JP2005152806A - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP2005152806A
JP2005152806A JP2003395743A JP2003395743A JP2005152806A JP 2005152806 A JP2005152806 A JP 2005152806A JP 2003395743 A JP2003395743 A JP 2003395743A JP 2003395743 A JP2003395743 A JP 2003395743A JP 2005152806 A JP2005152806 A JP 2005152806A
Authority
JP
Japan
Prior art keywords
fluid
wastewater
reactor
critical
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395743A
Other languages
Japanese (ja)
Inventor
Hachiro Ueda
八郎 上田
Kimio Ihara
公生 井原
Masaaki Mukaide
正明 向出
Kunio Arai
邦夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hitachi Ltd
Original Assignee
Electric Power Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hitachi Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2003395743A priority Critical patent/JP2005152806A/en
Publication of JP2005152806A publication Critical patent/JP2005152806A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment method excellent in both of workability and energy saving properties, capable of realizing the decomposition treatment of wastewater containing a hardly decomposable compound, which must be treated heretofore only by a treatment means for concentrating, drying and solidifying this wastewater to treat the same as industrial waste, at a low cost and markedly excellent in the protection of environment. <P>SOLUTION: This wastewater treatment method includes a critical fluid forming process for pressurizing and heating a reaction fluid to bring the same to a supercritical or sub-critical state and a fluid contact process for bringing the critical fluid obtained in the critical fluid forming process into contact with wastewater containing any one of thiosulfate ions, thiocyanate ions, and hexacyanoferrate ions in a reactor and subjecting the wastewater to reaction treatment using the critical fluid to form a treated fluid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、火力発電設備,ガス製造設備,石油精製設備,廃棄物処理設備等から発生する排水の処理方法に関するものである。   The present invention relates to a method for treating wastewater generated from thermal power generation facilities, gas production facilities, petroleum refining facilities, waste treatment facilities, and the like.

従来より、石炭,石油等の化石燃料を用いる火力発電設備、ガス製造設備、石油精製設備や汚泥等の廃棄物を溶融等して処理する廃棄物処理設備等から発生する排水には、有機物,NO ,Fe2+,硫化物等が含まれており化学的酸素要求量(COD)が高いため、公共水域へ放流する際には、これらの物質を除去するための処理が必要である。これらの排水の処理方法として種々の方法が研究されている。 Conventionally, wastewater generated from thermal power generation facilities using fossil fuels such as coal and oil, gas production facilities, oil refining facilities and waste treatment facilities that melt and treat waste such as sludge, Since NO 2 , Fe 2+ , sulfides and the like are contained and the chemical oxygen demand (COD) is high, a treatment for removing these substances is necessary when discharged into public water areas. Various methods have been studied as methods for treating these wastewaters.

例えば、(特許文献1)には「火力発電等の燃焼排ガス中の硫黄酸化物を吸収除去する湿式排煙脱硫装置から排出される排煙脱硫排水を還元性条件下で活性炭と接触させ分解処理する排煙脱硫排水の処理方法」が開示されている。
特開平11−267447号公報
For example, (Patent Document 1) states that “a flue gas desulfurization effluent discharged from a wet flue gas desulfurization device that absorbs and removes sulfur oxides in combustion exhaust gas such as thermal power generation is brought into contact with activated carbon under a reducing condition and decomposed. A method for treating flue gas desulfurization effluent ”is disclosed.
JP-A-11-267447

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に開示の技術は排水を活性炭と接触させるので、活性炭が失活し分解処理効率が低下する度に活性炭を交換しなければならず、交換頻度が多く煩雑であり作業性に欠けるという課題を有していた。
(2)排水にチオ硫酸イオン,チオシアン酸イオン,ヘキサシアノ鉄酸イオン等を含有する場合には、これらは難分解性のため活性炭で分解することができず、排水を集めて加熱し水分を蒸発させ濃縮乾固させて産業廃棄物として処理しなければならず、処理効率が低く省エネルギー性に欠け、さらに環境保全性に欠けるという課題を有していた。
(3)排水がチオ硫酸イオンを含有する場合には、酸性条件下でチオ硫酸イオンを亜硫酸イオンと硫黄に分解することができるが、チオシアン酸イオンも同時に含有する場合には、酸性条件下ではシアン化水素等の有害なガスを生成するため、塩基性条件下で水分を蒸発させ濃縮乾固させて産業廃棄物として処理する以外に処理手段がなく、多大の処理設備を要するとともに作業が煩雑で処理効率に欠けるという課題を有していた。
However, the above conventional techniques have the following problems.
(1) Since the technology disclosed in (Patent Document 1) brings wastewater into contact with activated carbon, the activated carbon must be replaced every time the activated carbon is deactivated and the decomposition efficiency is lowered, and the replacement frequency is complicated and complicated. There was a problem of lack of workability.
(2) If the effluent contains thiosulfate ion, thiocyanate ion, hexacyanoferrate ion, etc., these cannot be decomposed by activated carbon because of its degradability, and the effluent is collected and heated to evaporate the water. Therefore, it has to be concentrated and dried to be treated as industrial waste, and has a problem that the treatment efficiency is low, the energy saving property is lacking, and the environmental conservation property is lacking.
(3) When the wastewater contains thiosulfate ions, thiosulfate ions can be decomposed into sulfite ions and sulfur under acidic conditions. However, when thiocyanate ions are also contained at the same time, In order to produce harmful gases such as hydrogen cyanide, there is no treatment means other than evaporating moisture under basic conditions, concentrating to dryness and treating it as industrial waste, requiring a lot of treatment equipment and complicated work There was a problem of lack of efficiency.

本発明は上記従来の課題を解決するもので、作業性に優れるとともに省エネルギー性に優れ、また、これまで濃縮乾固させて産業廃棄物として処理するしか処理手段がなかった難分解性化合物を含有する排水の分解処理を低コストで実現でき環境保全性に著しく優れる排水の処理方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, is excellent in workability and energy saving, and also contains a hardly decomposable compound that has so far only been treated as industrial waste after being concentrated to dryness. It is an object of the present invention to provide a wastewater treatment method that can realize decomposition treatment of wastewater at low cost and is extremely excellent in environmental conservation.

上記従来の課題を解決するために本発明の排水の処理方法は、以下の構成を有している。
本発明の請求項1に記載の排水の処理方法は、反応流体を加圧するとともに加熱して前記反応流体を超臨界状態又は亜臨界状態の臨界状態にする臨界流体生成工程と、前記臨界流体生成工程で得られた臨界流体とチオ硫酸イオン,チオシアン酸イオン,ヘキサシアノ鉄酸イオンのいずれか1種以上を含有する排水とを反応器内で接触させ前記排水を前記臨界流体で反応処理して処理流体を生成する流体接触工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)チオ硫酸イオン、チオシアン酸イオン、フェロシアン酸イオン,フェリシアン酸イオン等のヘキサシアノ鉄酸イオンのいずれか1種以上を含有した排水と超臨界水又は亜臨界水等の臨界流体とを接触させることにより、難分解性のチオ硫酸イオン等を加水分解及び酸化還元して分解することができる。これにより、これまでは濃縮乾固させて産業廃棄物として処理するしか処理手段がなかったが、簡単な工程で、かつ、極めて少ない工数、処理設備で分解処理を可能にでき作業性と環境保全性に著しく優れる。
In order to solve the above conventional problems, the wastewater treatment method of the present invention has the following configuration.
According to a first aspect of the present invention, there is provided a wastewater treatment method in which a reaction fluid is pressurized and heated to bring the reaction fluid into a supercritical state or a subcritical state, and a critical fluid generation step. The critical fluid obtained in the process and wastewater containing at least one of thiosulfate ion, thiocyanate ion and hexacyanoferrate ion are brought into contact in the reactor, and the wastewater is reacted with the critical fluid and treated. And a fluid contact process for generating a fluid.
With this configuration, the following effects can be obtained.
(1) A wastewater containing at least one of hexacyanoferrate ions such as thiosulfate ion, thiocyanate ion, ferrocyanate ion, ferricyanate ion and a critical fluid such as supercritical water or subcritical water. By bringing them into contact with each other, it is possible to hydrolyze and oxidize and reduce hardly decomposable thiosulfate ions and the like. As a result, until now there was only a processing means to condense and dry it and treat it as industrial waste. However, it is possible to perform decomposition with a simple process, with very few man-hours and processing equipment, and to improve workability and environmental protection. Remarkably excellent in properties.

ここで、排水としては、フェノール,ベンゼン,トルエン等の有機物,NO ,Fe2+,硫化物,重金属イオン等を含有する産業用排水、下水、埋立地内に浸透し埋立廃棄物と接触して汚染された雨水や最終処分場で降雨や廃棄物中の含有水から浸出する浸出水、汚泥等の化学的酸素要求量(COD)が高く有害物質の処理を要する排水が用いられる。希釈した濃度の低い排水を用いることもできる。特に、石炭,石油等の化石燃料を用いる石炭ガス化発電設備、火力発電設備、ガス製造設備、石油精製設備、汚泥等の廃棄物を溶融等して処理する廃棄物処理設備等から発生する排水が好適に用いられ、なかでも、石炭ガス化発電設備や汚泥等の廃棄物を溶融等して処理する廃棄物処理設備において石炭灰等の燃焼灰やスラグ等を冷却した冷却排水、ガス化させて生成した燃料ガスを洗浄した洗浄排水、燃焼排ガス中の硫黄酸化物を吸収除去する排煙脱硫装置から排出される排煙脱硫排水、アセチレンの精製設備等の有機化学製品の製造設備から排出される洗浄排水等の処理には好適である。これらの冷却排水や洗浄排水等は、これまで分解処理が困難であった難分解性のシアン化合物、チオ硫酸イオン、チオシアン酸イオン、フェロシアン酸イオン,フェリシアン酸イオン等のヘキサシアノ鉄酸イオン等を含有しているからである。 Here, the waste water, phenol, benzene, organic substances such as toluene, NO 2 -, Fe 2+, sulfides, industrial wastewater containing heavy metal ions such as sewage, in contact with and penetrate into the landfill landfill waste Wastewater that has a high chemical oxygen demand (COD) such as sludge and leachate leached from the rainwater and wastewater contained in the waste at the final disposal site, and requires treatment of hazardous substances is used. Dilute waste water having a low concentration can also be used. In particular, wastewater generated from coal gasification power generation facilities using fossil fuels such as coal and oil, thermal power generation facilities, gas production facilities, petroleum refining facilities, waste treatment facilities that melt and treat waste such as sludge In particular, in coal gasification power generation equipment and waste treatment facilities that melt and treat waste such as sludge, cooling effluent that cools combustion ash such as coal ash and slag is gasified. It is discharged from washing wastewater that has been washed away from the fuel gas produced, exhaust gas desulfurization wastewater discharged from flue gas desulfurization equipment that absorbs and removes sulfur oxides in combustion exhaust gas, and organic chemical product manufacturing equipment such as acetylene purification equipment. It is suitable for the treatment of cleaning wastewater. These cooling effluents and washing effluents are difficult-to-decompose cyanides, thiosulfate ions, thiocyanate ions, ferrocyanate ions, hexacyanoferrate ions, etc. It is because it contains.

反応流体としては、水、水にメタノール,エタノール,プロパノール,イソプロパノール等を溶解したアルコール水溶液等の水を主成分とする水溶液等が用いられる。臨界流体の温度域及び圧力域が高く高温高圧により水分子そのものが求核体となり、排水中に含まれる有機物等の多くを分解することができるからである。
反応流体は、高純度の流体を用いることが望ましい。反応流体を高温高圧の臨界流体にする臨界流体生成工程で用いる加熱装置等の腐食を防止するためである。
なお、チオ硫酸イオン、チオシアン酸イオン、ヘキサシアノ鉄酸イオンの濃度が低い場合は、排水を反応流体として用いることもできる。また、処理後の処理流体を用いることもできる。これにより、公共水域に放流されたり浄水装置に送られたりする処理流体の量を少なくすることができ、浄水装置の負荷を軽減させることができるとともに、クローズドシステムによる排水処理システムを構築することができる。反応流体として用いることができる排水中のチオ硫酸イオン、チオシアン酸イオン、ヘキサシアノ鉄酸イオンの濃度としては、合計のイオン濃度が200ppm以下好ましくは50ppm以下が好適である。イオン濃度が50ppmより高くなるにつれ加熱装置等の腐食が著しくなり加熱装置等の耐久性が低下する傾向がみられ、特に200ppmより高くなると、この傾向が著しくなるので好ましくない。
As the reaction fluid, water, an aqueous solution containing water as a main component, such as an alcohol aqueous solution in which methanol, ethanol, propanol, isopropanol or the like is dissolved in water, or the like is used. This is because the temperature range and pressure range of the critical fluid are high, and the water molecules themselves become nucleophiles due to high temperature and pressure, and many organic substances contained in the wastewater can be decomposed.
It is desirable to use a high-purity fluid as the reaction fluid. This is to prevent corrosion of a heating device or the like used in the critical fluid generation process in which the reaction fluid is made into a high-temperature and high-pressure critical fluid.
In addition, when the density | concentration of a thiosulfate ion, a thiocyanate ion, and a hexacyanoferrate ion is low, waste water can also be used as a reaction fluid. Moreover, the processing fluid after a process can also be used. Thereby, while being able to reduce the quantity of the processing fluid discharged | emitted to a public water area or sent to a water purification apparatus, while being able to reduce the load of a water purification apparatus, constructing | assembling the wastewater treatment system by a closed system it can. The concentration of thiosulfate ions, thiocyanate ions, and hexacyanoferrate ions in the wastewater that can be used as a reaction fluid is preferably a total ion concentration of 200 ppm or less, preferably 50 ppm or less. As the ion concentration becomes higher than 50 ppm, the corrosion of the heating device or the like tends to be remarkable, and the durability of the heating device or the like tends to be lowered. In particular, when the ion concentration is higher than 200 ppm, this tendency becomes remarkable.

臨界流体生成工程において得られる臨界流体としては、反応流体が高温高圧にされた亜臨界流体又は超臨界流体が用いられる。反応流体が水の場合は、温度200〜600℃に加熱され、かつ、圧力20〜35MPaに加圧され臨界状態又は亜臨界状態にされる。   As the critical fluid obtained in the critical fluid generation step, a subcritical fluid or a supercritical fluid in which the reaction fluid is set to a high temperature and a high pressure is used. When the reaction fluid is water, it is heated to a temperature of 200 to 600 ° C. and pressurized to a pressure of 20 to 35 MPa to be in a critical state or a subcritical state.

流体接触工程としては、臨界流体を排水中に拡散させる工程であればよく、臨界流体と排水とを反応器内で衝突,撹拌,流動等させて接触させるものが用いられる。これにより、臨界流体で排水を加熱するとともに超臨界状態等になって熱運動エネルギーによる拡散力が増大した分子が排水内を自由に動き回って排水中の有機物等が分解される。   As the fluid contact process, any process may be used as long as the critical fluid is diffused into the waste water, and the critical fluid and the waste water are brought into contact with each other by being collided, stirred, or flowed in the reactor. As a result, the wastewater is heated with the critical fluid, and molecules in which the diffusion force due to the thermal kinetic energy is increased due to the supercritical state and the like freely move around in the wastewater to decompose the organic matter in the wastewater.

次に、流体接触工程における最適条件について、図面を参照しながら説明する。
図1は各圧力における水の温度と比熱容量との関係を示す図であり、図2は各圧力における水の温度と密度との関係を示す図であり、図3は25MPaの圧力下におけるNaSO飽和水溶液の温度とNaSOの濃度との関係を示す図である。なお、NaSOはチオ硫酸ナトリウムの酸化分解生成物である。図1乃至図3はF.J.Armellini, J.F.Tester and G.T.Hong:"Precipitation of Sodium Chloride and Sodium Sulfate in Water from Sub- to Supercritical Conditions:150 to 550℃, 100 to 300 bar":The Journal of Supercritical Fluids,vol.1994,(7),pp.147-158 、S.N.Rogak and P.Teshima:"Deposition of Sodium Sulfate in a Heated Flow of Supercritical Water":AIChE Journal,vol.45,(2),pp.240-247(1999) から引用したデータである。
Next, optimum conditions in the fluid contact process will be described with reference to the drawings.
FIG. 1 is a diagram showing the relationship between water temperature and specific heat capacity at each pressure, FIG. 2 is a diagram showing the relationship between water temperature and density at each pressure, and FIG. 3 is a diagram showing Na under a pressure of 25 MPa. is a diagram showing a relationship between 2 SO 4 concentration of temperature and Na 2 SO 4 saturated solution. Na 2 SO 4 is a product of oxidative decomposition of sodium thiosulfate. 1 to 3 show FJArmellini, JFTester and GTHong: “Precipitation of Sodium Chloride and Sodium Sulfate in Water from Sub- to Supercritical Conditions: 150 to 550 ° C., 100 to 300 bar”: The Journal of Supercritical Fluids, vol. 1994, (7), pp. 147-158, SNRogak and P. Teshima: "Deposition of Sodium Sulfate in a Heated Flow of Supercritical Water": AIChE Journal, vol. 45, (2), pp. 240-247 (1999) The quoted data.

流体接触工程において臨界流体と接触して処理された処理流体の温度としては、200〜500℃好ましくは250〜470℃より好ましくは350〜450℃、圧力は20〜35MPaが好適である。圧力20〜35MPaかつ温度350〜450℃のときは、(図1)及び(図2)に示すように水の密度の減少量に比して比熱容量の増加量が大きいため処理流体の温度を安定して高温に維持することができるとともに、(図3)に示すように排水中の有機物等が分解されて生成する無機塩等の分解生成物の溶解度が著しく小さくなり処理流体中に析出するので固液分離することで排水処理を容易に行うことができる。   The temperature of the processing fluid processed in contact with the critical fluid in the fluid contact step is preferably 200 to 500 ° C., preferably 250 to 470 ° C., more preferably 350 to 450 ° C., and the pressure is 20 to 35 MPa. When the pressure is 20 to 35 MPa and the temperature is 350 to 450 ° C., as shown in FIG. 1 and FIG. 2, the amount of increase in specific heat capacity is larger than the amount of decrease in water density. It can be stably maintained at a high temperature, and as shown in (Fig. 3), the solubility of decomposition products such as inorganic salts generated by decomposition of organic substances in the wastewater is remarkably reduced and deposited in the processing fluid. Therefore, wastewater treatment can be easily performed by performing solid-liquid separation.

処理流体の温度が350℃より低くなるにつれ(図1)に示すように比熱容量が小さくなるので、処理流体の温度が低下し易く分解能力が低下する傾向がみられるとともに、(図3)に示すように分解生成物の溶解度が大きくなる傾向がみられ、450℃より高くなるにつれ(図1)及び(図2)に示すように比熱容量と密度が小さくなり処理流体の温度が低下し易くなるため温度低下を見込んで臨界流体の温度を高めなければならず省エネルギー性に欠ける傾向がみられる。
温度が250℃より低くなるにつれ拡散力が低下し分解反応性が乏しく処理効率が低下する傾向がみられ、470℃より高くなるにつれ臨界流体の温度が高くなるため省エネルギー性に欠ける傾向がみられる。特に、処理流体の温度が200℃より低くなるか500℃より高くなると、これらの傾向が著しくなるので好ましくない。
As the temperature of the processing fluid becomes lower than 350 ° C. (see FIG. 1), the specific heat capacity decreases, so that the temperature of the processing fluid tends to decrease and the decomposition ability tends to decrease. As shown, the solubility of the decomposition products tends to increase, and as the temperature rises above 450 ° C., the specific heat capacity and density decrease and the temperature of the processing fluid tends to decrease as shown in FIGS. Therefore, it is necessary to increase the temperature of the critical fluid in anticipation of a temperature decrease, and there is a tendency to lack energy saving.
When the temperature is lower than 250 ° C., the diffusive power decreases and the decomposition reactivity tends to be poor, and the processing efficiency tends to decrease. As the temperature is higher than 470 ° C., the temperature of the critical fluid increases, so that there is a tendency to lack energy saving. . In particular, when the temperature of the processing fluid is lower than 200 ° C. or higher than 500 ° C., these tendencies become remarkable, which is not preferable.

また、処理流体の圧力が20MPaより低くなるにつれ亜臨界相や超臨界相が得られ難く排水の分解反応性が乏しく処理効率が低下する傾向がみられ、35MPaより高くなるにつれ臨界流体を加圧する加圧ポンプや反応器等が大型化するとともに、(図1)に示すように水の比熱容量が小さくなり処理流体の温度が不安定になる傾向がみられるため好ましくない。   Further, as the pressure of the processing fluid becomes lower than 20 MPa, it is difficult to obtain a subcritical phase or supercritical phase, and there is a tendency that the decomposition efficiency of the wastewater is poor and the processing efficiency is lowered, and the pressure is increased as the pressure becomes higher than 35 MPa. This is not preferable because the pressurization pump, the reactor, and the like are enlarged, and the specific heat capacity of water tends to be small and the temperature of the processing fluid tends to become unstable as shown in FIG.

流体接触工程において排水と接触させる臨界流体の容積は、排水のチオ硫酸イオン、チオシアン酸イオン、ヘキサシアノ鉄酸イオンの濃度にもよるが、排水の容積に対し1〜100倍好ましくは1〜20倍が好適である。臨界流体の容積が排水の容積の1倍より少なくなるにつれ、排水の温度を超臨界領域や亜臨界領域の温度域にまで高め難く反応処理が不完全になる傾向がみられ好ましくない。臨界流体の容積が排水の容積の20倍より多くなるにつれ臨界流体の量が多くなり排水が臨界流体で反応処理されて生成される処理流体の量が増加するとともに大型の処理設備等を要する傾向がみられる。特に、100倍より多くなるとこの傾向が著しくなるので好ましくない。   The volume of the critical fluid that is brought into contact with the wastewater in the fluid contact step depends on the concentration of thiosulfate ions, thiocyanate ions, and hexacyanoferrate ions in the wastewater, but is 1 to 100 times, preferably 1 to 20 times that of the wastewater. Is preferred. As the volume of the critical fluid becomes less than 1 times the volume of the wastewater, it is difficult to raise the temperature of the wastewater to the temperature range of the supercritical region or the subcritical region, which is not preferable. As the volume of the critical fluid exceeds 20 times the volume of the waste water, the amount of the critical fluid increases and the amount of the processing fluid generated by the reaction treatment of the waste water with the critical fluid increases and requires a large processing facility. Is seen. In particular, when it exceeds 100 times, this tendency becomes remarkable, which is not preferable.

本発明の請求項2に記載の発明は、請求項1に記載の排水の処理方法であって、前記反応流体が、チオ硫酸イオン,チオシアン酸イオン,ヘキサシアノ鉄酸イオンのいずれか1種以上を低濃度で含有する又は含有しない排水である構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)フェノール,ベンゼン,トルエン等の有機物,NO ,Fe2+,硫化物,重金属イオン等を含有する産業用排水、下水等の排水を反応流体として用いることにより、これらの排水の処理をチオ硫酸イオン,チオシアン酸イオン,ヘキサシアノ鉄酸イオンの処理と同時に行うことができ、処理効率を高めることができる。
The invention according to claim 2 of the present invention is the wastewater treatment method according to claim 1, wherein the reaction fluid contains at least one of thiosulfate ions, thiocyanate ions, and hexacyanoferrate ions. It has the structure which is the waste_water | drain which contains or does not contain in low concentration.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Treatment of these wastewaters by using industrial wastewater such as phenol, benzene, toluene, etc., NO 2 , Fe 2+ , sulfides, heavy metal ions, etc., and wastewater such as sewage as reaction fluids. The treatment can be performed simultaneously with the treatment of thiosulfate ion, thiocyanate ion, and hexacyanoferrate ion, and the treatment efficiency can be increased.

ここで、排水としては、請求項1で説明したものの他、降水、他の装置からの排水等も用いることができる。
排水中のチオ硫酸イオン、チオシアン酸イオン、ヘキサシアノ鉄酸イオンの濃度としては、合計のイオン濃度が200ppm以下好ましくは50ppm以下が好適である。イオン濃度が50ppmより高くなるにつれ加熱装置等の腐食が著しくなり耐久性が低下する傾向がみられ、特に200ppmより高くなると、この傾向が著しくなるので好ましくない。
Here, as drainage, in addition to what has been described in claim 1, precipitation, drainage from other devices, and the like can be used.
As the concentration of thiosulfate ion, thiocyanate ion and hexacyanoferrate ion in the waste water, the total ion concentration is 200 ppm or less, preferably 50 ppm or less. As the ion concentration becomes higher than 50 ppm, the corrosion of the heating device or the like tends to be remarkable and the durability tends to be lowered. In particular, when the ion concentration is higher than 200 ppm, this tendency becomes remarkable, which is not preferable.

本発明の請求項3に記載の発明は、請求項1又は2に記載の排水の処理方法であって、前記流体接触工程において、前記排水を加圧する排水加圧工程を備えた構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)排水を加圧する排水加圧工程を備えているので、反応器内で排水と接触した臨界流体の圧力を維持することができ反応処理効率を高めることができる。
(2)排水は臨界流体と合流してはじめて高温に加熱され、加熱されたと同時に系内の有害物質が分解処理されるので、排水が腐食性を有している場合でも、反応器が腐食性環境に曝される時間を短くすることができ反応器の耐久性を高めることができる。
Invention of Claim 3 of this invention is a wastewater treatment method of Claim 1 or 2, Comprising: In the said fluid contact process, it has the structure provided with the waste_water | drain pressurization process which pressurizes the said waste_water | drain. ing.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) Since the waste water pressurization process which pressurizes waste water is provided, the pressure of the critical fluid which contacted the waste water within the reactor can be maintained, and the reaction processing efficiency can be increased.
(2) The wastewater is heated to a high temperature only after it joins the critical fluid, and at the same time, the harmful substances in the system are decomposed, so even if the wastewater is corrosive, the reactor is corrosive. The exposure time to the environment can be shortened and the durability of the reactor can be increased.

排水は、排水加圧工程において臨界流体と略同一の圧力に加圧される。
排水の腐食性が乏しい場合は、排水加圧工程において必要に応じて排水を加熱することもできるが、排水が腐食性を有している場合は、加熱することで腐食性が強まり加熱装置等の腐食が著しくなり装置の耐久性が低下するため好ましくなく、排水加圧工程では臨界流体と略同一の圧力に加圧される。
The drainage is pressurized to substantially the same pressure as the critical fluid in the drainage pressurization step.
If the corrosiveness of the wastewater is poor, the wastewater can be heated as needed in the wastewater pressurization process, but if the wastewater is corrosive, the corrosiveness becomes stronger by heating, etc. This is not preferable because the corrosion of the apparatus becomes remarkable and the durability of the apparatus is lowered. In the drainage pressurizing step, the pressure is increased to substantially the same pressure as the critical fluid.

本発明の請求項4に記載の発明は、請求項1乃至3の内いずれか1に記載の排水の処理方法であって、前記流体接触工程において前記臨界流体と前記排水とを接触させた前記反応器の温度及び圧力を保持する保持工程を備えた構成を有している。
この構成により、請求項1乃至3の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)保持工程を備えているので、臨界流体と排水とが接触して生成された処理流体を超臨界状態や亜臨界状態に長時間維持して反応処理を完全に行うことができ反応効率を高めることができる。
Invention of Claim 4 of this invention is a processing method of the waste_water | drain of any one of Claim 1 thru | or 3, Comprising: The said critical fluid and the said waste_water | drain were made to contact in the said fluid contact process. It has the structure provided with the holding process which hold | maintains the temperature and pressure of a reactor.
According to this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action is obtained.
(1) Since it is equipped with a holding process, the reaction fluid can be completely carried out by maintaining the processing fluid generated by contact between the critical fluid and the waste water in a supercritical state or a subcritical state for a long time. Can be increased.

ここで、保持工程としては、反応器の温度を200〜500℃好ましくは250〜450℃より好ましくは350〜400℃の範囲、かつ、圧力を20〜35MPaの範囲で保持するものが用いられる。請求項1で説明したのと同様に、臨界流体による排水中の難分解性物質の分解処理能力を維持するためである。   Here, as a holding process, what hold | maintains the temperature of a reactor at 200-500 degreeC, Preferably it is 250-450 degreeC, More preferably, it is the range of 350-400 degreeC, and a pressure is the range of 20-35 MPa. In the same manner as described in the first aspect, this is to maintain the ability to decompose the hardly decomposable substance in the wastewater by the critical fluid.

保持時間としては、0.1〜60分好ましくは1〜30分が好適に用いられる。保持時間が1分より短くなるにつれ、難分解性物質の種類にもよるが、分解処理が不完全になるものが現れる傾向がみられ、30分より長くなるにつれ排水処理時間が長くなり排水処理効率が低下する傾向がみられる。特に、0.1分より短くなるか60分より長くなると、これらの傾向が著しいため、いずれも好ましくない。   The holding time is suitably from 0.1 to 60 minutes, preferably from 1 to 30 minutes. As the retention time becomes shorter than 1 minute, depending on the type of the hardly decomposable substance, there is a tendency to show that the decomposition process becomes incomplete. As the retention time becomes longer than 30 minutes, the wastewater treatment time becomes longer. There is a tendency for efficiency to decrease. In particular, when the time is shorter than 0.1 minutes or longer than 60 minutes, these tendencies are remarkable, so that neither is preferable.

本発明の請求項5に記載の発明は、請求項1乃至4の内いずれか1に記載の排水の処理方法であって、前記排水にpH調整剤を加え前記排水のpHを7〜13好ましくは10〜12に調整するpH調整工程を備えた構成を有している。
この構成により、請求項1乃至4の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)排水のpHを7〜13好ましくは10〜12に調整するpH調整工程を備えているので、排水がチオシアン酸イオンを含有する場合でも、シアン化水素等の有害なガスが生成されず作業性に優れるとともに安全性に優れ、さらに環境保全性に優れる。
(2)pH調整工程を備えているので、分解生成物として硫酸等の酸性物質が処理流体に生成する場合でも略中性から塩基性にすることができ、反応器の金属材料等の腐食を防止して反応器の耐久性を高めることができる。
Invention of Claim 5 of this invention is a waste-water-treatment method of any one of Claims 1 thru | or 4, Comprising: The pH adjuster is added to the said waste_water | drain, and pH of the said waste_water | drain is 7-13 preferably. Has a configuration with a pH adjustment step of adjusting to 10-12.
With this configuration, in addition to the action obtained in any one of claims 1 to 4, the following action is obtained.
(1) Since a pH adjusting step for adjusting the pH of the waste water to 7 to 13, preferably 10 to 12, is provided, no harmful gas such as hydrogen cyanide is generated even when the waste water contains thiocyanate ions. In addition to being excellent in safety, it is also excellent in safety and environmental conservation.
(2) Since a pH adjustment step is provided, even when an acidic substance such as sulfuric acid is generated as a decomposition product in the processing fluid, it can be changed from substantially neutral to basic, and corrosion of metallic materials in the reactor can be prevented. This can increase the durability of the reactor.

ここで、pH調整剤としては、NaOH,KOH等のアルカリ剤の1種以上が用いられる。
pH調整剤の添加量としては、対象とするイオン種に対して2〜5当量倍好ましくは2.5〜5当量倍が用いられる。添加量が2.5当量倍より少なくなるにつれ処理流体が酸性になり易く腐食性が高まる傾向がみられ、特に、2当量倍より少なくなるとこの傾向が著しくなるため好ましくない。また、5当量倍より多くなるにつれ処理流体に塩基性塩が析出し易く反応器等の閉塞の原因となったり反応器の金属材料が高温アルカリ水溶液中で腐食し易くなる傾向がみられるため、好ましくない。
Here, as a pH adjuster, 1 or more types of alkali agents, such as NaOH and KOH, are used.
As an addition amount of a pH adjuster, 2-5 equivalent times with respect to the ionic species made into object, Preferably 2.5-5 equivalent times is used. As the amount added is less than 2.5 equivalent times, the treatment fluid tends to be acidic and corrosivity tends to increase. In particular, when the amount is less than 2 equivalent times, this tendency becomes remarkable, which is not preferable. In addition, as the number of equivalents exceeds 5 equivalents, basic salts are likely to precipitate in the treatment fluid, which may cause clogging of the reactor and the like, and the metal material of the reactor tends to corrode in the high-temperature alkaline aqueous solution. It is not preferable.

pH調整工程における排水のpHが10より小さくなるにつれ、排水中の有害物質の種類にもよるが、処理流体が酸性になり易く腐食性が高まるとともに排水がチオシアン酸イオンを含有する場合にシアン化水素等の有害なガスが生成され易くなる傾向がみられ、pHが12より高くなるにつれ、処理流体に塩基性塩が析出し反応器等の閉塞の原因となったり反応器の金属材料が高温アルカリ水溶液中で腐食し易くなる傾向がみられる。特に、pHが7より小さくなるか13より大きくなるとこれらの傾向が著しいので、いずれも好ましくない。   As the pH of the wastewater in the pH adjustment step becomes smaller than 10, depending on the type of harmful substances in the wastewater, hydrogen cyanide and the like when the treatment fluid is likely to be acidic and corrosive, and the wastewater contains thiocyanate ions. As the pH becomes higher than 12, a basic salt precipitates in the processing fluid, which may cause clogging of the reactor or the like, and the metallic material of the reactor is a high-temperature alkaline aqueous solution. There is a tendency to corrode easily. In particular, when the pH is smaller than 7 or larger than 13, these tendencies are remarkable, so that neither is preferable.

本発明の請求項6に記載の発明は、請求項1乃至5の内いずれか1に記載の排水の処理方法であって、前記流体接触工程で生成された前記処理流体に酸化剤を加える酸化剤添加工程を備えた構成を有している。
この構成により、請求項1乃至5の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)処理流体に酸化剤を加える酸化剤添加工程を備えているので、処理流体の酸化還元電位を酸化側にして反応器の金属材料を塩基脆化し難くして反応器の耐久性を高めることができるとともに排水の酸化分解を進行させることができる。
The invention according to claim 6 of the present invention is the wastewater treatment method according to any one of claims 1 to 5, wherein oxidation is performed by adding an oxidizing agent to the treatment fluid generated in the fluid contact step. It has the structure provided with the agent addition process.
With this configuration, in addition to the action obtained in any one of claims 1 to 5, the following action is obtained.
(1) Since an oxidizing agent addition step for adding an oxidizing agent to the processing fluid is provided, the durability of the reactor is increased by making the oxidation-reduction potential of the processing fluid the oxidation side and making the metal material of the reactor difficult to be brittle. In addition, the oxidative decomposition of the waste water can be advanced.

ここで、酸化剤添加工程で用いられる酸化剤としては、過酸化水素、酸素ガス、空気、四塩化窒素ガス、オゾンガス、メタ過ヨウ素酸ナトリウム、重クロム酸カリウム、過マンガン酸カリウム、無水クロム酸、次亜塩素酸、過酸化水素等のいずれか1種以上を用いることができる。
酸化剤の添加量としては、対象とするイオン種に対して2〜5当量倍好ましくは2.5〜5当量倍が用いられる。添加量が2.5当量倍より少なくなるにつれ処理流体の酸化還元電位が酸性側になり難く塩基脆化が起きる傾向がみられ、特に、2当量倍より少なくなるとこの傾向が著しくなるため好ましくない。また、5当量倍より多くなるにつれ酸化剤の消費量が増え排水処理費用が増加する傾向がみられるため、好ましくない。
Here, as an oxidizing agent used in the oxidizing agent addition step, hydrogen peroxide, oxygen gas, air, nitrogen tetrachloride gas, ozone gas, sodium metaperiodate, potassium dichromate, potassium permanganate, anhydrous chromic acid Any one or more of hypochlorous acid, hydrogen peroxide and the like can be used.
As addition amount of an oxidizing agent, 2-5 equivalent times with respect to the ionic species made into object, Preferably 2.5-5 equivalent times is used. As the amount added becomes less than 2.5 equivalents, the oxidation-reduction potential of the treatment fluid is less likely to be acidic, and base embrittlement tends to occur. In particular, when the amount is less than 2 equivalents, this tendency becomes significant, which is not preferable. . Moreover, since the consumption of an oxidizing agent increases and the waste water treatment expense tends to increase as it becomes more than 5 equivalent times, it is not preferable.

なお、酸化剤は処理流体に添加するのが好ましい。排水に添加すると、排水と臨界流体とを接触させる流体接触工程において、酸化剤が臨界流体と接触したと同時に分解されてしまい、酸化剤としての効果を発揮できないからである。そのため、酸化剤は、臨界流体によって排水が反応処理された処理流体に添加するのが好ましい。   The oxidant is preferably added to the processing fluid. This is because, when added to the wastewater, in the fluid contact process in which the wastewater and the critical fluid are brought into contact with each other, the oxidant is decomposed simultaneously with the contact with the critical fluid, and the effect as the oxidant cannot be exhibited. Therefore, it is preferable to add the oxidizing agent to the processing fluid in which the waste water is subjected to the reaction processing with the critical fluid.

処理流体に添加する酸化剤の量を調整することにより、処理流体の酸化還元電位を調整することができる。
処理流体の酸化還元電位としては、−300〜+700mV好ましくは−200〜+500mVに調整されるのが好ましい。酸化還元電位が−200mVより還元側になるにつれ臨界流体が反応器等の金属材料を塩基脆化し易くなる傾向がみられ、+500mVより酸性側になるにつれ臨界流体が反応器等の金属材料を腐食し易くなるとともに処理流体に添加する酸化剤の量が増加し排水処理費用が増加する傾向がみられる。特に、酸化還元電位が−300mVより還元側になるか+700mVより酸化側になると、これらの傾向が著しいため、いずれも好ましくない。
By adjusting the amount of oxidizing agent added to the processing fluid, the oxidation-reduction potential of the processing fluid can be adjusted.
The oxidation-reduction potential of the processing fluid is preferably adjusted to −300 to +700 mV, preferably −200 to +500 mV. As the oxidation-reduction potential is on the reduction side from -200 mV, the critical fluid tends to easily embrittle the metal material such as the reactor, and as it becomes more acidic than +500 mV, the critical fluid corrodes the metal material such as the reactor. As a result, the amount of oxidant added to the treatment fluid increases and the wastewater treatment cost tends to increase. In particular, when the oxidation-reduction potential is on the reduction side from −300 mV or on the oxidation side from +700 mV, these tendencies tend to be remarkable, and neither is preferable.

本発明の請求項7に記載の発明は、請求項1乃至6の内いずれか1に記載の排水の処理方法であって、前記排水が、石炭をガス化して燃料ガスを生成する際に発生する石炭灰やスラグ等の廃棄物を冷却した冷却水、及び/又は、前記燃料ガスを洗浄した洗浄排水である構成を有している。
この構成により、請求項1乃至6の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)石炭ガス化の際に発生する石炭灰やスラグを冷却した冷却水、燃料ガスを洗浄した洗浄排水は、チオ硫酸イオン,チオシアン酸イオン,ヘキサシアノ鉄酸イオン等を含有しているので、これまでは濃縮乾固させて産業廃棄物として処理するしか処理手段がなかった。しかし、臨界流体と混合又は合流させることにより、難分解性のチオ硫酸イオン等を加水分解及び酸化還元させて分解することができ作業性と環境保全性に著しく優れる。
The invention according to claim 7 of the present invention is the wastewater treatment method according to any one of claims 1 to 6, wherein the wastewater is generated when coal is gasified to produce fuel gas. The cooling water which cooled the wastes, such as coal ash and slag, and / or the washing | cleaning waste_water | drain which wash | cleaned the said fuel gas are included.
With this configuration, in addition to the action obtained in any one of claims 1 to 6, the following action is obtained.
(1) Cooling water that cools coal ash and slag generated during coal gasification, and cleaning wastewater that cleans fuel gas contain thiosulfate ions, thiocyanate ions, hexacyanoferrate ions, etc. Until now, there was only a treatment means by concentrating to dryness and treating it as industrial waste. However, by mixing or merging with a critical fluid, it is possible to hydrolyze and oxidize the hardly decomposable thiosulfate ions and the like, and to be remarkably excellent in workability and environmental conservation.

本発明の請求項8に記載の発明は、請求項1乃至7の内いずれか1に記載の排水の処理方法であって、前記臨界流体が、石炭ガス化発電所又は火力発電所で生成される高温高圧水である構成を有している。
この構成により、請求項1乃至7の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)スラグ等を冷却した冷却水や燃料ガスを洗浄した洗浄排水等が発生する石炭ガス化発電所内や火力発電所内で排水処理ができるので、排水を輸送する必要がなく効率が良い。
(2)石炭ガス化発電所や火力発電所の蒸気タービンを駆動するための蒸気及び補助蒸気のもつ熱エネルギーを有効利用して臨界状態の高温高圧水も製造することができるのでエネルギー効率に優れる。また、排水が処理された処理流体を反応流体として再利用することで、クローズドシステムによる排水処理システムを構築することができる。
An eighth aspect of the present invention is the wastewater treatment method according to any one of the first to seventh aspects, wherein the critical fluid is generated at a coal gasification power plant or a thermal power plant. The high-temperature high-pressure water.
With this configuration, in addition to the action obtained in any one of claims 1 to 7, the following action is obtained.
(1) Since drainage treatment can be performed in a coal gasification power plant or a thermal power plant in which cooling water that cools slag, etc. or cleaning waste water that is washed with fuel gas is generated, it is not necessary to transport waste water, which is efficient.
(2) It is excellent in energy efficiency because it can produce high-temperature and high-pressure water in the critical state by effectively using the thermal energy of steam and auxiliary steam for driving steam turbines in coal gasification power plants and thermal power plants. . Moreover, the wastewater treatment system by a closed system can be constructed | assembled by reusing the processing fluid which processed the wastewater as a reaction fluid.

以上のように、本発明の排水の処理方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)チオ硫酸イオン、チオシアン酸イオン、ヘキサシアノ鉄酸イオンのいずれか1種以上を含有した排水と超臨界水又は亜臨界水等の臨界流体とを接触させることにより、難分解性のチオ硫酸イオン等を加水分解及び酸化還元して分解することができるので、これまでは濃縮乾固させて産業廃棄物として処理するしか処理手段がなかったが、簡単な工程で、かつ、極めて少ない工数、処理設備で分解処理を可能にでき作業性と環境保全性に著しく優れ、処理流体を公共水域に放流することもでき環境保全性に著しく優れた排水の処理方法を提供することができる。
As described above, according to the wastewater treatment method of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Refractory thiosulfuric acid by contacting waste water containing at least one of thiosulfate ion, thiocyanate ion and hexacyanoferrate ion with a critical fluid such as supercritical water or subcritical water. Since ions and the like can be decomposed by hydrolysis and oxidation-reduction, until now there was only a processing means to concentrate and dry and process as industrial waste, but it was a simple process and very few man-hours, It is possible to provide a treatment method of waste water that can be decomposed by a treatment facility, is remarkably excellent in workability and environmental conservation, can be discharged into a public water area, and is remarkably excellent in environmental conservation.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)フェノール,ベンゼン,トルエン等の有機物,NO ,Fe2+,硫化物,重金属イオン等を含有する産業用排水、下水等の排水を反応流体として用いることにより、これらの排水の処理をチオ硫酸イオン,チオシアン酸イオン,ヘキサシアノ鉄酸イオンの処理と同時に行うことができ、高い処理効率が得られる排水の処理方法を提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Treatment of these wastewaters by using industrial wastewater such as phenol, benzene, toluene, etc., NO 2 , Fe 2+ , sulfides, heavy metal ions, etc., and wastewater such as sewage as reaction fluids. It can be performed simultaneously with the treatment of thiosulfate ions, thiocyanate ions, and hexacyanoferrate ions, and a wastewater treatment method that provides high treatment efficiency can be provided.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)排水を少なくとも加圧する排水加圧工程を備えているので、反応器内で排水と接触した臨界流体の圧力を維持することができ反応処理効率を高めることができる排水の処理方法を提供することができる。
(2)排水は臨界流体と合流してはじめて高温に加熱され、加熱されたと同時に系内の有害物質が分解処理されるので、排水が腐食性を有している場合でも、反応器が腐食性環境に曝される時間を短くすることができ反応器の耐久性を高めることができる排水の処理方法を提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) Since a waste water pressurizing step for pressurizing waste water is provided, a waste water treatment method capable of maintaining the pressure of the critical fluid in contact with the waste water in the reactor and increasing the reaction treatment efficiency is provided. can do.
(2) The wastewater is heated to a high temperature only after it joins the critical fluid, and at the same time, the harmful substances in the system are decomposed, so even if the wastewater is corrosive, the reactor is corrosive. It is possible to provide a wastewater treatment method capable of shortening the exposure time to the environment and enhancing the durability of the reactor.

請求項4に記載の発明によれば、請求項1乃至3の内いずれか1の効果に加え、
(1)保持工程を備えているので、臨界流体と排水とが接触して生成された処理流体を超臨界状態や亜臨界状態に長時間維持して反応処理を完全に行うことができ反応効率を高めることができる排水の処理方法を提供することができる。
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3,
(1) Since it is equipped with a holding process, the reaction fluid can be completely carried out by maintaining the processing fluid generated by contact between the critical fluid and the waste water in a supercritical state or a subcritical state for a long time. It is possible to provide a wastewater treatment method capable of increasing the pressure.

請求項5に記載の発明によれば、請求項1乃至4の内いずれか1の効果に加え、
(1)排水のpHを7〜13好ましくは10〜12に調整するpH調整工程を備えているので、排水がチオシアン酸イオンを含有する場合でも、シアン化水素等の有害なガスが生成されず作業性に優れるとともに安全性に優れ、さらに環境保全性に優れた排水の処理方法を提供することができる。
(2)pH調整工程を備えているので、分解生成物として硫酸等の酸性物質が処理流体に生成する場合でも略中性から塩基性にすることができ、反応器の金属材料等の腐食を防止して反応器の耐久性を高めることができる排水の処理方法を提供することができる。
According to invention of Claim 5, in addition to the effect of any one of Claims 1 to 4,
(1) Since a pH adjusting step for adjusting the pH of the waste water to 7 to 13, preferably 10 to 12, is provided, no harmful gas such as hydrogen cyanide is generated even when the waste water contains thiocyanate ions. It is possible to provide a wastewater treatment method which is excellent in safety, excellent in safety and environmentally safe.
(2) Since a pH adjustment step is provided, even when an acidic substance such as sulfuric acid is generated as a decomposition product in the processing fluid, it can be changed from substantially neutral to basic, and corrosion of metallic materials in the reactor can be prevented. It is possible to provide a wastewater treatment method that can prevent and increase the durability of the reactor.

請求項6に記載の発明によれば、請求項1乃至5の内いずれか1の効果に加え、
(1)処理流体に酸化剤を加える酸化剤添加工程を備えているので、処理流体の酸化還元電位を酸化側にして反応器の金属材料を塩基脆化し難くして反応器の耐久性を高めることができるとともに排水の酸化分解を進行させることができる排水の処理方法を提供することができる。
According to invention of Claim 6, in addition to the effect of any one of Claims 1 to 5,
(1) Since an oxidizing agent addition step for adding an oxidizing agent to the processing fluid is provided, the durability of the reactor is increased by making the oxidation-reduction potential of the processing fluid the oxidation side and making the metal material of the reactor difficult to be brittle. In addition, it is possible to provide a wastewater treatment method capable of promoting oxidative decomposition of wastewater.

請求項7に記載の発明によれば、請求項1乃至6の内いずれか1の効果に加え、
(1)石炭ガス化の際に発生する石炭灰やスラグを冷却した冷却水、燃料ガスを洗浄した洗浄排水は、チオ硫酸イオン,チオシアン酸イオン,ヘキサシアノ鉄酸イオン等を含有しているので、これまでは濃縮乾固させて産業廃棄物として処理するしか処理手段がなかったが、臨界流体と混合又は合流させることにより、難分解性のチオ硫酸イオン等を加水分解及び酸化還元させて分解することができ作業性と環境保全性に著しく優れた排水の処理方法を提供することができる。
According to the invention described in claim 7, in addition to the effect of any one of claims 1 to 6,
(1) Cooling water that cools coal ash and slag generated during coal gasification, and cleaning wastewater that cleans fuel gas contain thiosulfate ions, thiocyanate ions, hexacyanoferrate ions, etc. Until now, there was only a processing means to condense and dry it and treat it as industrial waste, but by mixing or joining it with a critical fluid, it decomposes and decomposes refractory thiosulfate ions etc. by hydrolysis and oxidation reduction Therefore, it is possible to provide a wastewater treatment method remarkably excellent in workability and environmental conservation.

請求項8に記載の発明によれば、請求項1乃至7の内いずれか1の効果に加え、
(1)スラグ等を冷却した冷却水や燃料ガスを洗浄した洗浄排水等が発生する石炭ガス化発電所内や火力発電所内で排水処理ができるので、排水を輸送する必要がなく効率が良く省エネルギー性に優れた排水の処理方法を提供することができる。
(2)石炭ガス化発電所や火力発電所の蒸気タービンを駆動するための蒸気及び補助蒸気のもつ熱エネルギーを有効利用して臨界状態の高温高圧水も製造することができるので、エネルギー効率に優れた排水の処理方法を提供することができる。また、排水が処理された処理流体を反応流体として再利用することで、クローズドシステムによる排水処理システムを構築することができる排水の処理方法を提供することができる。
According to the invention described in claim 8, in addition to the effect of any one of claims 1 to 7,
(1) Since wastewater treatment can be performed in coal gasification power plants and thermal power plants that generate cooling water that cools slag, etc., or cleaning wastewater that is washed with fuel gas, it is not necessary to transport wastewater and is efficient and energy-saving It is possible to provide an excellent wastewater treatment method.
(2) Since the heat energy of steam and auxiliary steam for driving steam turbines in coal gasification power plants and thermal power plants can be used effectively, high-temperature and high-pressure water in the critical state can be produced. An excellent wastewater treatment method can be provided. Moreover, the wastewater processing method which can construct | assemble the wastewater treatment system by a closed system can be provided by reusing the processing fluid which processed the wastewater as a reaction fluid.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態1)
図4は本発明の実施の形態1における反応装置のシステム構成図である。
図4において、1は実施の形態1における反応装置、2は水やアルコール水溶液等の反応流体、3は反応流体2を貯留する反応流体槽、4は反応流体槽3内の反応流体2が導入される臨界流体供給路、5は臨界流体供給路4に配設された開閉弁、6は開閉弁5の下流側の臨界流体供給路4に配設され反応流体2を超臨界領域又は亜臨界領域の圧力域に加圧する第1加圧装置、7は第1加圧装置5の下流側の臨界流体供給路4に配設された逆止弁、8は逆止弁7の下流側の臨界流体供給路4に配設され反応流体2を超臨界領域又は亜臨界領域の温度域に加熱する第1加熱装置、9は臨界流体供給路4の下流部が接続され後述する反応器上部22に形成された臨界流体供給口である。反応流体2は第1加圧装置6と第1加熱装置8によって超臨界状態又は亜臨界状態の超臨界流体又は亜臨界流体(以下、臨界流体という)にされて臨界流体供給口9から反応器上部22へ供給される。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 4 is a system configuration diagram of the reaction apparatus according to Embodiment 1 of the present invention.
In FIG. 4, 1 is a reaction apparatus in the first embodiment, 2 is a reaction fluid such as water or an aqueous alcohol solution, 3 is a reaction fluid tank for storing the reaction fluid 2, and 4 is introduced by the reaction fluid 2 in the reaction fluid tank 3. The critical fluid supply path 5 is an on-off valve disposed in the critical fluid supply path 4, and 6 is disposed in the critical fluid supply path 4 on the downstream side of the on-off valve 5, and the reaction fluid 2 is placed in the supercritical region or subcritical state. A first pressurizing device that pressurizes the pressure region, 7 is a check valve disposed in the critical fluid supply path 4 on the downstream side of the first pressurizing device 5, and 8 is a critical pressure on the downstream side of the check valve 7. A first heating device 9 is disposed in the fluid supply path 4 and heats the reaction fluid 2 to a temperature range of the supercritical region or the subcritical region. The formed critical fluid supply port. The reaction fluid 2 is changed to a supercritical fluid or a subcritical fluid (hereinafter referred to as critical fluid) in a supercritical state or a subcritical state by the first pressurizing device 6 and the first heating device 8, and the reactor is supplied from the critical fluid supply port 9. Supplied to the upper part 22.

10は有機物,NO ,Fe2+,硫化物,重金属イオン等を含有する産業用排水、下水、汚泥等の化学的酸素要求量(COD)が高く処理を要する排水、石炭,石油等の化石燃料を用いる石炭ガス化発電設備,火力発電設備,汚泥等の廃棄物を溶融等して処理する廃棄物処理設備等から発生した排水、11は排水10を貯留する排水槽、12は排水槽11内の排水10が導入される排水供給路、13は排水供給路12に配設された開閉弁、14は開閉弁13の下流側の排水供給路12に配設され排水10を超臨界領域又は亜臨界領域の圧力域に加圧する第2加圧装置、15は第2加圧装置14の下流側の排水供給路12に配設された逆止弁、16は排水供給路12の下流部が接続され後述する反応器上部22に形成された排水供給口である。
17はNaOH,KOH等のアルカリ剤の水溶液等のpH調整剤、18はpH調整剤17が貯留されたpH調整剤槽、19は一端部がpH調整剤槽18に接続され他端部が開閉弁13の下流側で第2加圧装置14の上流側の排水供給路12に接続されてpH調整剤17が導入されるpH調整剤供給路、20はpH調整剤供給路19に配設された開閉弁である。排水10は、必要に応じてpH調整剤17が添加されpHが7〜13好ましくは10〜12に調整され、第2加圧装置14によって超臨界状態又は亜臨界状態となる圧力条件で加圧されて排水供給口16から反応器上部22へ供給される。
10 organics, NO 2 -, Fe 2+, sulfides, industrial containing heavy metal ions like waste water, sewage, chemical oxygen demand, such as sludge (COD) waste water requiring high processing, coal, fossil oil such as Drainage generated from coal gasification power generation equipment using fuel, thermal power generation equipment, waste treatment equipment that melts and treats waste such as sludge, 11 is a drainage tank for storing wastewater 10, and 12 is a drainage tank 11 The drainage supply path into which the drainage 10 is introduced, 13 is an on-off valve disposed in the drainage supply path 12, 14 is disposed in the drainage supply path 12 downstream of the on-off valve 13, and the drainage 10 is placed in the supercritical region or A second pressurizing device that pressurizes the pressure region in the subcritical region, 15 is a check valve disposed in the drainage supply passage 12 on the downstream side of the second pressurization device 14, and 16 is a downstream portion of the drainage supply passage 12. Drain supply port connected and formed in the reactor upper part 22 described later A.
17 is a pH adjusting agent such as an aqueous solution of an alkaline agent such as NaOH or KOH, 18 is a pH adjusting agent tank in which the pH adjusting agent 17 is stored, 19 is connected to the pH adjusting agent tank 18, and the other end is opened and closed. A pH adjusting agent supply path 20 connected to the drainage supply path 12 on the upstream side of the second pressurizing device 14 on the downstream side of the valve 13 is introduced into the pH adjusting agent supply path 19. Open / close valve. The drainage 10 is pressurized under a pressure condition in which a pH adjusting agent 17 is added as necessary to adjust the pH to 7 to 13 and preferably 10 to 12 and to be in a supercritical state or a subcritical state by the second pressurizing device 14. Then, it is supplied from the waste water supply port 16 to the reactor upper part 22.

21は内壁面が縦長の筒状に形成され略垂直に形成された反応器、22は反応器21の上部側に形成され臨界流体供給口9と排水供給口16が配設された反応器上部、23は臨界流体供給口9から供給される臨界流体と排水供給口16から供給される排水とが衝突して合流する反応器上部22の合流部、24は反応器上部22の合流部23の下方に配設され反応器上部22と連通する反応器下部、25は反応器下部24の底部に形状が漏斗状に形成された反応器底部である。
26は反応器21(反応器上部22,反応器下部24,反応器底部25)の外側に配設され反応器21を所定温度に加熱する第2加熱装置である。
Reference numeral 21 denotes a reactor whose inner wall surface is formed in a vertically long cylindrical shape and is formed substantially vertically. Reference numeral 22 is an upper part of the reactor formed on the upper side of the reactor 21 and provided with a critical fluid supply port 9 and a drainage supply port 16. , 23 is a confluence portion of the reactor upper part 22 where the critical fluid supplied from the critical fluid supply port 9 collides with the waste water supplied from the drainage supply port 16, and 24 is a confluence part 23 of the reactor upper part 22. A reactor lower portion 25, which is disposed below and communicates with the reactor upper portion 22, is a reactor bottom portion having a funnel shape at the bottom of the reactor lower portion 24.
Reference numeral 26 denotes a second heating device that is disposed outside the reactor 21 (reactor upper part 22, reactor lower part 24, reactor bottom part 25) and heats the reactor 21 to a predetermined temperature.

