酸化方法。7. The method according to claim 1, wherein
A supercritical water oxidation method comprising cooling a decomposition product fluid to a temperature below the critical temperature of water after the neutralization reaction.
化反応用の反応器と、該反応器内に分解対象物,酸化剤
を連続供給する分解対象物及び酸化剤の供給手段と、超
臨界水酸化の反応により分解生成された流体を該反応器
から反応器外に排出するように接続された排出管路と、
この排出管路内を流通する流体に含まれる酸基を中和す
るために該排出管路の途中に設けられた中和剤添加手段
と、を備えたことを特徴とする超臨界水酸化装置。8. A reactor for a supercritical water oxidation reaction comprising a vertical cylindrical pressure-resistant container, a decomposition object and an oxidant supply means for continuously supplying a decomposition object and an oxidant into the reactor. A discharge line connected to discharge the fluid decomposed by the supercritical water oxidation reaction from the reactor to the outside of the reactor,
A supercritical water oxidation apparatus comprising: a neutralizing agent adding means provided in the middle of the discharge line for neutralizing acid groups contained in the fluid flowing through the discharge line. .
けた中和剤添加手段の位置が、酸基による酸腐食作用が
実質的になくかつ中和生成塩は十分に溶解する温度の流
体が流通する位置であることを特徴とする超臨界水酸化
装置。9. The method according to claim 8, wherein the position of the neutralizing agent adding means provided in the middle of the discharge line is a temperature at which acid corrosion by the acid group is substantially absent and the neutralized product salt is sufficiently dissolved. A supercritical water oxidation apparatus, which is located at a position where a fluid flows.
設けた中和剤添加手段の位置が、中和生成塩の溶解度が
低い高温の流体が流通する位置であって、かつ添加する
中和剤は、添加によって該流体の温度を中和生成塩が十
分に溶解する温度に冷却することができる低温水溶液と
したことを特徴とする超臨界水酸化装置。10. The method according to claim 8, wherein the position of the neutralizing agent adding means provided in the middle of the discharge pipe is a position where a high-temperature fluid having a low solubility of the neutralized product salt flows, and A supercritical water oxidation apparatus, wherein the wetting agent is a low-temperature aqueous solution capable of cooling the temperature of the fluid by addition to a temperature at which the neutralized salt is sufficiently dissolved.
て、上記の縦筒型反応器は、供給部として分解対象物,
酸化剤の供給口を有すると共に、排出部として、超臨界
水酸化の反応により生成した流体を排出管路に排出する
一つの排出口のみを有することを特徴とする超臨界水酸
化装置。11. The vertical cylindrical reactor according to any one of claims 8 to 10, wherein the vertical cylinder type reactor is provided with a decomposition target,
A supercritical water oxidation apparatus having a supply port for an oxidizing agent and having, as a discharge section, only one discharge port for discharging a fluid generated by the reaction of supercritical water oxidation to a discharge pipe.
て、中和剤添加手段を設けた位置ないしその後段の排出
管路に、流通する流体を冷却するための冷却手段を設け
たことを特徴とする超臨界水酸化装置。12. The method according to claim 8, wherein a cooling means for cooling the flowing fluid is provided at a position where the neutralizing agent adding means is provided or at a discharge pipe at a subsequent stage. Supercritical water oxidation equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13236597A JP3437408B2 (en) | 1997-05-22 | 1997-05-22 | Supercritical water oxidation method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13236597A JP3437408B2 (en) | 1997-05-22 | 1997-05-22 | Supercritical water oxidation method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10314769A true JPH10314769A (en) | 1998-12-02 |
JP3437408B2 JP3437408B2 (en) | 2003-08-18 |
Family
ID=15079675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13236597A Expired - Fee Related JP3437408B2 (en) | 1997-05-22 | 1997-05-22 | Supercritical water oxidation method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3437408B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002361069A (en) * | 2001-06-11 | 2002-12-17 | Japan Organo Co Ltd | Supercritical hydroreaction apparatus and vessel |
CN102295366A (en) * | 2011-08-04 | 2011-12-28 | 丰城向华水基科学技术有限公司 | Process of waste water oxidation treatment by supercritical water and reaction apparatus thereof |
CN107311320A (en) * | 2017-06-07 | 2017-11-03 | 上海市环境工程设计科学研究院有限公司 | A kind of antisludging agent and its application that waste water is handled for supercritical Water Oxidation Technology |
US10688464B2 (en) | 2017-06-05 | 2020-06-23 | General Atomics | Corrosion inhibition in hydrothermal processing |
-
1997
- 1997-05-22 JP JP13236597A patent/JP3437408B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002361069A (en) * | 2001-06-11 | 2002-12-17 | Japan Organo Co Ltd | Supercritical hydroreaction apparatus and vessel |
CN102295366A (en) * | 2011-08-04 | 2011-12-28 | 丰城向华水基科学技术有限公司 | Process of waste water oxidation treatment by supercritical water and reaction apparatus thereof |
US10688464B2 (en) | 2017-06-05 | 2020-06-23 | General Atomics | Corrosion inhibition in hydrothermal processing |
CN107311320A (en) * | 2017-06-07 | 2017-11-03 | 上海市环境工程设计科学研究院有限公司 | A kind of antisludging agent and its application that waste water is handled for supercritical Water Oxidation Technology |
CN107311320B (en) * | 2017-06-07 | 2020-10-09 | 上海市环境工程设计科学研究院有限公司 | Scale inhibitor for treating wastewater by supercritical water oxidation technology and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3437408B2 (en) | 2003-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5252224A (en) | Supercritical water oxidation process of organics with inorganics | |
JP3346773B2 (en) | A method for high temperature and supercritical water oxidation of materials using special reactants. | |
JP2005058962A (en) | Apparatus and method for processing organic waste | |
CN108970543B (en) | Method for inhibiting corrosion and method for oxidizing feed | |
CA2445243A1 (en) | Process for hydrothermal treatment of materials | |
US5837149A (en) | Method for hot and supercritical water oxidation of material with addition of specific reactants | |
JPH10314769A (en) | Supercritical water oxidizing method and device | |
JP3345285B2 (en) | How to start and stop supercritical water oxidation equipment | |
JP3437409B2 (en) | Supercritical water oxidation method and apparatus | |
JP3464897B2 (en) | Supercritical water oxidation method and apparatus | |
JP4455703B2 (en) | Supercritical water reactor | |
JP3836270B2 (en) | Method for shutting down supercritical water reactor | |
DE69715905T2 (en) | DEVICE AND METHOD FOR STORING, TRANSPORTING AND PRODUCING ACTIVE FLUOR | |
WO2022155271A1 (en) | Hydrothermal system for treatment of adsorbent regeneration byproducts | |
Brunner | Extraction and destruction of waste with supercritical water | |
JP4267791B2 (en) | Supercritical water treatment equipment | |
KR100778332B1 (en) | Apparatus and method for chemical agent disposal by a 2-step process | |
JP3816218B2 (en) | Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms | |
JP3607624B2 (en) | Method and apparatus for decomposing organic compounds | |
JP3409905B2 (en) | Decomposition equipment for halogenated organic compounds | |
JPH10137774A (en) | Method of supplying liquid to supercritical water oxidizing reactor, device therefor and super critical water oxidizing device | |
JP2001269566A (en) | Supercritical water reaction apparatus | |
JP3482306B2 (en) | Supercritical water oxidation method and apparatus for organic chlorine compounds | |
JPH09253478A (en) | Method for decomposing pcb | |
JP3669881B2 (en) | Method and apparatus for decomposing a hardly decomposable substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20080606 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20110606 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |