JPH11156379A - Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound - Google Patents

Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound

Info

Publication number
JPH11156379A
JPH11156379A JP10266025A JP26602598A JPH11156379A JP H11156379 A JPH11156379 A JP H11156379A JP 10266025 A JP10266025 A JP 10266025A JP 26602598 A JP26602598 A JP 26602598A JP H11156379 A JPH11156379 A JP H11156379A
Authority
JP
Japan
Prior art keywords
gas
nitrogen
organic compound
containing organic
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10266025A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzugaki
裕志 鈴垣
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP10266025A priority Critical patent/JPH11156379A/en
Publication of JPH11156379A publication Critical patent/JPH11156379A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

PROBLEM TO BE SOLVED: To remove N2 O in exhaust gas efficiently by a method in which a nitrogen- containing organic compound is subjected to supercritical hydroxylation decomposition under conditions in which ammonia can be oxidized/decomposed, and treated fluid, after being cooled below the critical temperature of water is gas-liquid-separated, and the separated gas is treated with a nitrogen dioxide decomposing catalyst. SOLUTION: A nitrogen-containing organic compound in a tank 1 and water in a water storage tank 3 are pressurized by high pressure pumps 2, 4 respectively, air is pressurized by a high pressure compressor 5, the organic compound is mixed with water, and the mixture is introduced into a reactor 7. A supercritical hydroxylation decomposition reaction is advanced in a mixed fluid brought into a supercritical state in the reactor 7, the carbon atom skeleton of the nitrogen-containing organic compound is decomposed into carbon dioxide, and the nitrogen atom skeleton is decomposed into nitrogen gas through ammonia. The treated fluid subjected to supercritical hydroxylation decomposition is cooled by a cooler 8 and gas-liquid-separated by a gas-liquid separator 9. The separated gas is passed through a catalyst column 11 through a gas discharge line 10 to remove N2 O in the gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エレクトロニクス
工場から排出されるアルカリ性廃液や、有機性排水の生
物処理装置から発生する有機性汚泥等の含窒素有機化合
物の超臨界水酸化分解方法およびその処理装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supercritical hydroxylic decomposition of nitrogen-containing organic compounds such as alkaline wastewater discharged from an electronics factory and organic sludge generated from a biological treatment apparatus for organic wastewater, and its treatment. It concerns the device.

【0002】[0002]

【従来の技術】含窒素有機化合物には多種類のものがあ
るが、含窒素有機化合物を多量に含み分解処理すべきも
のとしては例えばエレクトロニクス工場から排出される
アルカリ性廃液や、有機性排水の生物処理装置から発生
する有機性汚泥等がある。
2. Description of the Related Art There are many types of nitrogen-containing organic compounds. Among them, those containing a large amount of nitrogen-containing organic compounds to be decomposed include, for example, alkaline wastewater discharged from an electronics factory and biological treatment of organic wastewater. There is organic sludge generated from the apparatus.

【0003】このうち、エレクトロニクス工場から排出
されるアルカリ性廃液は、その大部分が濃縮後焼却され
ている。また、有機性汚泥等についても、その大部分は
濃縮脱水後焼却されている。
[0003] Among them, most of the alkaline waste liquid discharged from the electronics factory is concentrated and incinerated. Most of organic sludge is also incinerated after concentration and dehydration.

【0004】しかし、含窒素有機化合物を焼却すると、
NOxが生成することは周知の事実であり、排ガス中か
らNOxを除去するための排ガス処理設備が必要とな
り、焼却装置の大型化やコスト増の原因となっている。
However, when nitrogen-containing organic compounds are incinerated,
It is a well-known fact that NOx is generated, and an exhaust gas treatment facility for removing NOx from exhaust gas is required, causing an increase in size and cost of an incinerator.

【0005】それに対し、近年水の超臨界条件(374
℃、22MPa以上)で酸化分解処理を行う、いわゆる
超臨界水酸化分解法が提案されている。図4に示した従
来の超臨界水酸化分解処理装置のフロー図から明らかな
ように、タンク1内の含窒素有機化合物と水貯留槽3内
の水は、高圧ポンプ2,4により超臨界圧力まで昇圧さ
れ、さらに酸化剤としての空気が高圧コンプレッサー5
により導入されて混合流体となる。昇圧された混合流体
は、予熱器6で超臨界温度まで加熱され、管状型反応器
7内で超臨界水酸化分解反応が起こる。超臨界水酸化分
解された処理流体は冷却器8により冷却され、減圧弁8
を介して気液分離装置9により気液分離されて排ガスと
処理水として系外へ排出される。
On the other hand, in recent years, the supercritical condition of water (374
(22 ° C. or higher), a so-called supercritical hydroxylation decomposition method has been proposed. As is clear from the flow chart of the conventional supercritical hydroxylation decomposition treatment apparatus shown in FIG. 4, the nitrogen-containing organic compound in the tank 1 and the water in the water storage tank 3 are supercritically pressurized by the high-pressure pumps 2 and 4. Pressure, and air as an oxidant is supplied to a high-pressure compressor 5
And becomes a mixed fluid. The pressurized mixed fluid is heated to a supercritical temperature by the preheater 6, and a supercritical hydroxylation decomposition reaction occurs in the tubular reactor 7. The processing fluid decomposed by supercritical hydroxylation is cooled by a cooler 8 and a pressure reducing valve 8
The gas is separated into gas and liquid by the gas-liquid separation device 9 via the gas outlet, and is discharged out of the system as exhaust gas and treated water.

【0006】超臨界水酸化分解法は、含窒素有機化合物
の完全分解が可能であり、含窒素有機化合物を構成する
炭素原子骨格、窒素原子骨格はそれぞれ二酸化炭素、窒
素ガスのような無害なガスに分解されて排出されるた
め、NOx除去処理設備は必要としない。
The supercritical hydroxylation decomposition method is capable of completely decomposing a nitrogen-containing organic compound, and the carbon skeleton and nitrogen skeleton constituting the nitrogen-containing organic compound are harmless gases such as carbon dioxide and nitrogen gas, respectively. NOx removal treatment equipment is not required because the gas is decomposed and discharged.

【0007】しかし、従来の超臨界水酸化分解法におい
て、反応条件によっては含窒素有機化合物中の窒素原子
骨格は窒素ガスまで分解されずに、アンモニアとして処
理水中に残存する場合がある。また、処理水中にアンモ
ニアが残存しない条件においても、排ガス中に亜酸化窒
素(N2O)が生成し、完全分解にはさらに長時間の反
応が必要となる場合がある。
However, in the conventional supercritical hydroxylation decomposition method, the nitrogen skeleton in the nitrogen-containing organic compound may not be decomposed to nitrogen gas but may remain in the treated water as ammonia depending on the reaction conditions. Further, even under the condition that ammonia does not remain in the treated water, nitrous oxide (N 2 O) is generated in the exhaust gas, and a longer time may be required for complete decomposition.

【0008】処理水中のアンモニアについては、全窒素
の対象となるため排出が規制され、低減する必要があ
る。一方、排ガス中のN2Oに関しては、排出基準は現
在のところ設けられていないが、二酸化炭素の100倍
の温暖効果を有するため、その排出量は極力低減するこ
とが望ましい。
Ammonia in treated water is subject to total nitrogen, so its emission must be regulated and reduced. On the other hand, there is no emission standard for N 2 O in exhaust gas at present, but since it has a warming effect 100 times that of carbon dioxide, it is desirable to reduce the emission as much as possible.

【0009】[0009]

【発明が解決しようとする課題】超臨界水酸化分解法に
おいて、処理水中にアンモニアが残存しないようにする
ことや、排ガス中にN2Oを残存させないようにするこ
とは、超臨界水酸化分解の反応条件を限定することによ
り可能である。
In the supercritical water splitting method, it is necessary to prevent ammonia from remaining in the treated water and to prevent N 2 O from remaining in the exhaust gas. This can be achieved by limiting the reaction conditions.

【0010】例えば、処理水中にアンモニアを残存させ
ないようにするためには、処理対象物中の窒素の初期濃
度にもよるが、反応温度650℃、反応圧力25MPa
の条件下、概ね60〜90秒程度で可能である。しか
し、排ガス中にN2Oを残存させないようにするために
は、同一条件下でさらに長時間必要となる場合があり、
超臨界水酸化分解のための反応器が大型化する。
For example, in order to prevent ammonia from remaining in the treated water, the reaction temperature is 650 ° C. and the reaction pressure is 25 MPa, depending on the initial concentration of nitrogen in the object to be treated.
Under the conditions described above, it is possible in about 60 to 90 seconds. However, in order to prevent N 2 O from remaining in the exhaust gas, it may be necessary for a longer time under the same conditions,
The reactor for supercritical hydroxylation decomposition becomes larger.

【0011】本発明が解決しようとする課題は、含窒素
有機化合物の超臨界水酸化分解方法において、処理水中
にアンモニアを含まず、排ガス中からN2Oを除去し、
かつ小型の反応器で対応できる超臨界水酸化分解方法お
よびその装置を提供することにある。
An object of the present invention is to provide a method for supercritically hydrolyzing a nitrogen-containing organic compound by removing N 2 O from exhaust gas without containing ammonia in treated water.
It is another object of the present invention to provide a method and apparatus for supercritical hydroxylation decomposition that can be performed with a small reactor.

【0012】[0012]

【課題を解決するための手段】本発明者らが鋭意研究を
重ねた結果、含窒素有機化合物の超臨界水酸化分解法に
おいて、超臨界水酸化分解した処理流体を気液分離し、
分離された排ガスを触媒処理することにより上記課題を
解決できることを見いだし本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors, in the supercritical hydroxylation decomposition method of a nitrogen-containing organic compound, the processing fluid subjected to the supercritical hydroxylation decomposition is subjected to gas-liquid separation.
The inventors have found that the above problem can be solved by catalytically treating the separated exhaust gas, and have completed the present invention.

【0013】すなわち、請求項1に係る本発明は、含窒
素有機化合物を超臨界水酸化分解する方法において、含
窒素有機化合物が酸化分解される過程で生成するアンモ
ニアを酸化分解できる条件で含窒素有機化合物を超臨界
水酸化分解し、超臨界水酸化分解後の処理流体を水の臨
界温度未満に冷却した後に、気液分離し、分離された気
体をN2O分解触媒で処理することによりN2Oを除去す
ることを特徴とする含窒素有機化合物の超臨界水酸化分
解方法に関するものである。
That is, the present invention according to claim 1 is a method for supercritically hydrolyzing a nitrogen-containing organic compound, wherein the nitrogen-containing organic compound is oxidized and decomposed in a process capable of oxidatively decomposing ammonia. By supercritically hydrolyzing an organic compound and cooling the processing fluid after supercritically hydrolyzing to below the critical temperature of water, gas-liquid separation is performed, and the separated gas is treated with an N 2 O decomposition catalyst. The present invention relates to a method for supercritically decomposing a nitrogen-containing organic compound by removing N 2 O.

【0014】請求項2に係る本発明は、超臨界水酸化分
解された処理流体を300℃以上の水の臨界温度未満に
冷却した後、気液分離し、分離された気体をN2O分解
触媒で処理することを特徴とする請求項1に記載の含窒
素有機化合物の超臨界水酸化分解方法に関するものであ
る。
[0014] The present invention according to claim 2, after cooling the supercritical water oxidation decomposed process fluid to below the critical temperature of 300 ° C. or more water, and gas-liquid separation, the separated gas N 2 O decomposition 2. The method for supercritically hydrolyzing a nitrogen-containing organic compound according to claim 1, wherein the method is performed with a catalyst.

【0015】請求項3に係る本発明は、分離された気体
を減圧する前に、N2O分解触媒で処理することを特徴
とする請求項1または請求項2に記載の含窒素有機化合
物の超臨界水酸化分解方法に関するものである。
The present invention according to claim 3 is characterized in that the separated gas is treated with an N 2 O decomposition catalyst before depressurizing the separated gas. The present invention relates to a supercritical water splitting decomposition method.

【0016】請求項4に係る本発明は、水の超臨界状態
において処理物を酸化剤の存在下に酸化分解する反応器
を備えた含窒素有機化合物の超臨界水酸化分解処理装置
において、処理流体を超臨界条件未満の温度に冷却する
冷却手段と、冷却された処理流体を気液分離する気液分
離手段と、分離された気体が通過するN2O触媒層と、
触媒層を通過した気体を減圧する減圧手段と、気液分離
された液体を冷却する冷却手段と、冷却された液体を減
圧する減圧手段を備えたことを特徴とする含窒素有機化
合物の超臨界水酸化分解装置に関するものである。
According to a fourth aspect of the present invention, there is provided an apparatus for supercritically hydrolyzing a nitrogen-containing organic compound, comprising a reactor for oxidatively decomposing a processed product in the supercritical state of water in the presence of an oxidizing agent. Cooling means for cooling the fluid to a temperature lower than supercritical conditions, gas-liquid separation means for gas-liquid separation of the cooled processing fluid, and an N 2 O catalyst layer through which the separated gas passes;
A supercritical nitrogen-containing organic compound, comprising: a decompression means for decompressing a gas that has passed through the catalyst layer; a cooling means for cooling the gas-liquid separated liquid; and a decompression means for decompressing the cooled liquid. The present invention relates to a hydroxylation decomposition apparatus.

【0017】請求項5に記載の本発明は、冷却手段が熱
交換器である請求項4に記載の含窒素有機化合物の超臨
界水酸化分解処理装置に関するものである。
According to a fifth aspect of the present invention, there is provided the apparatus for supercritically hydrolyzing and decomposing a nitrogen-containing organic compound according to the fourth aspect, wherein the cooling means is a heat exchanger.

【0018】[0018]

【発明の実施の形態】請求項1に記載の発明は、含窒素
有機化合物の超臨界水酸化分解方法において、処理水中
からアンモニアを除去できる条件で超臨界水酸化分解を
行い、処理後の流体を水の臨界温度未満に冷却した後
に、気液分離を行い、分離された気体をN2O分解触媒
で処理することにより、排ガス中のN2Oを除去するも
のである。本発明の処理対象となる含窒素有機化合物
は、含窒素複素環化合物などのように有機化合物の分子
骨格中に窒素原子を含むものや、アミン化合物やアミド
化合物などの置換基中に窒素原子を含むものであっても
よいが、例えば、エレクトロニクス工場から排出される
アルカリ性廃液や、有機性排水の汚泥等を挙げることが
できる。また、有機物を含まないアンモニア水溶液も超
臨界水酸化分解処理することができる。
DETAILED DESCRIPTION OF THE INVENTION The invention according to claim 1 is a method for supercritically hydrolyzing a nitrogen-containing organic compound, wherein the supercritically hydrolyzed decomposition is carried out under conditions capable of removing ammonia from treated water, Is cooled to a temperature lower than the critical temperature of water, gas-liquid separation is performed, and the separated gas is treated with an N 2 O decomposition catalyst to remove N 2 O in the exhaust gas. The nitrogen-containing organic compound to be treated in the present invention includes a compound containing a nitrogen atom in the molecular skeleton of the organic compound such as a nitrogen-containing heterocyclic compound and a nitrogen atom in a substituent such as an amine compound and an amide compound. It may contain, for example, alkaline waste liquid discharged from an electronics factory, sludge of organic waste water, and the like. In addition, an aqueous ammonia solution containing no organic substance can be subjected to the supercritical hydroxylation decomposition treatment.

【0019】本発明により含窒素有機化合物を超臨界水
酸化分解する場合、含窒素有機化合物が超臨界水酸化分
解される過程で生ずるアンモニアを分解する必要があ
り、反応温度600℃以上、反応圧力25〜22MPa
という条件で超臨界水酸化分解を行うことが好ましい。
反応時間は処理物中の窒素濃度に依存するが、高濃度の
場合でも、概ね60〜90秒程度である。反応時間がこ
の程度の場合は、反応器はそれほど大型のものを用いる
必要はない。
When supercritically hydrolyzing a nitrogen-containing organic compound according to the present invention, it is necessary to decompose ammonia generated in the process of supercritically hydrolyzing the nitrogen-containing organic compound. 25-22MPa
It is preferable to carry out the supercritical hydroxylation decomposition under the following conditions.
The reaction time depends on the nitrogen concentration in the processed product, but is generally about 60 to 90 seconds even at a high concentration. When the reaction time is at this level, it is not necessary to use a large reactor.

【0020】しかし、上記のような反応条件では、超臨
界水酸化分解された処理物(排ガス)中にN2Oが生成
する。排ガス中のN2Oを分解するためには、上記反応
条件では、反応時間をさらに長時間としなければなら
ず、そのために大型の反応器を必要とし、コスト増とな
り好ましくない。
However, under the above reaction conditions, N 2 O is generated in the processed product (exhaust gas) subjected to supercritical hydroxylation decomposition. In order to decompose N 2 O in the exhaust gas, the reaction time must be further extended under the above reaction conditions, which requires a large-sized reactor, which is not preferable because the cost increases.

【0021】本発明は、排ガス中のN2Oを除去し、か
つ反応器を大きくしないために、超臨界水酸化分解後の
処理流体を気液分離し、分離された気体をN2O分解触
媒で処理することを特徴とする。
According to the present invention, in order to remove N 2 O in exhaust gas and not to increase the size of the reactor, the processing fluid after supercritical hydroxylation is separated into gas and liquid, and the separated gas is subjected to N 2 O decomposition. It is characterized by treating with a catalyst.

【0022】本発明に用いるN2O分解触媒は、N2Oを
分解できる触媒であれば特に限定されないが、例えば、
三二酸化ロジウム、三二酸化コバルトまたはこれらの混
合物よりなるA群化合物、セリウム化合物、マンガン化
合物またはスズ化合物よりなるB群化合物、アルカリ金
属、アルカリ土類金属またはこれらの混合物よりなるC
群化合物のそれぞれ1種以上を有効成分として含有する
多元触媒、あるいは疎水性担体にウテニウム、ロジウ
ム、レニウム、オスミウム、イリジウム、パラジウムお
よび白金からなるからなる群より選ばれる少なくとも1
種以上の貴金属類を担持した触媒、あるいは酸化ロジウ
ムを酸化亜鉛担体または酸化亜鉛担体多孔質を担持した
触媒、あるいは細孔内部および表面での交換可能な陽イ
オンが水素であるゼオライト等を用いることができる。
The N 2 O decomposition catalyst used in the present invention is not particularly limited as long as it can decompose N 2 O.
Group A compounds consisting of rhodium sesquioxide, cobalt sesquioxide or mixtures thereof, Group B compounds consisting of cerium compounds, manganese compounds or tin compounds, alkali metals, alkaline earth metals or C consisting of mixtures thereof
A multi-component catalyst containing at least one of each of the group compounds as an active ingredient, or at least one selected from the group consisting of uthenium, rhodium, rhenium, osmium, iridium, palladium and platinum on a hydrophobic carrier;
Use a catalyst that supports more than one kind of noble metal, a catalyst that supports rhodium oxide on a zinc oxide carrier or a porous zinc oxide carrier, or a zeolite whose exchangeable cation is hydrogen inside and on the surface of pores. Can be.

