JP3280797B2 - Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof - Google Patents

Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof

Info

Publication number
JP3280797B2
JP3280797B2 JP07093694A JP7093694A JP3280797B2 JP 3280797 B2 JP3280797 B2 JP 3280797B2 JP 07093694 A JP07093694 A JP 07093694A JP 7093694 A JP7093694 A JP 7093694A JP 3280797 B2 JP3280797 B2 JP 3280797B2
Authority
JP
Japan
Prior art keywords
flow path
harmful organic
gas
preheater
organic substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07093694A
Other languages
Japanese (ja)
Other versions
JPH07275872A (en
Inventor
神田  剛
誠一 山本
卓 青方
覚士 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP07093694A priority Critical patent/JP3280797B2/en
Publication of JPH07275872A publication Critical patent/JPH07275872A/en
Application granted granted Critical
Publication of JP3280797B2 publication Critical patent/JP3280797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、有害有機物の超臨界水
酸化処理装置およびその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for supercritical water oxidation of harmful organic substances and a method for operating the apparatus.

【0002】[0002]

【従来の技術】従来、有機物の分解処理に関しては、し
尿処理を代表的な例として微生物による分解処理が一般
的なものとして行われてきたが、処理にともなう汚泥の
発生量の多さが問題となって、それを低減するための手
法が検討されてきた。その代表的な手法は、200〜3
00℃程度の温度、100気圧程度の熱水条件下で、酸
化剤として空気もしくは酸素を強制的に送りこんで、酸
化分解を起こさせる湿式酸化法と呼ばれる手法であり、
同手法については、し尿のような一般的な有機物の場合
には特段の問題はないが、人畜に有害な有機物例えばP
CB,フロンを含む排水に適用すると分解のレベルに問
題があると言われてきた。
2. Description of the Related Art Conventionally, regarding the decomposition treatment of organic substances, the decomposition treatment by microorganisms has been generally carried out by taking human waste treatment as a typical example. However, the large amount of sludge generated due to the treatment is problematic. Therefore, a method for reducing it has been studied. The typical method is 200-3
A method called a wet oxidation method in which air or oxygen is forcibly sent as an oxidizing agent under a hot water condition of about 100 ° C. and about 100 atm to cause oxidative decomposition,
This method has no particular problem in the case of general organic substances such as night soil, but is not harmful to humans and animals.
It has been said that there is a problem in the level of decomposition when applied to wastewater containing CB and Freon.

【0003】このような分解の程度に係る問題点をさら
に改善するものとして、水の超臨界条件(温度374
℃、圧力220気圧)以上の温度・圧力で酸化剤を作用
させて分解を起こさせる超臨界水酸化法が近年注目を集
め活発に研究開発が行われており、その一例として特開
昭57−4225号(特公平1−38532号)公報で
開示の技術がある。
In order to further improve such a problem relating to the degree of decomposition, supercritical water (temperature 374) is used.
Supercritical water oxidation, in which an oxidizing agent is allowed to act at a temperature and pressure of 220 ° C. or more to cause decomposition, has recently attracted attention and has been actively researched and developed. There is a technique disclosed in Japanese Patent Publication No. 4225 (Japanese Patent Publication No. 1-38532).

【0004】すなわち超臨界条件下の水は、分極特性の
変化により、常圧下では溶解することが困難であった有
機物を溶解させられるようになり(したがってすぐれた
溶媒となって)、これに空気、酸素あるいは過酸化水素
水など酸化剤を共存させるとこれらも均一分散して有機
物の酸化発熱(燃焼)が起こり、燃焼エネルギーを追加
投入せずとも分解反応が進行する。
That is, water under supercritical conditions can dissolve organic substances which are difficult to dissolve under normal pressure due to the change in polarization characteristics (thus, it becomes an excellent solvent), and water When an oxidizing agent such as oxygen or aqueous hydrogen peroxide coexists, these are also uniformly dispersed, and oxidative heat (combustion) of the organic substance occurs, and the decomposition reaction proceeds without additional input of combustion energy.

【0005】その分解の程度は、例えばPCBを例にと
ると99.99%以上と言われており完全分解に近く、
また反応条件が燃焼と比較してマイルドな条件であるた
めにダイオキシンなどの副次的な有害物質の発生を招く
こともなく、有害有機物の処理が問題となっている昨今
はもとより将来的にも極めて有望な処理技術といえる。
The degree of the decomposition is said to be, for example, 99.99% or more in the case of PCB, which is close to complete decomposition,
Also, since the reaction conditions are milder than the combustion conditions, no secondary harmful substances such as dioxin are generated, and the treatment of harmful organic substances has become a problem. This is a very promising processing technology.

【0006】その基本的なフロー(フロセス)は、図4
に示すごとく、被処理物である有機物含有流体(水)が
タンク1から閉止弁2を経て高圧ポンプ3によって逆止
弁5を経由して加圧下に送出され、これに酸化剤流体
(一例として過酸化水素水)がタンク9から閉止弁10
を経由して同じく高圧ポンプ11によって逆止弁13を
経由して加圧下に送出され、これらは合流して予熱器6
に入り、ここでヒータ33によって水の超臨界条件に達
せしめるべく加熱が行われる。しかして高圧反応器7に
入った混合流体は有機物の酸化反応により発熱昇温し、
この間有機物は主に水と炭酸ガスとに分解する。ついで
これらの分解物は冷却器8で冷却されて気液分離器20
に入り、ここで気体と液体とに分離されて、気体は減圧
弁21から閉止弁22を経て大気放出され、一方液体は
減圧弁23から閉止弁24を経て排出されて一連の処理
を完了する。
The basic flow (Process) is shown in FIG.
As shown in FIG. 2, an organic substance-containing fluid (water) as an object to be treated is sent from a tank 1 through a shut-off valve 2 to a high-pressure pump 3 through a check valve 5 under pressure, and an oxidant fluid (as an example) Hydrogen peroxide solution is supplied from the tank 9 to the shut-off valve 10
Are sent under pressure via a check valve 13 by means of a high-pressure pump 11 as well, which merge into a preheater 6
Then, heating is performed by the heater 33 to reach the supercritical condition of water. As a result, the mixed fluid entering the high-pressure reactor 7 heats up due to the oxidation reaction of organic substances,
During this time, organic matter is mainly decomposed into water and carbon dioxide gas. Next, these decomposed products are cooled by the cooler 8 and separated by the gas-liquid separator 20.
Where it is separated into a gas and a liquid, and the gas is released from the pressure reducing valve 21 through the shutoff valve 22 to the atmosphere, while the liquid is discharged from the pressure reducing valve 23 through the shutoff valve 24 to complete a series of processes. .

【0007】[0007]

【発明が解決しようとする課題】すなわち超臨界水酸化
処理法については、上記の通り基本的なフローは開示さ
れているものの、その動作については定常状態の記述し
かなく、とりわけ有害有機物の処理に際してのシステム
の異常に対するハードならびにソフト上の対策はほとん
ど提示されていないのが実状であり、従って気液分離さ
れた液体が未分解のままで環境中に放出されるおそれが
あった。
That is, although the basic flow of the supercritical water oxidation treatment method is disclosed as described above, its operation is described only in a steady state, and particularly in the treatment of harmful organic substances. In fact, hard and soft countermeasures against the abnormalities of the above system are hardly presented, and there is a risk that the gas-liquid separated liquid may be released to the environment without being decomposed.

【0008】そこで本発明は、システムに加圧送給され
る流体の流量比、反応容器での温度、圧力を検出するこ
とでシステムの異常が発生した場合、システムへの新た
な流体の加圧送給を停止し、一方、異常による未分解の
流体はこれを循環処理することによって安全性が高い有
害有機物の超臨界水酸化処理装置およびその運転方法を
提供することを目的とするものである。
Accordingly, the present invention is to provide a new pressurized fluid supply to the system when an abnormality occurs in the system by detecting the flow ratio of the fluid supplied to the system under pressure, the temperature and the pressure in the reaction vessel. An object of the present invention is to provide an apparatus for supercritical water oxidation of harmful organic substances having high safety by circulating an undecomposed fluid due to an abnormality, and a method of operating the same.

【0009】[0009]

【課題を解決するための手段】本発明は、予熱器6と、
水の超臨界条件下に、酸素含有流体による有害有機物の
分解処理をする反応器7と、該反応器7で分解処理され
た分解生成物の気液分離をする気液分離器20と、を備
えている有害有機物の超臨界水酸化処理装置において、
前述の目的を達成するために次の技術的手段を講じてい
る。
The present invention comprises a preheater 6,
A reactor 7 for decomposing harmful organic substances with an oxygen-containing fluid under supercritical conditions of water, and a gas-liquid separator 20 for gas-liquid separation of decomposition products decomposed in the reactor 7 In the equipped supercritical water oxidation treatment equipment for harmful organic substances,
The following technical measures have been taken to achieve the above objectives.

【0010】すなわち、請求項1に係る本発明装置は、
前記気液分離器20の手前に閉止弁19を設けて気液分
離器20に到る流路を閉止し得るように構成するととも
に、該閉止弁19の手前の流路と前記予熱器6の入側流
路とを連絡する分岐流路26を設け、該分岐流路26
に、分岐閉止弁27とポンプ28を備えて未分解の有害
有機物を予熱器6の入側流路に還流する安全停止回路C
を備えていることを特徴とするものである。
That is, the device of the present invention according to claim 1 is:
A shut-off valve 19 is provided in front of the gas-liquid separator 20 so that the flow path to the gas-liquid separator 20 can be closed, and the flow path before the shut-off valve 19 and the preheater 6 A branch flow path for communicating with the inlet side flow path;
A safety stop circuit C provided with a branch shutoff valve 27 and a pump 28 for returning undecomposed harmful organic substances to the inlet side flow path of the preheater 6.
It is characterized by having.

