JPH07275871A - Supercritical water oxidation treatment method of harmful substance and apparatus therefor - Google Patents

Supercritical water oxidation treatment method of harmful substance and apparatus therefor

Info

Publication number
JPH07275871A
JPH07275871A JP6070935A JP7093594A JPH07275871A JP H07275871 A JPH07275871 A JP H07275871A JP 6070935 A JP6070935 A JP 6070935A JP 7093594 A JP7093594 A JP 7093594A JP H07275871 A JPH07275871 A JP H07275871A
Authority
JP
Japan
Prior art keywords
supercritical water
water oxidation
preheater
reactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6070935A
Other languages
Japanese (ja)
Inventor
Seiichi Yamamoto
誠一 山本
Takeshi Kanda
神田  剛
Taku Aokata
卓 青方
Satoshi Furuta
覚士 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6070935A priority Critical patent/JPH07275871A/en
Publication of JPH07275871A publication Critical patent/JPH07275871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To efficiently perform the supercritical water oxidation treatment of a harmful substance by performing the mixing of the harmful substance with an aq. soln. at the inlet of a reactor. CONSTITUTION:In the supercrifical water oxidation treatment of a harmful substance performing the decomposition treatment of the harmful substance under a supercritical condition of water using a supercritical water oxidation treatment apparatus equipped with a preheater 5, a reactor 6, a cooler 7 and a gas-liquid separator 25 and performing the gas-liquid separation of a decomposition product in the gas-liquid separator 25, an aq. soln. containing water as a main component is supplied to the preheater 5 to preheat the same to a supercritical state and the preheated aq. soln. and the harmful substance are mixed at the inlet of the reactor 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として超臨界条件下
の水によって有害物質、例えばフロン、PCB等の有害
有機物を分解処理し、無害化するための超臨界水酸化処
理方法及び処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical water oxidation treatment method and treatment apparatus for decomposing and detoxifying harmful substances, for example, harmful organic substances such as CFCs and PCBs, mainly by water under supercritical conditions. It is a thing.

【0002】[0002]

【従来の技術】従来、有機物の分解処理に関しては、し
尿処理を代表的な例として微生物による分解処理が一般
的なものとして行われてきたが、処理にともなう汚泥の
発生量の多さが問題となって、それを低減するために手
法が検討されてきた。その代表的な手法は、200〜3
00°C程度の温度、100気圧程度の熱水条件下で、
酸化剤として空気もしくは酸素を強制的に送りこんで、
酸化分解を起こさせる湿式酸化法と呼ばれる手法であ
り、同手法については、し尿のような一般的な有機物の
場合には特段の問題はないが、有害有機物例えばPCB
を含む排水に適用すると分解のレベルに問題があるとい
われてきた。
2. Description of the Related Art Conventionally, with regard to the decomposition treatment of organic substances, a decomposition treatment by microorganisms has been generally performed as a typical example of human waste treatment, but a large amount of sludge generated by the treatment is a problem. Therefore, methods have been studied to reduce it. The typical method is 200 to 3
Under the temperature of about 00 ° C and the hot water condition of about 100 atm,
Forcibly sending in air or oxygen as an oxidant,
This method is called a wet oxidation method that causes oxidative decomposition. This method has no particular problem in the case of general organic substances such as human waste, but harmful organic substances such as PCB
It has been said that there is a problem with the level of decomposition when applied to wastewater containing water.

【0003】このような分解の程度に係る問題点をさら
に改善するものとして、水の超臨界条件(温度374°
C、圧力220気圧)以上の温度・圧力で酸化剤を作用
させて分解を起こさせる超臨界水酸化法が近年注目を集
め活発に研究開発が行われており、その一例として特開
昭57−4225号(特公平1−38532号)公報で
開示の技術がある。
As a means for further improving the problem relating to the degree of decomposition, supercritical water conditions (temperature: 374 °) are used.
The supercritical water oxidation method, in which an oxidant is caused to act at a temperature and pressure of 220 Cm or more) to cause decomposition, has been attracting attention in recent years and is being actively researched and developed, and one example thereof is JP-A-57- There is a technique disclosed in Japanese Patent No. 4225 (Japanese Patent Publication No. 1-358532).

【0004】すなわち超臨界条件下の水は、分極特性の
変化により、常圧下では溶解することが困難であった有
機物を溶解させられるようになり(したがってすぐれた
溶媒となって)、これに空気、酸素あるいは過酸化水素
水など酸化剤を共存させるとこれらも均一分散して有機
物の酸化発熱(燃焼)が起こり、燃焼エネルギーを追加
投入せずとも分解反応が進行する。
That is, water under supercritical conditions can dissolve organic substances, which were difficult to dissolve under normal pressure, by virtue of the change in polarization characteristics (and thus become excellent solvents). When an oxidizing agent such as oxygen or hydrogen peroxide is allowed to coexist, these are also uniformly dispersed to generate an exothermic heat (combustion) of the organic matter, and the decomposition reaction proceeds without additional input of combustion energy.

【0005】その分解の程度は、例えばPCBを例にと
ると99.99%以上と言われており完全分解に近く、
また反応条件が燃焼と比較してマイルドな条件であるた
めにダイオキシンなどの副次的な有害物質の発生を招く
こともなく、有害有機物の処理が問題となっている昨今
はもちろんのこと将来的に極めて有望な処理技術といえ
る。
The degree of decomposition is said to be 99.99% or more in the case of PCB, for example, which is close to complete decomposition.
In addition, since the reaction conditions are milder than combustion, the generation of secondary harmful substances such as dioxins does not occur, and the treatment of harmful organic substances has become a problem. This is a very promising processing technology.

【0006】その基本的なフロー(プロセス)は、図4
に示すごとく、被処理物である有機物含有流体(水)が
タンク61から閉止弁62を経て高圧ポンプ63によっ
て逆止弁64を経由して加圧下で予熱器5に送出され、
一方、酸化剤流体(一例として過酸化水素水)がタンク
12から閉止弁13経由同じく高圧ポンプ14によって
逆止弁15を経由して加圧下で予熱器5に送出され、こ
れらは予熱器5で合流するとともに、ここでヒータ65
によって水の超臨界条件に達せしめるべく加熱が行われ
る。しかして高圧反応器6に入った混合流体は有機物の
酸化反応により発熱昇温し、この間有機物は主に水と炭
酸ガスとに分解する。ついでこれらの分解物は冷却器7
で冷却されて気液分離器25に入り、ここで気体と液体
とに分離されて、気体は減圧弁26から閉止弁27を経
て大気放出され、一方液体は減圧弁28から閉止弁29
を経て排出されて一連の処理を完了する。
The basic flow (process) is shown in FIG.
As shown in (4), the organic substance-containing fluid (water) that is the object to be processed is delivered from the tank 61 to the preheater 5 under pressure by the high pressure pump 63 via the stop valve 62 and the check valve 64.
On the other hand, the oxidant fluid (hydrogen peroxide solution as an example) is sent from the tank 12 to the preheater 5 under pressure by the high pressure pump 14 via the stop valve 13 and also via the check valve 15, and these are heated by the preheater 5. While merging, here is the heater 65
Heating is performed to reach the supercritical condition of water. However, the mixed fluid that has entered the high-pressure reactor 6 heats up due to the oxidation reaction of the organic matter, and during this time, the organic matter mainly decomposes into water and carbon dioxide. These decomposed products are then cooled by the cooler 7.
The liquid is cooled in the gas-liquid separator 25, and is separated into gas and liquid, and the gas is released from the pressure reducing valve 26 to the atmosphere through the stop valve 27, while the liquid is released from the pressure reducing valve 28 to the stop valve 29.
After being discharged, a series of processing is completed.

【0007】[0007]

【発明が解決しようとする課題】超臨界水酸化処理法に
ついては、上記の通り基本的なフローは開示されている
が、例えばフロン、PCBなどの有害物質を分解処理す
る際に、分解反応を効率よく推進するための反応器入り
口部での反応系の混合や、エネルギーを有効に回収する
ための熱交換の効率化についてのシステム構成がこれま
でに開示されているとは言い難いのが実状である。
Regarding the supercritical water oxidation treatment method, the basic flow is disclosed as described above, but when decomposing harmful substances such as Freon and PCB, the decomposition reaction is performed. It is hard to say that the system configuration for mixing the reaction system at the reactor inlet for efficient promotion and heat exchange efficiency for effectively recovering energy has been disclosed so far. Is.

【0008】すなわち、有害物質の中にはフロンをはじ
めとして水に対して不溶性のものや難溶性のものが数多
く存在する。また、気体状の有害物質を処理する場合や
空気もしくは酸素を用いて超臨界水中での酸素反応を行
う場合、これらの水に対する溶解度は十分に大きくはな
い。したがって、従来技術のように水と気体状または液
体状の有害物質とさらには酸素等の気体を共に予熱器の
入り口から供給した場合には、これらの物質の水への溶
解度が限られているために混合が十分に行われず、予熱
器内は気液の2相流または気液液の3相の混相流となっ
て流れが安定しにくく、そのため熱回収を目的として冷
却器との間で行う熱交換の効率が悪くなり、ひいては定
常運転の際の安定性が損なわれるという課題があった。
That is, many harmful substances such as CFCs are insoluble in water or hardly soluble in water. Further, when treating a gaseous toxic substance or performing an oxygen reaction in supercritical water using air or oxygen, the solubility in water is not sufficiently high. Therefore, when water, a gaseous or liquid harmful substance, and further a gas such as oxygen are supplied from the inlet of the preheater as in the prior art, the solubility of these substances in water is limited. Due to this, the mixing is not sufficiently performed, and the flow inside the preheater becomes a two-phase flow of gas-liquid or a mixed-phase flow of three phases of gas-liquid, and the flow is difficult to stabilize. There is a problem in that the efficiency of heat exchange to be performed becomes poor and, eventually, the stability during steady operation is impaired.

【0009】そこで、本発明ではこれらの物質の混合を
反応器の入り口で行うことにより、より効率的な有害物
質の超臨界水酸化処理方法及び処理装置を提供すること
が目的である。
Therefore, an object of the present invention is to provide a more efficient supercritical water oxidation treatment method and treatment apparatus for harmful substances by mixing these substances at the entrance of the reactor.

【0010】[0010]

【課題を解決するための手段】本発明は、予熱器5、反
応器6および冷却器7並びに気液分離器25を備えてい
る超臨界水酸化処理装置を用いて、水の超臨界条件下
に、有害物質の分解処理を行い、その後前記気液分離器
25において分解生成物の気液分離を行う有害物質の超
臨界水酸化処理方法において、前述の目的を達成するた
めに次の技術的手段を講じている。
The present invention uses a supercritical water oxidation treatment apparatus equipped with a preheater 5, a reactor 6 and a cooler 7, and a gas-liquid separator 25 to superconduct water under supercritical conditions. In order to achieve the above-mentioned object, in the supercritical water oxidation treatment method for harmful substances, in which the harmful substances are decomposed and then the decomposition products are separated into gas and liquid in the gas-liquid separator 25, the following technical methods are provided. I am taking steps.

【0011】請求項1に係る本発明方法は、水を主成分
とする水溶液を前記予熱器5に送給して該予熱器5で超
臨界状態に予熱し、該予熱した水溶液と有害物質とを前
記反応器6の入り口において混合することを特徴とする
ものである。請求項2に係る本発明方法は、予熱した水
溶液中に、有害物質とともに酸素含有流体を反応器6の
入り口において混合することを特徴とするものである。
In the method of the present invention according to claim 1, an aqueous solution containing water as a main component is fed to the preheater 5 to be preheated to a supercritical state by the preheater 5, and the preheated aqueous solution and harmful substances are added. Are mixed at the inlet of the reactor 6. The method of the present invention according to claim 2 is characterized in that an oxygen-containing fluid is mixed with a harmful substance in the preheated aqueous solution at the inlet of the reactor 6.

【0012】請求項3に係る本発明方法は、有害物質が
気体であることを特徴とするものである。請求項4に係
る本発明方法は、酸素含有流体が空気もしくは酸素であ
ることを特徴とするものである。請求項5に係る本発明
方法は、前記気体である有害物質および/または前記空
気もしくは酸素を直接加熱にて予熱することを特徴とす
るものである。
The method of the present invention according to claim 3 is characterized in that the harmful substance is a gas. The method of the present invention according to claim 4 is characterized in that the oxygen-containing fluid is air or oxygen. The method of the present invention according to claim 5 is characterized in that the harmful substance which is the gas and / or the air or oxygen is preheated by direct heating.

【0013】請求項6に係る本発明方法は、気液分離後
の液体を予熱器に循環することを特徴とするものであ
る。更に本発明は、予熱器5、反応器6および冷却器7
並びに気液分離器25を備えている超臨界水酸化処理装
置において、前述の目的を達成するために次の技術的手
段を講じている。
The method of the present invention according to claim 6 is characterized in that the liquid after gas-liquid separation is circulated to the preheater. Further, the present invention includes a preheater 5, a reactor 6 and a cooler 7.
In addition, in the supercritical water oxidation treatment apparatus equipped with the gas-liquid separator 25, the following technical measures are taken to achieve the above-mentioned object.

【0014】請求項7に係る本発明装置は、水を主成分
とする水溶液を前記予熱器5に送給して超臨界状態に予
熱するための第1送給手段Aを備え、該予熱した水溶液
と有害物質とを前記反応器6の入り口において混合する
ため該有害物質を送給する第2送給手段Bとを備えてい
ることを特徴とするものである。請求項8に係る本発明
装置は、予熱器5と冷却器7との間に熱交換をするため
の伝熱媒体を循環する第1循環送給手段Cを備えている
ことを特徴とするものである。
The apparatus of the present invention according to claim 7 is provided with first feeding means A for feeding an aqueous solution containing water as a main component to the preheater 5 to preheat it to a supercritical state, and preheats it. The present invention is characterized by comprising a second feeding means B for feeding the harmful substance in order to mix the aqueous solution and the harmful substance at the entrance of the reactor 6. The device of the present invention according to claim 8 is characterized in that it is provided with a first circulation feeding means C for circulating a heat transfer medium for heat exchange between the preheater 5 and the cooler 7. Is.

【0015】請求項9に係る本発明装置は、予熱した水
溶液中に、有害物質とともに酸素含有流体を反応器6の
入り口において混合するための酸素含有流体用の第3送
給手段Dを備えていることを特徴とするものである。請
求項10に係る本発明装置は、気液分離された液体を予
熱器5に循環する第2循環送給手段Eを備えていること
を特徴とするものである。
The apparatus of the present invention according to claim 9 comprises a third feeding means D for the oxygen-containing fluid for mixing the oxygen-containing fluid together with harmful substances in the preheated aqueous solution at the inlet of the reactor 6. It is characterized by being present. The apparatus of the present invention according to claim 10 is characterized in that it is provided with a second circulation feeding means E that circulates the gas-liquid separated liquid to the preheater 5.

【0016】[0016]

【作用】本発明によれば、予熱器5には水だけが第1給
送手段Aにより供給され、一方、有害物質と酸化剤は
(必要であれば別系統で予熱された後)、反応器6の入
り口に第2給送手段Bによって給送され、超臨界状態に
まで予熱されて予熱器5より出てきた水と混合される。
この超臨界状態では、水は多くの物質に対して良溶媒で
あり、また粘度が低く拡散係数が大きいことから、事実
上これらの物質は反応器6の入り口付近で速やかに1相
状態となり、しかも十分に混合された状態となる。この
状態で、超臨界流体混合物は均質となり、分解反応が進
行する。これにより、濃度の遍在による分解率の変動の
ような好ましくない現象を抑制することが可能となる。
また、予熱器5を通過するのは水だけであるために、冷
却器7との間の熱交換も安定的に効率よく行うことがで
きる。
According to the present invention, only water is supplied to the preheater 5 by the first feeding means A, while harmful substances and oxidizers (after being preheated by another system, if necessary) react with each other. The water is fed to the inlet of the vessel 6 by the second feeding means B, preheated to a supercritical state, and mixed with water discharged from the preheater 5.
In this supercritical state, water is a good solvent for many substances, and since it has a low viscosity and a large diffusion coefficient, these substances practically rapidly become a one-phase state near the entrance of the reactor 6, Moreover, it is in a sufficiently mixed state. In this state, the supercritical fluid mixture becomes homogeneous and the decomposition reaction proceeds. This makes it possible to suppress an undesirable phenomenon such as a change in the decomposition rate due to the uneven distribution of the concentration.
Moreover, since only water passes through the preheater 5, heat exchange with the cooler 7 can be stably and efficiently performed.

【0017】また、有害物質もしくは酸化剤が気体であ
る場合には、外熱式でなく通電加熱方式の発熱体によっ
て直接加熱により予熱でき、熱効率的にも好ましい。
Further, when the harmful substance or the oxidizing agent is a gas, it can be preheated by direct heating by a heating element of an electric heating type instead of an external heating type, which is also preferable in terms of thermal efficiency.

【0018】[0018]

【実施例】以下、本発明の実施例を図を参照して説明す
ると、第1実施例を示している図1において、本発明の
超臨界水酸化処理装置は、流通式の予熱器5と高圧の反
応器6と、冷却器7および気液分離器25とを直列に管
路で接続することで主構成されている。
EXAMPLE An example of the present invention will be described below with reference to the drawings. In FIG. 1 showing the first example, the supercritical water oxidation treatment apparatus of the present invention comprises a flow type preheater 5 and It is mainly configured by connecting the high-pressure reactor 6 with the cooler 7 and the gas-liquid separator 25 in series by a pipe line.

【0019】予熱器5には第1給送手段Aが接続されて
いて、該手段Aは貯蔵タンク1、閉止弁2、高圧の第1
ポンプ3、逆止弁4等を備えて構成されていて、貯蔵タ
ンク1内の水が、閉止弁2を経由して第1ポンプ3によ
って加圧されて、逆止弁4を経て予熱器5に送給される
ようになっている。第1送給手段Aには付帯給送手段A
1が備えられ、この手段A1はアルカリ水溶液の貯蔵タ
ンク8と、閉止弁9、第2ポンプ10および逆止弁11
等を備えて構成されていて、貯蔵タンク8内のアルカリ
水溶液は、水と同様に閉止弁9を経由して第2ポンプ1
0によって加圧されて、逆止弁11を経て予熱器5に送
給される。このアルカリ水溶液は分解生成物に酸性の物
質が生成してくる場合にこれを中和する目的で使用され
る。
A first feeding means A is connected to the preheater 5, and the means A comprises a storage tank 1, a shutoff valve 2 and a high pressure first means.
The pump 3 and the check valve 4 are provided, and the water in the storage tank 1 is pressurized by the first pump 3 via the stop valve 2 and then passes through the check valve 4 and the preheater 5 Will be sent to. Auxiliary feeding means A for the first feeding means A
1, the means A1 comprises a storage tank 8 for alkaline aqueous solution, a shutoff valve 9, a second pump 10 and a check valve 11.
And the like, and the alkaline aqueous solution in the storage tank 8 passes through the shutoff valve 9 like the water and the second pump 1
It is pressurized by 0 and sent to the preheater 5 via the check valve 11. This alkaline aqueous solution is used for the purpose of neutralizing acidic substances generated in the decomposition products.

【0020】予熱器5においては、冷却器7との間に熱
交換を行わしめるための伝熱媒体がポンプ20により管
路21から管路22を経て循環するようになっており、
この第1循環送給手段Cの管路22にはプレヒータ23
が設けられて、システム起動の際にはプレヒータ23に
よって伝熱媒体が加熱され、ひいては予熱器5が加熱さ
れて、それにともなって予熱器5に流入する混合流体の
温度が水の臨界温度近傍に達するようにされ、またその
圧力は後述の減圧弁によって水の超臨界圧力条件を保つ
ように設定される。以上の反応温度・圧力場(374°
C、220気圧)を形成しつつ、流体は高圧反応器6の
入り口に流入する。
In the preheater 5, a heat transfer medium for exchanging heat with the cooler 7 is circulated by the pump 20 from the conduit 21 to the conduit 22.
A pre-heater 23 is provided in the conduit 22 of the first circulation feeding means C.
Is provided, the heat transfer medium is heated by the preheater 23 at the time of system startup, and the preheater 5 is heated, and the temperature of the mixed fluid flowing into the preheater 5 along with it is close to the critical temperature of water. And the pressure is set by the pressure reducing valve described later so as to maintain the supercritical pressure condition of water. Reaction temperature and pressure field above (374 °
The fluid flows into the inlet of the high pressure reactor 6 while forming (C, 220 atm).

【0021】一方、反応器6の入り口には、有害物質の
ための第2送給手段Bが接続されていて、該手段Bは貯
蔵タンク16、閉止弁17、第3ポンプ18、逆止弁1
9をその管路に備えてなる。従って、貯蔵タンク16内
の有害物質、例えば、フロン、PCB等は閉止弁17を
経由して第3ポンプ18によって加圧されて、逆止弁1
9を経て反応器6の入り口に送給され、ここで予熱器5
を出てきた水および/またはアルカリ水溶液と混合され
る。反応器6の内部で有害物質は超臨界水溶媒下での均
一分散状態で分解反応を起こし、ついで冷却器7に流入
し、すでに述べた伝熱媒体に放熱冷却され(定常状態に
達してのちは、当該放熱が予熱器5の加熱に使われてプ
レヒータ23の稼働は不要となる)、さらに冷却器24
を経て気液分離器25に流入する。
On the other hand, a second feeding means B for harmful substances is connected to the inlet of the reactor 6, and the means B is a storage tank 16, a shutoff valve 17, a third pump 18, a check valve. 1
9 is provided in the conduit. Therefore, harmful substances in the storage tank 16, such as CFCs and PCBs, are pressurized by the third pump 18 via the stop valve 17, and the check valve 1
It is fed to the inlet of the reactor 6 via 9 where the preheater 5
Is mixed with the water and / or alkaline aqueous solution that has come out. Inside the reactor 6, the harmful substance undergoes a decomposition reaction in a uniformly dispersed state in a supercritical water solvent, then flows into the cooler 7, and is radiatively cooled to the heat transfer medium described above (after reaching a steady state. Is used to heat the preheater 5 and the preheater 23 does not need to be operated), and the cooler 24
And then flows into the gas-liquid separator 25.

【0022】気液分離器25では、分解主成分である気
体(主に炭酸ガス)と液体(主に水)とに分離されて、
気体は減圧弁26、閉止弁27を経て大気放出され、一
方液体は同じく減圧弁28、閉止弁29を経て排出され
る。図2は本発明の第2実施例を示しており、有害物質
の分解に酸化剤を使用するものであり、このために貯蔵
タンク12、閉止弁13、ポンプ14、逆止弁15等を
備えている第3送給手段Dが反応器6の入り口に接続さ
れ、それ以外は図1と共通するので共通部分は共通符号
で示している。
In the gas-liquid separator 25, the main components of decomposition are gas (mainly carbon dioxide) and liquid (mainly water).
The gas is discharged to the atmosphere through the pressure reducing valve 26 and the stop valve 27, while the liquid is discharged through the pressure reducing valve 28 and the stop valve 29. FIG. 2 shows a second embodiment of the present invention in which an oxidant is used for decomposing harmful substances, and for this purpose a storage tank 12, a shutoff valve 13, a pump 14, a check valve 15 and the like are provided. The third feeding means D is connected to the inlet of the reactor 6, and the other parts are common to those in FIG.

【0023】この第2実施例では、酸化剤は貯蔵タンク
12から閉止弁13を経由して第3ポンプ14によって
加圧されて、逆止弁15を経て反応器6の入り口に送給
され、ここで同様にして反応器6に供給される有害物質
とともに予熱器5を出てきた水および/またはアルカリ
水溶液と混合される。有害物質は反応器6の内部の超臨
界水溶媒下での均一分散状態で酸化反応により分解、無
害化される。
In this second embodiment, the oxidizer is pressurized from the storage tank 12 via the shut-off valve 13 by the third pump 14 and is fed to the inlet of the reactor 6 via the check valve 15. Here, in the same manner, the harmful substances supplied to the reactor 6 are mixed with the water and / or the alkaline aqueous solution coming out of the preheater 5. The harmful substance is decomposed and rendered harmless by the oxidation reaction in a uniformly dispersed state in the supercritical water solvent inside the reactor 6.

【0024】図3は、酸化剤として酸素もしくは空気を
使用し、しかも気体状の有害物質を処理する場合の第3
実施例であり、その他の構成作用は既述と同じであるこ
とから共通符号を付している。図3において、酸素もし
くは空気はガスボンベ40から弁41を経由してブース
タポンプ42によって加圧されて、逆止弁43を経て内
部が断熱部材で断熱されているアキュムレータ44に一
旦蓄圧される。ここで、酸素もしくは空気は気体である
ことから通電加熱による発熱体54による直接加熱をお
こなうことができ、したがって昇温に係る熱効率も良
く、さらには予熱器5から出てきた水および/またはア
ルカリ水溶液への混合に際して過度の温度低下を来すこ
とがない。しかして所定温度に昇温された酸素もしくは
空気が減圧弁45、逆止弁46を経て高圧反応器6に供
給される。ガスボンベ47内の気体状有害物質も同様に
して、反応器6に供給される。また、図3には気液分離
器25で分離された液体がフィルタ35を経て高圧ポン
プ36によって、水の高圧ポンプ3の吐出側逆止弁4の
出口に、逆止弁37を介して戻す管路31も併せて示し
てある。すなわち、第2循環送給手段Eを備えている。
このことによって、流体の外部排出量が減じ、したがっ
て高圧の減圧弁28の通過流量が減じて、その寿命改善
に役立ち、さらには、システムの熱回収の点でも好まし
いものと言える。
FIG. 3 shows a third example of the case where oxygen or air is used as an oxidant and a gaseous harmful substance is treated.
This is an embodiment, and the other components and functions are the same as those described above, so common reference numerals are given. In FIG. 3, oxygen or air is pressurized from a gas cylinder 40 via a valve 41 by a booster pump 42, and is temporarily accumulated via a check valve 43 in an accumulator 44 whose inside is insulated by a heat insulating member. Here, since oxygen or air is a gas, it can be directly heated by the heating element 54 by electric heating, and therefore the thermal efficiency for temperature rise is also good, and further, the water and / or the alkali discharged from the preheater 5 can be used. There is no excessive decrease in temperature when mixed with an aqueous solution. Then, oxygen or air heated to a predetermined temperature is supplied to the high pressure reactor 6 through the pressure reducing valve 45 and the check valve 46. The gaseous toxic substance in the gas cylinder 47 is similarly supplied to the reactor 6. Further, in FIG. 3, the liquid separated by the gas-liquid separator 25 passes through the filter 35, and is returned by the high-pressure pump 36 to the outlet of the discharge-side check valve 4 of the water high-pressure pump 3 through the check valve 37. The conduit 31 is also shown. That is, the second circulation feeding means E is provided.
This reduces the amount of fluid discharged to the outside, thus reducing the flow rate of the high-pressure pressure reducing valve 28, improving the life of the pressure reducing valve 28, and is also preferable in terms of heat recovery of the system.

【0025】[0025]

【発明の効果】以上述べた通り本発明によれば、超臨界
条件下の水によって有害物質、例えばフロンや有害有機
物を分解処理し、無害化する際に、反応前の物質の混合
を有効に行い、また、予熱器と冷却器との間の熱交換を
より効果的におこなうことが可能となる。
As described above, according to the present invention, when detoxifying harmful substances such as CFCs and harmful organic substances with water under supercritical conditions to render them harmless, it is possible to effectively mix the substances before the reaction. In addition, it is possible to perform heat exchange between the preheater and the cooler more effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示した全体構成図であ
る。
FIG. 1 is an overall configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示した全体構成図であ
る。
FIG. 2 is an overall configuration diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示した全体構成図であ
る。
FIG. 3 is an overall configuration diagram showing a third embodiment of the present invention.