【0023】一般的にN2O分解触媒は、SOxや水の
存在下では、それらの物質が触媒毒となり性能が劣化し
たり、所定の能力を発揮できないという問題が生じる
が、本発明の超臨界水酸化分解後の排ガス中にはSOx
が含まれず、さらに水は気液分離で除くため、前述した
ような問題は生じない。N2O分解触媒は、固定床とし
て触媒塔に充填し、気液分離された排ガスを通過させれ
ばよい。
In general, in the presence of SOx or water, the N 2 O decomposition catalyst has a problem that its substance becomes a catalyst poison, deteriorating the performance or failing to exhibit a predetermined ability. SOx is contained in exhaust gas after critical hydroxylation decomposition.
And water is removed by gas-liquid separation, so that the above-described problem does not occur. The N 2 O decomposition catalyst may be filled in a catalyst tower as a fixed bed, and the gas-liquid separated exhaust gas may be passed through.

【0024】N2Oを分解するには、触媒の存在下でも
比較的高温で行うことが好ましい。超臨界水酸化分解反
応は、上記の通り、反応温度は600℃以上で行うた
め、この熱を利用することができる。しかし、水の臨界
状態のままでは、処理流体は気液に分離しておらず、こ
の処理流体を直接触媒層に通すことは、水を大量に触媒
に接触させることになり、触媒が所定の効果を示さなく
なる。
The decomposition of N 2 O is preferably performed at a relatively high temperature even in the presence of a catalyst. As described above, the supercritical hydroxylation decomposition reaction is performed at a reaction temperature of 600 ° C. or higher, and thus this heat can be used. However, in the critical state of water, the processing fluid is not separated into gas and liquid, and passing this processing fluid directly through the catalyst layer causes a large amount of water to come into contact with the catalyst, so that the catalyst is in a predetermined state. No effect.

【0025】そこで気液分離が必要となるが、そのため
には水の臨界温度(347℃)以下に冷却する必要があ
る。
Therefore, gas-liquid separation is required. For that purpose, it is necessary to cool water to a temperature lower than the critical temperature (347 ° C.).

【0026】また、気液分離した後のN2O分解触媒に
よる処理温度は、300℃以上の水の臨界温度未満、す
なわち300〜350℃が好ましい。処理流体の温度を
冷却するには、処理流体を冷却装置で冷却してもよい
が、熱交換器を利用して、反応器に導入される前の含窒
素有機化合物を含む流体との間で熱交換を行って、冷却
することが好ましい。
The treatment temperature of the N 2 O decomposition catalyst after gas-liquid separation is preferably 300 ° C. or higher and lower than the critical temperature of water, ie, 300 to 350 ° C. In order to cool the temperature of the processing fluid, the processing fluid may be cooled by a cooling device.However, a heat exchanger is used to cool the processing fluid with the fluid containing the nitrogen-containing organic compound before being introduced into the reactor. It is preferable to perform heat exchange and cool.

【0027】なお、気液分離された排ガスは、N2Oの
除去率を高めるために、使用する触媒にもよるが、N2
O分解触媒層へ通気する前に、300〜400℃に再加
熱することが好ましい。この排ガスを再加熱するために
は、通常超臨界水酸化装置の起動用に用いられる加熱器
を用いればよい。加熱器は、超臨界水酸化装置の起動時
に水を加熱して超臨界水とするために用いられるが、反
応器内で超臨界水酸化反応が定常的に進行すると、使用
することがないためである。起動時に用いる加熱器を利
用して、処理ガスの再加熱を行えば、処理ガスの再加熱
用加熱器が不要となり、装置の大型化を引き起こすこと
がない。
[0027] Incidentally, the gas-liquid separated exhaust gas, in order to increase the removal rate of N 2 O, depending on the catalyst used, N 2
It is preferable to reheat to 300 to 400 ° C. before ventilating the O decomposition catalyst layer. In order to reheat the exhaust gas, a heater usually used for starting a supercritical water oxidation apparatus may be used. The heater is used to heat water at the time of activation of the supercritical water oxidation apparatus to make it supercritical water, but when the supercritical water oxidation reaction proceeds steadily in the reactor, it is not used. It is. If the processing gas is reheated by using the heater used at the time of starting, the heater for reheating the processing gas becomes unnecessary, and the apparatus does not increase in size.

【0028】請求項2に記載の発明において、比較的高
温で排ガスを処理するため、N2O分解触媒層に通す排
ガス量を比較的大きくとることが可能であり、排ガス処
理装置を小型化できる。
According to the second aspect of the present invention, since the exhaust gas is treated at a relatively high temperature, the amount of exhaust gas passing through the N 2 O decomposition catalyst layer can be made relatively large, and the exhaust gas treatment apparatus can be downsized. .

【0029】請求項3に記載の発明は、排ガスを減圧す
る前にN2O分解触媒処理して排ガス中のN2Oを除去す
るものである。
[0029] According to a third aspect of the invention are those with N 2 O decomposition catalyst process for removing N 2 O in the exhaust gas before decompressing the exhaust gas.

【0030】請求項3に記載の発明は、減圧による体積
膨張および液体の蒸発に伴う温度低下がないため、N2
O分解触媒層に通す排ガスの温度を高温に維持すること
ができる。また、高圧で通すことにより、排ガスの密度
が大きくなり、N2O分解触媒層に通す排ガス量を大き
くとることが可能であり、排ガス処理装置を小型化でき
る。
According to the third aspect of the present invention, since there is no volume expansion due to reduced pressure and no temperature decrease due to evaporation of the liquid, N 2
The temperature of the exhaust gas passing through the O decomposition catalyst layer can be maintained at a high temperature. Further, by passing the exhaust gas at a high pressure, the density of the exhaust gas increases, and the amount of the exhaust gas passing through the N 2 O decomposition catalyst layer can be increased, so that the exhaust gas treatment device can be downsized.

【0031】なお、本発明の超臨界水酸化分解において
は、酸化剤としては、例えば空気、純酸素、過酸化水
素、液体酸素を挙げることができ、これらの酸化剤は化
学量論要求量以上用いればよい。
In the supercritical hydroxylation decomposition of the present invention, examples of the oxidizing agent include air, pure oxygen, hydrogen peroxide, and liquid oxygen, and these oxidizing agents have a stoichiometric amount or more. It may be used.

【0032】超臨界水酸化分解を行う反応器は、パイプ
(管状)型、ベッセル型のいずれでもよいが、加熱部か
ら反応器、冷却部までが一本の配管で済むため構造が簡
素化でき、塩が生成する可能性のない対象物を処理する
場合などは、管状反応器の方が好ましい。
The reactor for performing the supercritical hydroxylation decomposition may be either a pipe (tubular) type or a vessel type, but the structure can be simplified since only one pipe is required from the heating section to the reactor and the cooling section. In the case of treating an object having no possibility of salt formation, a tubular reactor is preferred.

【0033】本発明の含窒素有機化合物の超臨界水酸化
分解処理装置の一実施形態を、図1〜図2により説明す
る。
An embodiment of the apparatus for supercritically hydrolyzing and decomposing a nitrogen-containing organic compound according to the present invention will be described with reference to FIGS.

【0034】図1は、請求項4に係る本発明の装置を管
状反応器へ適用した超臨界水酸化分解処理装置の一実施
形態を示したフロー図である。
FIG. 1 is a flow chart showing one embodiment of a supercritical hydroxylation decomposition treatment apparatus in which the apparatus of the present invention according to claim 4 is applied to a tubular reactor.

【0035】処理対象となる含窒素有機化合物が貯留さ
れているタンク1には、含窒素有機化合物が水溶液また
はスラリーの状態で貯留されている。含窒素有機化合物
と水貯留槽3内の水は、高圧ポンプ2,4によりそれぞ
れ昇圧され、また酸化剤としての空気は高圧コンプレッ
サー5により昇圧されて、含窒素有機化合物と水に合流
して管状型反応器7へ導入される。管状型反応器7の手
前で、加熱器6により混合流体が超臨界条件温度まで加
熱される。管状反応器7内で超臨界状態になった混合流
体中で、超臨界水酸化分解反応が短時間のうちに進行
し、含窒素有機化合物の炭素原子骨格は二酸化炭素に、
窒素原子骨格はアンモニアを経て窒素ガスに分解され
る。処理する含窒素有機化合物の有する酸化反応の発熱
量により、超臨界温度が維持され、超臨界水酸化分解反
応が持続される。超臨界水酸化分解された処理流体は冷
却器8により300〜350℃に冷却され、気液分離装
置9により気液分離される。分離された気体はガス排出
ライン10を通って、N2O分解触媒が充填された触媒
塔11を通過し、気体中に含まれていたN2Oが除去さ
れる。N2Oが除去された気体は減圧弁12により減圧
されて大気圧に解放され排ガスとして排出される。一
方、気液分離された液体は液体排出ライン13を通っ
て、冷却器14により常温まで冷却された後に減圧弁1
5により減圧されて処理水として系外に排出される。図
1の含窒素有機化合物の超臨界水酸化分解処理装置は、
処理水中にアンモニアが含まれず、また排ガス中のN2
Oを除去でき、かつ反応器および触媒層を小型化でき
る。
In the tank 1 storing the nitrogen-containing organic compound to be treated, the nitrogen-containing organic compound is stored in the form of an aqueous solution or slurry. The nitrogen-containing organic compound and the water in the water storage tank 3 are pressurized by the high-pressure pumps 2 and 4, respectively, and the air as the oxidant is pressurized by the high-pressure compressor 5 and merged with the nitrogen-containing organic compound and water to form a tube. It is introduced into the mold reactor 7. Before the tubular reactor 7, the mixed fluid is heated by the heater 6 to the supercritical temperature. In the mixed fluid in a supercritical state in the tubular reactor 7, the supercritical hydroxylation decomposition reaction proceeds in a short time, and the carbon atom skeleton of the nitrogen-containing organic compound becomes carbon dioxide.
The nitrogen atom skeleton is decomposed into nitrogen gas via ammonia. The supercritical temperature is maintained by the calorific value of the oxidation reaction of the nitrogen-containing organic compound to be treated, and the supercritical hydroxylation decomposition reaction is maintained. The processing fluid subjected to the supercritical hydroxylation decomposition is cooled to 300 to 350 ° C. by the cooler 8, and separated by the gas-liquid separation device 9. The separated gas through the gas discharge line 10, passed through the catalyst tower 11 N 2 O decomposition catalyst is filled, N 2 O contained in a gas is removed. The gas from which N 2 O has been removed is depressurized by the pressure reducing valve 12, released to the atmospheric pressure, and discharged as exhaust gas. On the other hand, the liquid separated into gas and liquid passes through a liquid discharge line 13 and is cooled to a normal temperature by a cooler 14 and then the pressure reducing valve 1
The pressure is reduced by 5 and discharged out of the system as treated water. The supercritical hydroxylation decomposition treatment apparatus for nitrogen-containing organic compounds in FIG.
Ammonia is not contained in the treated water and N 2 in the exhaust gas
O can be removed, and the reactor and the catalyst layer can be miniaturized.