【0011】請求項2に係る本発明装置は、安全停止回
路Cの分岐流路26に、該流路の圧力を調整する容積形
圧力調整器32を備えていることを特徴とするものであ
る。更に、請求項3に係る本発明は、予熱器6と、水の
超臨界条件下に、酸素含有流体による有害有機物の分解
処理をする反応器7と、該反応器7で分解処理された分
解生成物の気液分離をする気液分離器20と、前記気液
分離器20の手前に閉止弁19を設けて気液分離器20
に到る流路を閉止し得るように構成するとともに、該閉
止弁19の手前の流路と前記予熱器6の入側流路とを連
絡する分岐流路26を設け、該分岐流路26に、分岐閉
止弁27とポンプ28を備えて未分解の有害有機物を予
熱器6の入側流路に還流する安全停止回路Cを備えてい
る有害有機物の超臨界水酸化処理装置(システム)の運
転方法であって、前述の目的を達成するために、前記シ
ステムに加圧送給される酸素含有流体と有害有機物含有
流体もしくは有害有機物との流量比および前記反応容器
7の入口部、中間部、出口部のうち少なくとも一部の温
度並びに反応容器7を含む系の圧力をそれぞれ検出し
て、それらのいずれかが所定の値より低下した時点で、
システムへの新たな流体の加圧送給を停止するととも
に、前記気液分離器20に到る閉止弁19を閉とし、さ
らに分岐閉止弁27を開として前記ポンプ28により未
分解の有害有機物を予熱器6の入側流路に還流すること
を特徴とするものである。
The device according to the second aspect of the present invention is characterized in that the branch passage 26 of the safety stop circuit C is provided with a positive displacement pressure regulator 32 for adjusting the pressure of the passage. . The present invention according to claim 3 further comprises a preheater 6, a reactor 7 for decomposing harmful organic substances with an oxygen-containing fluid under water supercritical conditions, and a decomposer which is decomposed by the reactor 7. A gas-liquid separator 20 for gas-liquid separation of a product, and a shut-off valve 19 provided in front of the gas-liquid separator 20 to form a gas-liquid separator 20
And a branch flow path 26 that connects the flow path before the shut-off valve 19 and the inlet flow path of the preheater 6 is provided. A supercritical water oxidation treatment system for harmful organic substances (system) having a safety stop circuit C having a branch shutoff valve 27 and a pump 28 for returning undecomposed harmful organic substances to the inlet side flow path of the preheater 6. An operation method, in order to achieve the above object, a flow ratio of an oxygen-containing fluid and a harmful organic substance-containing fluid or a harmful organic substance to be fed under pressure to the system, and an inlet part, an intermediate part, and the reaction vessel 7, At least a part of the temperature of the outlet and the pressure of the system including the reaction vessel 7 are detected, and when any of them is reduced below a predetermined value,
The pressurized supply of new fluid to the system is stopped, the shut-off valve 19 reaching the gas-liquid separator 20 is closed, and the branch shut-off valve 27 is opened to preheat undecomposed harmful organic substances by the pump 28. It is characterized by refluxing to the inlet flow path of the vessel 6.

【0012】[0012]

【作用】本発明の基本的な定常状態での運転を図1に基
づき説明すると、被処理物である有害有機物(一例とし
てPCB)を含有する水溶液は閉止弁2を経由して第1
ポンプ3によって加圧されて、流量計4、逆止弁5を経
て予熱器6に送給される。
The basic steady state operation of the present invention will be described with reference to FIG. 1. An aqueous solution containing a harmful organic substance (PCB as an example) to be treated passes through a shutoff valve 2 to a first aqueous solution.
It is pressurized by the pump 3 and is sent to the preheater 6 via the flow meter 4 and the check valve 5.

【0013】一方、超臨界水条件下の酸化反応に使用す
る酸化剤(一例として過酸化水素水)は、そのタンク9
から閉止弁10を経由して第2ポンプ11によって加圧
されて、流量計12、逆止弁13を経て予熱器6に送給
される。予熱器6においては、後述する冷却器8との間
に熱交換を行わしめるための伝熱媒体が第3ポンプ14
により管路15から管路16を経て循環するようになっ
ており、管路16にはプレヒータ17が設けられて、シ
ステム起動の際にはプレヒータ17によって伝熱媒体が
加熱され、ひいては予熱器6が加熱されて、それにとも
なって予熱器6に流入する混合流体の温度が水の超臨界
条件(374℃)に達するようにされ、またその圧力は
後述の減圧弁によって水の超臨界条件(220気圧)を
保つように設定される。
On the other hand, an oxidizing agent (for example, aqueous hydrogen peroxide) used for an oxidation reaction under supercritical water conditions is stored in a tank 9.
The pressure is increased by a second pump 11 via a shut-off valve 10 and supplied to a preheater 6 via a flow meter 12 and a check valve 13. In the preheater 6, a heat transfer medium for performing heat exchange with a cooler 8 described below is provided by a third pump 14.
Circulates from the pipe 15 through the pipe 16. A preheater 17 is provided in the pipe 16, and when the system is started, the heat transfer medium is heated by the preheater 17, and thus the preheater 6. Is heated so that the temperature of the mixed fluid flowing into the preheater 6 reaches the supercritical condition of water (374 ° C.), and the pressure thereof is controlled by the pressure reducing valve described later. Pressure).