27は過酸化水素等の水溶液状の酸化剤、28は酸化剤27が貯留された酸化剤槽、29は酸化剤槽28内の酸化剤27が導入される酸化剤供給路、30は酸化剤供給路29に配設された開閉弁、31は開閉弁30の下流側の酸化剤供給路29に配設され酸化剤27を超臨界領域又は亜臨界領域の圧力域に加圧する第3加圧装置、32は第3加圧装置31の下流側の酸化剤供給路29に配設された逆止弁、32aは酸化剤供給路29の下流部が接続され合流部23の下方の反応器下部22に形成された酸化剤供給口である。
なお、酸化剤として酸素ガスや空気等のガス状を用いる場合は、酸化剤槽28の代わりに酸化剤が充填された圧力容器等を用いる。
27 is an oxidizing agent in the form of an aqueous solution such as hydrogen peroxide, 28 is an oxidizing agent tank in which the oxidizing agent 27 is stored, 29 is an oxidizing agent supply path into which the oxidizing agent 27 in the oxidizing agent tank 28 is introduced, and 30 is an oxidizing agent. The on-off valve 31 provided in the supply passage 29 is a third pressurization provided in the oxidant supply passage 29 downstream of the on-off valve 30 to pressurize the oxidant 27 to the supercritical region or subcritical region pressure region. 32, a check valve disposed in the oxidant supply path 29 on the downstream side of the third pressurizing apparatus 31, and 32a, a lower part of the reactor below the merging section 23, to which the downstream part of the oxidant supply path 29 is connected. 22 is an oxidant supply port formed at 22.
In addition, when using gaseous forms, such as oxygen gas and air, as an oxidizing agent, the pressure vessel etc. which were filled with the oxidizing agent instead of the oxidizing agent tank 28 are used.

33は反応器底部25に接続された処理流体排出路であり、排水が臨界流体によって反応器21内で処理されて生成される処理流体が反応器21から排出される。34は処理流体排出路33に配設され処理流体を冷却する冷却装置、35は冷却装置34の下流側の処理流体排出路33に配設され処理流体から分解生成物である無機塩等の固形物を分離する固液分離装置、36は固液分離装置35の下流側の処理流体排出路33に配設された気液分離装置、37は気液分離装置36の上部と接続された蒸気排出路、38は蒸気排出路37に配設された減圧弁やオリフィス等の減圧装置、39は気液分離装置36の下部と接続され処理流体が流れる液体排出路、40は液体排出路39に配設された減圧弁等の減圧装置である。   Reference numeral 33 denotes a processing fluid discharge path connected to the reactor bottom 25, and the processing fluid generated by processing the waste water in the reactor 21 with the critical fluid is discharged from the reactor 21. 34 is a cooling device disposed in the processing fluid discharge passage 33 for cooling the processing fluid, and 35 is disposed in the processing fluid discharge passage 33 on the downstream side of the cooling device 34 and is a solid such as an inorganic salt which is a decomposition product from the processing fluid. A solid-liquid separation device that separates an object, 36 is a gas-liquid separation device disposed in a processing fluid discharge passage 33 on the downstream side of the solid-liquid separation device 35, and 37 is a vapor discharge connected to an upper portion of the gas-liquid separation device 36. , 38 is a pressure reducing device such as a pressure reducing valve or orifice disposed in the vapor discharge path 37, 39 is a liquid discharge path connected to the lower part of the gas-liquid separator 36, and a processing fluid flows, and 40 is arranged in the liquid discharge path 39. A pressure reducing device such as a pressure reducing valve provided.

以上のように構成された実施の形態1における反応装置を用いた排水の処理方法ついて説明する。
まず、反応装置1の第1加熱装置8、第2加熱装置26を所定温度に加熱するとともに、反応流体槽3に所定の反応流体2を貯留し、排水槽11に排水10を貯留する。次いで、臨界流体供給路4において、開閉弁5を開弁するとともに第1加圧装置6を駆動すると臨界流体供給路4に反応流体2が導入され、さらに反応流体2は超臨界領域又は亜臨界領域の圧力域まで加圧される。さらに、第1加熱装置8によって超臨界領域又は亜臨界領域の温度域まで加熱されて臨界流体が生成され、生成された臨界流体は臨界流体供給路4内を臨界流体供給口9へ向かう。(以上、臨界流体生成工程)
一方、排水供給路12において、開閉弁13を開弁して排水供給路12に排水10を供給する。
このとき、必要に応じて開閉弁20を開弁してpH調整剤17を排水10に添加し排水のpHを7〜13好ましくは10〜12に調整する。(以上、pH調整工程)排水のpHは、pH調整剤供給路19の下流側で第2加圧装置14の上流側の排水供給路12に配設された図示しないpH計で測定することができる。また、処理流体排出路33や液体排出路39に配設された図示しないpH計で処理流体のpHを測定して、これを基に排水のpHを調整することができる。
次いで、第2加圧装置14を駆動して排水10を反応流体2の超臨界領域又は亜臨界領域の圧力域まで加圧すると、加圧された排水10が排水流路12内を排水供給口16へ向かう。(以上、排水加圧工程)
A wastewater treatment method using the reactor according to Embodiment 1 configured as described above will be described.
First, the first heating device 8 and the second heating device 26 of the reaction apparatus 1 are heated to a predetermined temperature, the predetermined reaction fluid 2 is stored in the reaction fluid tank 3, and the drainage 10 is stored in the drain tank 11. Next, in the critical fluid supply path 4, when the on-off valve 5 is opened and the first pressurizing device 6 is driven, the reaction fluid 2 is introduced into the critical fluid supply path 4, and the reaction fluid 2 is supercritical or subcritical. Pressurized to the pressure range of the region. Further, the first heating device 8 is heated to the temperature range of the supercritical region or the subcritical region to generate a critical fluid, and the generated critical fluid travels through the critical fluid supply path 4 toward the critical fluid supply port 9. (End of critical fluid generation process)
On the other hand, in the drainage supply path 12, the on-off valve 13 is opened to supply drainage 10 to the drainage supply path 12.
At this time, if necessary, the on-off valve 20 is opened and the pH adjusting agent 17 is added to the waste water 10 to adjust the pH of the waste water to 7 to 13, preferably 10 to 12. (End of pH adjustment step) The pH of the wastewater can be measured with a pH meter (not shown) disposed in the drainage supply passage 12 upstream of the second pressurizing device 14 on the downstream side of the pH adjusting agent supply passage 19. it can. In addition, the pH of the treatment fluid can be measured by a pH meter (not shown) disposed in the treatment fluid discharge path 33 and the liquid discharge path 39, and the pH of the waste water can be adjusted based on the measured pH.
Next, when the second pressurizing device 14 is driven to pressurize the drainage 10 to the supercritical region or the subcritical region of the reaction fluid 2, the pressurized drainage 10 passes through the drainage channel 12 to the drainage supply port. Head to 16. (End of drainage pressurization process)

臨界流体供給路4内を臨界流体供給口9へ向かった臨界流体及び排水供給路12内を排水供給口16へ向かった排水は、第2加熱装置26で加熱された反応器21の反応器上部22の合流部23へ各々臨界流体供給口9及び排水供給口16から供給され2つの流体が衝突し接触して合流する。合流部23で合流した2つの流体は反応器上部22を下降する下降流を形成し、合流部23及び反応器21の下降流内で排水は臨界流体で反応処理され処理流体が生成される。(以上、流体接触工程)
このとき、必要に応じて開閉弁30を開弁して酸化剤27を反応器下部24の上部に形成された酸化剤供給口32aから反応器下部24内の処理流体に添加する。(以上、酸化剤添加工程)処理流体の酸化還元電位としては、−300〜+700mV好ましくは−200〜+500mVが好適である。処理流体の酸化還元電位は、処理流体排出路33や液体排出路39に配設された図示しない酸化還元電位計で測定することができる。これを基に添加する酸化剤の量を調整することができる。
The critical fluid in the critical fluid supply path 4 toward the critical fluid supply port 9 and the wastewater in the drainage supply path 12 toward the drainage supply port 16 are the upper part of the reactor 21 of the reactor 21 heated by the second heating device 26. Two fluids supplied from the critical fluid supply port 9 and the drainage supply port 16 to the merging portion 23 of 22 collide with each other, and come into contact with each other. The two fluids joined at the junction 23 form a downward flow that descends the reactor upper part 22, and the waste water reacts with the critical fluid in the downward flow of the junction 23 and the reactor 21 to generate a processing fluid. (End of fluid contact process)
At this time, if necessary, the on-off valve 30 is opened, and the oxidant 27 is added to the processing fluid in the reactor lower part 24 from the oxidant supply port 32a formed in the upper part of the reactor lower part 24. (Oxidant addition step) The oxidation-reduction potential of the processing fluid is -300 to +700 mV, preferably -200 to +500 mV. The oxidation-reduction potential of the processing fluid can be measured by an oxidation-reduction potentiometer (not shown) disposed in the processing fluid discharge path 33 and the liquid discharge path 39. The amount of the oxidizing agent added based on this can be adjusted.

処理流体は、第2加熱装置26で保温された反応器上部22,反応器下部24内でさらに反応処理される。また、反応器底部25が漏斗状に形成されているので、処理流体の反応器21内での滞留時間を長くすることができ、未反応分も反応器上部22,反応器下部24内で分解処理される(以上、保持工程)。
反応器21内で処理された処理流体は、反応器底部25に接続された処理流体排出路33から反応器21の外へ排出される。
処理流体排出路33内の処理流体は冷却装置34で冷却された後、固液分離装置35で未反応等の固形物が分離される。さらに処理流体は気液分離装置36で気液分離され、気体は蒸気排出路37から減圧装置38を経て大気や排ガス処理装置(図示しない)へ放出され、一方の液体は液体排出路39から減圧装置40を経て減圧され、必要に応じて中和等の処理を行った後、公共水域に放流されたり生物処理槽等を備えた浄水装置(図示しない)等へ送られる。また、必要に応じて、反応流体として再利用される。
The processing fluid is further subjected to a reaction process in the reactor upper part 22 and the reactor lower part 24 which are kept warm by the second heating device 26. Further, since the reactor bottom 25 is formed in a funnel shape, the residence time of the processing fluid in the reactor 21 can be lengthened, and unreacted components are decomposed in the reactor upper part 22 and the reactor lower part 24. Processed (the holding step).
The processing fluid processed in the reactor 21 is discharged out of the reactor 21 through a processing fluid discharge path 33 connected to the reactor bottom 25.
After the processing fluid in the processing fluid discharge passage 33 is cooled by the cooling device 34, solids such as unreacted material are separated by the solid-liquid separation device 35. Further, the processing fluid is gas-liquid separated by the gas-liquid separation device 36, the gas is discharged from the vapor discharge passage 37 through the decompression device 38 to the atmosphere and the exhaust gas treatment device (not shown), and one liquid is decompressed from the liquid discharge passage 39. The pressure is reduced through the device 40, and after neutralization or the like is performed as necessary, it is discharged into a public water area or sent to a water purification device (not shown) equipped with a biological treatment tank or the like. Further, it is reused as a reaction fluid as necessary.