【0036】図2は、請求項5に係る本発明の超臨界水
酸化分解処理装置の一実施形態を示した図である。請求
項5に記載の超臨界水酸化分解処理装置は、請求項4に
記載した装置と主要部が同じであり、共通部分は同一符
号を付した。請求項5に係る超臨界水酸化分解処理装置
が請求項4に係る超臨界水酸化分解処理装置と異なるの
は、混合流体の予熱および冷却を熱交換器を用いて実現
した点である。
FIG. 2 is a view showing one embodiment of the supercritical hydroxylation decomposition apparatus according to the present invention according to claim 5. The supercritical hydroxylation decomposition treatment apparatus according to claim 5 has the same main parts as the apparatus described in claim 4, and common parts have the same reference numerals. The supercritical hydroxylation decomposition apparatus according to claim 5 is different from the supercritical hydroxylation decomposition treatment apparatus according to claim 4 in that preheating and cooling of the mixed fluid are realized using a heat exchanger.

【0037】すなわち、所定の圧力に昇圧された含窒素
有機化合物、水および酸化剤の混合流体は、熱交換器1
6によりあらかじめ加熱され、管状型反応器7内で超臨
界水酸化分解される。超臨界水酸化分解された処理流体
は、熱交換器16で熱交換により300〜350℃に冷
却される。
That is, the mixed fluid of the nitrogen-containing organic compound, water and the oxidizing agent which has been pressurized to a predetermined pressure is supplied to the heat exchanger 1
6, and is subjected to supercritical hydrolytic decomposition in a tubular reactor 7. The processing fluid decomposed by supercritical hydroxylation is cooled to 300 to 350 ° C. by heat exchange in the heat exchanger 16.

【0038】冷却された処理流体は、図1に示した超臨
界水酸化分解処理装置と同様に、気液分離装置9で気液
分離され、分離された気体はガス排出ライン10を通っ
て、N2O分解触媒が充填された触媒塔11を通過し、
気体中に含まれていたN2Oが除去される。N2Oが除去
された気体は減圧弁12により減圧されて排ガスとして
排出される。一方、気液分離された液体は液体排出ライ
ン13を通って、冷却器14により冷却された後に減圧
弁15により減圧されて処理水として系外に排出され
る。
The cooled processing fluid is subjected to gas-liquid separation by a gas-liquid separation device 9 in the same manner as in the supercritical hydroxylation decomposition treatment device shown in FIG. 1, and the separated gas passes through a gas discharge line 10. After passing through the catalyst tower 11 filled with the N 2 O decomposition catalyst,
N 2 O contained in the gas is removed. The gas from which N 2 O has been removed is reduced in pressure by the pressure reducing valve 12 and discharged as exhaust gas. On the other hand, the liquid separated into gas and liquid passes through the liquid discharge line 13, is cooled by the cooler 14, is depressurized by the pressure reducing valve 15, and is discharged out of the system as treated water.

【0039】図3は、気液分離された排ガスを、触媒層
に通気する前に再加熱する処理装置のフロー図である。
図3に示した超臨界水酸化分解処理装置は、図1に示し
た装置と主要部が同じであり、共通部分は同一符号を付
した。
FIG. 3 is a flow chart of a processing apparatus for reheating gas-liquid separated exhaust gas before passing it through the catalyst layer.
The main part of the supercritical hydroxylation decomposition treatment apparatus shown in FIG. 3 is the same as that of the apparatus shown in FIG. 1, and the common parts are denoted by the same reference numerals.

【0040】図3の超臨界水酸化分解処理装置が、図1
のものと異なる点は、気液分離した排ガスを、超臨界水
酸化分解装置の起動時に使用する加熱器を利用して再加
熱した後、触媒によりN2Oを分解するところにある。
The supercritical hydroxylation decomposition treatment apparatus shown in FIG.
The difference from the above is that the exhaust gas separated from gas and liquid is reheated by using a heater used at the time of starting the supercritical hydroxylation decomposition apparatus, and then N 2 O is decomposed by a catalyst.

【0041】まず、起動時においては、バルブv2,v
5を閉じ、バルブv1,v3,v4を開放することによ
り、起動時に使用する水を加熱し、超臨界水酸化反応を
開始することができる。超臨界水酸化が進行し、定常状
態となったところで、バルブv1,v3,v4を閉じ、
バルブv2,v5を開放することにより、反応器7で超
臨界水酸化分解された処理流体を冷却器8で冷却後気液
分離器9で分離された排ガスを、加熱器6に導いて再加
熱し、触媒塔11へ通気することにより、N2Oを分解
することができる。
First, at the time of starting, the valves v2, v
By closing the valve 5 and opening the valves v1, v3, v4, the water used at the time of starting can be heated, and the supercritical hydroxylation reaction can be started. When the supercritical water oxidation progresses and reaches a steady state, the valves v1, v3, and v4 are closed,
By opening the valves v2 and v5, the processing fluid subjected to the supercritical hydroxylation decomposition in the reactor 7 is cooled in the cooler 8, and then the exhaust gas separated in the gas-liquid separator 9 is guided to the heater 6 for reheating. Then, N 2 O can be decomposed by ventilating the catalyst tower 11.

【0042】[0042]

【実施例】実施例1 エレクトロニクス工場から排出されるアルカリ性廃液
(主成分:水酸化アンモニウム、テトラメチルアンモニ
ウムハイドロオキサイド、TC:100000ppm、
TN:50000ppm)を反応温度650℃、反応圧
力25MPaの条件で超臨界水酸化分解した。超臨界水
酸化分解された処理流体を気液分離し、分離した気体を
2O分解触媒層を通した場合と、通さない場合で比較
した。図2に示したような超臨界水酸化分解装置を用い
て、実験を行った。触媒は酸化アルミニウムにRh(ロ
ジウム)を1.5%担持したものを用い、触媒層の空間
速度5000Hr-1で気液分離した気体を通過させた。
超臨界水酸化分解を行った後の、処理水中のアンモニア
濃度と排ガス中のN2O濃度を測定した。測定結果を表
1に示す。
EXAMPLES Example 1 Alkaline waste liquid discharged from an electronics factory (main components: ammonium hydroxide, tetramethylammonium hydroxide, TC: 100000 ppm,
(TN: 50000 ppm) was subjected to supercritical hydroxyl decomposition at a reaction temperature of 650 ° C. and a reaction pressure of 25 MPa. The processing fluid subjected to the supercritical hydroxyl decomposition was subjected to gas-liquid separation, and the separated gas was compared with a case where the separated gas was passed through an N 2 O decomposition catalyst layer and a case where the separated gas was not passed. An experiment was performed using a supercritical hydroxylation decomposition apparatus as shown in FIG. The catalyst used was one in which 1.5% Rh (rhodium) was supported on aluminum oxide, and the gas separated by gas-liquid separation at a space velocity of 5000 Hr -1 of the catalyst layer was passed.
After the supercritical water splitting, the ammonia concentration in the treated water and the N 2 O concentration in the exhaust gas were measured. Table 1 shows the measurement results.