【0014】以上の反応温度・圧力場を形成しつつ混合
流体は高圧反応器7に流入し、同反応器7の内部で有害
有機物は超臨界水溶媒下での均一分散状態で酸化剤によ
る酸化分解反応を起こし、ついで冷却器8に流入してす
でに述べた伝熱媒体に放熱冷却され、さらに冷却器1
8、閉止弁19を経て気液分離器20に流入する。以上
の定常運転中において、有害有機物の分解が不十分な条
件のもとに行われた場合には、それが環境中に排出され
て大きな問題を引き起こすので、分解条件の監視用とし
て、超臨界条件の実現に係る基本的なファクターすなわ
ち反応器7の温度が、同反応器の入口部もしくは中間部
もしくは出口部において、温度計30または30Aまた
は30Bによって検出され、さらに圧力が予熱器6の手
前の低温部で圧力計31によって検出される(圧力につ
いては、検出場所にさほど依存しないので、気液分離器
20において検出してもよい)。これら温度条件もしく
は圧力条件、さらにもしくは有機物の分解反応を規定す
るところの酸素含有流体と有害有機物含有流体との流量
比(流量計12と4との流量比)のいづれかが所定の値
より低下した時点で、第1・2ポンプ3,11を停止し
てシステムへの新たな流体の加圧供給を停止するととも
に、前記気液分離器20に到る閉止弁19(通常開)を
閉止し、一方分岐閉止弁27(通常閉)を開として第4
ポンプ28を稼働することで未分解の流体は予熱器6、
反応器7、冷却器8を含む系への循環還流され、ここ
に、未分解の有害有機物が気液分離器20に入りさらに
は環境中に排出されることがなくなる。
The mixed fluid flows into the high-pressure reactor 7 while forming the above reaction temperature and pressure fields, and the harmful organic substances are oxidized by the oxidizing agent in the reactor 7 in a homogeneously dispersed state in a supercritical water solvent. A decomposition reaction occurs, and then flows into the cooler 8 to be radiated and cooled by the heat transfer medium described above.
8. The gas flows into the gas-liquid separator 20 through the closing valve 19. If the decomposition of harmful organic substances is carried out under insufficient conditions during the steady operation described above, it is discharged into the environment and causes a serious problem. A basic factor related to realization of the condition, that is, the temperature of the reactor 7 is detected by the thermometer 30 or 30A or 30B at the inlet, intermediate, or outlet of the reactor. Is detected by the pressure gauge 31 at the low temperature section (the pressure does not depend much on the detection location, and may be detected by the gas-liquid separator 20). Either of these temperature conditions or pressure conditions, or any of the flow ratios of the oxygen-containing fluid and the harmful organic-containing fluid (the flow ratios of the flow meters 12 and 4), which define the decomposition reaction of organic substances, have fallen below a predetermined value. At this point, the first and second pumps 3 and 11 are stopped to stop the pressurized supply of new fluid to the system, and the shut-off valve 19 (normally open) reaching the gas-liquid separator 20 is closed. On the other hand, by opening the branch closing valve 27 (normally closed),
By operating the pump 28, the undecomposed fluid is removed from the preheater 6,
It is circulated back to the system including the reactor 7 and the cooler 8, so that undecomposed harmful organic substances do not enter the gas-liquid separator 20 and are discharged to the environment.

【0015】[0015]

【実施例】以下、本発明の実施例のいくつかを図を参照
して説明する。第1実施例を示す図1において、本発明
装置は、予熱器6と、反応器7と、冷却器8および気液
分離器20を直列に配置して流路で連絡されることで主
構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. In FIG. 1 showing the first embodiment, the main structure of the apparatus of the present invention is that a preheater 6, a reactor 7, a cooler 8 and a gas-liquid separator 20 are arranged in series and connected by a flow path. Have been.

【0016】予熱器6には被処理物である有害有機物、
例えばPCB、フロン等を含有する水溶液を加圧送給す
るための第1加圧送給手段Aが接続されていて、該第1
加圧送給手段Aは、第1貯蔵タンク1と、第1閉止弁2
と、第1ポンプ3と、第1流量計4と第1逆止弁5とを
流路に直列に備えてなる。更に、予熱器6には、超臨界
水条件下の酸化反応に使用する酸化剤を加圧送給するた
めの第2加圧送給手段Bが接続されていて、該第2加圧
送給手段Bは、酸化剤、例えば過酸化水素水のための第
2貯蔵タンク9と、第2閉止弁10と、第2ポンプ11
と、第2流量計12と、第2逆止弁13とを流路に直列
に備えてなる。
The preheater 6 has harmful organic substances to be treated,
For example, a first pressurizing and feeding means A for pressurizing and feeding an aqueous solution containing PCB, chlorofluorocarbon, etc. is connected,
The pressurized feeding means A includes a first storage tank 1 and a first shut-off valve 2.
, A first pump 3, a first flow meter 4, and a first check valve 5 in series with the flow path. Further, the preheater 6 is connected to a second pressurizing and feeding means B for pressurizing and feeding an oxidizing agent used for an oxidation reaction under supercritical water conditions. Storage tank 9 for an oxidizing agent, for example, hydrogen peroxide, a second shut-off valve 10, and a second pump 11
, A second flow meter 12 and a second check valve 13 in series in the flow path.