【図4】従来例の構成図である。FIG. 4 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

5 予熱器 6 反応器 7 冷却器 25 気液分離器 A 第1送給手段 B 第2送給手段 C 第1循環送給手段 D 第3送給手段 E 第2循環送給手段 5 Preheater 6 Reactor 7 Cooler 25 Gas-Liquid Separator A First Feeding Means B Second Feeding Means C First Circulating Feeding Means D Third Feeding Means E Second Circulating Feeding Means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/70 C02F 11/08 ZAB (72)発明者 古田 覚士 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location B01D 53/70 C02F 11/08 ZAB (72) Inventor Satoshi Furuta 1 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo 5th-5th Kobe Steel Works, Ltd. Kobe Research Institute

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 予熱器(5)、反応器(6)および冷却
器(7)並びに気液分離器(25)を備えている超臨界
水酸化処理装置を用いて、水の超臨界条件下に、有害物
質の分解処理を行い、その後前記気液分離器(25)に
おいて分解生成物の気液分離を行う有害物質の超臨界水
酸化処理方法において、 水を主成分とする水溶液を前記予熱器(5)に送給して
該予熱器(5)で超臨界状態に予熱し、該予熱した水溶
液と有害物質とを前記反応器(6)の入り口において混
合することを特徴とする有害物質の超臨界水酸化処理方
法。
1. A supercritical water oxidation treatment apparatus equipped with a preheater (5), a reactor (6) and a cooler (7), and a gas-liquid separator (25) is used to supercritical water conditions. In the method for supercritical water oxidation of harmful substances, in which the harmful substances are decomposed and then the decomposition products are separated in the gas-liquid separator (25), the aqueous solution containing water as a main component is preheated. A hazardous substance characterized by being fed to a reactor (5) and preheated to a supercritical state by the preheater (5), and the preheated aqueous solution and a hazardous substance being mixed at the inlet of the reactor (6). Supercritical water oxidation method.
【請求項2】 予熱した水溶液中に、有害物質とともに
酸素含有流体を反応器(6)の入り口において混合する
ことを特徴とする請求項1記載の有害物質の超臨界水酸
化処理方法。
2. The method for supercritical water oxidation of harmful substances according to claim 1, wherein an oxygen-containing fluid is mixed with the harmful substances in the preheated aqueous solution at the inlet of the reactor (6).
【請求項3】 有害物質が気体であることを特徴とする
請求項1又は2に記載の有害物質の超臨界水酸化処理方
法。
3. The method for supercritical water oxidation of harmful substances according to claim 1, wherein the harmful substance is gas.
【請求項4】 酸素含有流体が空気もしくは酸素である
ことを特徴とする請求項2又は3に記載の有害物質の超
臨界水酸化処理方法。
4. The supercritical water oxidation treatment method for harmful substances according to claim 2, wherein the oxygen-containing fluid is air or oxygen.
【請求項5】 前記気体である有害物質および/または
前記空気もしくは酸素を直接加熱にて予熱することを特
徴とする請求項3又は4項に記載の有害物質の超臨界水
酸化処理方法。
5. The method for supercritical water oxidation of a harmful substance according to claim 3, wherein the harmful substance that is the gas and / or the air or oxygen is preheated by direct heating.
【請求項6】 気液分離後の液体を予熱器に循環するこ
とを特徴とする請求項1〜5項のいずれかに記載の有害
物質の超臨界水酸化処理方法。
6. The method for supercritical water oxidation of harmful substances according to claim 1, wherein the liquid after gas-liquid separation is circulated in a preheater.
【請求項7】 予熱器(5)、反応器(6)および冷却
器(7)並びに気液分離器(25)を備えている超臨界
水酸化処理装置において、 水を主成分とする水溶液を前記予熱器(5)に送給して
超臨界状態に予熱するための第1送給手段(A)を備
え、該予熱した水溶液と有害物質とを前記反応器(6)
の入り口において混合するため該有害物質を送給する第
2送給手段(B)とを備えていることを特徴とする有害
物質の超臨界水酸化処理装置。
7. A supercritical water oxidation treatment apparatus comprising a preheater (5), a reactor (6) and a cooler (7), and a gas-liquid separator (25), wherein an aqueous solution containing water as a main component is added. The reactor (6) is provided with a first feeding means (A) for feeding the preheater (5) to preheat it to a supercritical state.
And a second feeding means (B) for feeding the harmful substance for mixing at the entrance of the supercritical water oxidation device for harmful substance.
【請求項8】 予熱器(5)と冷却器(7)との間に熱
交換をするための伝熱媒体を循環する第1循環送給手段
(C)を備えていることを特徴とする請求項7記載の有
害物質の超臨界水酸化処理装置。
8. A first circulation feeding means (C) for circulating a heat transfer medium for heat exchange between the preheater (5) and the cooler (7). The supercritical water oxidation apparatus for harmful substances according to claim 7.
【請求項9】 予熱した水溶液中に、有害物質とともに
酸素含有流体を反応器(6)の入り口において混合する
ための酸素含有流体用の第3送給手段(D)を備えてい
ることを特徴とする請求項7,8項のいずれかに記載の
有害物質の超臨界水酸化処理装置。
9. A third feed means (D) for the oxygen-containing fluid for mixing the oxygen-containing fluid with harmful substances in the preheated aqueous solution at the inlet of the reactor (6). The supercritical water oxidation treatment apparatus for harmful substances according to any one of claims 7 and 8.
【請求項10】 気液分離された液体を予熱器(5)に
循環する第2循環送給手段(E)を備えていることを特
徴とする請求項7〜9項のいずれかに記載の有害物質の
超臨界水酸化処理装置。
10. The second circulation feeding means (E) for circulating the gas-liquid separated liquid to the preheater (5), according to any one of claims 7 to 9. Supercritical water oxidation equipment for harmful substances.
JP6070935A 1994-04-08 1994-04-08 Supercritical water oxidation treatment method of harmful substance and apparatus therefor Pending JPH07275871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6070935A JPH07275871A (en) 1994-04-08 1994-04-08 Supercritical water oxidation treatment method of harmful substance and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6070935A JPH07275871A (en) 1994-04-08 1994-04-08 Supercritical water oxidation treatment method of harmful substance and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH07275871A true JPH07275871A (en) 1995-10-24

Family

ID=13445870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6070935A Pending JPH07275871A (en) 1994-04-08 1994-04-08 Supercritical water oxidation treatment method of harmful substance and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH07275871A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152806A (en) * 2003-11-26 2005-06-16 Electric Power Dev Co Ltd Wastewater treatment method
WO2019040277A1 (en) * 2017-08-22 2019-02-28 Michael Modell Supercritical water oxidation systems for energy recovery and use thereof
CN109650516A (en) * 2019-01-30 2019-04-19 中国原子能科学研究院 Utilize the method for supercritical water oxidation processing scintillation solution
CN116272748A (en) * 2023-04-25 2023-06-23 清华大学 System and method for supercritical thermal degradation of refrigerants

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152806A (en) * 2003-11-26 2005-06-16 Electric Power Dev Co Ltd Wastewater treatment method
WO2019040277A1 (en) * 2017-08-22 2019-02-28 Michael Modell Supercritical water oxidation systems for energy recovery and use thereof
CN109650516A (en) * 2019-01-30 2019-04-19 中国原子能科学研究院 Utilize the method for supercritical water oxidation processing scintillation solution
CN116272748A (en) * 2023-04-25 2023-06-23 清华大学 System and method for supercritical thermal degradation of refrigerants
CN116272748B (en) * 2023-04-25 2024-02-06 清华大学 System and method for supercritical thermal degradation of refrigerants

Similar Documents

Publication Publication Date Title
CN101993143B (en) System and method for processing alkaline residue wastewater by utilizing supercritical water oxidation method
AU2002338425A1 (en) Process for hydrothermal treatment of materials
EP1390302A1 (en) Process for hydrothermal treatment of materials
JP2004508179A (en) How to treat waste by thermal hydroxylation
JP3347610B2 (en) Supercritical water oxidation method and apparatus
JPH07275871A (en) Supercritical water oxidation treatment method of harmful substance and apparatus therefor
JP2000033355A (en) Treatment of organic waste using high-temperature and high-pressure steam
JP4156761B2 (en) Batch supercritical water reactor
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JP3405295B2 (en) Animal and plant residue processing equipment by hydrothermal reaction
KR100506817B1 (en) Super-Critical Waste Water Oxidation System using waste heat generated from Combind Heat Power
JP3686778B2 (en) Operation method of supercritical water reactor
JP3280797B2 (en) Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof
JP3394429B2 (en) Method and apparatus for supercritical hydroxylation decomposition of polyurethane waste
JP3801803B2 (en) Descale removal method for supercritical water oxidation equipment
JPH07275870A (en) Supercritical water oxidation treatment apparatus for treating harmful organic matter and method therefor
JP2003236594A (en) Apparatus for treating sludge
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP2000229274A (en) Wet combustion device and treatment of carbon based compound
JP2001009424A (en) Garbage treating device
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP2001120987A (en) Batch type supercritical water reaction apparatus
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JPH10314768A (en) Method for oxidation of supercritical water
JP3452061B2 (en) Animal and plant residue treatment equipment by hydrothermal reaction