【0043】[0043]

【表1】 [Table 1]

【0044】表1に示した結果から明らかなように、含
窒素有機化合物を超臨界水酸化分解した後の処理流体を
気液分離し、分離された気体をN2O触媒処理すること
により、反応時間が短時間であっても、排ガス中のN2
Oを50ppm以下に低減することが可能であった。
As is clear from the results shown in Table 1, the treatment fluid after the nitrogen-containing organic compound was subjected to supercritical hydroxylation and decomposition was subjected to gas-liquid separation, and the separated gas was subjected to N 2 O catalyst treatment. Even if the reaction time is short, N 2
It was possible to reduce O to 50 ppm or less.

【0045】[0045]

【発明の効果】本発明方法および装置により、含窒素有
機化合物を超臨界水酸化分解処理した排ガス中のN2
を効果的に低減することができる。
According to the method and apparatus of the present invention, N 2 O in the exhaust gas obtained by subjecting a nitrogen-containing organic compound to supercritical hydroxylation decomposition treatment is used.
Can be effectively reduced.

【0046】短時間の反応でも、排ガス中のN2Oを低
減できるので、超臨界水酸化分解に用いる反応器の大き
さを1/3以下にすることが可能である。
Since the N 2 O in the exhaust gas can be reduced even in a short-time reaction, the size of the reactor used for the supercritical water splitting can be reduced to 1/3 or less.

【0047】超臨界水酸化分解による廃熱をN2O除去
に利用できるため、N2O除去のためのランニングコス
トを低減することができる。
[0047] Since the waste heat by supercritical water oxidation decomposition can be used to N 2 O removal, it is possible to reduce the running cost for the N 2 O removal.

【0048】請求項3の場合、減圧に伴う温度低下がな
く、かつ高密度で排ガス処理を行うため、常圧でN2
除去を行う場合に比して、使用する触媒量を低減するこ
とができる。
In the case of the third aspect, since the exhaust gas treatment is performed at a high density without a decrease in the temperature due to the reduced pressure, N 2 O is applied at normal pressure.
The amount of catalyst used can be reduced as compared with the case where removal is performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項4に係る本発明の含窒素有機化合物の超
臨界水酸化分解処理装置の一実施形態を示すフロー図。
FIG. 1 is a flow chart showing an embodiment of the apparatus for supercritically hydrolyzing and decomposing a nitrogen-containing organic compound of the present invention according to claim 4.

【図2】請求項5に係る本発明の含窒素有機化合物の超
臨界水酸化分解処理装置の一実施形態を示すフロー図。
FIG. 2 is a flow chart showing an embodiment of the apparatus for supercritically hydrolyzing and decomposing a nitrogen-containing organic compound of the present invention according to claim 5;

【図3】気液分離された排ガスを、再加熱して触媒によ
るN2O分解処理するための超臨界水酸化分解処理装置
の一実施形態を示すフロー図。
FIG. 3 is a flow chart showing one embodiment of a supercritical hydroxylation decomposition treatment apparatus for reheating an exhaust gas subjected to gas-liquid separation and performing N 2 O decomposition treatment using a catalyst.

【図4】従来の含窒素有機化合物の超臨界水酸化分解処
理装置のフロー図。
FIG. 4 is a flow chart of a conventional apparatus for supercritically hydrolyzing and decomposing nitrogen-containing organic compounds.

【符号の説明】[Explanation of symbols]

1 含窒素有機化合物貯留タンク 2 高圧ポンプ 3 水貯留タンク 4 高圧ポンプ 5 高圧コンプレッサー 6 加熱器 7 管状型反応器 8 冷却器 9 気液分離装置 10 ガス排出ライン 11 触媒塔 12 減圧弁 13 液体排出ライン 14 冷却器 15 減圧弁 16 熱交換器 REFERENCE SIGNS LIST 1 nitrogen-containing organic compound storage tank 2 high-pressure pump 3 water storage tank 4 high-pressure pump 5 high-pressure compressor 6 heater 7 tubular reactor 8 cooler 9 gas-liquid separator 10 gas discharge line 11 catalyst tower 12 pressure reducing valve 13 liquid discharge line 14 cooler 15 pressure reducing valve 16 heat exchanger