【0017】なお、前記第1・2ポンプ3,11は高圧
ポンプとすることが望ましく、又、第2加圧送給手段B
は、酸化剤として空気もしくは酸素のような気体を用い
る場合には、ガスボンベからブースタポンプによって一
旦アキュムレータに蓄圧し、しかるのち減圧弁によって
減圧供給する方法をとることができる。予熱器6におい
ては、冷却器8との間に熱交換を行わしめるための伝熱
媒体が第3ポンプ14により管路15から管路16を経
て循環するようになっており、管路16にはプレヒータ
17が設けられて、システム起動の際にはプレヒータ1
7によって伝熱媒体が加熱され、ひいては予熱器6が加
熱されて、それにともなって予熱器6に流入する混合流
体の温度が水の超臨界条件(374℃)近傍に達するよ
うにされ、またその圧力は後述の減圧弁によって水の超
臨界条件(220気圧)を保つように設定される。
Preferably, the first and second pumps 3 and 11 are high-pressure pumps.
When a gas such as air or oxygen is used as an oxidizing agent, a method of temporarily accumulating the pressure in an accumulator from a gas cylinder by a booster pump and then reducing the pressure by a pressure reducing valve can be adopted. In the preheater 6, a heat transfer medium for performing heat exchange between the preheater 6 and the cooler 8 is circulated by the third pump 14 from the pipe 15 through the pipe 16. Is provided with a pre-heater 17 so that the pre-heater 1
7 heats the heat transfer medium and, consequently, the preheater 6, so that the temperature of the mixed fluid flowing into the preheater 6 reaches near the supercritical condition of water (374 ° C.). The pressure is set by a pressure reducing valve described later so as to maintain the supercritical condition of water (220 atm).

【0018】以上の反応温度・圧力場を形成しつつ混合
流体は高圧反応器7に流入し、同反応器7の内部で有害
有機物は超臨界水溶媒下での均一分散状態で酸化剤によ
る酸化分解反応を起こし、ついで冷却器8に流入すると
ともにすでに述べた伝熱媒体に放熱冷却され(定常状態
に達してのちは、当該放熱が予熱器6の加熱に使われて
プレヒータ17の稼働は不要となる)、さらに冷却器1
8、第3閉止弁19を経て気液分離器20に流入する。
The mixed fluid flows into the high-pressure reactor 7 while forming the above-mentioned reaction temperature and pressure fields, and harmful organic substances are oxidized by the oxidizing agent in the reactor 7 in a homogeneously dispersed state under a supercritical water solvent. A decomposition reaction occurs, and then flows into the cooler 8 and is radiated and cooled by the heat transfer medium described above (after reaching a steady state, the radiated heat is used for heating the preheater 6 and the preheater 17 does not need to operate. And cooler 1
8. The gas flows into the gas-liquid separator 20 via the third closing valve 19.

【0019】気液分離器20では、分解主生成物である
気体(主に炭酸ガス)と液体(主に水)とに分離され
て、気体は第1減圧弁21、第4閉止弁22を経て大気
放出され、一方液体は同じく第2減圧弁23、第5閉止
弁24を経て貯留タンク25に排出される(なお有害有
機物が例えばPCBのように塩素を含む場合には、特に
図示していないが系統中にアルカリ溶液(一例としてカ
性ソーダ)を加圧添加して食塩と水とに転化し、食塩に
ついては固形分として気液分離器20から除去すること
ができまた望ましい。)以上の構成において、さらに前
記第3閉止弁19の手前から管路26が分岐して設けら
れ、同管路は第6閉止弁27を経て高圧の第4ポンプ2
8を通過、第3逆止弁29を経て予熱器6の手前に還流
されるように安全停止回路Cが設けられる。
In the gas-liquid separator 20, gas (mainly carbon dioxide), which is a main product of decomposition, and liquid (mainly water) are separated, and the gas passes through the first pressure reducing valve 21 and the fourth closing valve 22. The liquid is also discharged to the storage tank 25 through the second pressure reducing valve 23 and the fifth shutoff valve 24 (in the case where the harmful organic substance contains chlorine such as PCB, for example, the liquid is particularly illustrated. However, an alkaline solution (eg, caustic soda) is added to the system under pressure to convert it into salt and water, and the salt can be removed from the gas-liquid separator 20 as a solid content and is desirable. In the configuration described above, a pipe 26 is further provided in a branch from a position short of the third shut-off valve 19, and the pipe 26 is connected to a high-pressure fourth pump 2 through a sixth shut-off valve 27.
8, a safety stop circuit C is provided so as to be recirculated before the preheater 6 through the third check valve 29.