以上のような実施の形態1における反応装置を用いた排水の処理方法によれば、以下のような作用が得られる。
(1)超臨界状態又は亜臨界状態にされた臨界流体を加圧された排水と合流させて反応処理するので、排水を連続的に処理することができ作業性に優れるとともに省エネルギー性に優れる。
(2)排水は臨界流体と合流してはじめて合流部23内で高温に加熱され、加熱されたと同時に排水中の有害物質が分解処理されるので、排水が腐食性を有している場合でも、反応器21が腐食性環境に曝される時間を短くすることができ反応器21の耐久性を高めることができる。
(3)保持工程を備えているので、臨界流体と排水とが接触して生成された処理流体を超臨界状態や亜臨界状態で滞留させて反応処理を完全に行うことができ反応効率を高めることができる。また、未反応分も反応器上部22,反応器下部24内で分解処理することができ排水の分解反応効率を高めることができる。
(4)排水のpHを7〜13好ましくは10〜12に調整するpH調整工程を備えているので、排水がチオシアン酸イオンを含有する場合でも、シアン化水素等の有害なガスが生成されず作業性に優れるとともに環境保全性に優れる。
(5)pH調整工程を備えているので、分解生成物として硫酸等の酸性物質が処理流体に生成する場合でも略中性に中和することができ、反応器21の金属材料等を腐食し難くして反応器21の耐久性を高めることができる。
(6)処理流体に酸化剤を加える酸化剤添加工程を備えているので、処理流体の酸化還元電位を酸化側にして反応器21の金属材料を塩基脆化し難くして反応器21の耐久性を高めることができるとともに排水の酸化分解を進行させることができる。
According to the wastewater treatment method using the reaction apparatus in the first embodiment as described above, the following effects are obtained.
(1) Since the critical fluid in the supercritical state or the subcritical state is combined with the pressurized wastewater to perform the reaction treatment, the wastewater can be treated continuously, and it is excellent in workability and energy saving.
(2) Since the wastewater is heated to a high temperature in the joining portion 23 only after joining the critical fluid, and harmful substances in the wastewater are decomposed at the same time as being heated, even if the wastewater is corrosive, The time during which the reactor 21 is exposed to the corrosive environment can be shortened, and the durability of the reactor 21 can be enhanced.
(3) Since a holding process is provided, the processing fluid generated by contact between the critical fluid and the waste water can be retained in a supercritical state or a subcritical state, and the reaction process can be performed completely, thereby increasing the reaction efficiency. be able to. Unreacted components can also be decomposed in the reactor upper part 22 and the reactor lower part 24, and the efficiency of the waste water decomposition reaction can be increased.
(4) Since a pH adjusting step for adjusting the pH of the waste water to 7 to 13, preferably 10 to 12, is provided, even when the waste water contains thiocyanate ion, no harmful gas such as hydrogen cyanide is generated and workability And environmental conservation.
(5) Since a pH adjustment step is provided, even when an acidic substance such as sulfuric acid is generated as a decomposition product in the processing fluid, it can be neutralized almost neutrally, and the metal material of the reactor 21 is corroded. It is difficult to increase the durability of the reactor 21.
(6) Since an oxidizing agent addition step of adding an oxidizing agent to the processing fluid is provided, the durability of the reactor 21 is reduced by making the oxidation-reduction potential of the processing fluid the oxidation side and making the metal material of the reactor 21 difficult to be embrittled. And the oxidative decomposition of the waste water can be advanced.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
チオ硫酸ナトリウム、チオシアン酸ナトリウム、フェロシアン化カリウムの所定量を各々イオン交換水に溶解して実験例1〜14の排水試料を作成した。各排水試料にはpH調整剤としての水酸化ナトリウムを所定量添加してpHを11.3〜12.6に調整した。次いで、反応流体としてのイオン交換水を種々の圧力に加圧するとともに加熱して超臨界状態又は亜臨界状態の臨界状態にして臨界流体を作成し、各臨界流体の圧力と同一の圧力に加圧した各排水試料とステンレス製の反応器内で混合し処理流体を作成した。混合時間は20秒間とした。
ここで、臨界流体の量は、排水試料の量に対し10倍になるようにした。また、この間の反応器の温度と圧力は、臨界流体の温度と圧力と同一の条件に保持した。反応器を減圧し処理流体を冷却した後、処理流体の分析を行った。
また、実験例4,9,12では、臨界流体と排水試料の混合後、直ちに反応器内の処理流体に酸化剤としての過酸化水素水を各イオン種の2倍当量添加した。
実験例1〜14における排水試料の対象イオン種、処理条件(処理流体の温度、圧力、保持時間、酸化剤の有無)、排水試料と処理流体の各イオン種の濃度、COD、pH、処理流体の硫酸イオンの濃度、イオン分解率、COD分解率、反応器の腐食の状態を(表1)にまとめて示す。
なお、イオン分解率は、(100(%)−(処理流体中の対象とするイオン濃度÷排水試料中の対象とするイオン濃度)×100)の計算式を用いて算出し、COD分解率は、(100(%)−(処理流体のCOD÷排水試料のCOD)×100)の計算式を用いて算出した。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
(Example 1)
Predetermined amounts of sodium thiosulfate, sodium thiocyanate, and potassium ferrocyanide were dissolved in ion-exchanged water to prepare wastewater samples of Experimental Examples 1-14. A predetermined amount of sodium hydroxide as a pH adjuster was added to each drainage sample to adjust the pH to 11.3-12.6. Next, pressurize ion-exchanged water as a reaction fluid to various pressures and heat it to create a critical fluid in the supercritical or subcritical state, and pressurize to the same pressure as each critical fluid. Each wastewater sample was mixed in a stainless steel reactor to prepare a treatment fluid. The mixing time was 20 seconds.
Here, the amount of the critical fluid was set to 10 times the amount of the drainage sample. During this period, the temperature and pressure of the reactor were maintained under the same conditions as the temperature and pressure of the critical fluid. After the reactor was depressurized and the processing fluid was cooled, the processing fluid was analyzed.
In Experimental Examples 4, 9, and 12, hydrogen peroxide water as an oxidant was added twice as much as each ionic species to the processing fluid in the reactor immediately after mixing the critical fluid and the drainage sample.
The target ionic species of the wastewater sample in Experimental Examples 1 to 14, the processing conditions (processing fluid temperature, pressure, holding time, presence / absence of oxidizing agent), the concentration of each ionic species of the draining sample and the processing fluid, COD, pH, processing fluid (Table 1) summarizes the sulfate ion concentration, ion decomposition rate, COD decomposition rate, and reactor corrosion state.
The ion decomposition rate is calculated using a formula of (100 (%) − (target ion concentration in treatment fluid ÷ target ion concentration in wastewater sample) × 100), and the COD decomposition rate is , (100 (%) − (COD of processing fluid ÷ COD of drainage sample) × 100).

Figure 2005152806
Figure 2005152806

(表1)における腐食の状態の評価は、反応器内の外観を目視によって検査したものであり、腐食による変色や侵食等がほとんどみられないものを○、容易に認められるものを△、著しい変色や侵食等が認められるものを×として表した。
なお、実験例1〜10において処理流体の硫酸イオンの濃度を測定しているのは、チオ硫酸ナトリウム、チオシアン酸ナトリウム、フェロシアン化カリウムが、(化1)に示す酸化反応で分解されると推察され、チオ硫酸ナトリウム、チオシアン酸ナトリウムを溶解した排水試料では、処理流体中の硫酸イオンの濃度が高いほど分解が進んでいると推察できるからである。なお、(化1)において、(式1)はチオ硫酸ナトリウムの酸化反応を示し、(式2)はチオシアン酸ナトリウムの酸化反応を示し、(式3)はフェロシアン化カリウムの酸化反応を示す。
The evaluation of the state of corrosion in (Table 1) is a visual inspection of the external appearance of the reactor. The case where the discoloration or erosion due to the corrosion is hardly observed is ◯, the case where it is easily recognized is △, the remarkable Those in which discoloration, erosion, etc. were observed were represented as x.
In Experimental Examples 1 to 10, the concentration of sulfate ions in the processing fluid is measured because it is assumed that sodium thiosulfate, sodium thiocyanate, and potassium ferrocyanide are decomposed by the oxidation reaction shown in (Chemical Formula 1). This is because it can be inferred that in a wastewater sample in which sodium thiosulfate and sodium thiocyanate are dissolved, the decomposition progresses as the concentration of sulfate ions in the treatment fluid increases. In (Chemical Formula 1), (Formula 1) represents an oxidation reaction of sodium thiosulfate, (Formula 2) represents an oxidation reaction of sodium thiocyanate, and (Formula 3) represents an oxidation reaction of potassium ferrocyanide.

Figure 2005152806
Figure 2005152806

(表1)から、処理流体の温度及び圧力が高くなるにつれCOD分解率が高くなっていることから、排水試料中の有害物質の分解反応が進むことが明らかになった。また、温度が400℃以上かつ圧力が20MPa以上のときには99%以上の高いイオン分解率が得られることが明らかになった。
また、酸化剤を添加することで処理流体中の硫酸イオンの濃度が高くなることから、無添加の場合より分解反応が進行することが明白である。さらに、酸化剤を添加することで反応器の腐食があまり認められないことから、反応器の金属材料を塩基脆化し難くでき反応器の耐久性を高めることができることが明らかである。
また、排水試料にpH調整剤を添加し排水試料のpHを7〜13に調整しているので、分解生成物として硫酸等の酸性物質が処理流体に生成する場合でもpH8.3〜12.4の略中性から塩基性にできることが明らかになった。
From (Table 1), it became clear that the decomposition reaction of harmful substances in the wastewater sample proceeds because the COD decomposition rate increases as the temperature and pressure of the processing fluid increase. It was also revealed that a high ion decomposition rate of 99% or higher can be obtained when the temperature is 400 ° C. or higher and the pressure is 20 MPa or higher.
In addition, since the concentration of sulfate ions in the processing fluid is increased by adding the oxidizing agent, it is clear that the decomposition reaction proceeds more than in the case of no addition. Further, since the corrosion of the reactor is not recognized so much by adding the oxidant, it is clear that the metal material of the reactor can be hardly made brittle and the durability of the reactor can be improved.
Moreover, since the pH adjuster is added to the wastewater sample to adjust the pH of the wastewater sample to 7 to 13, even when an acidic substance such as sulfuric acid is generated in the processing fluid as a decomposition product, the pH is 8.3 to 12.4. It became clear that it was possible to change from a neutral to basic.

(実施例2)
次に、実施の形態1で説明した反応装置を用いて排水処理を行った例を説明する。
図5は実施の形態1の反応装置における反応器下部の温度とイオン分解率との関係を示した図である。
排水試料として、S 2−濃度が1000ppmになるようにチオ硫酸ナトリウムをイオン交換水に溶解したものを作成した。この排水試料(25℃)を25MPaに加圧して排水供給口から反応器の合流部へ供給した。同時に、イオン交換水を400℃に加熱するとともに25MPaに加圧した臨界流体を臨界流体供給口から反応器の合流部へ供給し、2つの流体を衝突させ接触合流させた。なお、臨界流体の流量と排水試料の流量との比は、185:20であった。
図5から、反応器下部の温度が高くなるにつれイオン分解率が高くなる傾向がみられ、360℃以上では80%以上の高いイオン分解率が得られることが明らかになった。
(Example 2)
Next, an example in which wastewater treatment is performed using the reaction apparatus described in Embodiment 1 will be described.
FIG. 5 is a graph showing the relationship between the temperature at the bottom of the reactor and the ion decomposition rate in the reactor of the first embodiment.
A sample obtained by dissolving sodium thiosulfate in ion-exchanged water so that the S 2 O 3 2− concentration was 1000 ppm was prepared as a drainage sample. The wastewater sample (25 ° C.) was pressurized to 25 MPa and supplied from the wastewater supply port to the junction of the reactor. At the same time, the ion-exchanged water was heated to 400 ° C. and a critical fluid pressurized to 25 MPa was supplied from the critical fluid supply port to the junction of the reactor, and the two fluids collided to contact and merge. The ratio of the critical fluid flow rate to the drainage sample flow rate was 185: 20.
FIG. 5 shows that the ion decomposition rate tends to increase as the temperature at the lower part of the reactor increases, and it is clear that a high ion decomposition rate of 80% or higher can be obtained at 360 ° C. or higher.

本発明は、火力発電設備,ガス製造設備,石油精製設備,廃棄物処理設備等等から発生する排水の処理方法に関し、作業性に優れるとともに省エネルギー性に優れ、また、これまで濃縮乾固させて産業廃棄物として処理するしか処理手段がなかった難分解性化合物を含有する排水の分解処理を低コストで実現でき環境保全性に著しく優れる排水の処理方法を提供することができる。   The present invention relates to a method for treating wastewater generated from thermal power generation equipment, gas production equipment, petroleum refining equipment, waste treatment equipment, etc., and is excellent in workability and energy saving, and has been concentrated and dried until now. It is possible to provide a wastewater treatment method that can realize a decomposition treatment of wastewater containing a hardly decomposable compound that has only been treated as an industrial waste at a low cost and is extremely excellent in environmental conservation.

各圧力における水の温度と比熱容量との関係を示す図Diagram showing the relationship between water temperature and specific heat capacity at each pressure 各圧力における水の温度と密度との関係を示す図Diagram showing the relationship between water temperature and density at each pressure 25MPaの圧力下におけるNaSO飽和水溶液の温度とNaSOの濃度との関係を示す図Shows the relationship between the concentration of temperature and Na 2 SO 4 of a saturated aqueous Na 2 SO 4 solution at a pressure of 25MPa 実施の形態1における反応装置のシステム構成図System configuration diagram of reaction apparatus in embodiment 1 実施の形態1の反応装置における反応器下部の温度とイオン分解率との関係を示した図The figure which showed the relationship between the temperature of the lower part of a reactor in the reaction apparatus of Embodiment 1, and an ion decomposition rate

符号の説明Explanation of symbols

1 反応装置
2 反応流体
3 反応流体槽
4 臨界流体供給路
5 開閉弁
6 第1加圧装置
7 逆止弁
8 第1加熱装置
9 臨界流体供給口
10 排水
11 排水槽
12 排水供給路
13 開閉弁
14 第2加圧装置
15 逆止弁
16 排水供給口
17 pH調整剤
18 pH調整剤槽
19 pH調整剤供給路
20 開閉弁
21 反応器
22 反応器上部
23 合流部
24 反応器下部
25 反応器底部
26 第2加熱装置
27 酸化剤
28 酸化剤槽
29 酸化剤供給路
30 開閉弁
31 第3加圧装置
32 逆止弁
32a 酸化剤供給口
33 処理流体排出路
34 冷却装置
35 固液分離装置
36 気液分離装置
37 蒸気排出路
38 減圧装置
39 液体排出路
40 減圧装置
DESCRIPTION OF SYMBOLS 1 Reaction apparatus 2 Reaction fluid 3 Reaction fluid tank 4 Critical fluid supply path 5 On-off valve 6 1st pressurization apparatus 7 Check valve 8 1st heating apparatus 9 Critical fluid supply port 10 Drain 11 Drain tank 12 Drain supply path 13 On-off valve DESCRIPTION OF SYMBOLS 14 2nd pressurization apparatus 15 Check valve 16 Drain supply port 17 pH adjuster 18 pH adjuster tank 19 pH adjuster supply path 20 On-off valve 21 Reactor 22 Reactor upper part 23 Merge part 24 Reactor lower part 25 Reactor bottom part 26 Second Heating Device 27 Oxidant 28 Oxidant Tank 29 Oxidant Supply Path 30 On-off Valve 31 Third Pressurizer 32 Check Valve 32a Oxidant Supply Port 33 Processing Fluid Discharge Path 34 Cooling Device 35 Solid-Liquid Separator 36 Gas Liquid separator 37 Vapor discharge path 38 Pressure reducing device 39 Liquid discharge path 40 Pressure reducing apparatus

Claims (8)

反応流体を加圧するとともに加熱して前記反応流体を超臨界状態又は亜臨界状態の臨界状態にする臨界流体生成工程と、前記臨界流体生成工程で得られた臨界流体とチオ硫酸イオン,チオシアン酸イオン,ヘキサシアノ鉄酸イオンのいずれか1種以上を含有する排水とを反応器内で接触させ前記排水を前記臨界流体で反応処理して処理流体を生成する流体接触工程と、を備えていることを特徴とする排水の処理方法。   A critical fluid generating step of pressurizing and heating the reaction fluid to bring the reaction fluid into a supercritical or subcritical critical state, and the critical fluid, thiosulfate ions, and thiocyanate ions obtained in the critical fluid generating step. A fluid contact step of contacting a wastewater containing at least one of hexacyanoferrate ions in a reactor and reacting the wastewater with the critical fluid to generate a treatment fluid. Characterized wastewater treatment method. 前記反応流体が、チオ硫酸イオン,チオシアン酸イオン,ヘキサシアノ鉄酸イオンのいずれか1種以上を低濃度で含有する又は含有しない排水であることを特徴とする請求項1に記載の排水の処理方法。   The wastewater treatment method according to claim 1, wherein the reaction fluid is wastewater containing or not containing at least one of thiosulfate ions, thiocyanate ions, and hexacyanoferrate ions at a low concentration. . 前記流体接触工程において、前記排水を加圧する排水加圧工程を備えていることを特徴とする請求項1又は2に記載の排水の処理方法。   The wastewater treatment method according to claim 1 or 2, further comprising a wastewater pressurizing step for pressurizing the wastewater in the fluid contact step. 前記流体接触工程において前記臨界流体と前記排水とを接触させた前記反応器の温度及び圧力を保持する保持工程を備えていることを特徴とする請求項1乃至3の内いずれか1に記載の排水の処理方法。   The holding step of holding the temperature and pressure of the reactor in which the critical fluid and the waste water are brought into contact with each other in the fluid contact step is provided. Wastewater treatment method. 前記排水にpH調整剤を加え前記排水のpHを7〜13好ましくは10〜12に調整するpH調整工程を備えていることを特徴とする請求項1乃至4の内いずれか1に記載の排水の処理方法。   The wastewater according to any one of claims 1 to 4, further comprising a pH adjustment step of adjusting a pH of the wastewater to 7 to 13, preferably 10 to 12, by adding a pH adjusting agent to the wastewater. Processing method. 前記流体接触工程で生成された前記処理流体に酸化剤を加える酸化剤添加工程を備えていることを特徴とする請求項1乃至5の内いずれか1に記載の排水の処理方法。   The wastewater treatment method according to any one of claims 1 to 5, further comprising an oxidant addition step of adding an oxidant to the treatment fluid generated in the fluid contact step. 前記排水が、石炭をガス化して燃料ガスを生成する際に発生する石炭灰やスラグ等の廃棄物を冷却した冷却水、及び/又は、前記燃料ガスを洗浄した洗浄排水であることを特徴とする請求項1乃至6の内いずれか1に記載の排水の処理方法。   The waste water is cooling water obtained by cooling waste such as coal ash and slag generated when gasifying coal to generate fuel gas, and / or washing waste water obtained by washing the fuel gas. The wastewater treatment method according to any one of claims 1 to 6. 前記臨界流体が、石炭ガス化発電所又は火力発電所で生成される高温高圧水であることを特徴とする請求項1乃至7の内いずれか1に記載の排水の処理方法。   The wastewater treatment method according to any one of claims 1 to 7, wherein the critical fluid is high-temperature high-pressure water generated in a coal gasification power plant or a thermal power plant.
JP2003395743A 2003-11-26 2003-11-26 Wastewater treatment method Pending JP2005152806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395743A JP2005152806A (en) 2003-11-26 2003-11-26 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395743A JP2005152806A (en) 2003-11-26 2003-11-26 Wastewater treatment method

Publications (1)

Publication Number Publication Date
JP2005152806A true JP2005152806A (en) 2005-06-16

Family

ID=34721432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395743A Pending JP2005152806A (en) 2003-11-26 2003-11-26 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2005152806A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050937A (en) * 2010-09-01 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
CN104944504A (en) * 2015-06-03 2015-09-30 中国矿业大学 Method for treating gasified and high-concentration phenol-containing organic wastewater of fixed bed
JP2017000932A (en) * 2015-06-08 2017-01-05 栗田エンジニアリング株式会社 Processing method of waste water
CN106745660A (en) * 2017-02-24 2017-05-31 江苏昆仲机械有限公司 Supercritical water oxidation method catalytic wet air oxidation is combined reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275871A (en) * 1994-04-08 1995-10-24 Kobe Steel Ltd Supercritical water oxidation treatment method of harmful substance and apparatus therefor
JP2001232382A (en) * 2000-02-22 2001-08-28 Japan Organo Co Ltd Supercritical water reacting apparatus
JP2002224681A (en) * 2001-02-02 2002-08-13 Shinko Pantec Co Ltd Oxidation treatment method and equipment for organic liquid to be treated
JP2003211171A (en) * 2002-01-28 2003-07-29 Electric Power Dev Co Ltd Method for treating dithionic acid-containing water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275871A (en) * 1994-04-08 1995-10-24 Kobe Steel Ltd Supercritical water oxidation treatment method of harmful substance and apparatus therefor
JP2001232382A (en) * 2000-02-22 2001-08-28 Japan Organo Co Ltd Supercritical water reacting apparatus
JP2002224681A (en) * 2001-02-02 2002-08-13 Shinko Pantec Co Ltd Oxidation treatment method and equipment for organic liquid to be treated
JP2003211171A (en) * 2002-01-28 2003-07-29 Electric Power Dev Co Ltd Method for treating dithionic acid-containing water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050937A (en) * 2010-09-01 2012-03-15 Ricoh Co Ltd Waste liquid treatment apparatus
CN104944504A (en) * 2015-06-03 2015-09-30 中国矿业大学 Method for treating gasified and high-concentration phenol-containing organic wastewater of fixed bed
JP2017000932A (en) * 2015-06-08 2017-01-05 栗田エンジニアリング株式会社 Processing method of waste water
CN106745660A (en) * 2017-02-24 2017-05-31 江苏昆仲机械有限公司 Supercritical water oxidation method catalytic wet air oxidation is combined reactor

Similar Documents

Publication Publication Date Title
US6576144B1 (en) Method and apparatus for pretreatment of wastewater streams by chemical oxidation
US5232604A (en) Process for the oxidation of materials in water at supercritical temperatures utilizing reaction rate enhancers
US20220112106A1 (en) Method for Processing Wastewater Having Organics Even Together with High-Concentration Ammonia-Nitrogen and Apparatus Thereof
US6485696B1 (en) Recovery/removal of metallic elements from waste water using ozone
WO2005077837A1 (en) Wastewater treatment apparatus
JP3931993B2 (en) Oxidation method of organic waste liquid
US10835860B2 (en) Treatment of hydrogen sulfide gas under aerobic conditions
JP2002273494A (en) Method of treating organic solid containing inorganic salt, particularly sewer sludge
JP2005152806A (en) Wastewater treatment method
Eul et al. Practical applications of hydrogen peroxide for wastewater treatment
Oulego et al. Iron (II) as catalyst for thiocyanate wet oxidation: Mechanism and modelization
Marulanda Cardona et al. Landfill leachate treatment by batch supercritical water oxidation
CN207581557U (en) A kind of cleaning treatment system for being used to handle acidic industrial effluent
US9604862B2 (en) Oxidation method, nozzle and system for treating waste water
KR102146420B1 (en) OH radical oxidation apparatus for removing mixed bad smell including Hydrogen Sulfide by no using caustic soda
Samadiafshar Study on basic methods of spent caustic treatment
JP5084130B2 (en) Waste liquid treatment method and waste liquid treatment system
WO2007058285A1 (en) Fluid cleaning method and fluid cleaning apparatus
Wang et al. Chemical reduction/oxidation
RU2783358C2 (en) Method for neutralizing landfill filtrate and other liquid wastes with a high content of difficult-to-oxidize organic substances (in terms of cod) based on supercritical water oxidation and a device for its implementation
Dhale et al. Subcritical mineralization of sodium salt of dodecyl benzene sulfonate using sonication—wet oxidation (soniwo) technique
US5641412A (en) Free radical oxidation process and installation for treating liquid effluents contaminated by organic substances
Arakcheev et al. Complex electrolytic unit for producing anode liquor and ferrate to treat waters contaminated by oil-refining products and harmful admixtures
EUL et al. Practical Applications of Hydrogen
Ji Study on cooperative treatment of natural gas pipeline cleaning wastewater and membrane module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100304