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/72 ZAB B01D 53/36 101Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/72 ZAB B01D 53/36 101Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 含窒素有機化合物を超臨界水酸化分解す
る方法において、含窒素有機化合物が酸化分解される過
程で生成するアンモニアを酸化分解できる条件で含窒素
有機化合物を超臨界水酸化分解し、超臨界水酸化分解後
の処理流体を水の臨界温度未満に冷却した後に、気液分
離し、分離された気体をN2O分解触媒で処理すること
によりN2Oを除去することを特徴とする含窒素有機化
合物の超臨界水酸化分解方法。
1. A method for supercritically hydrolyzing a nitrogen-containing organic compound, wherein the nitrogen-containing organic compound is supercritically hydrolyzed under conditions capable of oxidatively decomposing ammonia generated in the process of oxidatively decomposing the nitrogen-containing organic compound. After cooling the processing fluid after supercritical water splitting to below the critical temperature of water, gas-liquid separation is performed, and the separated gas is treated with a N 2 O decomposition catalyst to remove N 2 O. Supercritical water oxidation decomposition method of nitrogen-containing organic compound.
【請求項2】 超臨界水酸化分解された処理流体を30
0℃以上の水の臨界温度未満に冷却した後、気液分離
し、分離された気体をN2O分解触媒で処理することを
特徴とする請求項1に記載の含窒素有機化合物の超臨界
水酸化分解方法。
2. The processing fluid decomposed by supercritical hydroxylation is treated with 30
2. The supercritical nitrogen-containing organic compound according to claim 1, wherein after cooling the water to a temperature not lower than the critical temperature of 0 ° C. or more, gas-liquid separation is performed, and the separated gas is treated with an N 2 O decomposition catalyst. Hydrolysis decomposition method.
【請求項3】 分離された気体を減圧する前に、N2
分解触媒で処理することを特徴とする請求項1または請
求項2に記載の含窒素有機化合物の超臨界水酸化分解方
法。
3. Prior to depressurizing the separated gas, N 2 O
3. The method for supercritically hydrolyzing and decomposing a nitrogen-containing organic compound according to claim 1 or 2, wherein the treatment is carried out with a decomposition catalyst.
【請求項4】 水の超臨界状態において処理物を酸化剤
の存在下に酸化分解する反応器を備えた含窒素有機化合
物の超臨界水酸化分解処理装置において、処理流体を超
臨界条件未満の温度に冷却する冷却手段と、冷却された
処理流体を気液分離する気液分離手段と、分離された気
体が通過するN2O触媒層と、触媒層を通過した気体を
減圧する減圧手段と、気液分離された液体を冷却する冷
却手段と、冷却された液体を減圧する減圧手段を備えた
ことを特徴とする含窒素有機化合物の超臨界水酸化分解
装置。
4. An apparatus for supercritically hydrolyzing a nitrogen-containing organic compound, comprising a reactor for oxidatively decomposing a processed product in the supercritical state of water in the presence of an oxidizing agent. Cooling means for cooling to a temperature, gas-liquid separation means for gas-liquid separation of the cooled processing fluid, N 2 O catalyst layer through which the separated gas passes, and decompression means for depressurizing the gas passing through the catalyst layer. An apparatus for supercritically decomposing a nitrogen-containing organic compound, comprising: a cooling means for cooling the liquid separated from the gas and liquid; and a pressure reducing means for reducing the pressure of the cooled liquid.
【請求項5】 冷却手段が熱交換器である請求項4に記
載の含窒素有機化合物の超臨界水酸化分解処理装置。
5. The apparatus for supercritically hydrolyzing and decomposing a nitrogen-containing organic compound according to claim 4, wherein the cooling means is a heat exchanger.
JP10266025A 1997-09-25 1998-09-21 Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound Pending JPH11156379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10266025A JPH11156379A (en) 1997-09-25 1998-09-21 Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25970197 1997-09-25
JP9-259701 1997-09-25
JP10266025A JPH11156379A (en) 1997-09-25 1998-09-21 Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound

Publications (1)

Publication Number Publication Date
JPH11156379A true JPH11156379A (en) 1999-06-15

Family

ID=26544238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10266025A Pending JPH11156379A (en) 1997-09-25 1998-09-21 Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound

Country Status (1)

Country Link
JP (1) JPH11156379A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050920A (en) * 2010-08-31 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
JP2012050937A (en) * 2010-09-01 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
CN111921498A (en) * 2020-08-14 2020-11-13 生态环境部南京环境科学研究所 Method for recycling caustic sludge, product and application
CN112408575A (en) * 2020-10-22 2021-02-26 西安交通大学 Nitrogen removal device for supercritical water oxidation of high-concentration nitrogen-containing organic wastewater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135624A (en) * 1990-09-28 1992-05-11 Babcock Hitachi Kk Pressure fluidized-bed combustor
JPH05245384A (en) * 1991-11-08 1993-09-24 Air Prod And Chem Inc Process for removing nitrous oxide from gaseous mixture
JPH07163870A (en) * 1993-08-27 1995-06-27 Engelhard Corp Method of removing n20 from n20 containing gas mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135624A (en) * 1990-09-28 1992-05-11 Babcock Hitachi Kk Pressure fluidized-bed combustor
JPH05245384A (en) * 1991-11-08 1993-09-24 Air Prod And Chem Inc Process for removing nitrous oxide from gaseous mixture
JPH07163870A (en) * 1993-08-27 1995-06-27 Engelhard Corp Method of removing n20 from n20 containing gas mixture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050920A (en) * 2010-08-31 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
JP2012050937A (en) * 2010-09-01 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
CN111921498A (en) * 2020-08-14 2020-11-13 生态环境部南京环境科学研究所 Method for recycling caustic sludge, product and application
CN111921498B (en) * 2020-08-14 2022-06-21 生态环境部南京环境科学研究所 Method for recycling caustic sludge, product and application
CN112408575A (en) * 2020-10-22 2021-02-26 西安交通大学 Nitrogen removal device for supercritical water oxidation of high-concentration nitrogen-containing organic wastewater

Similar Documents

Publication Publication Date Title
JPH11156379A (en) Method for supercritical hydroxylation-decomposition of nitrogen-containing organic compound
JP2003013077A (en) Method for treating organic compound
JP4800569B2 (en) Fuel gas production apparatus and fuel gas production method
JP4524525B2 (en) Method for treating wastewater containing ammonia and hydrogen peroxide
JP3906666B2 (en) Method and apparatus for treating nitrogen compound-containing water
JP2000167570A (en) Treatment of waste water
JP2000229274A (en) Wet combustion device and treatment of carbon based compound
JP3263968B2 (en) Treatment of wastewater containing nitrate
JP2005329304A (en) Method for treating nitric acid waste solution
JP3693354B2 (en) Treatment method of wastewater containing nitrate
JP3238741B2 (en) Method of treating ammonium fluoride-containing water
JP3822520B2 (en) Nitrogen compound-containing water treatment method
JP4038873B2 (en) Method for treating wastewater containing volatile compounds
JPS63190620A (en) Method of removing trichloroethylene out of gas containing trichloroethylene
JPH0910780A (en) Treatment of alkanolamine containing waste water
JP3710675B2 (en) Method and apparatus for treating nitrogen atom-containing organic matter
JP3509186B2 (en) Denitrification treatment method
JPH0461987A (en) Treatment of waste water containing ammonium nitrate
JP2003275747A (en) Method and device for treating waste water containing ammonium fluoride
JPH04200692A (en) Treatment of ammonium nitrate-containing waste water
JP2002224680A (en) Method and apparatus for oxidizing organic liquid to be treated
JPH09285793A (en) Removing method for nitrate nitrogen in water and removing system
JP4390357B2 (en) Method for treating ammonia-containing water
JPH11333474A (en) Method for treating wastewater containing phenol
JP2000334477A (en) Method for removing nitrate ion

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607