【0020】しかして有害有機物の分解が不十分な条件
のもとに行われた場合には、それが環境中に排出されて
大きな問題を引き起こすので、分解条件の監視用とし
て、超臨界条件の実現に係る基本的なファクターすなわ
ち高圧反応器7の温度が、同反応器の入口部もしくは中
間部もしくは出口部において、温度計30または30A
または30Bによって検出され、さらに圧力が予熱器手
前の低温部で圧力計31によって検出される(圧力につ
いては、検出場所にさほど依存しないので、気液分離器
20において検出してもよい)。これら温度条件もしく
は圧力条件、さらにもしくは有機物の分解反応を規定す
るところの酸素含有流体と有害有機物含有流体との流量
比(流量計12と4との流量比)のいづれかが所定の値
より低下した時点で、第1ポンプ3および第2ポンプ1
1を停止してシステムへの新たな流体の加圧供給を停止
するとともに、前記気液分離器20に到る第3閉止弁1
9(通常開)を閉止し、一方分岐閉止弁27(通常閉)
を開として高圧の第4ポンプ28を稼働することで未分
解の流体は予熱器6、高圧反応器7、冷却器8を含む系
への循環還流され、ここに、未分解の有害有機物が気液
分離器に入りさらには環境中に排出されることがなくな
る。
However, if the decomposition of harmful organic substances is carried out under insufficient conditions, they are discharged into the environment and cause a serious problem. The basic factor involved in the realization, namely the temperature of the high-pressure reactor 7 is that the thermometer 30 or 30A at the inlet, middle or outlet of the reactor.
Alternatively, the pressure is detected by 30B, and the pressure is further detected by the pressure gauge 31 in the low-temperature portion before the preheater (the pressure does not depend much on the detection location, and may be detected by the gas-liquid separator 20). Either of these temperature conditions or pressure conditions, or any of the flow ratios of the oxygen-containing fluid and the harmful organic-containing fluid (the flow ratios of the flow meters 12 and 4), which define the decomposition reaction of organic substances, have fallen below a predetermined value. At the time, the first pump 3 and the second pump 1
1 to stop pressurized supply of new fluid to the system, and a third shut-off valve 1 reaching the gas-liquid separator 20.
9 (normally open) is closed, while branch closing valve 27 (normally closed)
And the high-pressure fourth pump 28 is operated to recirculate the undecomposed fluid to the system including the preheater 6, the high-pressure reactor 7, and the cooler 8, where undecomposed harmful organic substances are vaporized. It does not enter the liquid separator and is not discharged to the environment.

【0021】図2は、第2実施例を示しており、有害有
機物が溶媒である水とは別個に加圧供給される例であっ
て、水はタンク1Aから閉止弁2A、高圧ポンプ3A、
逆止弁5Aの系統で、また有害有機物はタンク1Bから
閉止弁2B、高圧ポンプ3B、流量系4B、逆止弁5B
の系統で予熱器6に供給されており、前記安全停止回路
の動作に対しては、酸素含有流体と有害有機物との流量
比(流量計12と4Bとの比)を適用することになる。
FIG. 2 shows a second embodiment in which harmful organic substances are supplied under pressure separately from water as a solvent. Water is supplied from a tank 1A to a shutoff valve 2A, a high-pressure pump 3A,
In the system of the check valve 5A, harmful organic substances are removed from the tank 1B through the shut-off valve 2B, the high-pressure pump 3B, the flow system 4B, the check valve 5B.
The system is supplied to the preheater 6 and the flow rate ratio between the oxygen-containing fluid and the harmful organic substance (the ratio between the flow meters 12 and 4B) is applied to the operation of the safety stop circuit.

【0022】なお一旦安全停止を行ってのちシステムを
正常化する場合に、とりわけ酸素含有流体の量が不足し
て停止に到った場合、同流体を高圧ポンプ11の運転に
より追加投入して前記循環還流運転を行いつつ再起動す
る必要があるが、閉鎖状態の循環還流系の圧力調整を行
うものとして、前記循環還流管路26中に図3に示すよ
うな容積式(ピストン式)の圧力調整器32を設置した
第3実施例にすれば、同圧力調整器は系の圧力を圧力計
31で監視しつつ、超臨界圧力条件に到る加圧用として
も、あるいはまた前記安全停止時に閉鎖循環系の圧力過
上昇回避のための減圧にも利用することができ望まし
い。
In the case where the system is normalized after the safety stop is performed once, especially when the amount of the oxygen-containing fluid is short and the system is stopped, the same fluid is additionally supplied by operating the high-pressure pump 11 and the above-mentioned operation is performed. Although it is necessary to restart while performing the circulation recirculation operation, it is necessary to adjust the pressure of the closed circulation recirculation system by using a positive displacement (piston type) pressure as shown in FIG. According to the third embodiment in which the regulator 32 is installed, the pressure regulator monitors the pressure of the system with the pressure gauge 31 and is used for pressurizing to a supercritical pressure condition, or is closed during the safety stop. It can also be used for pressure reduction for avoiding excessive pressure rise in the circulation system, which is desirable.

【0023】なお本発明の安全停止回路ならびに同回路
を用いた安全停止方法は、超臨界水条件下の有害有機物
の酸化分解に安全上特段の効果を発揮するものである
が、酸化剤を用いずに加水分解を行わしめるような場
合、あるいは亜臨界水のもとでの酸化分解にも同様に適
用可能であることはいうまでもない。
The safety stop circuit and the safety stop method using the same according to the present invention exert a special effect on the oxidative decomposition of harmful organic substances under supercritical water conditions. Needless to say, the present invention can be similarly applied to the case where hydrolysis is carried out without using the method, or to the oxidative decomposition under subcritical water.

【0024】[0024]

【発明の効果】以上述べた本発明に係る装置および方法
によって、超臨界水条件下での有害有機物の酸化分解処
理に際し、分解条件の不備による環境への危険物質の排
出を未然に防止し、かつそれを安全に再起動を含めて実
施しうるので、有害有機物分解への超臨界水酸化処理の
適用を促進して、有害物質の低減という社会の要請に対
して応えることができ、その意義は極めて大きいといえ
る。
According to the apparatus and method according to the present invention described above, during the oxidative decomposition treatment of harmful organic substances under supercritical water conditions, the discharge of hazardous substances to the environment due to inadequate decomposition conditions is prevented. And since it can be implemented safely including restarting, it is possible to respond to society's request to reduce harmful substances by promoting the application of supercritical water oxidation treatment to decompose harmful organic substances. Is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例を示す全体構成図である。FIG. 1 is an overall configuration diagram showing a first embodiment.

【図2】第2実施例を示す全体構成図である。FIG. 2 is an overall configuration diagram showing a second embodiment.

【図3】第3実施例を示す全体構成図である。FIG. 3 is an overall configuration diagram showing a third embodiment.

【図4】従来例の全体構成図である。FIG. 4 is an overall configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

6 予熱器 7 反応器 8 冷却器 19 閉止弁 20 気液処理器 28 ポンプ 30 温度計 31 圧力計 6 Preheater 7 Reactor 8 Cooler 19 Shut-off valve 20 Gas-liquid processor 28 Pump 30 Thermometer 31 Pressure gauge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青方 卓 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 古田 覚士 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (56)参考文献 特公 平1−38532(JP,B2) 特公 昭57−33320(JP,B1) 特表 平5−504093(JP,A) 国際公開89/2874(WO,A1) (58)調査した分野(Int.Cl.7,DB名) A62D 3/00 B01J 3/00 B09B 3/00 C02F 1/74 C02F 11/08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taku Aogata 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Satoshi Furuta Kobe, Hyogo Prefecture 1-5-5 Takatsukadai, Nishi-ku, Kobe Kobe Steel, Ltd. Kobe Institute of Technology (56) References JP-B Hei 1-38532 (JP, B2) JP-B 57-33320 (JP, B1) Hei 5-504093 (JP, A) WO 89/2874 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) A62D 3/00 B01J 3/00 B09B 3/00 C02F 1 / 74 C02F 11/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 予熱器(6)と、水の超臨界条件下に、
酸素含有流体による有害有機物の分解処理をする反応器
(7)と、該反応器(7)で分解処理された分解生成物
の気液分離をする気液分離器(20)と、を備えている
有害有機物の超臨界水酸化処理装置において、 前記気液分離器(20)の手前に閉止弁(19)を設け
て気液分離器(20)に到る流路を閉止し得るように構
成するとともに、該閉止弁(19)の手前の流路と前記
予熱器(6)の入側流路とを連絡する分岐流路(26)
を設け、該分岐流路(26)に、分岐閉止弁(27)と
ポンプ(28)を備えて未分解の有害有機物を予熱器
(6)の入側流路に還流する安全停止回路(C)を備え
ていることを特徴とする有害有機物の超臨界水酸化処理
装置。
1. A preheater (6) and under water supercritical conditions,
A reactor (7) for decomposing harmful organic substances with an oxygen-containing fluid; and a gas-liquid separator (20) for gas-liquid separation of decomposition products decomposed in the reactor (7). A supercritical water oxidation treatment apparatus for harmful organic substances, wherein a shutoff valve (19) is provided in front of the gas-liquid separator (20) so that a flow path to the gas-liquid separator (20) can be closed. And a branch flow path (26) connecting the flow path before the shut-off valve (19) and the input flow path of the preheater (6).
A safety shut-off circuit (C) provided with a branch shut-off valve (27) and a pump (28) in the branch flow path (26) to return undecomposed harmful organic substances to the inlet flow path of the preheater (6). A supercritical water oxidation treatment device for harmful organic substances, comprising:
【請求項2】 安全停止回路(C)の分岐流路(26)
に、該流路の圧力を調整する容積形圧力調整器(32)
を備えていることを特徴とする請求項1記載の有害有機
物の超臨界水酸化処理装置。
2. A branch flow path (26) of a safety stop circuit (C).
And a positive pressure regulator (32) for adjusting the pressure of the flow path.
The supercritical water oxidation treatment apparatus for harmful organic substances according to claim 1, further comprising:
【請求項3】 予熱器(6)と、水の超臨界条件下に、
酸素含有流体による有害有機物の分解処理をする反応器
(7)と、該反応器(7)で分解処理された分解生成物
の気液分離をする気液分離器(20)と、前記気液分離
器(20)の手前に閉止弁(19)を設けて気液分離器
(20)に到る流路を閉止し得るように構成するととも
に、該閉止弁(19)の手前の流路と前記予熱器(6)
の入側流路とを連絡する分岐流路(26)を設け、該分
岐流路(26)に、分岐閉止弁(27)とポンプ(2
8)を備えて未分解の有害有機物を予熱器(6)の入側
流路に還流する安全停止回路(C)を備えている有害有
機物の超臨界水酸化処理装置(システム)の運転方法で
あって、 前記システムに加圧送給される酸素含有流体と有害有機
物含有流体もしくは有害有機物との流量比および前記反
応容器(7)の入口部、中間部、出口部のうち少なくと
も一部の温度並びに反応容器(7)を含む系の圧力をそ
れぞれ検出して、それらのいずれかが所定の値より低下
した時点で、システムへの新たな流体の加圧送給を停止
するとともに、前記気液分離器(20)に到る閉止弁
(19)を閉とし、さらに分岐閉止弁(27)を開とし
て前記ポンプ(28)により未分解の有害有機物を予熱
器(6)の入側流路に還流することを特徴とする有害有
機物の超臨界水酸化処理装置の運転方法。
3. A preheater (6) and, under supercritical conditions of water,
A reactor (7) for decomposing harmful organic substances with an oxygen-containing fluid, a gas-liquid separator (20) for gas-liquid separation of decomposition products decomposed in the reactor (7), A shutoff valve (19) is provided in front of the separator (20) so as to close the flow path to the gas-liquid separator (20). The preheater (6)
A branch flow path (26) communicating with the inlet side flow path of the pump is provided in the branch flow path (26).
8) A method for operating a harmful organic matter supercritical water oxidation treatment system (system) equipped with a safety stop circuit (C) having a safety stop circuit (C) for refluxing undecomposed harmful organic matter to the inlet flow path of the preheater (6). And the flow ratio of the oxygen-containing fluid and the harmful organic substance-containing fluid or harmful organic substance to be pressure-fed to the system, and the temperature of at least a part of the inlet, the middle, and the outlet of the reaction vessel (7); The pressure of the system including the reaction vessel (7) is detected, and when any one of them falls below a predetermined value, the pressurized supply of a new fluid to the system is stopped and the gas-liquid separator is stopped. The shutoff valve (19) reaching (20) is closed, and the branch shutoff valve (27) is opened to return undecomposed harmful organic substances to the inlet flow path of the preheater (6) by the pump (28). Harmful organic matter How to operate the interfacial hydroxylation treatment equipment.
JP07093694A 1994-04-08 1994-04-08 Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof Expired - Fee Related JP3280797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07093694A JP3280797B2 (en) 1994-04-08 1994-04-08 Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07093694A JP3280797B2 (en) 1994-04-08 1994-04-08 Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof

Publications (2)

Publication Number Publication Date
JPH07275872A JPH07275872A (en) 1995-10-24
JP3280797B2 true JP3280797B2 (en) 2002-05-13

Family

ID=13445896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07093694A Expired - Fee Related JP3280797B2 (en) 1994-04-08 1994-04-08 Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof

Country Status (1)

Country Link
JP (1) JP3280797B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108374A (en) * 2012-11-30 2014-06-12 Tohzai Chemical Industry Co Ltd Continuous subcritical water treatment apparatus
US10307720B2 (en) * 2017-06-01 2019-06-04 Xi'an Jiaotong University Intermediate medium heat exchanging device for supercritical water oxidation system

Also Published As

Publication number Publication date
JPH07275872A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
JP3280797B2 (en) Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof
KR100249496B1 (en) Process for oxidizing liquid wastes containing organic compounds using supercritical water and catalytic oxidation
JP3347610B2 (en) Supercritical water oxidation method and apparatus
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
EP1101739B1 (en) Apparatus for treating flora and fauna waste with hydrothermal reaction
JPH07275871A (en) Supercritical water oxidation treatment method of harmful substance and apparatus therefor
JPH07275870A (en) Supercritical water oxidation treatment apparatus for treating harmful organic matter and method therefor
CN205442756U (en) Indirect heat exchange type supercritical water oxidation system of organic waste liquid and mud
JP3836270B2 (en) Method for shutting down supercritical water reactor
KR100249489B1 (en) Process for oxidizing liquid wastes containing organic compounds using supercritical water oxidation
JP4267791B2 (en) Supercritical water treatment equipment
JPH10314768A (en) Method for oxidation of supercritical water
JP4250778B2 (en) High temperature high pressure fluid cooling method and apparatus
JP3686778B2 (en) Operation method of supercritical water reactor
JP2001170664A5 (en)
JP2001170664A (en) Supercritical water treating device
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP2509008B2 (en) Wastewater treatment method
JP2003010868A (en) Apparatus for oxidation of organic waste water
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP3302125B2 (en) Wastewater treatment method
JP2006068399A (en) Apparatus and method for hydrothermal decomposition
JP2000229274A (en) Wet combustion device and treatment of carbon based compound
JP2004283801A (en) Apparatus and process for hydrothermal reaction
JP2001038190A (en) Hydrothermal reaction method and device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees